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Linear Regression

+€ —/BE—kH

@ A relationship model of Y and X
Y = f(X),

where Y is a real number or a class label, f is a function and
X = (X1, X2, ..., Xp) is a p dimensional vector.
@ A statistical model
Y =Ff(X)+e (E1)

where Y, X, and € are random variables. A typical assumption of € is
E(e) =0.
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Linear Regression

Linear Regression Model

o A linear regression model assumes that the regression function
f(X) = E(Y|X) is linear in the inputs X1, ..., Xp.

F(X)=Bo+ > _ XiB (E2)

Jj=1

@ In statistical literature, Y is called the dependent or response variable,
and the Xi,..., X, are called the independent variables, explanatory
variables, regressors, or predictors.

@ In machine learning and pattern recognition, Y is called the output,

and the Xi,..., X, are called the inputs or features.
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Linear Regression

Linear Regression Model

F(X)= 6o+ Y_Xibj (E2)

j=1
@ For prediction purposes they can sometimes outperform fancier
nonlinear models, especially in situations with small numbers of
training cases, low signal-to-noise ratio or sparse data.
@ An understanding of linear methods is essential for understanding

nonlinear ones.
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Linear Regression

Linear Regression Function

f(X)Zﬁo-i-ZXjﬂj (E2)

Jj=1

the variables X; can come from different sources:
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Linear Regression

Estimation by Least Squares

@ The most popular estimation method is least squares of residuals sum
of squares (RSS),

N
RSS(8) = 3_(vi = F(X)))*
l,:Vl ;
= Z(Yi — Bo — Xijﬂj)2 (E3)
i—1 j=1

@ The criterion measures the average lack of fit.
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Linear Regression

Note what assumptions (E3) makes about:
- the validity of model (E2)?
- the distribution of €?

- the correlation between y;s?
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Linear Regression

Estimation by Least Squares

FIGURE 3.1. Linear least squares fitting with
X € R%. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .
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Linear Regression

Estimation by Least Squares

(]
f=(XTX)"'XTy (E5)
(]
§=X3=XX"X)"1xTy (E6)
The matrix H = X(X X)X T appearing in equation (E6) is
sometimes called the " projection” matrix because it projects y in the
the space spanned by X.
°

E(B) = (XTX)'XTE(y) = (X"X)'X"XB =3
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Linear Regression

Estimation by Least Squares

X2

X1

FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y s orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
y represents the vector of the least squares predictions
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Linear Regression

Estimation by Least Squares

e Figure 3.2, We denote the column vectors of X by xp, x1,...,Xp
These vectors span a subspace of RV, also referred to as the column
space of X. We minimize RSS(8) = ||y — X||? by choosing 3 so that
the residual vector y — ¥ is orthogonal to this subspace.
¥ is hence the orthogonal projection of y onto this subspace.

e When X is not of full rank, X7 X is singular
The fitted values § = X3 are still the projection of y onto the column
space of X;

One may resolve the non-unique representation by .....
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Inference of [

@ In order to pin down the sampling properties of 3, we now assume that
the observations y; are uncorrelated and have constant variance o2,

and that the x; are fixed (non random).

Var(8) = (XTX) 102

N

1
~2 AV
0__N—p—lzf% i)

The N — p — 1 rather than N in the denominator makes 62 an

unbiased estimator.
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Inference of [

@ We also assume that the deviations of Y around its expectation are
Gaussian, i.e. € ~ N(0,02). Then

Y =E(Y|X1,...,Xp) +¢

p
= fo + ZXJBJ +e
j=1
B~ N(B, (XTX)10?)
o

A2 2.2
(N=p—=1)6% ~0"XN_p-1
In addition 3 and 62 are statistically independent.
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e To test the nonzero of 3; by the standardized coefficient or Z-score

~

B
v

where v; is the jth diagonal element of (X7 X)~1.

Zj:

@ To test for the significance of groups of coefficients simultaneously.

