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The online supplementary material contains a brief description of the

construction for PS, the Stochastic sampling design of Lahiri and Zhu (2006)

(S1), the proofs of Theorem 1 (S3), Theorem 2 (S4) and Theorem 3 (S5),

and an additional simulation result for a simple linear regression (S6).

S1 Stochastic sampling design of Lahiri and Zhu (2006)

Let f(x) be a probability density function on the prototype region R0,

and let {X1,X2, . . .} be a sequence of independent and identically dis-

tributed random vectors with probability density function f(x). Besides,

{X1,X2, . . .} is independent with the spatial process {Z(s) : s ∈ Rd}.

Then, the sampled locations are obtained by

si = λnXi, (i = 1, . . . , n).



ZHONGLEI WANG AND ZHENGYUAN ZHU

S2 Construction of PS

Denote (Ωn,Fn, Pn) to be the probability space with respect to the proposed

one-per-stratum sampling design. Specifically, Ωn = ×ni=1Ai is the product

of A1, . . . , An, Fn = ×ni=1Gi is the product σ-algebra of G1, . . . ,Gn, Pn is the

product probability measure of Pn,1, . . . , Pn,n, (Ai,Gi, Pn,i) is a probability

space for the generation of si, Pn,i is the probability with respect to fi(s),

and fi(s) is the sampling density function. Then, by the Kolmogorov’s

consistency theorem, there exists a probability PS on the product space

ΩS = ×∞n=1Ωn equipped with a product σ-algebra, such that PJ = PS ◦ ξ−1
J

for all finite positive integer set J ⊂ N+, where ξJ is the canonical projection

from ΩS to the product space×j∈JΩj, PJ is the product probability measure

on the product measurable space (×j∈JΩj,×j∈JFj), and N+ is the set of

positive integers; see (Klenke, 2014, Section 14.3) for details.

S3 Proof of Theorem 1

Lemma 1. Suppose that Conditions 2–9 hold. Then, for any a ∈ Rd with

‖a‖ = 1,

σ2
n,a → a>HσΨ(0)a+ a>

{∫
Q(h)σΦ(h)dh

}
a a.s. (PS),
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where σ2
n,a =

∑n
i=1

∑n
j=1 dn(Si)dn(Sj)σΨ(Si − Sj), dn(s) = a>Λ−1

n x(s),

x(s) = 0 if s /∈ Rn, and Si is the random variable associated with its

realization si.

Proof of Lemma 1. Based on Condition 8, d ≥ 2 and a similar argument

as Lemma 1.3 discussed by Ibragimov (1962), we can show that σΨ(h) =

o(‖h‖−3/2). Thus, we have∫
|σΨ(h)|2r+2 dh <∞, (S3.1)

where r ≥ 1 is a positive integer. Denote Cσ =
∫
|σΨ(h)|dh, C2σ =∫

|σΨ(h)|2 dh, and C4σ =
∫
|σΨ(h)|4 dh.

For simplicity, denote hn(x,y) = dn(x)dn(y)σΨ(x−y). Thus, we have

σ2
n,a =

∑n
i=1

∑n
j=1 hn(Si,Sj). The expectation of σ2

n,a with respect to the

one-per-stratum sampling is

ES(σ2
n,a) = ES

{
n∑
i=1

hn(Si,Si)

}
+ ES

{
n∑
i=1

∑
j 6=i

hn(Si,Sj)

}
.

First, we show

ES(σ2
n,a)→ a>HσΨ(0)a+ a>

{∫
σΨ(h)Q(h)dh

}
a. (S3.2)

The first part of ES(σ2
n,a) is

ES

{
n∑
i=1

hn(Si,Si)

}
= σΨ(0)

n∑
i=1

∫
dn(s)2fi(s)ds→ a>HaσΨ(0),

(S3.3)
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where the last convergence holds based on Condition 5. The second part of

ES(σ2
n,a) is

ES

{
n∑
i=1

∑
j 6=i

hn(Si,Sj)

}

=
n∑
i=1

∑
j 6=i

∫ ∫
dn(x)dn(y)σΨ(x− y)fi(x)fj(y)dxdy

=
n∑
i=1

∑
j 6=i

∫
σΨ(h)

∫
dn(y + h)dn(y)fi(y + h)fj(y)dydh,

where the second equality holds by Condition 7, σΨ(h) = o(‖h‖−3/2) and

the Fubini’s Theorem (Athreya and Lahiri, 2006, Theorem 5.2.2).

