
Supplementary material to “Multiscale Tests for Point Processes

and Longitudinal Networks”

S1. Supplementary material for Sections 2 and 3

S1.1 Concise description of algorithms for longitudinal networks

S1.2 Asymmetric arrays of interactions

So far we’ve considered testing symmetric interaction processes among a single group of individuals, we can also extend

this to the problem of testing the asymmetric interactions between two possibly different groups of individuals. Let

V1 and V2 be two sets of individuals and suppose |V1| = m and |V2| = n. Now we let Nuv(·) represents the temporal

interactions events between individual u ∈ V1 and individual v ∈ V2, resulting in a collection of asymmetric point

process realizations {Nuv(·) : u ∈ V1, v ∈ V2} where

Nuv(·) ∼ PP (Λuv), for intensity measure Λuv.

Now we have m × n realizations in total and similarly we can reduce the the dimensionality of this problem by

assuming community structures in both groups. Suppose there are K1 and K2 communities respectively in groups

V1 and V2, we again assume the intensity function of the realization between two individuals only depends on their

community memberships. More precisely, let σ1 : [m] → [K1] and σ2 : [n] → [K2] be two clustering function on

groups V1 and V2, then we assume

Λuv = Γσ1(u)σ2(v), for any u ∈ V1 and v ∈ V2

where {Γst}s,t∈[K1]×[K2] is a collection of K1K2 intensity measures. We can again consider the goodness-of-fit test of

the community structure with null hypothesis

H0 : K1 = K2 = 1 vs. H0 : K1 ·K2 > 1 (S1.1)

and with a partition of I of the support X , we can define each discretized local null as

H̄
(r,`)
0 : Λuv(I

(r)
` ) = γ(r,`), for some common γ(r,`) ≥ 0 and for all u ∈ V1, v ∈ V2. (S1.2)
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S1.2 Asymmetric arrays of interactions

Algorithm 1 Computing simultaneously valid p-values for H
(s,j)
0 in the symmetric array

case.

INPUT: Poisson process realizations {Nuv(·), u < v ∈ [n]} and a hierarchical partitioning

I = {I(r)` }r∈[R],`∈[2r] of the domain.

OUTPUT: p-values {p(s,j)F }.

1: for each r ∈ [R] do

2: for each ` ∈ [2r] do

3: Define integer matrix A(r,`) as (3.16).

4: Set

p̄(r,`) = 2 min

(
FTW1

(
n2/3

(
λ1(A

(r,`)))− 2
))
, 1− FTW1

(
n2/3

(
λ1(A

(r,`)))− 2
)))

.

5: end for

6: end for

7: Apply Algorithm 2 on {p̄(r,`)} to obtain {{p(s,j,r)F }Rr=s}s∈[R],j∈[2s].

8: Compute p̃
(s,j)
F = min{p(s,j,r)F : r ∈ {s, s+ 1, . . . , R}}.

9: Run Metropolis–Hastings described in Section 3.1.3 to generate M
(b∗)
1 , . . . ,M

(b∗)
N for

b∗ ∈ [B] and let {N (b∗)
uv (·)} be the corresponding point process realizations.

10: for b∗ ∈ {1, 2, . . . , B} do:

11: For each r ∈ [R] and ` ∈ [2r], construct A
(r,`) (b∗)
uv from {N (b∗)

uv (·)}.

12: Repeat lines 1 to 8 to obtain p̃
(s,j)
F,b∗ .

13: end for

14: Compute p̌
(s,j)
F := 1

B

∑B
b∗=1 1{p̃

(s,j)
F,b∗ ≤ p̃

(s,j)
F }.

15: Compute p
(s,j)
F = p̌

(s,j)
F 2s.
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S1.2 Asymmetric arrays of interactions

Algorithm 2 Computing simultaneously valid p-values for H
(s,j)
0 in the degree-corrected

setting.

INPUT: Poisson process realizations {Nuv(·), u < v ∈ [n]} and a hierarchical partitioning

I = {I(r)` }r∈[R],`∈[2r] of the domain.

OUTPUT: p-values {p(s,j)F }

1: for each r ∈ [R] do

2: for each ` ∈ [2r] do

3: Set p(r,`) = 2

[
1− Φ

(∣∣∣∣ T (r,`)
√
6(‖η̂(r,`)‖2−1)3/2

∣∣∣∣)].
4: end for

5: end for

6: Apply Algorithm 2 on {p̄(r,`)} to obtain {{p(s,j,r)F }Rr=s}s∈[R],j∈[2s].

7: Compute p̃
(s,j)
F := min{p(s,j,r)F : r ∈ {s, s+ 1, . . . , R}}.

8: Run Metropolis–Hastings algorithm described in Section 3.2.3 to generate m(b∗) for

b∗ ∈ [B] and let {N (b∗)
uv (·)} be the corresponding point process realizations.

9: for b∗ ∈ {1, 2, . . . , B} do:

10: For each r ∈ [R] and ` ∈ [2r], construct A
(r,`) (b∗)
uv from {N (b∗)

uv (·)}.

11: Repeat lines 1 to 8 to obtain p̃
(b∗)
F .

12: end for

13: Compute the adjusted p-value p̌
(s,j)
F := 1

B

∑B
b∗=1 1{p̃

(s,j)
F,(b∗) ≤ p̃

(s,j)
F }.

14: Compute p(s,j) = p̌
(s,j)
F · 2−s.

3



S1.2 Asymmetric arrays of interactions

Similar to the local adjacency matrix A(r,`) defined in previous section, we let B(r,`) be a m× n matrix with entries

being counts of interactions between any two individuals from groups V1 and V2 respectively, within interval I
(r)
`

B(r,`)
uv = Nuv(I

(r)
` ), for any u ∈ V1 and v ∈ V2

To test each discretized local null H̄
(r,`)
0 given observed matrix B(r,`), we again remove the mean effect and check

whether the residual matrix looks like random noise. We define

γ̂(r,`) =
∑
u∈V1

∑
v∈V2

B
(r,`)
uv

mn
. (S1.3)

Moreover, we define

B̃(r,l) =
B(r,`) − γ̂(r,`)√

m · γ̂(r,`)
∈ Rn×m (S1.4)

as the empirically scaled and centered counterpart of B(r,`), with γ̂(r,`) defined as in (S1.3) and let W̃ (r,`) =

(B̃(r,`))TB̃(r,`). Then we have the following limiting distribution of the largest eigenvalues of W̃ (r,`).

Theorem S1. Let λ1(W̃ (r,`)) be the largest eigenvalue of matrix W̃ (r,`) and suppose limn→∞ n/m ∈ (0,∞). Then

for each r ∈ [R] and ` ∈ [2r], under the discretized local null hypothesis H̄
(r,`)
0 given in (S1.2), we have, as n,m→∞,

m · λ1(W̃ (r,`))− (
√
n+
√
m)2

(
√
n+
√
m)( 1√

n
+ 1√

m
)1/3

d−→ TW1. (S1.5)

We relegate the proof of Theorem S1 to Section S1.5.3 of the Appendix.

Using Theorem S1, we can let λ1(W̃ (r,`)) be the test statistics for the local test (S1.2), and derive the p-value

for the discretized local null as

p̄(r,`) ≡ p(r,`)(W̃ (r,`))

:= 2min

(
FTW1

(m · λ1(W̃ (r,`))− (
√
n+
√
m)2

(
√
n+
√
m)( 1√

n
+ 1√

m
)1/3

)
, 1− FTW1

(m · λ1(W̃ (r,`))− (
√
n+
√
m)2

(
√
n+
√
m)( 1√

n
+ 1√

m
)1/3

))

Steps 2, 3, and 4 proceed in the same way as the symmetric case, except that the resampling method changes

slightly. To generate samples under the null in this scenario, we can just change the distribution of the random

marks to be P
(
Mi = (u, v)

)
= 1

mn
, ∀i ∈ [N ], u ∈ V1 and v ∈ V2. Then we generate sequences of random marks

{M (b∗)
1 , . . . ,M

(b∗)
N } under the aforementioned distribution and let the collection {N (b∗)

uv (·) : u ∈ V1, v ∈ V2} be a

resample of the observed asymmetric array.
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S1.3 Randomizing p-value

S1.3 Randomizing p-value

Let X be a discrete random variable taking value on {x1, . . . , xm} ⊂ R where we have the ordering x1 ≤ x2 ≤ . . . xm.

Define S(x) = P(X ≥ x) and

q1 := S(x1) = 1, q2 := S(x2), . . . , qm := S(xm), qm+1 := 0,

so that S(X) takes value on {q1, q2, . . . , qm}. We define random variable S̃ such that if S(X) = qi, then S̃ = qi+1.

Proposition 1. Let U ∼ Unif[0, 1] be independent of X. Define

Z := U · S(X) + (1− U) · S̃. (S1.6)

Then, we have that Z ≤ S(X) and that Z ∼ Unif[0, 1].

Proof. Since S̃ < S(X) by definition, it is clear that Z ≤ S(X) as well. To show that Z has the Unif[0, 1] distribution,

fix t ∈ (0, 1). Then there exists i ∈ [m] such that qi ≥ t > qi+1. We then have that

P(Z ≤ t) = P(S(X) ≤ qi+1) + P(Z ≤ t, S(X) = qi, S̃ = qi+1)

= qi+1 + P
(
U ≤ t− qi+1

qi − qi+1

)
P(S(X) = qi) = t,

where the last inequality follows because P(S(X) = qi) = P(X = xi) = S(xi)− S(xi+1) = qi − qi+1. The Proposition

follows as desired.

S1.4 Proof of Proposition 2

Proof. Let T (·|·) be the transition probability of the Markov Chain specified via (3.27), we first verify that the

Metropolis-Hastings ratio is 1 by showing that T (·|·) is a symmetric distribution, i.e., for any two sample vectorm(1) 6=

m(2) ∈ Md, we have T (m(1)|m(2)) = T (m(2)|m(1)). It is obvious that the necessary condition for T (m(1)|m(2))

to be positive, is that there must exist exactly two indices i 6= j ∈ [N ] such that m
(1)
i 6= m

(2)
i , m

(1)
j 6= m

(2)
j while

the other elements are all the same for the two vectors. We can see that T (m(1)|m(2)) = T (m(2)|m(1)) = 1

5([N]
2 )

regardless of the values of m
(1)
i ,m

(1)
j ,m

(2)
i ,m

(2)
j .