(RSSo — RSS1)/(p1 — po)

F=
RSS1/(N —p1 —1)

where RSS; is the residual sum-of-squares for the least squares fit of
the bigger model with p; + 1 parameters, and RSSg the same for the
nested smaller model with py 4+ 1 parameters, having p1 — po

parameters constrained to be zero.
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R2

N

RSS = (vi—9)’
i=1
N

SSR=> (9 —7)
i=1

N
SST = (vi— 7)?
i=1

o R? - coefficient of determination
R? — 557/? —1— 557/?
SST SST
Proportion of variation explained by the regressors.
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R2

R? can be misleading!
e Simply adding more terms to the model will increase R?.

o As the range of the regressor variable increases (decreases), R?

generally increases (decreases).
@ R? does not indicate the appropriateness of a linear model.

o Adjusted R?. Penalizes us for added terms to the model that are not
significant
SS5R/(n—p)

2 —_ J—
Ragj =1 SST/(n—1)
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e To obtain a 1 — 2« confidence interval for 3;
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Ezxample: Prostate Cancer

TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol 1lweight age 1bph svi lcp gleason

lweight  0.300

age 0.286 0.317

lbph  0.063 0.437 0.287

svi 0.593 0.181  0.129 —-0.139

lcp  0.692 0.157 0.173 —0.089 0.671
gleason  0.426 0.024  0.366 0.033 0.307 0.476

pgg4b 0.483 0.074 0.276 —0.030 0.481 0.663 0.757
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3.2.1 Example: Prostate Cancer

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score

Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 247

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pege45 0.27 0.15 1.74
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Ezxample: Prostate Cancer

@ We randomly split the dataset into a training set of size 67 and a test
set of size 30.

o Consider dropping all the non-significant terms in Table 3.2. The F
test for the significance of group {age, Icp, gleason, and pggdb} is

(32.81 — 29.43)/(9 — 5)

F= 29.43/(67 — 9)

=1.67

P-value is 0.17.

@ The mean prediction error on the test data is 0.521. In contrast,
prediction using the mean training value of Ipsa has a test error of

1.057, it is called the“base error rate.”
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The Gauss-Markov Theorem

@ The linear model

P
Y =5+ E XiBj + €

j=1
where ¢;'s have zero mean and equal variance and are uncorrelated.

@ We focus on estimation of any linear combination of the parameters

0=a’p;
f=a"f=a”(XTX)1XTy

o If we assume that the linear model is correct, aTB is unbiased since
E(a”3) = E(a™(XTX)"XTy)
= o’ (XTX)"1X"Xj
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The Gauss-Markov Theorem

@ The Gauss-Markov theorem states that if we have any other linear
estimator § = ¢y that is unbiased for a” 3, that is, E(c"y) = a’ B,
then

Var(a" B) < Var(c"y)

@ This is one of the most famous results in statistics asserts that the
least squares estimates of the parameters 3 have the smallest variance

among all linear unbiased estimates.
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Error of Estimation and Prediction

@ The mean squared error of an estimator 0 in estimating 6:

MSE(f) = E(0 — 0)?
Var() + [E(A) — 6]>

o Consider the prediction of the new response at input xp,

Yg = f(Xo) + €o

E(Yo — f(x0))? = 0% + E(x{ B — f(x0))?
= 02 + MSE(f(x0))
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Variable Selection

Subset Selection

@ There are two reasons that we are often not satisfied with the least
squares estimates
- The first is prediction accuracy: the least squares estimates often have
low bias but large variance.

- The second reason is interpretation.
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Variable Selection

AIC, BIC

2 d
AIC = ——loglike + 2—
n n
BIC = —2 x loglike + log n % d

where d is the value for model complexity, typically is the number of

unmown parameters.