Denote Q1(h) = a>Q(h)a, and, by Condition 5, we have

n∑
i=1

∑
j 6=i

∫
dn(y + h)dn(y)fi(y + h)fj(y)dy → Q1(h) (n→∞). (S3.4)

Next, we show that the left part of (S3.4) is bounded by a constant for

h ∈ Rd. Consider∣∣∣∣∣
n∑
i=1

∑
j 6=i

∫
dn(y + h)dn(y)fi(y + h)fj(y)dy

∣∣∣∣∣
≤

n∑
i=1

∑
j 6=i

∫
Aj

|dn(y + h)1(y + h ∈ Ai)dn(y)| fi(y + h)fj(y)dy

≤ 1

2

n∑
i=1

∑
j 6=i

{∫
Aj

d2
n(y + h)1(y + h ∈ Ai)fi(y + h)2dy

+

∫
Aj

d2
n(y)1(y + h ∈ Ai)fj(y)2dy

}
,

≤ M2
f

n∑
i=1

∫
Ai

d2
n(y)dy,
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where the first inequality holds based on Condition 4, and the last inequality

is valid based on the following two facts. That is,

n∑
i=1

∑
j 6=i

∫
Aj

d2
n(y + h)1(y + h ∈ Ai)fi(y + h)2dy

≤ Mf

n∑
i=1

∑
j 6=i

∫
Aj

d2
n(y + h)1(y + h ∈ Ai)fi(y + h)dy

= Mf

n∑
i=1

∫
{(Rn\Ai)+h}∩Ai

d2
n(y)fi(y)dy

≤ Mf

n∑
i=1

∫
Ai

d2
n(y)fi(y)dy, (S3.5)

and

n∑
i=1

∑
j 6=i

∫
Aj

d2
n(y)1(y + h ∈ Ai)fj(y)2dy

≤ Mf

n∑
j=1

∑
i 6=j

∫
Aj

d2
n(y)1(y + h ∈ Ai)fj(y)dy

= Mf

n∑
j=1

∫
{(Rn\Aj)−h}∩Aj

d2
n(y)fj(y)dy

≤ Mf

n∑
j=1

∫
Aj

d2
n(y)fj(y)dy (S3.6)

By (S3.3) and (S3.5)–(S3.6), we know that the left part of (S3.4) is

bounded by a constant, say C0, when n is sufficiently large.

Thus, by fact that |Q1(h)| is dominated by a constant and
∫
|σΦ(h)|dh <

∞, we have

ES

{
n∑
i=1

∑
j 6=i

hn(Si,Sj)

}
→
∫
σΨ(h)Q1(h)dh (S3.7)
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based on the dominated convergence theorem (Athreya and Lahiri, 2006,

Corollary 2.3.13). By (S3.3) and (S3.7), we have shown (S3.2).

Denote m2
0n,a = sup{

∣∣a>Λ−1
n x(s)

∣∣2 : s ∈ Rd}. By ‖a‖ = 1, Condi-

tion 7, and the Hölder’s inequality (Athreya and Lahiri, 2006, Theorem

3.1.11), we have

m2
0n,a = o(n−3/4). (S3.8)

Now, we consider ES(σ2
n,a − ESσ2

n,a)4. Denote

D1n =
n∑
i=1

[hn(Si,Si)− ES{hn(Si,Si)}],

D2n =
n−1∑
j=1

n∑
i=j+1

[h
(i)
1n(Sj)− ES{hn(Si,Sj)}],

D3n =
n∑
i=2

Ui,

Ui =
i−1∑
j=1

{hn(Si,Sj)− h(i)
1n(Sj)},

h
(i)
1n(Sj) = ES{hn(Si,Sj)|Sj}.

Since hn(x,y) = hn(y,x) for x,y ∈ Rd, we have

σ2
n,a − ES(σ2

n,a) = D1n + 2D2n + 2D3n. (S3.9)



S3. PROOF OF THEOREM 1

Before proceeding, for r ∈ N+ and i = 1, . . . , n, consider

ES{h2r
n (Si,Si)} =

∫
d4r
n (s)σ2r

Ψ (0)fi(s)ds

≤ Mfσ
2r
Ψ (0)m4r

0n,aMA, (S3.10)∑
i∈J

ES{h2r
n (Si,Sj)|Sj} =

∑
i∈J

∫
Ai

d2r
n (s)d2r

n (Sj)σ
2r
Ψ (s− Sj)fi(s)ds

≤ Mfm
4r
0n,a

∫
|σΨ(s)|2r ds, (S3.11)

where J is a subset of {1, . . . , n} \ {j} in (S3.11), and recall that fi(s) is

zero outside of Ai. For j = 1, . . . , n− 1, consider

∑n
i=j+1 h

(i)
n (Sj) ≤ m2

0n,aMf

∫
∪ni=j+1Ai

|σΨ(s− Sj)|ds ≤ m2
0n,aMfCσ,

ES

(∑n
i=j+1

[
h

(i)
n (Sj)− ES{h(i)

n (Sj)}
])2r

≤ ES

[∑n
i=j+1

{
h

(i)
n (Sj)

}]2r

≤ C2r
σ M

2r
f m

4r
0n,a.