Next, we show that the Markov Chain is irreducible on the support Md. By definition it suffice to show that

for any two sample m(1) 6= m(2) ∈Md, there exist a finite steps path m(1) −→m(2). Since the vector of all degrees
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S1.5 Supplementary material for Section 3.1

D(m) are identical for all m ∈ Md, we can show there exist a path m(1) −→ m(2) which sequentially matching

each element of m(1) to be the same as in m(2). To be specific, we denote the jth elements of vectors m(1) and m(2)

as m
(1)
j = (uj , vj) and m

(2)
j = (u′j , v

′
j) respectively. Let i = min

{
j ∈ [N ] : m

(1)
j 6= m

(2)
j

}
, we first show that we can

go from m(1) to an intermediate state m(1,i) ∈ Md in finite steps, such that m
(1,i)
j = m

(2)
j for all j ≤ i. We can

easily see for m
(1)
i 6= m

(2)
i , there could only be two cases

1. ui = u′i, vi 6= v′i or ui 6= u′i, vi = v′i

2. ui 6= vi 6= u′i 6= v′i

For the first case, suppose ui = u′i, vi 6= v′i, then by the fact D(m(1)) = D(m(2)) there must exist s > i such

that us = v′i or vs = v′i. Then by (3.27) we can easily check that we can go from m(1) to m(1,i) in one step with

T (m(1,i)|m(1)) = 1

5([N]
2 )

. For the second case, we can go from m(1) to m(1,i) in two steps where in the first step we

move to a state m(1,i)′ such that m
(1,i)′
i = (u′i, vj) which is just the state in the first case, so by the same reason we

can move to m(1,i) in the second step. Notice that the above paths does not depend on the index i, thus there exist

an integer t ≤ 2N such that we can sequentially move from m(1) −→m(1,i) −→ · · · −→m(1,N) = m(2) in t steps.

Given any state m, if not all edges are the same, i.e., mi = (u, v) for some u, v ∈ [n] and all i ∈ [N ], then we can

always find mi = (ui, vi) and mj = (uj , vj) with i < j ∈ [N ] such that the nodes ui, vi, uj , vj satisfy one of the two

cases listed above. For case 1, we can see that the five outcomes contains multi-edges, so the Markov Chain can stay

at current state with positive probability and thus the period for this state is 1. For 2, we can easily check the state

can return in t steps for any t ≥ 2, thus the period for this state is also 1. Then by irreducibility, we can conclude

that the Markov Chain is aperiodic.

With the Markov Chain being irreducible and aperiodic, it converges to its unique stationary distribution. Then

by the construction of the Metropolis-Hastings algorithm below (3.27), it is guaranteed that the stationary distribution

is the target distribution, i.e., the uniform distribution on Md.

S1.5 Supplementary material for Section 3.1

Recall that we let A(r,`), defined in (3.16), be the adjacency matrix of a undirected Poisson Stochastic Block Model

with K communities. We denote σ as the membership vector and γ as the connection intensity between different

communities, as discussed in Section 3.1.1. Without loss of generality, we omit all the superscripts of A(r,`) that
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S1.5 Supplementary material for Section 3.1

represents the partition of the support X and just use A to denote adjacency matrix generated from Poisson Stochastic

Block Model in all subsequent analysis in Section S1.5 for simplicity. For the same reason, we also omit the subscripts

of B(r,`), the matrix with entries being counts of interactions between two groups of individuals, in the proof of theorem

S1.

S1.5.1 Proof of Theorem 2

Proof. Under the null hypothesis, we have that P = γ1n1
T
n, for some constant γ > 0.

Let Ã′ be a n× n matrix such that

Ã′uv =


(Auv − γ̂)/

√
(n− 1)γ, u 6= v

(γ − γ̂)/
√

(n− 1)γ, u = v

Where γ̂ = 2
n2−n

∑
u<v Auv is an estimator of γ. Let Cn = n(γ − γ̂)/

√
(n− 1)γ and matrix Ã∗ be as defined in

(S1.9). Then by definition we have that Ã′ = Ã∗ + ∆′, where ∆′ = (γ − γ̂)1n1
T
n/
√

(n− 1)γ = Cn1n1
T
n/n. Note that

γ̂ is the sample mean of n(n− 1)/2 i.i.d Poisson random variables with mean γ, we can apply the Poisson tail bound

(S1.10) again and get

P (|γ − γ̂| > s) ≤ 2exp
{
− n(n− 1)s2

4(γ + s)

}
And thus we have |γ − γ̂| = op(logn/n) and that Cn = op(logn/

√
n).

Let µ∗i be the eigenvector of Ã∗ corresponding to its ith largest eigenvalue. Then by Lemma 2, we have a lower

bound on the largest eigenvalue of Ã′:

λ1(Ã′) ≥ (µ∗1)TÃ′µ∗1

= λ1(Ã∗) + (µ∗1)T∆′µ∗1

= λ1(Ã∗) + Cn(µ∗1)T1n1
T
nµ
∗
1/n

= λ1(Ã∗) + Õp(1/n) · op(logn/
√
n)

≥ λ1(Ã∗)− op(n−2/3)

To derive the upper bound of λ1(Ã′), we denote µ′1 as the eigenvector corresponding to the largest eigenvalue of

Ã′. Let {a1, . . . , an} be the coordinates of the vector µ′1 with respect to the basis {µ∗1, . . . , µ∗n}, i.e., µ′1 =
∑n
i=1 aiµ

∗
i .

Define SCn ⊂ [n] := {i ∈ [n] : λi(Ã∗) >
(
λ1(Ã∗) − |Cn|

)
} as the set of indices of those eigenvalues of Ã∗ that lies
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S1.5 Supplementary material for Section 3.1

in the interval (λ1(Ã∗)− |Cn|, λ1(Ã∗)]. Then By Lemma 2 and the fact that |Cn| is the largest eigenvalue of ∆′, we

have

λ1(Ã′) = (µ′1)TÃ′µ′1

= (µ′1)TÃ∗µ′1 + (µ′1)T∆′µ′1

≤
n∑
i=1

a2
iλi(Ã∗) +

( ∑
i∈SCn

ai(µ
∗
i )

T)|∆′|( ∑
i∈SCn

ai(µ
∗
i )
)

+
( ∑
i∈([n]/SCn )

ai(µ
∗
i )

T)|∆′|( ∑
i∈([n]/SCn )

aiµ
∗
i

)
≤ λ1(Ã∗)

m∑
i∈SCn

a2
i +

(
λ1(Ã∗)− |Cn|

) ∑
i∈([n]/SCn )

a2
i

+ |SCn | ·
m∑

i∈([n]/SCn )

a2
i (µ
∗
i )

T|∆′|µ∗i + |Cn|
m∑

i∈([n]/SCn )

a2
i

≤ λ1(Ã∗) + |SCn ||Cn| ·
( m∑
i∈([n]/SCn )

a2
i · Õp(1/n)

)
= λ1(Ã∗) + |SCn | · Õp(1/n) · op(logn/

√
n)

Then we could bound the size of SCn by using the results from ? and ?, where the main idea is that the empirical

counting of the eigenvalues is close to the semicircle counting functions.

Let N(a, b) be the number of eigenvalues of Ã∗ lying in interval (a, b], and define Nsc(a, b) := n
∫ b
a
ρsc(x)dx,

where ρsc = (1/2π)((4− x2)+)1/2 denote the the density of the semicircle law discussed in ?. Following Theorem 2.2

in ? and the discussion in ?, there exist constant A0 > 1, C, c and d < 1, such that for any L satisfying the following:

A0loglogn ≤ L ≤ log(10n)/loglogn

and for |a|, |b| < 5, we have :

P
(
|N(a, b)−Nsc(a, b)| ≥ 2(logn)L

)
≤P
(
|N(−∞, b)−Nsc(∞, b)| ≥ (logn)L

)
+ P

(
|N(−∞, a)−Nsc(∞, a)| ≥ (logn)L

)
≤2Cexp{−c(logn)(−dL)}

Notice that SCn = N
(
λ1(Ã∗)− |Cn|, λ1(Ã∗)

)
, and from the above inequality we have that:

SCn = N
(
λ1(Ã∗)− |Cn|, λ1(Ã∗)

)
= Nsc

(
λ1(Ã∗)− |Cn|, λ1(Ã∗)

)
) +Op(logn)L (S1.7)
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S1.5 Supplementary material for Section 3.1

And

Nsc
(
λ1(Ã∗)− |Cn|, λ1(Ã∗)

)
) = n

∫ λ1(Ã∗)

λ1(Ã∗)−|Cn|
(

1

2π
((4− x2)+)1/2dx

≤ n
∫ 2

λ1(Ã∗)−|Cn|
(

1

2π
((4− x2)+)1/2dx

= O(n|Cn|3/2)

= op
(
n1/4(logn)3/2)

)
Where the second to last equality holds by using the area of a rectangle with side length (2−|Cn|) and

√
4− (2− |Cn|)2

to cover the actual size of the integral.