@ Smaller values are better in relative sense.
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Variable Selection

Best-Subset Selection

e An efficient algorithm - the leaps and bounds procedure (Furnival and
Wilson, 1974) - makes this feasible for p as large as 30 or 40.
typically we choose the smallest model that minimizes an estimate of
the expected prediction error.
cross-validation to estimate prediction error and select k; the AIC

criterion is a popular alternative.
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Variable Selection

Best-Subset Selection
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FIGURE 3.5. All possible subset models for the

prostate cancer example. At each subset size is shown
the residual sum-of-squares for each model of that size.
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Variable Selection

Forward- and Backward-Stepwise Selection

@ Subset selection is infeasible for p much larger than 40
e Forward-stepwise selection is a greedy algorithm, producing a nested
sequence of models.
It might seem sub-optimal compared to best-subset selection.
- Computational, for large p we cannot compute the best subset sequence,
- Statistical, a price is paid in variance for selecting the best subset of
each size; forward stepwise is a more constrained search, and will have
lower variance, but perhaps more bias.
o Backward-stepwise selection starts with the full model, and
sequentially deletes the predictor that has the least impact on the fit.
@ Backward selection can only be used when N > p, while forward

stepwise can always be used.
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Variable Selection

Forward- and Backward-Stepwise Selection
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FIGURE 3.6. Comparison of four subset-selection
techniques on a simulated linear regression problem
Y = XT8 +¢e. There are N = 300 observations
on p = 31 standard Gaussian variables, with pair-
wise correlations all equal to 0.85. For 10 of the vari-
ables, the co nts are drawn at random from a
N(0,0.4) distribution; the rest are zero. The noise
e ~ N(0,6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown
is the mean-squared error of the estimated coefficient
3(1{) at each step from the true 3.
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Variable Selection

Forward- and Backward-Stepwise Selection

@ In the R package the step function uses the AIC criterion for weighing
the choices, which takes proper account of the number of parameters

fit; at each step an add or drop will be performed that minimizes the
AIC score.

@ Other more traditional packages base the selection on F-statistics,
adding “significant” terms, and dropping “non-significant” terms.
These are out of fashion, since they do not take proper account of the

multiple testing issues.
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Variable Selection

Prostate Cancer Data Ezample (Continued)

o Table 3.3 shows the coefficients from a number of different selection
and shrinkage methods. They are best-subset selection using an
all-subsets search, ridge regression, the lasso, principal components
regression and partial least squares. Each method has a complexity
parameter, and this was chosen to minimize an estimate of prediction

error based on tenfold cross-validation;

o Note that we have already divided these data into a training set of size
67 and a test set of size 30. Cross-validation is applied to the training
set, since selecting the shrinkage parameter is part of the training
process.
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Variable Selection

Prostate Cancer Data Ezample (Continued)

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS  Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2477 2.452  2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238  0.169 0.289 0.344
age —0.141 —0.046 —0.152 —0.026

lbph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pgg4sb 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0.492 0479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152
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Variable Selection

Prostate Cancer Data Ezample (Continued)

Al Subsets Ridge Regression

Lasso Principal Components Regression

FIGURE 3.7.
h
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Variable Selection

Shrinkage Methods: Ridge Regression

e Ridge regression shrinks the regression coefficients by imposing a

penalty on their size.

N

P p
fridge — arg mﬁin { Z(yi — By — ZXU,Bj)z + /\Zﬁf}
j=1 Jj=1

i=1

Here A > 0 is a complexity parameter that controls the amount of
shrinkage: the larger the value of A, the greater the amount of

shrinkage. The coefficients are shrunk toward zero (and each other).
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Variable Selection

Shrinkage Methods: LASSO

1

alasso .
=argm =
B rg Bm {2

N P

p
(vi—Bo— D _xiB)> + A1) \5j\}
j=1 j=1

i=1

Notice the similarity to the ridge regression problem (3.42) or (3.41):
the Ly ridge penalty > 7 sz is replaced by the L; lasso penalty > 7 |5;l.
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Variable Selection

The Lasso

@ This latter constraint makes the solutions nonlinear in the y;, and there

is no closed form expression as in ridge regression.

