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We collect in the following (i) discussion on the difference of our problem from two relevant

traditional ones, (ii) concrete examples of our general framework, (iii) detailed derivations of

semiparametric efficiency of our estimators, (iv) examples to illustrate generalizability of the

results in Section 5, (v) supplements to Sections 4–6 and (vi) all technical proofs.

Notations For any random function ĝ(·) and random vector U with

copies {Ui : i = 1, . . . , N}, let EU{ĝ(U)} ≡
∫

ĝ(u)dFU(u) represents

the integral of ĝ(·) with respect to the distribution function FU(·) of U.

Also, recall EU|S=s{ĝ(U)} ≡
∫

ĝ(u)dFU|S=s(u) represents the integral of

ĝ(·) with respect to the conditional distribution function FU|S=s(·) of U

given S = s ∈ {0, 1}. In the following, let

EV{ĝ(U)} := n−1
∑n

i=1ĝ(Ui), GV{ĝ(U)} ≡ n1/2(EV − EU|S=1){ĝ(U)},

EN{ĝ(U)} := (N1 − n)−1
∑N1

i=n+1ĝ(Ui),

GN{ĝ(U)} := (N1 − n)1/2(EN − EU|S=1){ĝ(U)},



EC{ĝ(U)} := N−10

∑N
i=N1+1ĝ(Ui), GC{ĝ(U)} := N

1/2
0 (EC − EU|S=0){ĝ(U)},

EV∪N{ĝ(U)} := N−11

∑N1

i=1ĝ(Ui), GV∪N{ĝ(U)} := N
1/2
1 (EV∪N − EU|S=1){ĝ(U)},

EṼ2{ĝ(U)} := n−12

∑n
i=n1+1ĝ(Ui), GṼ2{ĝ(U)} := n

1/2
2 (EṼ2 − EU|S=1){ĝ(U)},

EṼ2∪N{ĝ(U)} := (N1 − n1)
−1∑N1

i=n1+1ĝ(Ui),

GṼ2∪N{ĝ(U)} := (N1 − n1)
1/2(EṼ2∪N − EU|S=1){ĝ(U)},

EL{ĝ(U)} := n−1
∑n

i=1ĝ(Ui), GL{ĝ(U)} ≡ n1/2(EL − EU){ĝ(U)},

EU{ĝ(U)} := (N − n)−1
∑N

i=n+1ĝ(Ui) and GU{ĝ(U)} ≡ (N − n)1/2(EU − EU){ĝ(U)}.

Also, for m = 1, . . . ,M , denote

EVm{ĝ(U)} := (n/M)−1
∑

i∈Imĝ(Ui), GVm{ĝ(U)} := (n/M)1/2(EVm − EU|S=1){ĝ(U)},

ELm{ĝ(U)} := (n/M)−1
∑

i∈Imĝ(Ui) and GLm{ĝ(U)} := (n/M)1/2(EVm − EU){ĝ(U)}.

S1. Difference of our problem from two relevant traditional ones

We emphasize the ineligibles in the case pool cannot be treated as controls

but should be excluded from the study if known, so the case contamination

problem considered in this work is essentially different from (a) the outcome

misclassification framework with some cases labeled as controls or the other

way around (Lancaster and Imbens, 1996; Beesley and Mukherjee, 2022),

and (b) the exponential tilt mixture model where in addition to the (uncon-



taminated) case and control pools, an unlabeled data set (with unknown

status) is also available (Qin, 1999; Zhang and Tan, 2020). In contrast to

our setup with ineligibles, individuals in the study samples of both (a) and

(b), although with possibly confused or unknown labels, are either cases or

controls that are eligible for the analysis–none of them should be excluded.

S2. Concrete examples and remarks of the general M-estimation

problem (1)

We enumerate below some important special examples of the general M -

estimation problem (1) to illustrate its practical relevance.

Example S1 (Primary analysis). Let α ≡ τ and ψ(W,θ) ≡ X{S −

h(θTX)} with h(x) ≡ {1 + exp(−x)}−1. Here ψ(W,θ) is the estimat-

ing equation for the logistic regression model of S on X with a parameter

vector θ. Then equation (1) becomes

τE[DX{1− h(θT0 X)} | S = 1]− (1− τ)E{Xh(θT0 X) | S = 0} = 0. (S1)

Consider a logistic regression model of D on X among cases and controls:

T (X) := P(D = 1 | X)/P(D = 2 | X) = exp(θ
T

0 X) (S2)

for some θ0 ∈ Rp, which is the most fundamental and frequently used model

for analyzing the association of the case-control status with a set of covari-



ates based on a case-control sample (Prentice and Pyke, 1979; Breslow,

1996). Recalling the first component of X equals one, Prentice and Pyke

(1979) demonstrated the intercept term θ0[1] is unidentifiable from case-

control data unless η ≡ E(S) is known, while θ0[j] = θ0[j] for j = 2, . . . , p.