For D1n, it is a summation of n independent random variables with

mean zero. Thus, we have

ES(D4
1n) ≤ CS1

{
n∑
i=1

ESh
4
n(Si,Si) +

n∑
i=1

∑
j 6=i

ESh
2
n(Si,Si)ESh

2
n(Sj,Sj)

}
≤ CS1{m8

0n,aMfMAσ
4
Ψ(0)n+m8

0n,aσ
4
Φ(0)M2

fM
2
An

2}

≤ C{Mf ,MA, σΨ(0)}m8
0n,an

2, (S3.12)

where the second inequality holds by (S3.10), CS1 is a constant, and recall

that C{Mf ,MA, σΨ(0)} is a function of Mf , MA, and σΨ(0).
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Similarly, we have

ES(D4
2n) ≤ C

n−1∑
j=1

ES

(
n∑

i=j+1

[
h(i)
n (Sj)− ES{h(i)

n (Sj)}
])4

+

n−1∑
j=1

∑
k 6=j

ES

(
n∑

i=j+1

[
h(i)
n (Sj)− ES{h(i)

n (Sj)}
])2

×ES

(
n∑

i=k+1

[
h(i)
n (Sj)− ES{h(i)

n (Sj)}
])2


≤ C(C4

σM
4
fm

8
0n,an+ C4

σM
4
fm

8
0n,an

2)

≤ C(Cσ,Mf )m
8
0n,an

2 (S3.13)

Next, we consider D3n. Note the fact that ES(Ui|S1, . . . ,Si−1) = 0

for i = 2, . . . , n. Thus,
{∑i

j=2 Uj,FSi
}n
i=2

is a martingale, where FSi =

σ〈S1, . . . ,Si〉.

By Rosenthal’s inequality (Hall and Heyde, 1980, Theorem 2.12), we

have

ES(D4
3n) ≤ C

ES { n∑
i=2

ES(U2
i |FSi−1)

}2

+
n∑
i=2

ESU
4
i


≤ C

(
ES

[
(n− 1)

n∑
i=2

{ES(U2
i |FSi−1)}2

]
+

n∑
i=2

ESU
4
i

)

≤ Cn

{
n∑
i=2

ESU
4
i

}

≤ C1n

{
n∑
i=2

ES
(
ES
[
{Ui − ES(Ui|Si)}4 |Si

]
+ {ES(Ui|Si)}4)} .

(S3.14)
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Notice that Ui is a sum of i−1 independent random variables given Si,

so we have

ES
[
{Ui − ES(Ui|Si)}4 |Si

]
≤ C

[
i−1∑
j=1

ES{h4
n(Si,Sj) | Si}

+
i−1∑
j=1

∑
k 6=j

ES{h2
n(Si,Sj) | Si}ES{h2

n(Si,Sk) | Si}

]
≤ C(Mfm

8
0n,aC4σ +M2

fm
8
0n,aC

2
2σ)

= C(Mf , C2σ, C4σ)m8
0n,a (S3.15)

where the second inequality is based on (S3.11). Besides, we have

|ES(Ui|Si)| ≤
i−1∑
j=1

ES{|hn(Si,Sj)| | Si}+
i−1∑
j=1

ES{|hn(Si,Sj)|}

≤ CσMfm
2
0n,a +MACσMfm

2
0n,a,

where the first part in the second inequality can be derived by a similar

argument in (S3.11), and the second part is obtained by Condition 2 and

integration of (S3.11) over Ai. Therefore,

ES {ES(Ui|Si)}4 ≤ C(Cσ,Mf ,MA)m8
0n,a. (S3.16)

Thus, by (S3.12)–(S3.16), we have

∞∑
n=1

ES{σn,a − ES(σn,a)}4 ≤
∞∑
n=1

C(Mf ,MA, σΨ(0), Cσ, C2σ, C4σ)n2m8
0n,a

< ∞, (S3.17)
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where the last equality holds based on (S3.8). Therefore, by the Borel-

Cantelli Lemma (Athreya and Lahiri, 2006, Theorem 7.2.2) and Markov’s

inequality (Athreya and Lahiri, 2006, Proposition 6.2.4), we have proved

Lemma 1.

Theorem 1. Suppose that Conditions 2–9 hold. For any unit vector a ∈

Rp,

a>Λ−1
n Mn(β0)→ N(0, σ2

a) (S3.18)

in distribution almost surely (PS), where

σ2
a = a>HσΨ(0)a+ a>

{∫
σΨ(h)Q(h)dh

}
a.