@ Because of the nature of the constraint, making t sufficiently small will
cause some of the coefficients to be exactly zero. Thus the lasso does
a kind of continuous subset selection.

o If tis chosen larger than to = Y7 |8;| (where §; = BJ’S , the least
squares estimates), then the lasso estimates are the Bjs

@ On the other hand, for t = t3/2 say, then the least squares coefficients

are shrunk by about 50% on average.
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the Lasso
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameler { is varied.

Coefficients are plotted versus s = t/ 3% |3;]. A vertical line is drawn at s = 0.36.
the val
profiles hit zero, while those for ridge do not. The profiles are piece-wise lincar

and so are computed only at the points displayed; see Section 3.4.4 for details

¢ chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
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Variable Selection

Methods Using Derived Input Directions: Principal

Components Regression
@ X,,, and then regresses y on z1, 22, ..., zpm for some M < p.

z1,20,...,2)m are the first M principle components of X. Since the z,,

are orthogonal, this regression is just a sum of univariate regressions:

M
9pcr = )71 + Z é\mzm
m=1
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Linear Methods for Classification

e For an important class of procedures, these decision boundaries are

linear; this is what we will mean by linear methods for classification.

fi(x) = Bro+ Bi x
The decision boundary between class k and £ is that set of points for

which #(x) = f,(x), that is, the set
{x: (%§k0 — /§g0) + (;@k — “g()TX = 0}, an affine set or hyperplane.
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Multiple Outputs of Linear Regression

Y=XB+E

Here Y is the N x K response matrix, with ik entry yj., X is the
N x (p+ 1) input matrix, B is the (p + 1) x K matrix of parameters

and E is the N x K matrix of errors.

K N
RSS(B ZZ Vi = fi(xi))
=1

i=1
- r[(Y XB) (Y—XB)]
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Multiple Outputs of Linear Regression
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Linear Regression of an Indicator Matrix

e Y =(Y1,..., Yk), and the N training instances of these form an NxK
indicator response matrix Y. Y is a matrix of 0's and 1's, with each

row having a single 1.

@ Note that we have a coefficient vector for each response column yy,
and hence a (p + 1) x K coefficient matrix B = (X"X)"1XTY.
® - compute the fitted output f(x)7 = (1,x7)B, a K vector;

- identify the largest component and classify accordingly:

PN

G(x) = argmaxkegfk(x)
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Linear Regression of an Indicator Matrix

Linear Regression Linear Discriminant Analysis

X2

Xl Xl

FIGURE 4.2. The data come from three classes in
R? and are easily separated by linear decision bound-
aries. The right plot shows the boundaries found by
linear discriminant analysis. The left plot shows the
boundaries found by linear regression of the indica-
tor response variables. The middle class is completely
masked (never dominates).
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Linear Regression of an Indicator Matrix

@ There is a serious problem with the regression approach when the

number of classes K > 3, especially prevalent when K is large.

@ A loose but general rule is that if K > 3 classes are lined up,

polynomial terms up to degree K — 1 might be needed to resolve them.
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Linear Regression of an Indicator Matrix

Degree = 1; Error = 0.33 Degree = 2; Error = 0.04

FIGURE 4.3. The effects of masking on linear regres-
sion in IR for a three-class problem. The rug plot at
the base indicates the positions and class membership
of each observation. The three curves in each panel are
the fitted regressions to the three-class indicator vari-
ables; for example, for the blue class, Yviue is 1 for the
blue observations, and 0 for the green and orange. The
fits are linear and quadratic polynomials. Above each
plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.
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FIGURE 4.1. The left plot shows some data from
three classes, with linear decision boundaries found
by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by
finding linear boundaries in the five-dimensional space
X1, X2, X1 X2, X2, X2. Linear inequalities in this space
are quadratic inequalities in the original space.
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Linear Discriminant Analysis

Linear Discriminant Analysis

000 o 4 G

Coordinate 2 for Training Data.

Coordinate 1 for Training Data.