Hence, the vector θ0 given in (S1) can be used to calculate the odds ratio

between two individuals with covariates X1 and X2, i.e., T (X1)/T (X2) =

exp{
∑p

j=2θ0[j](X1[j]−X2[j])} = exp{
∑p

j=2θ0[j](X1[j]−X2[j])}. Investigations

of associations between the primary outcome D and covariates X through

estimating the odds ratio parameters θ0 are referred to as the “primary

analysis” in the case-control literature.

Example S2 (Secondary analysis). When α ≡ η and ψ(W,θ) ≡ X{Y −

f(θTX)} for some known “inverse link” function f(·), the vector θ0 solves

the equation

0 = η E[DX{Y − f(θT0 X)} | S = 1] + (1− η)E[X{Y − f(θT0 X)} | S = 0]

= E[1(D 6= 0)X{Y − f(θT0 X)}]. (S3)

From (S3), we can see θ0 is in fact the generalized linear model parameters

of Y on X among individuals with D 6= 0, corresponding to the following

model of Y and X:

E(Y | X, D 6= 0) = f(θT0 X). (S4)



Special cases include the linear and logistic regression models with f(x) ≡ x

and f(x) ≡ {1 + exp(−x)}−1, respectively. If we set f(x) ≡ x, p = 1 and

X ≡ 1, then equation (S3) implies θ0 ≡ E(Y | D 6= 0), which is the mean

outcome in the population without ineligibles. Thus, the vector θ0 in (S3)

is quite a fundamental and important quantity in the so-called “secondary

analysis” that studies how the covariates X affect the secondary outcome

Y .

Remark S1 (Existence and uniqueness of θ0). By rewriting (1) as

E{g(S,D)ψ(W,θ0)} = 0

with g(S,D) := {αS/η + (1− α)(1− S)/(1− η)}1(D 6= 0) ≥ 0, we notice

the equations in Examples S1–S2 with ψ(W,θ) ≡ X{S − h(θTX)} or

X{Y −f(θTX)} have similar forms to those considered in Tian et al. (2007).

The theory in Section 2 and Appendix 1 of Tian et al. (2007) guarantees the

existence and uniqueness of θ0 in Examples S1–S2 under mild conditions

such as positive definiteness of E{g(S,D)XXT} and finiteness of E(Y ).

Remark S2 (Model-free nature of our setup). Although we introduce

(working) models (S2) and (S4) to illustrate the practical relevance of θ0 in

the primary and secondary analyses, the validity of relationship (S2) and

(S4) is actually not required for any results in this article. In fact, even



without any model assumption, our target parameters θ0 are still well-

defined by the general M -estimation problem (1), as well as the two special

cases (S1) and (S3). This model-free setup allows for the unified theoretical

analysis in Sections 3 and 5 without adaptation for the model assumptions

in each special example of our general framework, as well as for direct appli-

cations of our method to other parameters defined by estimating equations

in the form of (1).

Remark S3 (Identifiability of θ0 in the secondary analysis). To estimate

the generalized linear model parameters θ0 defined in (S3), we need the

population prevalence η ≡ E(S) to be known. This is satisfied, for exam-

ple, when the case–control sample is nested within a well-defined cohort

study (Tchetgen Tchetgen, 2014), and is also assumed in Wei et al. (2013),

Tchetgen Tchetgen (2014) and Wei et al. (2016), among others. Various

alternative assumptions are common in the secondary analysis literature as

well, e.g., rare disease approximations (Jiang et al., 2006; Wei et al., 2013)

and parametric forms of the model between Y and X (Ma and Carroll, 2016;

Liang et al., 2018). Due to retrospective sampling, consistent estimation

of parameters defined with respect to the true population distribution is

generally impossible in the secondary analysis of case-control data, if none

of the above-mentioned assumptions is made (Ma and Carroll, 2016). Con-



sidering the model-free nature of our setup as clarified in Remark S2, we

thus view the knowledge of the population prevalence η as the bottom line

for the identifiability of θ0 defined in (S3), and avoid other requirements on

the underlying data generating mechanism that may have negative impact

on the generality and uniformity of our framework.