Proof of Theorem 1. By Lemma 1 and Lemma 1.3 discussed by Ibragimov

(1962), we could use a similar blocking argument in Lahiri (2003) to prove

this theorem, and we refer readers to Lahiri (2003) for more details.

Corollary 1. Suppose the conditions in Theorem 1 hold. Then, we have

Λ−1
n Mn(β0)→ N(0,ΣM)

in distribution almost surely (PS), where ΣM = HσΨ(0) +
∫
σΨ(h)Q(h)dh.

Lemma 2. Let g : Rn → R be a Borel measurable function satisfying

E[|g{Z(0)}|] < ∞ and E[g{Z(0)}] = 0 for i = 1, . . . , n. Also, let ain =
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ain(Si), i = 1, . . . , n be σ〈Si〉 measurable random variables such that

n∑
i=1

|ain(Si)| = O(1), a.s. (PS), (S3.19)

and

n∑
i=1

a2
in(Si) = o(1), a.s. (PS). (S3.20)

Then,
∑n

i=1 ain(Si)g(Z(Si))→ 0 in P·|S-probability, a.s. (PS).

The proof of Lemma 2 uses the similar steps as discussed by Lahiri

(2003), so we omit the details.

Proof of Theorem 1. The proof mainly follows the one in Theorem 3.1 of

Lahiri and Mukherjee (2004). We only give the proof for the first part, and

the proof for the last two parts is the same.

First, we would like to show that, for any b ∈ (0,∞),

sup
‖u‖≤b

∥∥Λ−1
n {Mn(β0 + Λ−1

n u)−Mn(β0)}+HE·|S[Ψ′{Z(0)}]u
∥∥ = op(1),

(S3.21)

and recall that E·|S(·) is the conditional expectation given Sn.
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Denote vi = Λ−1
n x(si), so we have

Λ−1
n {Mn(β0 + Λ−1

n u)−Mn(β0)}

= Λ−1
n

n∑
i=1

x(s)[Ψ{Z(si)− v>i u} −Ψ{Z(si)}]

= Λ−1
n

n∑
i=1

x(s)

∫ Z(si)−v>i u

Z(si)

Ψ′(t)dt

= Λ−1
n

n∑
i=1

x(s)

∫ −v>i u
0

Ψ′{Z(si) + t}dt.

Denote ti = sup{
∣∣v>i u∣∣ : ‖u‖ ≤ b} ≤ b ‖vi‖, so ti = o(1) based on Condi-

tion 7. By taking conditional expectation, we have

E·|S sup
‖u‖≤b

∥∥∥∥∥Λ−1
n {Mn(β0 + Λ−1

n u)−Mn(β0)}+ Λ−1
n

n∑
i=1

x(si)v
>
i uΨ′(Z(si))

∥∥∥∥∥
≤

n∑
i=1

‖vi‖
∫ |v>i u|

0

E·|S |Ψ′{Z(si) + t} −Ψ′{Z(si)}| dt

≤
n∑
i=1

‖vi‖
∫ ti

0

E·|S |Ψ′{Z(si) + t} −Ψ′{Z(si)}| dt

≤ b1+γ

(1 + γ)

n∑
i=1

‖vi‖2+γ

= o(1), (S3.22)

where Cγ is a constant, and the third inequality is based on Condition 9,

and the last equality is by Condition 7.

Based on Condition 7, we have
∣∣‖vi‖2 − ES ‖vi‖2

∣∣ < 2n−1/2 for i =

1, . . . , n. Therefore, based on Bernstein’s inequality (Bennett, 1962), for
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any ε > 0, we have

PS

(∣∣∣∣∣
n∑
i=1

{‖vi‖2 − ES ‖vi‖2}

∣∣∣∣∣ > ε

)
≤ exp

{
−O(n1/2)

}
,

where the last inequality is based on Condition 7. Thus, by the Borel-

Cantelli Lemma, we have

n∑
i=1

‖vi‖2 − ES
n∑
i=1

‖vi‖2 → 0 a.s. (PS), (S3.23)

and

ES

n∑
i=1

‖vi‖2 = tr

(
ES

n∑
i=1

viv
>
i

)
→ tr(H), (S3.24)

where tr(A) is the trace of a square matrix A, and (S3.24) is based on

Condition 5. Thus, we have

n∑
i=1

∣∣(Λ−1
n x(si)v

>
i

)
kl

∣∣ = O(1) (S3.25)

almost surely, where (A)kl is the element in the k-th row and l-th column

of a general matrix A.