Now we can see that

λ1(Ã′) ≤ λ1(Ã∗) + |SCn | · Õp(1/n) · op(logn/
√
n)

= λ1(Ã∗) + op
(
n1/4(logn)3/2)

)
· Õp(1/n) · op(logn/

√
n)

= λ1(Ã∗) + Õp((logn)5/2n−5/4)

≤ λ1(Ã∗) + op(n
−2/3)

And combining the lower and upper bound we have that

λ1(Ã′) = λ1(Ã∗) + op(n
−2/3) (S1.8)

Now let’s get back to the target matrix Ã =
√

γ̂
γ

(
Ã′ − Cn

n
In
)

. By triangle inequality of matrix norm we have

∥∥Ã′∥∥− ∥∥Cn
n
In
∥∥ ≤ ∥∥Ã′ − Cn

n
In
∥∥ ≤ ∥∥Ã′∥∥+

∥∥Cn
n
In
∥∥

And since ‖Cn
n
In‖ = |Cn/n| = op(logn · n−3/2), we could easily see that

λ1(Ã) =
√
γ̂/γ ·

∥∥Ã′ − Cn
n
In
∥∥

=
(
1 + op(logn/n)

)(
λ1(Ã′) + op(logn · n−3/2)

)
= λ1(Ã′) + op(n

−2/3)

= λ1(Ã∗) + op(n
−2/3)

Finally by Lemma 1 and Slutsky’s lemma, we have

n2/3(λ1(Ã)− 2
) d−→ TW1.
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S1.5 Supplementary material for Section 3.1

Lemma 1. Let P be defined in (3.17) and Ã∗ be a matrix such that

Ã∗uv =


(Auv − Puv)/

√
(n− 1)Puv, u 6= v

0, u = v

(S1.9)

Then we have

n2/3(λ1(Ã∗)− 2)
d−→ TW1.

Proof. Consider a n× n real symmetric Wigner matrix

G∗uv =
1√
n− 1

xuv, 1 ≤ u, v ≤ n

Where the off-diagonal elements are i.i.d. standard normal distributed random variables and the diagonal elements

are zeros. Theorem 1.2. in ? implies that the largest eigenvalue of G∗ weakly converges to the Tracy-Widom

distribution.

Next, by tail bound of Poisson random variables, for any s > 0 and 1 ≤ u, v ≤ n we have

P
(∣∣∣Ã∗uv∣∣∣ > s√

n− 1

)
≤ 2exp(− Puvs

2

2(Puv +
√
Puvs)

) (S1.10)

And thus there exist a constant v independent of n, such that for any s ≥ 1 we have

P
(∣∣∣Ã∗uv∣∣∣ > s√

n− 1

)
≤ v−1exp(−sv )

The above inequality shows that the entries of Ã∗ have a uniformly subexponential decay, and thus by Theorem 2.4

in ?, we have that n2/3(λ1(Ã∗)− 2) converges to n2/3(λ1(G∗)− 2) in distribution.

Lemma 2. For each 1 ≤ i ≤ n, let µ∗i be the eigenvector of Ã∗ corresponding to the ith largest eigenvalue λi(Ã
∗).

Then for any deterministic unit vector v, we have

((µ∗i )
Tv)2 = Õp(1/n), uniformly for all i ∈ [n] (S1.11)

Where we define an = Õp(bn), if for any ε > 0 and D > 0, there exists n0 = n0(ε,D) such that

P(an ≥ nεbn) ≤ n−D for all n ≥ n0.

Lemma 2 is a direct application of the eigenvector delocalization theorem proposed in ?. Note that the conditions

of Theorem 2.16 in ? does not apply to our configuration of Ã∗ since the diagonal entries are made to be all zeros while
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S1.5 Supplementary material for Section 3.1

the original condition requires that all elements of the matrix should have positive variance. However, ? provides

a local semicircle law(Theorem 2.3) which holds even when some entries of a generalized Wigner matrix have zero

variance, and as a result of the local semicircle law, the eigenvector delocalization theorem still holds in our setting.

See also discussions in ? and Lei (2016).

S1.5.2 Maximum eigenvalue test statistic under an alternative

We consider the limiting distribution of λ1(Ã(r,`)) under some alternative cases. When the adjacency matrix is

generated from a Stochastic Block Model with K > 1 communities and Bernoulli entries, Bickel and Sarkar (2013)

shows that the largest eigenvalue of the scaled and centered adjacency matrix is O(
√
n), given that the community

probability matrix ψ is diagonally dominant. Lei (2016) provided a more general result which requires that each

community has size at least proportional to n/K. The following proposition is a direct extension of Theorem 3.3 in

Lei (2016) to the Poisson network.

Proposition 2. Let A(r,`) be an adjacency matrix from Poisson stochastic model with K communities and let Gk =

{u ∈ [n] : σ(u) = k} be the set of vertices that belong to group k for k ∈ [K].

Assume there exist a constant CK > 0 such that for all n we have

min
k∈[K]

|Gk| ≥ CK · n (S1.12)

Then for any r ∈ [R] and ` ∈ [2r], if K > 1 we have

λ1(Ã(r,`)) ≥
√
nδCK −Op(1)(

‖γ‖max + op(logn/n)
)1/2 (S1.13)

where δ is the minimum `∞ distance between any two distinct rows of γ.

Proof. Let P̂ = γ̂1n1
T
n, we have

∥∥Ã∥∥ =
(
(n− 1)γ̂

)−1/2∥∥A− (P̂ − diag(P̂ )
)∥∥

≥
(
(n− 1)γ̂

)−1/2
(∥∥P − P̂ − diag(P − P̂ )

∥∥− ∥∥A− (P − diag(P )
)∥∥)

We can see that the matrix A−
(
P − diag(P )

)
has off-diagonal entries being independent, centered Poisson random

variables and diagonal entries being all zeros. By Theorem 2 in ?, we have that there exist some C′ > 0 such that

E
∥∥A− (P − diag(P )

)∥∥ ≤ C′√n (S1.14)

11
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and thus
∥∥A− (P − diag(P )

)∥∥ ≤ Op(√n).

To derive an upper bound of
∥∥P − P̂ − diag(P − P̂ )

∥∥, we notice that since K > 1, there exist two community

k1 6= k2. Let gk1 = {u ∈ [n] : σ(u) = k1} and gk2 = {u ∈ [n] : σ(u) = k2} be the set of vertices that belong to k1 and

k2 respectively. Since we assume the matrix γ have pairwise distinct rows, there must exist a group k3 ∈ [K] such

that γk1k3 6= γk2k3 , and we can choose

k3 = argmin
k′∈[K]

|γk1k′ − γk2k′ |.

Note that k3 can be equal to k1 or k2. Now let D be a submatrix of P − P̂ − diag(P − P̂ ), which only consist the

rows in k1 ∪ k2 and columns in k3. We can see that when k1 6= k2 6= k3, after some row permutaions D could be seen

as:

D =

D1

D2


where D1 is a |k1| × |k3| matrix with all entries equal to γk1k3 − γ̂ and D2 is a |k2| × |k3| matrix with all entries equal

to γk2k3 − γ̂. Then we have

∥∥D∥∥ ≥ max
(

(γk1k3 − γ̂)
√
|k1| · |k3|, (γk2k3 − γ̂)

√
|k2| · |k3|

)
≥ nδCK

When k3 = k1 or k3 = k2, we can see D could still be permuted into a block matrix with blocks D1 and D2.

However in this case, one of the blocks have all diagonal entries being zeros, since we do not allow self-loops. Without

loss of generality, we assume that k3 = k1, and we still have the same lower bound of
∥∥D∥∥ by

∥∥D∥∥ ≥ max
(

(γk1k1 − γ̂)(|k1| − 1), (γk2k1 − γ̂)
√
|k2| · |k1|

)
≥ nδCK −Op(1)

Finally we have

∥∥Ã∥∥ ≥ ((n− 1)γ̂
)−1/2(

nδCK −Op(
√
n)
)

≥
√
nδCK −Op(1)(

‖γ‖max + op(logn/n)
)1/2

12
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S1.5.3 Proof of Theorem S1

Proof. Under the null hypothesis, we have that Buv ∼ Poisson(γ) for some γ > 0 and for any u ∈ V1, v ∈ V2. Recall

that we denote γ̂ (S1.3) as an estimator of γ, matrix B̃ as the empirically centered and scaled counterpart of B and

W̃ = B̃TB̃.

Let B̃∗ be as defined in (S1.18) and B̃′ be a m × n matrix with entries B̃′uv = (Buv − γ̂)/
√
mγ. Then we

have B̃′ = B̃∗ + α∆, where ∆ = 1m1T
n and α = γ−γ̂√

mγ
. Denote W̃ ∗ = B̃∗TB̃∗ and W̃ ′ = B̃′TB̃′. Then we let(

λi(W̃
∗), µ∗i

)n
i=1

be the pairs of eigenvalue and eigenvector of matrix W̃ ∗ with the eigenvalues in a non-increasing

order, namely λ1(W̃ ∗) ≥ λ2(W̃ ∗) · · · ≥ λn(W̃ ∗). Similarly, we let (λi(W̃
′), µ′i)

n
i=1 be the pairs of eigenvalue and

eigenvectors of W̃ ′, where the eigenvalues are in non-increasing order as well.