S3. Semiparametric efficiency of θ̂

Theorem 1 considers behaviors of θ̂ in the general setting with δ ≡ limn→∞(n/N1) ≥

0. Since the two cases δ > 0 and δ = 0 correspond to different semiparamet-

ric models in semiparametric efficiency analysis, we first state in Corollary

S1 the asymptotic properties of θ̂ when δ = 0.

Corollary S1. Suppose δ = 0. Under the conditions in Theorem 1, we

have

θ̂ − θ0 = Ω[αn−1
∑n

i=1{Di − µ∗(Zi)}ψ(Wi,θ0) + αE{µ∗(Z)ψ(W,θ0) | S = 1}+

(1− α)E{ψ(W,θ0) | S = 0}] + op(n
−1/2) and (S5)

n1/2(ΩA0Ω)−1/2(θ̂ − θ0)
d−→ N(0, I) as n→∞, (S6)

where A0 := α2cov[{D − µ∗(Z)}ψ(W,θ0) | S = 1].

We now corroborate if the phenotyping model is correctly specified, i.e.,

µ∗(·) = µ(·), our estimators θ̂ in (6) achieve under appropriate semipara-



metric models the semiparametric efficiency defined in Tsiatis (2007), when

δ ≡ limn→∞(n/N1) is either positive or zero. We will analyze two cases sep-

arately: (a) δ > 0 and (b) δ = 0. The proofs of the following claims (S8),

(S11), (S14) and (S15) can be found in Section S8.

Case (a) with δ > 0 We introduce a nonrandom indicator Ri that rep-

resents whether an individual has been validated (Ri = 1) or not (Ri = 0),

i.e., Ri := 1(i ∈ {1, . . . , n} ∪ {N1 + 1, . . . , N}) for i = 1, . . . , N . Then our

study sample can be written as {Vi := (RiDi, Ri, Si,Z
T
i )T : i = 1, . . . , N}.

Given

δ > 0, µ∗(·) = µ(·) and the conditions in Theorem 1 hold, (S7)

equation (10) implies the following expansion:

θ̂ − θ0 = N−1
∑N

i=1ϕ(Vi) + op(n
−1/2), where Ω−1ϕ(Vi) := (S8)

[α(δτ)−1RiSi{Di − µ(Zi)}+ α τ−1Siµ(Zi) + (1− α)(1− τ)−1(1− Si)]ψ(Wi,θ0)−

α τ−1Si E{µ(Z)ψ(W,θ0) | S = 1} − (1− α)(1− τ)−1(1− Si)E{ψ(W,θ0) | S = 0}

with Wi ≡ (Si, Yi,X
T
i )T. Since the values of Si and Ri (i = 1, . . . , N)

are deterministic, the observations {Vi : i = 1, . . . , N} are independent

but not identically distributed. However, the theory from Section 2 of Ma

(2010) established asymptotic equivalence between the case-control sample



and an independent and identically distributed one from a hypothetical

population with the prevalence of candidate cases equal to N1/N , allowing

us to view {Vi : i = 1, . . . , N} asN independent copies of a base observation

V := (RD,R, S̃,ZT)T, where R, S̃ ∈ {0, 1} satisfy

E(S̃) = τ, PD,Z|S̃ = PD,Z|S, R ⊥⊥ (D,ZT)T | S̃ and E(R | S̃) = S̃δ + (1− S̃)

(S9)

with τ, δ ∈ (0, 1). It is possible that E(S̃) 6= E(S) ≡ η due to the

case-control sampling. That is, S̃ and the original S may follow different

marginal distributions, but the conditional distributions PD,Z|S and PD,Z|S̃

are the same. Under the semiparametric model

M := {PD,R,S̃,Z : (S9) is satisfied while PD,Z|S̃ is unrestricted}, (S10)

we show in Section S8 that the efficient influence function ϕEFF(V) for

estimating θ0 is

ϕEFF(V) = ϕ(V). (S11)

Then, according to the arguments in Section 2 of Ma (2010), all first-order

asymptotic results established forN independent and identically distributed

observations of V hold for the original case-control sample as well. By

treating {Vi : i = 1, . . . , N} as N independent copies of V, we notice from



expansion (S8) if condition (S7) holds, our estimators θ̂ attain the efficient

influence function ϕEFF(V) ≡ ϕ(V) and are (locally) semiparametric ef-

ficient (Tsiatis, 2007, Chapter 4) for estimating θ0 under semiparametric

model M given in (S10).