By noting the fact that ‖vi‖4 = o(n−1) by Condition 7, we have

n∑
i=1

∣∣(Λ−1
n x(si)v

>
i

)
kl

∣∣2 ≤ n∑
i=1

‖vi‖4 = o(1). (S3.26)

By (S3.25), (S3.26) and Lemma 2, we have

sup
‖u‖≤b

∥∥∥∥∥Λ−1
n

n∑
i=1

x(si)v
>
i u[Ψ′{Z(si)} − E·|SΨ′{Z(0)}]

∥∥∥∥∥ = op(1), a.s. (PS).

(S3.27)
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Based on (S3.22) to (S3.24), (S3.27) and the Markov’s inequality, we

have

sup
‖u‖≤b

∥∥Λ−1
n {Mn(β0 + Λ−1

n u)−Mn(β0)}+HE·|SΨ′{Z(0)}u
∥∥ = op(1)

(S3.28)

a.s. (PS) for b ∈ (0,∞).

The remaining proof is almost the same with the one shown in Theorem

3.1 of Lahiri (2004). Thus, by Lemma 1, Theorem 1, and

a>Λ−1
n Mn(β0)a

d→ N(0,a>ΣMa), a.s. (PS), (S3.29)

we can get Theorem 1 proved.

S4 Proof of Theorem 2

of Theorem 2. By Conditions 6–7 and g(s) = {vol.(R0)}−1 for s ∈ R0, we

have, by Lahiri and Zhu (2006),

λd/2n Λn,iid(β̂n,iid − β)
d→ N(0, χ−2

0 Σβ,iid), (S4.30)

where β̂n,iid solves (2.2) based on the independent and identically dis-

tributed design associated with g(s), and

Σβ,iid = c−1H−1
iid σΨ(0) +H−1

iid {
∫
σΨ(h)Qiid(h)dh}H−1

iid ,

and recall that n/λdn → c ∈ (0,∞).



S4. PROOF OF THEOREM 2

By n/λdn → c, (S4.30) and Slutsky’s theorem (Athreya and Lahiri,

2006), we have

√
nΛn,iid(β̂n,iid − β)

d→ N(0, cχ−2
0 Σβ,iid) a.s. (Piid), (S4.31)

where Piid is the probability measure for the independent and identically

distributed sampling design.

First, we show that the first asymptotic property in Condition 5 holds

under the special one-per-stratum sampling design. Consider

n∑
i=1

∫
x(s)x(s)>fi(s)ds

=
n

λdnvol.(R0)

∫
Rn

x(s)x(s)>ds

=
n

vol.(R0)

∫
R0

x(λns)x(λns)>ds. (S4.32)

By (3.3) and (S4.32), we have

Λ−1
n

{
n∑
i=1

∫
x(s)x(s)>fi(s)ds

}
Λ−1
n → Hiid as n→∞,

where Λn =
√
nΛn,iid.
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Next, for h ∈ Rd, consider

n∑
i=1

∑
j 6=i

∫
x(y + h)x(y)>fi(y + h)fj(y)dy

=

{
n

λdnvol.(R0)

}2 n∑
i=1

∑
j 6=i

∫
Aj∩(Ai−h)

x(y + h)x(y)>dy

=

{
n

λdnvol.(R0)

}2 n∑
i=1

∫
Rn∩{AC

i ∩(Ai−h)}
x(y + h)x(y)>dy

=

{
n

λdnvol.(R0)

}2 n∑
i=1

(∫
Rn∩(Ai−h)

−
∫
Ai∩(Ai−h)

)
x(y + h)x(y)>dy

=

{
n

λdnvol.(R0)

}2
{∫

Rn

x(y + h)x(y)>dy −
∫
∪ni=1{Ai∩(Ai−h)}

x(y + h)x(y)>dy

}

=
n2

λdn

1

{vol.(R0)}2

∫
R0

x(λny + h)x(λny)>dy

−
{

n

λdnvol.(R0)

}2 ∫
∪ni=1{Ai∩(Ai−h)}

x(y + h)x(y)>dy, (S4.33)

where AC is the complement of set A.

By (3.4), we have

Λ−1
n

{
n∑
i=1

∑
j 6=i

∫
x(y + h)x(y)>fi(y + h)fj(y)dy

}
Λ−1
n

= cΛ−1
n,iid

{
1

{vol.(R0)}2

∫
R0

x(λny + h)x(λny)>dy

}
Λ−1
n,iid

−Λ−1
n

[{
n

λdnvol.(R0)

}2 ∫
∪ni=1{Ai∩(Ai−h)}

x(y + h)x(y)>dy

]
Λ−1
n

(S4.34)

for h ∈ Rd.
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Based on Theorem 1, we have

√
nΛn,iid(β̂n − β)

d→ N(0, χ−2
0 Σβ) a.s. (PS) (S4.35)

where Σβ = H−1
iid σΨ(0) + H−1

iid {
∫
σΨ(h)Q(h)dh}H−1

iid . Thus, by (S4.30),

(S4.34) and the fact that the limit of

Λ−1
n

[{
n2λ−2d

n vol.(R0)−2
}∫
∪ni=1{Ai∩(Ai−h)}

x(y + h)x(y)>dy

]
Λ−1
n

is positive definitive, we have proved Theorem 2.