First let us derive the a lower bound on λ1(W̃ ′), the largest eigenvalue of W̃ ′ = B̃′TB̃′:

λ1(W̃ ′) ≥ (µ∗1)TB̃′TB̃′µ∗1

= (µ∗1)TB̃∗TB̃∗µ∗1 + α(µ∗1)T(B̃∗T∆ + ∆TB̃∗ + α∆T∆)µ∗1

= λ1(W̃ ∗) + α(µ∗1)T(B̃∗T∆ + ∆TB̃∗ + α∆T∆)µ∗1

≥ λ1(W̃ ∗)− |α(µ∗1)T(B̃∗T∆ + ∆TB̃∗ + α∆T∆)µ∗1|

Let B̃∗ =
∑n
i=1

√
λi(W̃ ∗)s

∗
iµ
∗T
i be the singular value decomposition of B̃∗. Then we have:

µ∗Ti B̃
∗T =

n∑
i=1

√
λi(W̃ ∗)µ

∗T
1 µ∗i s

∗T
i =

√
λi(W̃ ∗)s

∗T
i

Notice that s∗i , µ
∗
i are the eigenvectors of the matrix B̃∗B̃∗T, B̃∗TB̃∗ respectively, and we can easily check the conditions

in Lemma 4 hold for both matrix B̃∗ and its transpose, thus we have

αµ∗T1 B̃∗T∆µ∗1 = α

√
λ1(W̃ ∗)s∗Ti 1m1T

nµ
∗
1

= op(logn/n3/2) · Õp(1) · λ1(W̃ ∗)

= Õp(logn/n3/2) ·Op(n−1/3)

Where the op(logn/n3/2) term is derived by noticing that γ̂ is the sample mean of m×n independent Poisson random

variables, and again by the Poisson tail bound (S1.10) we get α = γ−γ̂√
mγ

= op(logn/n3/2). On the other hand it is

13



S1.5 Supplementary material for Section 3.1

easily seen that α2µ∗T1 ∆T∆µ∗1 = Õp(1) · op((logn)2/n2), which indicates that:

λ1(W̃ ′) ≥ λ1(W̃ ∗)− |α(µ∗1)T(B̃∗T∆ + ∆TB̃∗ + α∆T∆)µ∗1|

≥ λ1(W̃ ∗)− Õp(logn/n3/2) ·Op(n−1/3)− Õp((logn)2/n2)

= λ1(W̃ ∗)− ÕP (logn · n−11/6) (S1.15)

Next, we derive an upper bound for the largest eigenvalue of W̃ ′. Let {a1, . . . , an} be the coordinates of µ′1, the

eigenvector of W̃ ′ associated with its largest eigenvalue, with respect to the basis consisting of eigenvector of W̃ ∗,

i.e., µ′1 =
∑n
i=1 aiµ

∗
i . Let S =

{
i ∈ [n] : λi(W̃

∗) > λ1(W̃ ∗) − 2‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖
}

, such that |S| is the

number of λi(W̃
∗)′s in the interval

(
λ1(W̃ ∗) − 2‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖, λ1(W̃ ∗)

)
. Let v1 =

∑m
i=1 aiµ

∗
i and

v2 =
∑n
i=m+1 aiµ

∗
i so that µ′1 = v1 + v2. we have:

λ1(W̃ ′) = (µ′1)TW̃ ′µ′1

= (µ′1)TB̃∗TB̃∗µ′1 + α(µ′1)T(B̃∗T∆ + ∆TB̃∗ + α∆T∆)µ′1

≤ λ1(W̃ ∗) ·
∑
j∈S

a2
j +

(
λ1(W̃ ∗)− 2‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖

)
·
∑

j∈([n]/S)

a2
j

+ 2vT
1 |α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)|v1 + 2vT

2 |α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)|v2

≤ λ1(W̃ ∗)− 2‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖
∑

j∈([n]/S)

a2
j

+ 2m
∑
j∈S

a2
j (µ
∗
j )

T|α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)|µ∗j

+ 2‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖
∑

j∈([n]/S)

a2
j

≤ λ1(W̃ ∗) + 2|S|
∑
j∈S

a2
j (µ
∗
j )

T(|2α(B̃∗T∆|+ |α2∆T∆)|
)
µ∗j

≤ λ1(W̃ ∗) + 2|S|
∑
j∈S

a2
j

(
λj(W̃

∗) · Õp(logn/n3/2) + Õp((logn)2/n2)
)

≤ λ1(W̃ ∗) + 2|S|
(
Op(n

−1/3) · Õp(logn/n3/2) + Õp((logn)2/n2)
)

≤ λ1(W̃ ∗) + 2|S| · Õp(logn · n−11/6)

Now let a = λ1(W̃ ∗) − 2‖α(B̃′∆ + ∆′B̃ + α∆′∆)‖ and b = λ1(W̃ ∗). We can see that |S| = N (a) −N (b). Noticing

that |(N (a)−N (b))− (Nm(a)−Nm(b))| = |(N (a)−Nm(a))− (N (b)−Nm(b))| and together with Lemma 5 we have

14
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that for any ε > 0

P(|(N (a)−N (b))− (Nm(a)−Nm(b))| ≥ 2n−1 log(n)Cε log log(n))

≤P[(N (a)−Nm(a)) ≥ n−1 log(n)Cε log log(n)] + P[(N (b)−Nm(b)) ≥ n−1 log(n)Cε log log(n)]

≤2nCε exp(− log(n)ε log log(n))

and which indicates that |S| = |Nm(a)−Nm(b)|+Op
(
n−1 log(n)Cε log log(N)

)
. Since Nm(a)−Nm(b) = n

∫ b
a
%m(x)dx,

and it is easily seen by simple calculus that %m(x) achieves it’s local maximum at x = (1−n/m)2

1+n/m
, and %m( (1−n/m)2

1+n/m
) =

1

π|1−n/m|
√
n/m

. Thus we could have the following bound on the size of |Nm(a)−Nm(b)|:

|Nm(a)−Nm(b)| ≤ 2n‖α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)‖ 1

π|1− n
m
|
√

n
m

And we could see that

∥∥∥α(B̃∗T∆ + ∆TB̃∗ + α∆T∆)
∥∥∥ ≤ |α|( ∥∥∥B̃ ∗ T∆

∥∥∥+
∥∥∥∆′B̃∗

∥∥∥+ |α| ·
∥∥∆′∆

∥∥ )
≤ |α|

(
2
∥∥∥B̃∗∥∥∥ · ‖∆‖F + |α| · ‖∆‖2F

)
= op(logn · n−3/2)

(
2

√
mnλ1(W̃ ∗) +mn · op(logn · n−3/2)

)
= op(logn · n−5/6)

Thus we have that |S| = |Nm(a)−Nm(b)|+Op
(
n−1 log(n)Cε log log(n)

)
≤ op(logn · n1/6) and

λ1(W̃ ′) ≤ λ1(W̃ ∗) + |S| · ÕP (logn · n−11/6)

≤ λ1(W̃ ∗) + Õp
(
(logn)2 · n−17/6) (S1.16)

Combine (S1.15) and (S1.16) we conclude that

λ1(W̃ ′) = λ1(W̃ ∗) + op(n
−2/3) (S1.17)

Finally we can look at the target matrix B̃. We see that B̃ = B̃′×
√

γ
γ̂

and we can derive from the Poisson tail bond

(S1.10) that
√

γ
γ̂

= op(logn · n−1/2). Thus we can also have

λ1(W̃ ′) =

√
γ

γ̂
λ1(W̃ ′)

=
(
1 + op(logn · n−1/2)

)(
λ1(W̃ ∗) + op(n

−2/3)
)

= λ1(W̃ ∗) + op(n
−2/3)

Then by Lemma 3 and Slutsky’s theorem, we get the result of Theorem S1.
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Lemma 3. Let B̃∗uv be a matrix with entries:

B̃∗uv :=
Buv − γ√

mγ
, ∀u ∈ [m], v ∈ [n] (S1.18)

and let W̃ ∗ = B̃∗TB̃∗ with λ1(W̃ ∗) being its largest eigenvalue. Suppose that limn→∞ n/m ∈ (0,∞), then we have,

as m,n →∞:

mλ1(W̃ ∗)− (
√
n+
√
m)2

(
√
m+

√
n)( 1√

n
+ 1√

m
)1/3

d−→ TW1, (S1.19)

Lemma 4 (Theorem 2.8 in ?). Let G be an m× n random matrix with independent entries satisfying

EGuv = 0, E|Guv|2 =
1√
nm

.

Assume that m and n satisfy the bounds n1/C ≤ m ≤ nC for some C > 0. Suppose for all p ∈ N, there exist Cp such

that

E|(mn)1/4Guv|p ≤ Cp

Let µi be the eigenvalue of GTG associated with its ith largest eigenvalue. Then for any ε > 0 we have

|µT
i v|2 = ÕP (1/n)

uniformly for all i ≤ (1− ε) min (m,n) and any deterministic unit vector v ∈ Rn.

Lemma 5 (Theorem 3.3 in ?). Let ξ± = (1±
√

n
m

)2, and denote the Marchenko-Pastur law by %m, which is given by

%m(x) =
m

2πn

√
[(ξ+ − x)(x− ξ−)]+

x2

Let β ∈ R, define the empirical spectral distribution of (B̃∗)TB̃∗ by:

N (β) :=
1

n

n∑
i=1

1[β,∞)

(
λi(W̃

∗)
)

And the distribution given by the Marchenko-Pastur law:

Nm(β) :=

∫ ∞
β

%m(x)dx

If limn→∞
n
m
∈ (0,∞) \ {1}, then for any ε > 0, there exists a constant Cε such that:

P(|N (β)−Nm(β)| ≥ n−1 log(n)Cε log log(n)) ≤ nCε exp(− log(n)ε log log(n))
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For r ∈ [R] and ` ∈ [2r], define

δ(r,`) :=
1

2

∫
I
(r)
`

λa − λb dν∫
I
(r)
`

λa + λb dν
, (S2.20)

so that

∫
I
(r)
`

λa dν∫
I
(r)
`

λ dν
= 1

2
+ δ(r,`) and

∫
I
(r)
`

λb dν∫
I
(r)
`

λ dν
= 1

2
− δ(r,`).

Proposition 3. For every r ∈ [R] and l ∈ [2r], N
(r,`)
a ∼ Bin

(
1
2

+ δ(r,`), N (r,`)
)

conditional on N (r,`) and if δ(r,`) = 0,

then p(r,`) ∼ Unif[0, 1].

Moreover, for every r ∈ [R], conditional on {N (r,`)}`∈[2r ], the collection of random variables {N (r,`)
a }l∈[2r ] are

mutually independent.

Proof. Since N
(r,`)
a = Na(I

(r)
` ), we have that N

(r,`)
a has the Poisson distribution with mean

∫
I
(r)
l

λadν. Since N (r,`)−

N
(r,`)
a = N

(r,`)
b has the Poisson distribution with mean

∫
I
(r)
l

λbdν, and is independent of N
(r,`)
a , we have that, for any

s, t ∈ N where s ≤ t,

P(N (r,`)
a = s |N (r,`) = t) =

P(N
(r,`)
a = s,N

(r,`)
b = t− s)

P(N (r,`) = t)

=

1
s!
e
−

∫
I
(r)
l

λadν
{∫

I
(r)
l

λadν

}s
1

(t−s)!e
−

∫
I
(r)
l

λbdν
{∫

I
(r)
l

λbdν

}t−s
1
t!
e
−

∫
I
(r)
l

λa+λbdν
{∫

I
(r)
l

λa + λbdν

}t
=

(
t

s

)(
1

2
+ δ(r,`)

)s(
1

2
− δ(r,`)

)t−s
,

and the first claim follows directly. If δ
(k)
l = 0, then p̂

(k)
l is uniform by Proposition 1.