Case (b) with δ = 0 Consider the semiparametric model

M0 := {PD,S,Z : PS,Z is known while PD|Z,S=1 is unrestricted}. (S12)

Since S ≡ 1(D 6= 2), the distribution PD|S=0,Z is degenerate, given by

P(D = d | S = 0,Z) = 1(d = 2). The only unknown component in M0 is

PD|Z,S=1. Given

µ∗(·) = µ(·) and the conditions (including δ = 0) in Corollary S1 hold,(S13)

we know from (S5) that

θ̂ − θ0 = n−1
∑n

i=1ϕ0(Di,Zi) + op(n
−1/2), where (S14)

ϕ0(Di,Zi) := α{Di − µ(Zi)}Ωψ(Wi,θ0) ≡ α{Di − µ(Zi)}Ωψ{(1, Yi,XT
i )T,θ0}

with (Yi,X
T
i )T a subvector of Zi. Here we writeψ(Wi,θ0) ≡ ψ{(1, Yi,XT

i )T,θ0}

since Wi ≡ (Si, Yi,X
T
i )T and Si ≡ 1 for i = 1, . . . , n. In Section S8, we

prove that under M0 in (S12), the efficient influence function ϕ
(0)
EFF(D,Z)

for estimating θ0 satisfies

ϕ
(0)
EFF(D,Z) = ϕ0(D,Z) ≡ α{D − µ(Z)}Ωψ{(1, Y,XT)T,θ0}. (S15)



Noticing {(Di,Zi) : i = 1, . . . , n} are independent and identically dis-

tributed observations from distribution PD,Z|S=1, we know from (S14) that

under condition (S13), our estimators θ̂ enjoy (local) semiparametric effi-

ciency (Tsiatis, 2007, Chapter 4) for estimating θ0 under semiparametric

model M0 given in (S12).

S4. Illustrations of generalizability of the results in Section 5

We consider in this section (i) semi-supervised mean response estimation

and (ii) average treatment effect estimation in randomized experiments, es-

tablishing for estimators in these problems results similar to Theorem 2,

which are entirely free of convergence assumptions on nuisance estimation.

These problems, as well as the case contamination one in the main article,

share a common feature: there exist some simple n1/2-consistent estimators

without nuisance functions (e.g., supervised/inverse-probability-weighted

estimators and θ̂IN in (15)), while advanced methods involve nuisance es-

timation to improve efficiency. It is hence desirable to reduce the reliance

on assumptions of the nuisance estimators so that possible performance

degradation arising from violation of these assumptions can be avoided, es-

pecially when the nuisance estimators are based on some high dimensional

or black-box models whose limiting behaviors can be hard to specify. As



elaborated in Section 5.1 of Zhang et al. (2019), problem (ii) is actually a

two-arm version of (i) and approaches to (i) can be directly used for (ii), so

the following discussion will focus on (i) while all the methods and results

in this section apply to (ii) as well.

Suppose our study sample consists of two independent data sets: (i) a

labeled data set L := {(Yi,Xi) : i = 1, . . . , n} and (ii) an unlabeled data

set U := {Xi : i = n+ 1, . . . , N}, which contain n and (N −n) independent

copies of base observations (Y,X) and X, respectively. Here Y ∈ R is

a response while X ∈ Rd represents a set of possibly high dimensional

covariates. This is the so-called “semi-supervised” setting. Our target

parameter is θ0 := E(Y ). Estimation of θ0 in such a setting has been

investigated by Bloniarz et al. (2016), Wager et al. (2016), Zhang et al.

(2019), Zhang and Bradic (2022) in the context of semi-supervised inference

or causal inference in randomized experiments. We relegate comparison of

our results with those in the existing literature to Remark S4.