S5 Proof of Theorem 3

Lemma 3. Suppose that Conditions 1–9 hold. Then,∥∥∥Σ̂n − ΣM

∥∥∥→0 in P·|S-probability, a.s. (PS), (S5.36)

where Σ̂n =
∑

k∈Kn
V∗{Λ−1

n S∗n(k, β̂n)}, and recall that ΣM = HσΨ(0) +∫
σΨ(h)Q(h)dh.

Proof of Lemma 3. The argument here is the based on the proof of Lemma

3 of Lahiri and Zhu (2006), and we only consider the case where p = 1. For

higher dimensional space, similar argument can be made.

Denote S̃n(l;k) =
∑n

i=1 x(si)Ψ{Z(si)}1(si ∈ Bn(l;k)), where l ∈ ln

and k ∈ Kn. Let

Σ̃n =
∑
k∈Kn

(|ln|−1
∑
l∈ln

{Λ−1
n S̃n(l;k)}2 − [|ln|−1

∑
l∈ln

{Λ−1
n S̃n(l;k)}]2).
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Thus, by Condition 3, Condition 9 and Theorem 1, we have

Σ̂n − Σ̃n→0 in P·|S-probability, a.s. (PS), (S5.37)

and recall that

Σ̂n =
∑
k∈Kn

(|ln|−1
∑
l∈ln

{Λ−1
n Ŝn(l;k)}2 − [|ln|−1

∑
l∈ln

{Λ−1
n Ŝn(l;k)}]2),

where Ŝn(l;k) =
∑n

i=1 x(si)Ψ{Ẑ(si)}1{si ∈ Bn(l;k)}.

By Lemma 2 of Lahiri and Zhu (2006) and Condition 3, we have

∑
k∈Kn

E·|S

(
|ln|−1

∑
l∈ln

[{Λ−1
n S̃n(l;k)}2 − E·|S{Λ−1

n S̃n(l;k)}2]

)2

= o(1),

∑
k∈Kn

E·|S

{
|ln|−1

∑
l∈ln

Λ−1
n S̃n(l;k)

}2

= o(1).

Thus, it remains to show

ES

[∑
k∈Kn

|ln|−1
∑
l∈ln

E·|S

{
Λ−1
n S̃n(l;k)

}2
]
→ ΣM , (S5.38)

∑
k∈Kn

|ln|−1
∑
l∈ln

E·|S

{
Λ−1
n S̃n(l;k)

}2

→

ES

[∑
k∈Kn

|ln|−1
∑
l∈ln

E·|S

{
Λ−1
n S̃n(l;k)

}2
]
(S5.39)

almost surely as n → ∞. Notice that the proof of (S5.39) is similar with

the one in Lemma 1, so we only show (S5.38). Denote

Σ̃jn =
∑
k∈Kjn

|ln|−1
∑
l∈ln

E·|S

(
Λ−1
n S̃n(l;k)

)2
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for j = 1, 2. Then,

ES

[ ∑
k∈K1n

|ln|−1
∑
l∈ln

E·|S

{
Λ−1
n S̃n(l;k)

}2
]

= |K1n| |ln|−1
∑
l∈ln

[
n∑
i=1

ES(v2
i )σΨ(0)1{si ∈ Bn(l;0)}

+
n∑
i=1

∑
j 6=i

ES(vivj)σΨ(si − sj)1{si, sj ∈ Bn(l;0)}

]
= Σ11n + Σ12n, say .

Notice that |K1n| = λdnb
−d
n vol.(R0)(1 + o(1)) and |ln| = λdnvol.(R0)(1 +

o(1)). Denote R2n = ∪k∈(K1n∩R1n)Rn(k), where R1n = λn(R0 \ Rbnλ
−1
n

0 ). It

can be shown that
∣∣{l ∈ ln : s ∈ l + bn[0, 1]d}

∣∣ = bdn{1 + o(1)} for s ∈ R2n.