The second claim follows from the independent increment property of a Poisson process.

S2.1 Proof of Theorem 3

Proof. (of Theorem 3)

Let r∗ ∈ [R] denote the resolution level that satisfies (4.28). Recalling that δ
(r∗)
l is defined as (S2.20), we define the

event

Er∗ :=

{2r
∗∑

l=1

(N (r∗,l) − 1)δ
(r∗)2
l ≥ 2r

∗/2
(
C1/2

β1/2
+ 2 log1/2 R

α

)
+ 2 log

R

α

}
,

17
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where C is the universal constant specified in Theorem S2 which we may assume to be greater than 1. Then, by

Theorem S2,

P
(
pF ≥ α

)
≤ P

(
p

(r∗)
F ≥ α

R

)
≤ P

({
p

(r∗)
F ≥ α

R

}
∩ Er∗

)
+ P(Ecr∗) ≤ β + P(Ecr∗).

In order to upper bound the probability of Ecr∗ , we observe, by our assumption that EN (r∗,l) =
∫
I
(r∗)
l

λdν ≥ 2

for all l ∈ [2r
∗
] and the fact that |δ(r∗)2

l | ≤ 1
2
, that

E
2r
∗∑

l=1

(N (r∗,l) − 1)δ
(r∗)2
l ≥ 1

2

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l and (S2.21)

Var

2r
∗∑

l=1

(N (r∗,l) − 1)δ
(r∗)2
l ≤ 1

4

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l . (S2.22)

As a short hand, we write

W ≡
2r
∗∑

l=1

(N (r∗,l) − 1)δ
(r∗)2
l , and

Tr∗,R,α,β ≡ 2r
∗/2(C1/2

β1/2
+ 2 log1/2 R

α

)
+ 2 log

R

α
.

We note that by (4.28), we have EW ≥ 1
2

∑2r
∗

l=1

(∫
I
(r∗)
l

λdν

)
≥ Tr∗,R,α,β . By this, Chebyshev’ inequality,

and (S2.21) and (S2.22), we have

P(Ecr∗) = P
{2r

∗∑
l=1

(N (r∗,l) − 1)δ
(r∗)2
l ≤ Tr∗,R,α,β

}

= P
{
W ≤ Tr∗,R,α,β

}
= P

{
W − EW ≤ Tr∗,R,α,β − EW

}
≤ Var(W ) · {EW − Tr∗,R,α,β}−2

≤ Var

{2r
∗∑

l=1

(N (r∗,l) − 1)δ
(r∗)2
l

}{
E
(2r

∗∑
l=1

(N (r∗,l) − 1)δ
(r∗)2
l

)
− Tr∗,R,α,β

}−2

≤
{

1

4

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l

}{
1

2

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l − Tr∗,R,α,β

}−2

≤
{

1

4

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l

}{
1

4

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l

}−2

≤
{

1

4

2r
∗∑

l=1

(∫
I
(r∗)
l

λdν

)
δ

(r∗)2
l

}−1

≤ β,

where the penultimate inequality follows from (4.28) and the fact that C ≥ 1. The Theorem follows as desired.
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S2.2 Proof of Theorem 4

Proof. (of Theorem 4)

We first claim that, writing C as the universal constant specified in Theorem 3,

1

4n

∫
I

(
λa − λb

λ

)2

λ dν ≥ min
r∈[R]

2r/2

n

(
C1/2

β
+ 2 log1/2 R

α

)
+

2

n
log

R

α
+
CHCd

2
2
− rγ
q . (S2.23)

To see that this claim is true, define

r̃ = min

(
R,

⌊
log2

n
2

1
2

+ 2γ
q

− log2

cmax

cmin

⌋)
,

or equivalently,

r̃ =


⌊ log2

n
2

1
2

+ 2γ
q

− log2
cmax
cmin

⌋
if γ/q ≥ 1/4

R if γ/q ≤ 1/4

.

Then, using the fact that log2
n
2
− log2

cmax
cmin

− 1 ≤ R ≤ log2
n
2
− log2

cmax
cmin

, we have

2r̃/2

n

(
C1/2

β
+ 2 log1/2 R

α

)
+

2

n
log

R

α
+
CHCd

2
2
− 2r̃γ

q

≤


1
4
C1n

− 4γ
q+4γ

(
β−1 + log logn

α

)
if γ/q ≥ 1/4

1
4
C1n

− 2γ
q
(
β−1 + log logn

α

)
if γ/q ≤ 1/4

for some C1 > 0 whose value depends only on cmax
cmin

, CH , and Cd. Therefore, we have from assumption (4.29) that

claim (S2.23) holds. Then, by Lemma 8, we have that for every r ∈ [R],

1

n

2r∑
l=1

(∫
I
(r)
l

λa − λbdν∫
I
(r)
l

λdν

)2 ∫
I
(r)
l

λdν

≥ 1

n

∫
I

(
λa − λb

λ

)2

λ dν − CHCd
2

2
− 2γr

q .

Thus, using (S2.23), we may conclude that there exists a r ∈ [R] such that

1

4n

2r∑
l=1

(∫
I
(r)
l

λa − λbdν

2
∫
I
(r)
l

λdν

)2 ∫
I
(r)
l

λdν ≥ 2r/2

n

(
C1/2

β
+ 2 log1/2 R

α

)
+

2

n
log

R

α
.

From the hypothesis of the theorem, we also have that for all l ∈ [2R],

∫
I
(R)
l

λdν = n

∫
I
(R)
l

λ ν∫
I
λ dν

≥ n cmin

cmax

ν(I
(R)
l )

ν(I)
≥ n cmin

cmax
2−R ≥ 2,

where, in the final inequality, we use the assumption that R ≤ log2
n
2
− log2

cmax
cmin

.

Then, from Theorem 3, it holds that P(pF ≤ α) ≥ 1− 2β and the conclusion of the Theorem follows as desired.
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S2.3 Proof of Theorem 5

Proof. (of Theorem 5)

The proof is similar to that of Theorem 3. Let r∗ ∈ [R] and l∗ ∈ [2r
∗
] denote the resolution level and bin such

that

1

4

(∫
I
(r∗)
l∗

λa − λbdν

2
∫
I
(r∗)
l∗

λdν

)2 ∫
I
(r∗)
l∗

λdν ≥ 2r∗ +
C1/2

β
+ 2 log

K

α
.

Define the event

Er∗l∗ :=

{
(m

(r∗)
l∗ − 1)δ

(r∗)2
l∗ ≥ 2r∗ +

C1/2

β1/2
+ 2 log

K

α

}
.

By Theorem S3, we have that

P(p̂min ≥
α

K
) ≤ P(p̂(k) ≥ α

K
)

≤ P
({

p̂(k) ≥ α

K

}
∩ Er∗l∗

)
+ P(Ecr∗l∗)

≤ β + P(Ecr∗l∗).

To bound P(Ecr∗l∗), we use our assumption that Em(r∗)
l∗ =

∫
I
(r∗)
l∗

λdν ≥ 2 and the fact that δ
(r∗)
l∗ ≤ 1 to obtain

E(m
(r∗)
l∗ − 1)δ

(r∗)2
l∗ ≥ 1

2

(∫
I
(r∗)
l∗

λdν

)
δ

(r∗)2
l∗ and

Var(m
(r∗)
l∗ − 1)δ

(r∗)2
l∗ ≤

(∫
I
(r∗)
l∗

λdν

)
δ

(r∗)2
l∗ .

We have then

P(Ecl∗r∗) = P
(

(m
(r∗)
l∗ − 1)δ

(r∗)2
l∗ ≤ C1/2

β1/2
+ 2r∗ + 2 log

K

α

)
≤
{

Var(m
(r∗)
l∗ − 1)δ

(r∗)2
l∗

}{
E(m

(r∗)
l∗ − 1)δ

(r∗)2
l∗ −

(
2r∗ +

C1/2

β1/2
+ 2 log

K

α

)}−2

≤
{

1

4

(∫
I
(r∗)
l∗

λdν

)
δ

(r∗)2
l∗

}−1

≤ β.

S2.4 Proof of Theorem 6

Proof. Let r :=
⌈
log2

ν(I)
ν(S)

⌉
so that

ν(I)

2r−1
≥ ν(S) ≥ ν(I)

2r
.
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We observe that since ν(S)
ν(I)
≥ cmax

cmin

8
n

by assumption,

r ≤
⌈
log2

ν(I)

ν(S)

⌉
<
⌊
log2

n

2
− log2

cmax

cmin

⌋
= R.

Hence, {I(r+1)
l } exists in our dyadic partitioning and there exists l∗ ∈ [2r+1] such that the interval I

(r+1)
l∗ ⊂ S. Let

C be the universal constant specified in Theorem 5 and let C2 := 32cmax
cmin

C1/2. From (4.30), we have that

1

4
max

l∈[2r+1]

(∫
I
(r+1)
l

λa − λbdν∫
I
(r+1)
l

λdν

)2 ∫
I
(r+1)
l

λdν

≥ 1

4

(∫
I
(r+1)
l∗

λa−λb
λ

λdν∫
I
(r+1)
l∗

λdν

)2 ∫
I
(r+1)
l∗

λdν

≥ 1

4
δ2
S

∫
I
(r+1)
l∗

λdν
(a)

≥ 1

4
δ2
Sn

cmin

cmax
2−(r+1)

≥ δ2n2−(r−1) cmin

16cmax
≥ δ2

Sn
ν(S)

ν(I)

cmin

16cmax
≥ nδ2

S
ν(S)

ν(I)

2C1/2

C2

≥ 2 logn+
C1/2

β
+ 2 log

1

α
≥ 2r +

C1/2

β
+ 2 log

R

α
,

where inequality (a) follows from the fact that

∫
I
(r+1)
l∗

λdν =

∫
I
(r+1)
l∗

λdν∫
I
λdν

≥ n cmin
cmax

2−(r+1).