It is easy to see the supervised estimator Y := n−1
∑n

i=1Yi enjoys n1/2-

consistency and asymptotic normality as long as E(Y 2) = O(1), but Y is

generally suboptimal when unlabeled data are available due to efficiency

loss caused by ignoring U . We hence attempt to devise semi-supervised

estimators, which take account of both L and U , based on the following



identity:

E(Y ) = E{φ(X)} = E{φ(X)}+ E{Y − φ(X)} = E{φ∗(X)}+ E{Y − φ∗(X)} (S16)

with φ(x) := E(Y | X = x) and φ∗ : Rd 7→ R an arbitrary function. Then

our semi-supervised estimator is the empirical version (S16), that is,

θ̂ := N−1
∑N

i=1φ̂(Xi) + n−1
∑n

i=1{Yi − φ̂(Xi)}, (S17)

where φ̂(·) is a random function involving L only. Term n−1
∑n

i=1{Yi −

φ̂(Xi)} in (S17) plays the same debiasing role as αn−1
∑n

i=1{Di−µ̂(Zi)}ψ(Wi, θ̂IN)

in (6); see the discussion concerning usefulness of such debiasing terms at

the end of Section 3.1. As in (7), we apply cross-fitting to calculate φ̂(Xi):

without loss of generality, divide the index set I := {1, . . . , n} into M

disjoint subsets {I1, . . . , IM} of size n/M for some fixed integer M ≥ 2.

Let φ̂m(·) be a random function based on L−m := {(Yi,Xi) : i ∈ I\Im}

(m = 1, . . . ,M). Then we set

φ̂(Xi) ≡
∑M

m=1{1(i ∈ Im)φ̂m(Xi) + 1(i > n)φ̂m(Xi)/M} (i = 1, . . . , N).

(S18)

Also, we propose a sample-splitting variant of θ̂: divide L into two disjoint

subsets: L̃1 := {(Yi,Xi) : 1 ≤ i ≤ n1} and L̃2 := {(Yi,Xi) : n1 < i ≤ n}

of sizes n1 and n2 := n − n1. Let φ̃1(·) be a random function involving L̃1



only. The sample-splitting variant θ̂ is

θ̃ := (N − n1)
−1∑N

i=n1+1φ̃1(Xi) + n−12

∑n
i=n1+1{Yi − φ̃1(Xi)}. (S19)

We now explain why θ̂ is n1/2-consistent and θ̃ is asymptotically nor-

mal even if no assumption is imposed on the convergence behaviors of

{φ̂m(·), φ̃1(·)}. With φ̂(Xi) as in (S18), we can write θ̂ − θ0 ≡ T1 + (1 −

n/N)T̂2, where

T1 := n−1
∑n

i=1(Yi − θ0) and

T̂2 := (N − n)−1
∑N

i=n+1φ̂(Xi)− n−1
∑n

i=1φ̂(Xi)

= M−1∑M
m=1{(N − n)−1

∑N
i=n+1φ̂m(Xi)− (n/M)−1

∑
i∈Imφ̂(Xi)}

= M−1∑M
m=1([(N − n)−1

∑N
i=n+1φ̂m(Xi)− EX{φ̂m(X)}]−

[(n/M)−1
∑

i∈Imφ̂m(Xi)− EX{φ̂m(X)}])

It is straightforward to show T1 = Op(n
−1/2). Moreover, notice that

{φ̂m(Xi) : i ∈ Im ∪ {n+ 1, . . . , N}}

are conditionally independent and identically distributed given L−m, since

only L−m is used to calculate φ̂m(·). Therefore, conditionally on L−m, we can

treat φ̂m(·) as nonrandom and view

[(N − n)−1
∑N

i=n+1φ̂m(Xi)− EX{φ̂m(X)}] and [(n/M)−1
∑

i∈Imφ̂m(Xi)− EX{φ̂m(X)}]



as two terms of the form “sample mean minus population mean”, which are

of order Op(n
−1/2) given EX[{φ̂m(X)}2] = Op(1) according to Chebyshev’s

inequality. The unconditional n1/2-convergences follow. Considering M is

fixed, we know that T̂2 = Op(n
−1/2) and thereby that

θ̂ − θ0 ≡ T1 + T̂2 = Op(n
−1/2).

Concerning the data-splitting variant θ̃, we can see from (S19) that

E(θ̃ − θ0 | L̃1) = EX{φ̃1(X)}+ E(Y − θ0)− EX{φ̃1(X)} = 0, (S20)

because L̃1 ⊥⊥ (L̃2 ∪ U). In addition, notice that θ̃ − θ0 ≡

∑n
i=n1+1[n

−1
2 {Yi − φ̃1(Xi)}+ (N − n1)

−1φ̃1(Xi)] +
∑N

i=n+1(N − n1)
−1φ̃1(Xi),

(S21)

where the summands

{n−12 {Yi − φ̃1(Xi)}+ (N − n1)
−1φ̃1(Xi) : i = n1 + 1, . . . , n} ∪

{(N − n1)
−1φ̃1(Xi) : i = n+ 1, . . . , N}

are conditionally independent given L̃1 since φ̃1(·) involves L̃1 only. Com-

bining (S20) and (S21), we can show the conditional asymptotic normality

of (θ̃ − θ0) given L̃1 under some suitable moment conditions, using the

Lyapunov central limit theorem. The unconditional asymptotic normality



follows. In the theorem below, we formally state the above-mentioned prop-

erties of {θ̂, θ̃} without imposing assumptions on convergence behaviors of

{φ̂m(·), φ̃1(·)}. The proof can be found in Section S8.