By Condition 1 and Condition 5, we have

Σ11n

= Λ−1
n

|K1n|
|ln|

σΨ(0)

[
n∑
i=1

∫
R2n

w2
n(s)fi(s)

∑
l∈ln

1{s ∈ Bn(l;0)}ds

]
Λ−1
n (1 + o(1))

= σΨ(0)H(1 + o(1)). (S5.40)
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Similarly, we have

Σ12n

= Λ−1
n

|K1n|
|ln|

[
n∑
i=1

∑
j 6=i

∫ ∫
wn(x)wn(y)fi(x)fj(y)σΨ(x− y)

×
∑
l∈ln

1{x,y ∈ Bn(l;0)}dxdy

]
Λ−1
n

= Λ−1
n

|K1n|
|ln|

[
n∑
i=1

∑
j 6=i

∫
‖h‖≤bn

σΨ(h)

∫
R2n

wn(y + h)wn(y)fi(y + h)fj(y)

×
∑
l∈ln

1{y + h,y ∈ Bn(l;0)}dydh

]
Λ−1
n (1 + o(1))

=

∫
σΨ(h)Q(h)dh(1 + o(1)). (S5.41)

By (S5.40) and (S5.41), we have shown (S5.38), which completes the

proof.

Proof of Theorem 3. The proof of this theorem extends the one discussed

by Lahiri and Zhu (2006) to the proposed sampling design. For conve-

nience, denote Φ(·; Σ) to be the probability measure of N(0,Σ). Based on

Condition 9 and the Taylor’s expansion, we have

0 =
∑
k∈Kn

{S∗n(k; t)− ĉn(k)}

=
∑
k∈Kn

{S∗n(k; β̂n)− ĉn(k)}+ ΛnΓnλn(t− β̂n)χ0 +R∗n(t),

(S5.42)
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where t is a solution of the first equality, Γn =
∑n

i=1 viv
>
i , and R∗n(t) is

obtained by subtraction. To be more specific, we have

R∗n(t) = {R∗1n(t) +R∗2n(t) +R∗3n(t)}Λn(t− β̂n),

where

R∗1n(t) =
n∑
i=1

x(si)x(si)
>Λ−1

n −
∑
k∈Kn

n∑
i=1

x(si)x(si)
>Λ−1

n 1{si ∈ Bn(Ik;k)},

R∗2n(t) =
∑
k∈Kn

n∑
i=1

x(si)x(si)
>Λ−1

n 1{si ∈ Bn(Ik;k)}

×
∫ 1

0

[Ψ′{Ẑ(si)− ux(si)
>(t− β̂n)} −Ψ′{Ẑ(si)}]du,

R∗3n(t) =
∑
k∈Kn

n∑
i=1

x(si)x(si)
>Λ−1

n 1{si ∈ Bn(Ik;k)}
[
Ψ′{Ẑ(si)} − EΨ′{Z(0)}

]
=

∑
k∈Kn

n∑
i=1

x(si)x(si)
>Λ−1

n 1{si ∈ Bn(Ik;k)} [Ψ′{Z(si)} − EΨ′{Z(0)}]

+op(1),

where the second equality of R∗3n(t) holds by Condition 9, (S3.23), (S3.24)

and Theorem 1. Besides, based on (S3.23) and (S3.24), we have

Γn = H + op(1), a.s. (PS). (S5.43)

By a similar argument in the proof of Theorem 2 (Lahiri and Zhu, 2006)

and Lemma 3, we have, for any ε0 > 0,

P·|S

(
sup
B∈C

∣∣∣∣∣P∗
[

Λ−1
n

∑
k∈Kn

{S∗n(k; β̂n)− ĉn(k)} ∈ B

]
− Φ(B; Σβ)

∣∣∣∣∣ > ε0

)
= o(1),

(S5.44)
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a.s. (PS). Now, it remains to prove, for any εn ↓ 0,

P·|S
(
P∗
[∥∥Λ−1

n {R∗1n(t) +R∗2n(t) +R∗3n(t)}
∥∥ > εn

]
> ε0

)
= o(1), a.s. (PS).

(S5.45)

First, we show

E·|SE∗
∥∥Λ−1

n {R∗1n(t) +R∗2n(t) +R∗3n(t)}
∥∥ = o (1) (S5.46)

with some t such that
∥∥∥Λn(t− β̂n)

∥∥∥ = O(1).

First, consider Λ−1
n R∗1n(t).

E∗

[ ∑
k∈K1n

n∑
i=1

viv
>
i 1(si ∈ R2n)1{si ∈ B(Ik;k)}

]

= E∗

[
n∑
i=1

∑
k∈K1n

viv
>
i 1(si ∈ R2n)1{si ∈ B(Ik;k)}

]

=
n∑
i=1

viv
>
i 1(si ∈ R2n) |K1n|

bdn(1 + o(1))

|ln|

=
n∑
i=1

viv
>
i 1(si ∈ R2n)(1 + o(1)). (S5.47)

Besides, by Condition 1 and Condition 7, we have

∑
k∈K2n

n∑
i=1

‖vi‖1{si ∈ B(Ik;k)}

+
∑
k∈K1n

n∑
i=1

‖vi‖1(si /∈ R2n)1{si ∈ B(Ik;k)} = o(1). (S5.48)