The conclusion of the theorem follows from Theorem 5.

S2.5 Auxiliary results

Recall that, for a positive integer m, we define

SBin( 1
2
,m)(t) := P(|Bin(

1

2
,m)− m

2
| ≥ t) (S2.24)

Sχ2
m

(t) := P(χ2
m ≥ t). (S2.25)

Moreover, define

Mm :=

{
−m

2
,−m

2
+ 1, . . . ,

m

2
− 1,

m

2

}
(S2.26)

M+
m :=


{

0, 1, . . . , m
2

}
if m is even,

{
1
2
, 3

2
, . . . , m

2

}
if m is odd.

(S2.27)
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Theorem S2. Let d be a positive integer. For each l ∈ [d], let ml ∈ N, δl ∈ [0, 1
2
], and let A1, . . . , Ad be independent

random variables where Al ∼ Bin
(

1
2

+ δl,ml

)
,

Let U1, . . . , Ud be independent random variables distributed uniform on [0, 1] and independent of A1, . . . , Ad.

Define pl := Ul ·SBin( 1
2
,ml)

(|Al− ml
2
|) + (1−Ul)SBin( 1

2
,ml)

(|Al− ml
2
|+ 1), define the set L := {l ∈ [d] : ml ≥ 2}, and

define p := Sχ2
2|L|

(∑
l∈L−2 log pl

)
.

Then, there exists a universal constant C > 0 such that, for any α, β ∈ (0, 1), if

∑
l∈L

(ml − 1)δ2
l ≥ |L|1/2

(
C1/2

β1/2
+ 2 log1/2 1

α

)
+ 2 log

1

α
, (S2.28)

then P(p ≤ α) ≥ 1− β.

Proof. Define

L1 := {l ∈ L : (ml − 1)δ2
l ≥ 2} and L2 := {l ∈ L : (ml − 1)δ2

l < 2}.

For simplicity of presentation, we write Zl := −2 log pl and Z̃l := 4
ml

(
Al − ml

2

)2
for l ∈ L. By Hoeffding’s

inequality, it holds that SBin( 1
2
,m)(t) ≤ 2 exp

{
−2 t

2

m

}
. Therefore, we have that

Zl = −2 log

{
Ul · SBin( 1

2
,m)(|Al −

ml

2
|) + (1− Ul)SBin( 1

2
,m)

(
|Al −

ml

2
|+ 1

)}
≥ −2 log

{
SBin( 1

2
,m)(|Al −

ml

2
|)
}
≥ 4

ml

(
Al −

ml

2

)2

− 2 log 2 = Z̃l − 2 log 2.

By Lemma 9, we have

Sχ2
2|L|

(
2|L|+

√
8|L|1/2 log1/2 1

α
+ 2 log

1

α

)
≤ α, (S2.29)

By (S2.29), the fact that Sχ2
2|L|

(·) is monotone decreasing, and the fact that 2 log 2 ≤ 2, we have

P(p ≥ α) = P
{
Sχ2

2|L|

(∑
l∈L

−2 log pl

)
≥ α

}

≤ P
{∑
l∈L

−2 log pl ≤ 2|L|+
√

8|L|
1
2 log

1
2

1

α
+ 2 log

1

α

}

≤ P
{∑
l∈L1

(Z̃l − 2 log 2) +
∑
l∈L2

Zl ≤ 2|L|+
√

8|L|
1
2 log

1
2

1

α
+ 2 log

1

α

}

≤ P
{∑
l∈L1

(Z̃l − EZ̃l) +
∑
l∈L2

(Zl − EZl) ≤
∑
l∈L1

(4− EZ̃l)

+
∑
l∈L2

(2− EZl) + 2|L|
1
2 log

1
2

1

α
+ 2 log

1

α

}
. (?)
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We now observe that by Lemma 7,

∑
l∈L1

(4− EZ̃l) +
∑
l∈L2

(2− EZl) + 2|L|1/2 log1/2 1

α
+ 2 log

1

α

≤ −
∑
l∈L

2(ml − 1)δ2
l + 2|L|1/2 log1/2 1

α
+ 2 log

1

α
≤ 0,

where the final inequality follows by our assumption (S2.28). Therefore, returning to (?), we may apply Chebyshev’s

inequality to obtain

(?) ≤
∑
l∈L1

VarZ̃l +
∑
l∈L2

VarZl{
−
∑
l∈L 2(ml − 1)δ2

l + 2|L| 12 log
1
2 1
α

+ 2 log 1
α

}2

≤ Cd
{
−2
∑
l∈L

(ml − 1)δ2
l + 2|L|

1
2 log

1
2

1

α
+ 2 log

1

α

}−2

≤ β.

where, in the penultimate inequality, we used Lemmas 6 and where C > 0 is the universal constant specified in

Lemma 6. The conclusion of the Theorem follows as desired.

Theorem S3. Let d be a positive integer. For each l ∈ [d], let ml ∈ N, δl ∈ [0, 1/2], and let A1, . . . , Ad be independent

random variables where Al ∼ Bin
(

1
2

+ δl,ml

)
.

Let U1, . . . , Ud be independent random variables distributed uniform on [0, 1] and independent of A1, . . . , Ad.

Define pl := Ul ·SBin( 1
2
,ml)

(|Al− ml
2
|) + (1−Ul)SBin( 1

2
,ml)

(|Al− ml
2
|+ 1), define the set L := {l ∈ [d] : ml ≥ 2}, and

define pmin := FBeta,|L|
(
minl∈L pl

)
where FBeta,|L|(x) := P(Beta(1, |L|+ 1) ≤ x) for any x ∈ R.

There exists universal constants C > 0 such that for any α, β ∈ (0, 1), if

max
l∈[d]

(ml − 1)δ2
l ≥

C1/2

β1/2
+ 2 log

|L|
α
,

then P(pmin ≤ α) ≥ 1− β.

Proof. Let C be the maximum of 4 and the universal constant specified in Lemma 6. By assumption, there exists

l∗ ∈ [d] be such that

(ml∗ − 1)δ2
l∗ ≥

C1/2

β1/2
+ 2 log

|L|
α
≥ 2, (S2.30)

where the last inequality follows since β, α ∈ (0, 1).
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By Hoeffding’s inequality, we have that

−2 log pl∗ ≥ −2 logSBin( 1
2
,ml∗ )(|Al∗ −

ml∗

2
|)

≥ 4

ml∗

(
Al∗ −

ml∗

2

)2

− 2 log 2.

We write Z̃l∗ := 4
ml∗

(
Al∗ − ml∗

2

)2
so that −2 log pl∗ ≥ Z̃l∗ − 2 log 2 ≥ Z̃l∗ − 4.

For any α, β ∈ (0, 1), we may use the fact that FBeta,|L|(x) ≤ |L|x to show that

P(pmin ≥ α) ≤ P
(
min
l∈L

pl ≥
α

|L|
)
≤ P

(
pl∗ ≥

α

|L|
)

= P
(
−2 log pl∗ ≤ 2 log

|L|
α

)
≤ P

(
Z̃l∗ − EZ̃l∗ ≤ (4− EZ̃l∗) + 2 log

|L|
α

)
. (?)

By Lemma 7 and (S2.30), we have that

(4− EZ̃l∗) + 2 log
|L|
α
≤ −2(ml∗ − 1)δ2

l∗ + 2 log
|L|
α
≤ 0.

Therefore, continuing on from (?), we have by Chebyshev inequality and Lemma 6 that

(?) ≤ Var(Z̃l∗){
−(ml∗ − 1)δ2

l∗ + 2 log |L|
α

}2 ≤ C
{
−(ml∗ − 1)δ2

l∗ + 2 log
|L|
α

}−2

≤ β.

The conclusion of the Theorem follows as desired.

Lemma 6. Let m be a positive integer and let δ ∈ [0, 1/2]. Let A ∼ Bin( 1
2

+ δ,m) and let U ∼ Unif[0, 1] be

independent of A. Define Z := −2 log
{
U ·SBin( 1

2
,m)(|A−

m
2
|)+(1−U)SBin( 1

2
,m)(|A−

m
2
|+1)

}
and Z̃ := 4

m
(A− m

2
)2.

There exists a universal constant C > 0 such that

1. if (m− 1)δ2 < 2, then Var(Z) ≤ C,

2. and Var(Z̃) ≤ C.

Proof. First assume that (m − 1)δ2 < 2. By increasing the value of the universal constant C if necessary, we may

assume without the loss of generality that m ≥ 17.

DefineMm as (S2.26). Let P,Q be probability measures onMm such that P is the distribution of |A− m
2
| and

Q is the distribution of |Bin( 1
2
,m)− m

2
|.
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Then, let S̃0(·) be defined as in Lemma 10, we have by the same lemma that

VarZ ≤ EZ2

=

∫ 1

0

∑
s∈Mm

4 log2 S̃0(|s|+ u) · P (s)

Q(s)
Q(s) du

≤
{ ∑
s∈Mm

(
P (s)

Q(s)

)2

Q(s)

}1/2

︸ ︷︷ ︸
Term 1

(S2.31)

+

{∫ 1

0

∑
s∈Mm

(
4 log2{S̃0(|s|+ u)

})2

Q(s) du

}1/2

︸ ︷︷ ︸
Term 2

. (S2.32)

Term 2 of (S2.32) is equal to 16·E log4 S̃0(|Bin( 1
2
,m)−m

2
|+U). Since the random variable S̃0(|Bin( 1

2
,m)−m

2
|+U)

is uniformly distributed on [0, 1], we have that Term 2 is upper bounded by a universal constant.

For Term 1, we define r := 1+2δ
1−2δ

and observe that for any s ∈Mm,

P (s)

Q(s)
=

1

2
2m
{(

1

2
+ δ

)m
2

+s(
1

2
− δ
)m

2
−s

+

(
1

2
+ δ

)m
2
−s(

1

2
− δ
)m

2
+s}

=
1

2
(1− 4δ2)

m
2 (rs + r−s) ≤ rs.