Theorem S1. Suppose E(Y 2) = O(1). If EX[{φ̂m(X)}2] = Op(1) for m =

1, . . . ,M , then θ̂ in (S17) satisfies θ̂ − θ0 = Op(n
−1/2). Further, with

ν̃n := n2/(N − n1), denote

σ̃n := [var{Y − (1− ν̃n)φ̃1(X) | L̃1}+ ν̃n(1− ν̃n)var{φ̃1(X) | L̃1}]1/2.

Then, given σ̃−1n = Op(1) and E{|Y |2(1+c)}+EX{|φ̃1(X)|2(1+c)} = Op(1) for

some constant c > 0, we have n
1/2
2 σ̃

−1/2
n (θ̃ − θ0)

d−→ N(0, 1) as n2 →∞.

The moment conditions EX[{φ̂m(X)}2] = Op(1) and EX{|φ̃1(X)|2(1+c)} =

Op(1) are fairly mild, typically holding when, for example, the response Y

is bounded and {φ̂m(·), φ̃1(·)} are calculated based on some algorithms tar-

geting E(Y | X). More generally, we can always truncate {φ̂m(·), φ̃1(·)}

to make them bounded. Analogously to Remark 4, we can also summarize

properties of θ̂ into three strata according to different assumptions on φ̂m(·):

(i) n1/2-consistency whenever EX[{φ̂m(X)}2] = Op(1);

(ii) asymptotic normality if φ̂m(·) converge (in the L2 sense) to some func-

tion φ∗(·) satisfying E{|φ∗(X)|2(1+c1)} < c2 for some positive constants

{c1, c2};



(iii) semiparametric efficiency given the function φ∗(·) in (ii) equals E(Y |

X = ·).

The above (i) is from Theorem S1, while (ii) and (iii) were established in

Theorem 5 of Zhang and Bradic (2022).

Remark S4. [Comparison with results in the existing literature] As pointed

out at the end of the second paragraph in this section, estimation of E(Y )

when unlabeled data are available in addition to labeled data has been

investigated by some existing works in different contexts. Among them, the

estimators proposed in Zhang et al. (2019) and Bloniarz et al. (2016) can be

viewed as a special example of θ̂ in (S17) with φ̂(·) based on a working linear

model of Y on X. Due to not using cross-fitting, their theoretical analysis

was conducted under fairly stringent conditions, e.g., that the dimension

d of X (Zhang et al., 2019) or the sparsity of the working linear model

(Bloniarz et al., 2016) is of order o(n1/2), which were needed to ensure

n−1
∑n

i=1{φ̂(Xi)− φ∗(Xi)} − EX{φ̂(X)− φ∗(X)} = op(n
−1/2)

with φ∗(·) the probability limit of φ̂(·). The estimator θ̂ in (S1) was con-

sidered by Wager et al. (2016) and Zhang and Bradic (2022) as well. These

two articles adopted the cross-fitting strategy as in (S18), allowing the form

of φ̂m(·) to be arbitrary and only requiring its L2 convergence to some func-

tion. All these existing works assumed the nuisance estimator φ̂(·) (or



φ̂m(·) if cross-fitting is applied) has a probability limit, which may not be

the case when, for example, d � n and we are agnostic to any structure

information (e.g., sparsity level) of the working model used to construct

φ̂(·). In contrast, Theorem S1 imposes no condition on the convergence

of φ̂m(·), providing theoretical guarantees for the performance of θ̂ under

violation of the above-mentioned assumptions. Even if the probability limit

of φ̂m(·) does not exist, the estimator θ̂ still enjoys n1/2-consistency as long

as EX[{φ̂m(X)}2] = Op(1).