FIGURE 4.4. A two-dimensional plot of the vowel
training data. There are eleven classes with X € R'?,
and this is the best view in terms of a LDA model (Sec-
tion 4.3.3). The heavy circles are the projected mean
vectors for each class. The class overlap is consider-
able.
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Linear Discriminant Analysis

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training  Test
Linear regression  0.48 0.67
Linear discriminant analysis  0.32 0.56
Quadratic discriminant analysis  0.01 0.53
Logistic regression  0.22 0.51
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LDA

@ Assume that the classes have a multivariate normal distribution (f(x))

common covariance matrix >, = 2, Vk.

e This linear log-odds function (log fx(x)/fi(x))implies that the decision
boundary between classes k and / - the set where
Pr(G = k|X = x) = Pr(G = ¢|X = x).is linear in x; in p dimensions a
hyperplane.

@ linear discriminant functions

1

Su(x) =xTE 1y — 5

pg Xt + log m

are an equivalent description of the decision rule, with
G(x) = arg maxy dx(x).
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Linear Discriminant Analysis

FIGURE 4.6. Two methods for fitting quadratic
boundaries. The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained wusing LDA in the five-dimensional space
X1, X2, X1X2,X?%,X2). The right plot shows the
quadratic decision boundaries found by QDA. The dif-
ferences are small, as is usually the case.
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Linear Discriminant Analysis

Regularized Discriminant Analysis on the Vowel Data

04 05

Misclassification Rate
02 03

00 01

FIGURE 4.7. Test and training errors for the vowel
data, using reqularized discriminant analysis with a se-
ries of values of a € [0,1]. The optimum for the test
data occurs around o = 0.9, close to quadratic discrim-
inant analysis.
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LDA

o Fisher arrived at this decomposition via a different route, without
referring to Gaussian distributions at all. He posed the problem:

Find the linear combination Z = a” X such that the between-class
variance is maximized relative to the within-class variance.
Again, the between class variance is the variance of the class means of
Z, and the within class variance is the pooled variance about the

means.
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Linear Discriminant Analysis

Here W is the pooled within-class covariance matrix Zf e W,
Wi = > 7% mi(Xi — k) (Xui — %k)T and B is the between class covariance
matrix S5 (R — X) (% — %) T

a'Ba

maXxX ———
a aWa

or equivalently

maxa' Ba subjectto a'Wa=1
a

One can find the next direction ap, orthogonal in W to aj, such that
agBag/azTWag is maximized; and so on. The aj, ap, ... are referred to as
discriminant coordinates, not to be confused with discriminant functions.

They are also referred to as canonical or discriminant variates,
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Linear Discriminant Analysis

@ The ay are referred to as discriminant coordinates, not to be confused
with discriminant functions.

° - Gaussian classification with common covariances leads to linear decision
boundaries. Classification can be achieved by sphering the data with
respect to W, and classifying to the closest centroid (modulo log ) in
the sphered space.

- Since only the relative distances to the centroids count, one can confine
the data to the subspace spanned by the centroids in the sphered space.

- This subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. This decomposition is

identical to the decomposition due to Fisher.
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Linear Discriminant Analysis

Shuen-Lin Jeng (NCKU)

Linear Discriminant Analysis
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Coordinate 1 Coordinate 2
38 = 8

4 2 o 2 4 2 1 0 1 2 3

Coordinate 1 Coordinate 9

FIGURE 4.8. Four projections onto pairs of canon-
ical variates. Notice that as the rank of the canonical
variates increases, the centroids become less spread out.
In the lower right panel they appear to be superimposed,
and the classes most confused.
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Linear Discriminant Analysis

FIGURE 4.9. Although the line joining the cen-
troids defines the direction of greatest centroid spread,
the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this
overlap for Gaussian data (right panel).
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Linear Discriminant Analysis

LDA and Dimension Reduction on the Vowel Data
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FIGURE 4.10. Training and test error rates for the
vowel data, as a function of the dimension of the dis-
criminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision bound-
aries in this space.
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FIGURE 4.11. Decision boundaries for the vowel
training data, in the t 1 1 subsp d
by the first two canonical variates. Note that in any
higher-dimensional subspace, the

cision boundaries
are higher-dimensional affine planes, and could not be
represented as lines.
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