Since we assume (m− 1)δ2 ≤ 2 and since we assume that m ≥ 17, we have that δ2 ≤ 1
8

and thus 0 ≤ log r ≤ 8δ.

Let W be a random variable distributed as |Bin( 1
2
,m)− m

2
|. Then

∑
s∈M

r2sQ(s) = Er2W =

∫ ∞
1

P(r2W ≥ t) dt

=

∫ ∞
1

P
(
W ≥ log t

2 log r

)
dt

≤
∫ ∞

1

exp

(
− log2 t

4m log2 r

)
dt

≤
∫ ∞

1

t
− log t

212 dt ≤ C,

where C > 0 is a universal constant.

Now we turn to the second claim. Write A =
∑m
i=1 εi where ε1, . . . , εm are independent and identically distributed

Ber( 1
2

+ δ) random variables.

For any i ∈ [m], we have

Var· | {ε−i}

[(
A− m

2

)2]
≤ sup
z∈[−m

2
,m
2

]

Var
[
(z + εi)

2] ≤ m.
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Thus, by the Efron–Stein inequality,

VarZ̃ =
16

m2
Var

[(
A− m

2

)2]
≤ 16

m2
E

m∑
i=1

Var· | {ε−i}

[(
A− m

2

)2]
≤ 16.

The conclusion of the lemma follows as desired.

Lemma 7. Let m be a positive integer and let δ ∈ [0, 1/2]. Let A ∼ Bin(m, 1
2

+ δ) and let U ∼ Unif[0, 1] be

independent of A. Define Z := −2 log
{
U ·SBin( 1

2
,m)(|A−

m
2
|)+(1−U)SBin( 1

2
,m)(|A−

m
2
|+1)

}
and Z̃ := 4

m
(A− m

2
)2.

We have that

1. EZ − 2 ≥ 8(m− 1)δ2,

2. and if (m− 1)δ2 ≥ 2, then EZ̃ − 4 ≥ 2(m− 1)δ2.

Proof. Define Mm as (S2.26) and note that Mm = −Mm. For s ∈ Mm, write Pm(s, δ) =
(
m
m
2

+s

)
( 1

2
+ δ)

m
2

+s( 1
2
−

δ)
m
2
−s as the probability that Bin(m, 1

2
+ δ) random variable is equal to m

2
+ s and Qm(s) :=

(
m
m
2

+s

)
( 1

2
)m = Pm(s, 0).

Define W = |A− m
2
|+ U . We also define

Fm(δ) = EZ = E
[
−2 log S̃0(W )

]
=

∑
s∈Mm

Pm(s, δ)

∫ 1

0

{
−2 log S̃0(|s|+ u)

}
du,

where the definition of S̃0(·) and the second equality follow from Lemma 10. We note then that

EZ − 2 ≥ Fm(δ)− Fm(0).

Moreover, since the function δ 7→ Pm(s, δ) is equal to its Taylor series expansion for all δ ∈ (− 1
2
, 1

2
), the same

holds for Fm(δ), that is,

Fm(δ) = Fm(0) +

∞∑
j=1

F (j)
m (0)

δj

j!
, for all δ ∈ (−1

2
,

1

2
).

By symmetry, Pm(s, δ) = Pm(−s,−δ) and thus, Fm(δ) = Fm(−δ) and F
(j)
m (0) = 0 when j is an odd integer. When

j is an even integer, we have that, by Lemma 11,

F (j)
m (0) =

∑
sMm

(
∂

(j)
δ Pm(s, δ)

∣∣
δ=0

)∫ 1

0

{
−2 log S̃0(|s|+ u)

}
du ≥ 0.
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We now claim that F
(2)
m (0) ≥ 8(m − 1). To see this, first observe that, by Hoeffding’s inequality, it holds that

−2 log
{
SBin( 1

2
,m)(|s|)

}
≥ 4

m
s2− 2 log 2. Moreover, since

∑
s∈Mm

Pm(s, δ) = 1, writing P
(2)
m (s, δ) as second derivative

of Pm(s, δ) with respect to δ, we have
∑
s∈Mm

P
(2)
m (s, δ) = 0. Thus, using the fact that P

(2)
m (s, 0) ≥ 0 for all s ∈Mm

(by Lemma 11), we have that, for any δ ∈ (−1/2, 1/2),

F (2)
m (δ) =

∑
s∈Mm

P (2)
m (s, δ)

∫ 1

0

{
−2 log S̃0(|s|+ u)

}
du

≥
∑

s∈Mm

P (2)
m (s, δ)

(
−2 log

{
SBin( 1

2
,m)(|s|)

})
≥

∑
s∈Mm

P (2)
m (s, δ)

4

m
s2

≥ 4

m

(
d

dδ

)2 { ∑
s∈Mm

Pm(s, δ)s2

}
︸ ︷︷ ︸

E(A−m/2)2 where A∼Bin(1/2+δ,m)

=
4

m

(
d

dδ

)2{
m

4
(1− 4δ2) +m2δ2

}
= 1 + 8(m− 1).

We may conclude then that F
(2)
m (0) ≥ 8(m− 1) as desired. Therefore, we have that

EZ − 2 = Fm(δ)− Fm(0) ≥ 8(m− 1)δ2.

For the second claim of the Lemma, we note that A ∼ Bin( 1
2

+ δ,m). Therefore, assuming (m − 1)δ2 ≥ 2, we

have that

EZ̃ − 4 =
4

m
E
(
A− m

2

)2 − 4

=
4

m

{
E
(
A− m

2
−mδ

)2
+m2δ2

}
− 4

= (1− 4δ2) + 4mδ2 − 4 ≥ 2mδ2

as desired. The conclusion of the lemma thus follows.

Lemma 8. Let I ⊂ Rq and let I1, . . . , IL be a partition of I such that diam(Il) ≤ CdL
−1/q for all l ∈ [L] for some

Cd > 0. Write δ := λa−λb
λ

and suppose that δ is γ-Holder continuous for γ ∈ (0, 1], i.e., |δ(x)− δ(y)| ≤ CH‖x− y‖γ2

for all x, y ∈ I, for some CH > 0.

Then, we have that

0 ≤
∫
I

(
λa − λb

λ

)2

λ dν −
L∑
l=1

{(∫
Il
λa − λb dν∫
Il
λ dν

)2 ∫
Il

λ dν

}
≤ 2CHCdd

− 2γ
q

(∫
I

λ dν

)
.
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Proof. Fix an arbitrary l ∈ [L] and define E(l)[ · ] as expectation with respect to the probability measure with density

λ∫
Il
λdν

. We then have that

∫
Il

(
λa−λb
λ

)2
λ dν∫

Il
λ dν

= E(l)[δ2] ≥ {E(l)δ}2 =

{∫
Il
λa − λbdν∫
Il
λdν

}2

.

For the other direction, we observe that

∫
Il

(
λa−λb
λ

)2
λ dν∫

Il
λ dν

−
{∫

Il
λa − λbdν∫
Il
λdν

}2

= E(l)[δ2]− {E(l)δ}2 = Var(l)(δ)

(a)
=

1

2
E(l)[(δ(X)− δ(Y ))2]

≤ 1

2
CHE(l)‖X − Y ‖2γ2 ≤

1

2
CH sup

x,y∈Il
‖x− y‖2γ2

(b)

≤ CHCd
2

L−2γ/q.

where in inequality (a), the random variables X,Y are independent and distributed with density λ∫
Il
λ dν

and where

in inequality (b), we use the assumption that diam(Il) ≤ CdL−1/q.

In summary, we have that, for each l ∈ [L],

0 ≤
∫
Il

(
λa − λb

λ

)2

λ dν −
(∫

Il
λa − λbdν∫
Il
λ dν

)2 ∫
Il

λ dν ≤ CHCd
2

L−2γ/q

∫
Il

λ dν.

By summing over l ∈ [L], the conclusion of the theorem follows as desired.

S2.6 Technical lemmas

Lemma 9. Let X ∼ χ2
2k. Then, we have that for all t > 0,

P(X ≥ 2k + 2
√

2kt+ 2t) ≤ e−t.

Proof. If X ∼ χ2
2k, then EX = 2k and X is also a Gamma(k, 2) random variable and hence its moment generation

function is bounded by Eeλ(X−EX) ≤ 4kλ2

2(1−2λ)
for all λ ∈ (0, 1

c
) by ?, Section 2.4. Then, it holds by ?, Theorem 2.3

that P(X − EX ≥
√

8kt+ ct) ≤ e−t for all t > 0. The Lemma immediately follows.

Lemma 10. Let m ∈ N and let Ã ∼ Bin( 1
2
,m). Define W̃ = |Ã− m

2
|+U where U ∼ Unif[0, 1] is independent of Ã.

We let M+
m be as defined in (S2.27).

28



S2.6 Technical lemmas

Write S̃0(z) := P(W̃ ≥ z). We have that, for any z ∈ R,

S̃0(z) =



(1− (z − k1))SBin( 1
2
,m)(k1) + (z − k1)SBin( 1

2
,m)(k1 + 1) if z ∈

[
minM+

m, 1 + maxM+
m

)
1 if z < minM+

m

0 if z ≥ 1 + maxM+
m,

(S2.33)

where in the first case, k1 is defined as k1 := max{k ∈M+
m : k ≤ z}.

Moreover, we have that

S̃′0(z) =


−P
(
|Ã− m

2
| = k1

)
if z ∈

[
minM+

m, 1 + maxM+
m

)
0 else .

Finally, let A ∼ Bin( 1
2

+ δ,m) and let W = |A− m
2
|+ U where U ∼ Unif[0, 1] is independent of A, we have that

S̃0(W )
d
= (1− U)SBin( 1

2
,m)

(
|A− m

2
|
)

+ U · SBin( 1
2
,m)

(
|A− m

2
|+ 1

)
.

Proof. To establish the first claim, let z ∈
[
minM+

m, 1 + maxM+
m

)
and let k1 := max{k ∈ M+

m : k ≤ z}. Define

the event

Ek1 =

{∣∣Ã− m

2

∣∣ = k1

}
.