S5. Supplement to simulations in Section 4

We set function ρ(Z) in the data generating mechanism (17) to the following

five different forms with sparsity level q ∈ {dd1/2e, n}:

(a) ρ(Z) ≡ 0.7, which yields a constant model;

(b) ρ(Z) ≡ 5
∑q

j=1Z[j]/q
1/2, which yields a linear model;

(c) ρ(Z) ≡ 3
∑q

j=1Z[j]/q
1/2 +3(

∑q
j=1Z[j])

2/(2q), which yields a single-index

model;

(d) ρ(Z) ≡ (3
∑q

j=1Z[j]/q
1/2)(1 +

∑dq/2e
j=1 Z[j]/q

1/2) − 3(κTZq)
2/q with κ :=

(1, 0, 1, 0, . . .)T ∈ Rq and Zq := (Z[1], . . . ,Z[q])
T, which yields a multiple-

index model;



(e) ρ(Z) ≡ 3
∑q

j=1{Z[j]/q
1/2 + Z2

[j]/(2q)}, which yields an additive model.

In Tables S1–S2, we present the simulation results of the secondary

analysis in Section 4. Table S3 presents the relative efficiencies of the plug-

in estimator θ̂PI in (21) to the benchmark θ̂IN.

S6. Supplement to Theorem 2 in Section 5

With δ̃n := n2/(N1 − n1), matrix Ãn in Theorem 2 is defined as

Ãn := α2cov[{D − (1− δ̃n)µ̃1(Z)}ψ(W,θ0) | S = 1, Ṽ1]+

α2δ̃n(1− δ̃n)cov{µ̃1(Z)ψ(W,θ0) | S = 1, Ṽ1}+

(1− α)2τ(1− τ)−1(n2/N1)cov{ψ(W,θ0) | S = 0}.

S7. Supplement to the data analysis in Section 6

In Table S4 below we list the names, descriptions and summary statistics of

the covariates considered in the data analysis of Section 6. Table S5 records

the components of the plug-in estimator θ̂PI in (21).



Table S1: Simulation results of the secondary analysis in Section 4: relative

efficiencies (19) of our estimators θ̂ to the benchmark θ̂IN. The nuisance

estimator µ̂(·) in θ̂ is constructed using logistic regression (LR), kernel
smoothing (KS) or random forest (RF). Here q is the sparsity level of the
phenotyping model E(D | Z, S = 1), d ≡ 500 the dimension of the predic-
tors Z, N the whole sample size, n the validation set size, ρ(Z) the function
in data generating model (17) and MRE as defined in (20). The choices (a)–
(e) of ρ(Z) are listed in Section S5. Results in settings with (a) ρ(Z) ≡ 0.7
are displayed in the upper panel only because they are not affected by the
sparsity level q.