Thus, by (S3.23), (S3.24), (S5.47) and (S5.48), we have

E∗

[∑
k∈Kn

n∑
i=1

viv
>
i 1{si ∈ B(Ik;k)}

]
= Γn + o(1). (S5.49)
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Denote el to be the vector such that all the elements are 0 except that

its l-th one is 1, and l = 1, . . . , n. For any el and ej,

V∗

[
e>l
∑
k∈Kn

n∑
i=1

viv
>
i 1(si ∈ B(Ik;k))ej

]

= |Kn|V∗

[
e>l

n∑
i=1

viv
>
i 1(si ∈ B(Ik;k))ej

]

≤ C |Kn|E∗

[
n∑
i=1

‖vi‖4
1(si ∈ B(Ik;k))

]

≤ C |Kn|
n∑
i=1

‖vi‖4 bdn/ |ln|

= o(1), (S5.50)

where C is a constant, and the last equality holds by Condition 3 and

Condition 7.

Thus, by (S5.49) and (S5.50), we have

E∗
∥∥Λ−1

n R∗1n(t)
∥∥ = o(1). (S5.51)

Next, we consider Λ−1
n R∗2n(t). Since

∥∥Λ−1
n R∗2n(t)

∥∥ ≤ ∑
k∈Kn

n∑
i=1

‖vi‖2+γ
1{si ∈ Bn(Ik;k)}

∥∥∥Λn(t− β̂n)
∥∥∥γ ,

we have

E∗
∥∥Λ−1

n R∗2n(t)
∥∥ = o (1) . (S5.52)

where the result holds based on (S3.22), and recall that
∥∥∥Λn(t− β̂n)

∥∥∥ =

O(1).
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Now, we consider Γ−1
n R∗3n(t). Denote Wjl(si) = e>j viv

>
i el[Ψ

′{Z(si)} −

χ0] for j, l = 1, . . . , p.

E·|S

(
V∗

[∑
k∈Kn

n∑
i=1

Wjl(si)1{si ∈ B(Ik;k)}

])

≤ E·|S

E∗ [∑
k∈Kn

n∑
i=1

Wjl(si)1{si ∈ B(Ik;k)}

]2


= |ln|−1E·|S

∑
k∈Kn

∑
x∈ln

[
n∑
i=1

Wjl(si)1{si ∈ B(x;k)}

]2


= o(1), (S5.53)

where the last equality holds based on the result in Lemma 2 of Lahiri and

Zhu (2006) by setting mn = bdn based on Condition 3.

Thus, by (S5.51), (S5.52) and (S5.53), we have (S5.46) holds. Therefore,

we have ∥∥Λ−1
n R∗n(t)

∥∥ ≤ o(1)
∥∥∥Λ(t− β̂n)

∥∥∥ (S5.54)

for some t such that
∥∥∥Λ(t− β̂n)

∥∥∥ = O(1).

By Markov’s inequality, we can prove (S5.45). Together with (S5.44),

Theorem 3 is proved.

S6 Simulation results by simple linear regression

For comparison, we also consider a naive method using simple linear regres-

sion to make inference for the regression parameters. The square root of
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mean square error and the relative bias for the variance estimator and the

coverage rate of the 90% confidence interval, obtained by the Wald method,

is summarized in Table 1. When the spatial dependence is weak, reasonable

results can be obtained using the simple linear regression since the square

root of mean square error and the relative bias for the variance estimator

is comparable with those of the resampling method, and the coverage rate

is close to 90%. As the spatial dependence becomes stronger, however, the

variance is severely underestimated, and the coverage rate is much lower

than 90% for both sampling designs.
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Table 1: Summary statistics for the the variance estimator of β0 and β1 by the sim-

ple linear regression model under the proposed sampling design for different scenarios.

“RMES” stands for square root of the mean square error, “RB” for relative bias, “CR”

for coverage rate, † for optimal block size, “Uniform” for uniform density function, and

“Normal” for bivariate normal density function.

Design Dependence Statistics
n = 400 n = 900

β0 β1 β0 β1

Unifrom

r = 1

RMSE 0.53 0.14 0.20 0.04

RB -0.18 -0.17 -0.15 -0.13

CR 0.86 0.86 0.88 0.88

r = 3

RMSE 2.57 0.70 1.25 0.24

RB -0.54 -0.53 -0.53 -0.51

CR 0.72 0.73 0.74 0.74

Normal

r = 1

RMSE 0.29 0.07 0.06 0.02

RB -0.09 -0.07 -0.01 -0.04

CR 0.88 0.88 0.90 0.89

r = 3

RMSE 2.49 0.65 1.12 0.24

RB -0.52 -0.50 -0.50 -0.51

CR 0.75 0.75 0.75 0.74
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