Then, we have that

S̃0(z) = P(W̃ ≥ z)

= P(Ek1)P(W̃ ≥ z | Ek1) + P
(∣∣Ã− m

2

∣∣ > k1

)
.

=
{
SBin( 1

2
,m)(k1)− SBin( 1

2
,m)(k1 + 1)

}
(1− (z − k1)) + SBin( 1

2
,m)(k1 + 1).

The first claim (S2.33) follows immediately.

The second claim follows by direct differentiation, and the third claim follows directly from the first claim. The

whole Lemma thus follows as desired.

Lemma 11. For m ∈ N, s ∈ Mm (defined as (S2.26)), and δ ∈ (− 1
2
, 1

2
), define Pm(s, δ) =

(
m
m
2

+s

)
( 1

2
+ δ)

m
2

+s( 1
2
−

δ)
m
2
−s. We then have that, for any integer j ≥ 1,

∂(2j)

∂δ(2j)
Pm(s, δ)

∣∣∣∣
δ=0

≥ 0.
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Proof. First suppose s ≥ 0. Since |2δ| < 1, we have that,

Pm(s, δ) =

(
m

m
2

+ s

)
2−m

(
1 + 2δ

1− 2δ

)s
=

(
m

m
2

+ s

)
2−m(1 + 2δ)s

(
1 +

∞∑
k=1

(2δ)k
)s
.

It is thus clear that in Taylor series expansion of δ 7→ Pm(s, δ), all the coefficients are non-negative and and thus,

∂(2j)

∂δ(2j)
Pm(s, δ) ≥ 0.

If s ≤ 0 on the other hand, the same claim follows by the fact that

Pm(−s, δ) = Pm(s,−δ).

The lemma thus immediately follows.

S3. Supplementary material for Section 5

S3.1 Two sample test Type I error

We consider the following three intensities

1. λa(x) = λb(x) = 40 · 1[0,1](x)

2. λa(x) = λb(x) = 40 ·
(
sin(2πx) + 1

)
3. λa(x) = λb(x) = 40 · x(1−x)4∫ 1

0 x(1−x)4dx
1[0,1](x)

The first function is uniform, while the other two are not, indicating the intensities changes on the support. Note

that the third function is the scaled beta density function with parameters (2,5). For each of the three cases under

the null hypothesis, we conduct 2000 simulations of two independent Poisson processes with the intensities functions

given in the corresponding case and present the proportions of rejections out of all simulations based on the adjusted

p-value of each test. We generate 500 bootstrap resamples of each of the 2000 pairs of Poisson processes conditional

on the total number of observations of the pooled process N = Na + Nb, and use the same resamples to derive

adjusted p-values for all tests. We provide the percentage of rejections at level α = 0.05, 0.1 and 0.25 for the five test

procedures under 3 different intensities, the results are given in Table 1. We can see from the results that these five

tests all attains the corresponding nominal levels, which is not a surprise due to the Monte Carlo Approximation of

the exact rejection threshold.
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S3.2 Testing homogeneous array

Table 1: The empirical level (% of rejections) of different tests under the null

Test
case 1 case 2 case 3

5% 10% 25% 5% 10% 25% 5% 10% 25%

MF 4.9 9.8 25.7 5.5 8.9 23.7 5.1 10.2 24.5

MM 4.6 8.9 22.4 5.4 10.4 23.9 4.9 10.4 26.0

KN1 4.8 9.6 23.5 5.1 9.5 24.2 6.1 11.3 27.2

KN2 4.7 9.7 25.9 4.4 9.3 24.1 5.9 10.9 25.8

KS 5.1 9.9 24.9 4.5 9.1 24.6 6.2 11.4 25.9

S3.2 Testing homogeneous array

As an empirical verification of Theorem 2, in Figure 1, we plot the finite sample distributions of the largest eigenvalue

of the adjacency matrix A(r,`) under the null hypothesis. We give the details of the experimental set-up in Section S3.3

of the appendix; in that section, we also discuss the bootstrap correction method proposed by ? to improve the Tracy-

Widom approximation.

Next, we consider two alternative Poisson SBM models with K = 2 and K = 3 equally sized communities

respectively. We let the probability distribution of the interactions between two nodes u, v only depends on whether

they are in the same community and we denote the intensity function of realizations between individuals within the

same community as λsame(·) and from different communities as λdiff(·). We then define

λsame(x) = s · 1[0,1](x), λdiff(x) = s · x(1− x)4∫ 1

0
x(1− x)4dx

1[0,1](x)

for both the two alternative Poisson SBM models, where s is a parameter that controls the sparsity levels of the

networks in this experiments. We again have n = 200 and either K = 2 or K = 3 equally sized communities. We

then generate 200 sample collections of realizations on the same support for each of the two models and for each

value of s ∈ {0.1, 0.175, 0.25, 0.5, 1} and conduct our proposed test on these samples where the bootstrap sample size

and partitioning of the support are exactly the same as in the preceding experiment. The proportions of rejections

for the two SBM models under different sparsity levels are recorded in Table 2.
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S3.3 Empirical verification of Tracy-Widom approximation and bootstrap correction

K = 2 K = 3

s 1.0 0.5 0.25 0.175 0.1 1.0 0.5 0.25 0.175 0.1

α = 0.01 1 1 0.98 0.41 0.055 1 1 1 0.785 0.05
α = 0.05 1 1 0.99 0.575 0.115 1 1 1 0.905 0.145
α = 0.10 1 1 0.995 0.63 0.165 1 1 1 0.97 0.24
α = 0.25 1 1 1 0.74 0.36 1 1 1 1 0.38

Table 2: The proportion of rejections of the proposed array test out of 200 simulated samples
of networks of 200 nodes at different sparsity and confidence levels α ∈ {0.01, 0.05, 0.10, 0.25}.

S3.3 Empirical verification of Tracy-Widom approximation and bootstrap cor-

rection

To see how fast the largest eigenvalues converge to the limiting distribution, we consider two cases with the numbers

of nodes n = 300 and n = 1600 respectively. For each case we simulate 1000 adjacency matrix A whose entries

{Aij : i 6= j ≤ n} are independent and identically distributed Poisson random variables with mean equals to 20. Then

we plot the sample distribution of the test statistics, i.e., n2/3
(
λ1(Ã) − 2

)
against the Tracy-Widom distribution,

where Ã is the empirically centered and scaled version of A.

We can see from the first two graphs in Figure 1 that when n = 300 the sample distribution deviates in location

compared with the target distribution and when n = 1600 the location is corrected but there still is some difference

in scale. Though there are some differences in location and scale, we can see the sample distribution does have similar

shape with the Tracy-Widom distribution even when the number of nodes is as small as 300. In similar experiments

where adjacency matrices have Bernoulli distributed entries, ? proposed to apply bootstrap correction to the largest

eigenvalue, where they generate parametric bootstrap samples of the adjacency matrices and use the bootstrapped

mean and variance of the largest eigenvalues to shift and scale the test statistics to have a better match with the

Tracy-Widom distribution. Here we adapted the same bootstrap correction technique to the eigenvalues of adjacency

matrix with n = 300 nodes, where we generate 50 bootstrap samples for each sample adjacency matrix. We plot the

empirical distribution of the test statistics after bootstrap correction as the third graph in Figure 1. We can see that

even with just 50 bootstrap samples, the sample distributions of the test statistics looks much closer to the target

distribution.

Remember that here we are using the Tracy-widom distribution to compute p-values for every local null hypothe-

ses H̄
(r,`)
0 and we generate bootstrap samples to estimate the exact critical threshold for the global null hypothesis
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S3.3 Empirical verification of Tracy-Widom approximation and bootstrap correction

Figure 1: The empirical distribution of 1000 simulated samples of centered and scaled largest

eigenvalues of Ã, compared with the Tracy-Widom distribution.

H̄0, thus we could simply use the same bootstrap samples generated for testing the global null to correct the location

and scale of the largest eigenvalue of each local adjacency matrix Ã(r,`). Given observed collection of Poisson process

realizations {Nuv(·) : u < v ∈ [n}, we describe the procedure to derive the local p-values with bootstrap correction

of the location and scale of the largest eigenvalue in the following steps:

1. For b∗ = 1, 2, . . . , B, generate bootstrap sample collections {Nb∗
uv(·) : u < v ∈ [n]} as described in Section

3.1.3.

2. For the observed realization, estimate the Poisson mean λ̂(r,`) of each discretized interval as λ̂(r,`) = 1
n2−n

∑
u 6=v N

(r,`)
uv

and let Ã(r,`) be the centered and re-scaled adjacency matrix for interval I(r,`)

Ã(r,`)
uv :=


N

(r,`)
uv −λ̂(r,`)√
(n−1)λ̂(r,`)

, u 6= v,

0, u = v.

and let λ1(Ã(r,`)) be the largest eigenvalue of adjacency matrix Ã(r,`).

3. Do step 2 for every bootstrap resamples to derive their largest eigenvalues λ1(Ã(r,`,b∗)) at every discretized

interval. Then we calculate the sample mean and standard deviation of
{
λ1(Ã(r,`,b∗)) : b∗ ∈ {1, 2, . . . , B}

}
for

each r ∈ [R], ` ∈ [2r] and denote them as µ̂
(r,`)
1 , ŝ

(r,`)
1 respectively.

4. Denote µtw and stw as the mean and standard deviation of Tracy-Widom distribution with β = 1 and let

λ
(r,`)
bc = µtw + stw

λ1(Ã(r,`))− µ̂(r,`)
1

ŝ
(r,`)
1

be the test statistic after bootstrap correction.
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S3.3 Empirical verification of Tracy-Widom approximation and bootstrap correction

5. Finally we compute the p-value for the discretized local null H̄
(r,`)

) as

p(r,`) ≡ p(r,`)(λ(r,`)
bc

)
:= 2min

(
FTW1

(
λ

(r,`)
bc

)
, 1− FTW1

(
λ

(r,`)
bc

))
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