q = dd1/2e N = 5000 N = 10000 N = 25000

n ρ(Z) LR KS RF MRE LR KS RF MRE LR KS RF MRE

200

(a) 2.14 2.05 2.15 2.34 2.55 2.41 2.56 2.71 2.84 2.65 2.87 3.03

(b) 2.58 2.28 1.84 3.81 3.16 2.64 2.13 5.64 3.54 2.97 2.19 8.25

(c) 2.13 1.96 2.14 3.31 2.61 2.35 2.60 4.33 2.82 2.49 2.83 5.41

(d) 1.92 1.77 1.87 3.23 2.22 2.01 2.14 4.28 2.40 2.12 2.31 5.42

(e) 2.69 2.45 2.16 3.76 3.39 2.92 2.58 5.31 3.84 3.24 2.75 7.25

400

(a) 1.75 1.73 1.75 1.88 2.25 2.20 2.25 2.34 2.67 2.58 2.66 2.81

(b) 2.09 1.99 1.60 2.45 2.96 2.78 1.98 3.81 3.68 3.26 2.18 6.29

(c) 1.78 1.75 1.75 2.33 2.27 2.20 2.23 3.31 2.60 2.50 2.54 4.63

(d) 1.68 1.65 1.61 2.27 2.12 2.08 1.99 3.23 2.29 2.21 2.14 4.59

(e) 2.14 2.10 1.79 2.49 3.13 2.94 2.38 3.76 3.83 3.58 2.62 5.82

q = n N = 5000 N = 10000 N = 25000

n ρ(Z) LR KS RF MRE LR KS RF MRE LR KS RF MRE

200

(b) 2.24 1.93 2.20 4.33 2.60 2.14 2.61 6.62 3.00 2.37 2.96 10.04

(c) 2.47 2.28 2.50 3.70 2.87 2.56 2.93 5.07 3.30 2.89 3.38 6.63

(d) 2.05 1.88 2.09 3.50 2.42 2.12 2.49 4.73 2.54 2.20 2.63 6.12

(e) 2.66 2.35 2.68 4.28 3.33 2.82 3.36 6.30 3.94 3.33 3.97 9.03

400

(b) 2.06 1.91 2.05 2.85 3.01 2.70 2.93 4.69 3.53 3.03 3.53 8.30

(c) 2.11 2.01 2.13 2.67 3.03 2.77 3.04 4.10 3.68 3.21 3.72 6.41

(d) 1.86 1.78 1.85 2.52 2.55 2.36 2.55 3.76 3.01 2.71 3.02 5.66

(e) 2.38 2.29 2.38 2.88 3.58 3.36 3.54 4.67 4.64 4.18 4.67 8.01



Table S2: Simulation results of the secondary analysis in Section 4: com-
ponentwise confidence intervals for θ0 established based on our estimators

θ̂ given in (6). The sample size is N = 5000. The nuisance estimator µ̂(·)
in θ̂ is constructed using logistic regression (LR), kernel smoothing (KS) or
random forest (RF). Here q is the sparsity level of the phenotyping model
E(D | Z, S = 1), d ≡ 500 the dimension of the predictors Z, n the vali-
dation set size, ρ(Z) the function in data generating model (17), DCR as
defined in (22) and AL stands for “average length”. The choices (a)–(e) of
ρ(Z) are listed in Section S5.

q = dd1/2e q = n

LR KS RF LR KS RF

n ρ(Z) DCR AL DCR AL DCR AL DCR AL DCR AL DCR AL

200

(a) 0.60 0.10 0.55 0.10 0.63 0.10 0.60 0.10 0.55 0.10 0.63 0.10

(b) 0.93 0.09 1.08 0.10 0.72 0.11 0.70 0.10 0.65 0.11 0.67 0.10

(c) 0.92 0.10 0.93 0.11 0.85 0.10 0.73 0.10 0.58 0.10 0.68 0.10

(d) 0.65 0.11 1.00 0.11 0.68 0.11 0.93 0.10 1.02 0.11 0.93 0.10

(e) 0.83 0.09 0.70 0.10 0.68 0.10 0.78 0.09 0.83 0.10 0.87 0.09

400

(a) 0.70 0.08 0.70 0.08 0.77 0.08 0.70 0.08 0.70 0.08 0.77 0.08

(b) 1.20 0.08 1.38 0.08 1.23 0.09 0.60 0.08 0.52 0.08 0.75 0.08

(c) 1.45 0.08 1.17 0.08 1.43 0.08 0.98 0.08 0.78 0.08 0.92 0.08

(d) 0.87 0.09 0.85 0.09 0.73 0.09 0.70 0.08 0.62 0.08 0.83 0.08

(e) 1.08 0.08 0.77 0.08 0.98 0.08 0.83 0.07 0.78 0.07 0.88 0.07



Table S3: Simulation results: relative efficiencies of the plug-in estimator θ̂PI

in (21) to the benchmark θ̂IN. The sample size is N = 5000. The validation
set size is n = 200. The nuisance estimator µ̂(·) is constructed using logistic
regression (LR), kernel smoothing (KS) or random forest (RF). Here q is
the sparsity level of the phenotyping model E(D | Z, S = 1), d ≡ 500 the
dimension of the predictors Z, ρ(Z) the function in data generating model
(17). The choices (a)–(e) of ρ(Z) are listed in Section S5. Results in settings
with (a) ρ(Z) ≡ 0.7 are displayed in the upper panel only because they are
not affected by the sparsity level q.

Primary Analysis Secondary Analysis

q ρ(Z) LR KS RF LR KS RF

dd1/2e

(a) 1.41 1.35 1.21 1.36 1.32 1.20

(b) 1.09 0.97 1.25 1.14 1.00 1.23

(c) 1.27 1.02 1.23 1.32 1.19 1.19

(d) 1.36 0.99 1.32 1.38 1.19 1.24

(e) 1.10 0.93 1.23 1.17 1.02 1.19

n

(b) 1.27 1.06 1.23 1.24 1.07 1.19

(c) 1.27 1.13 1.17 1.24 1.15 1.15

(d) 1.41 1.20 1.24 1.33 1.20 1.21

(e) 1.21 1.06 1.15 1.17 1.06 1.13



Table S4: Names, descriptions and summary statistics of the covariates
considered in the data analysis of Section 6. Here “SD” stands for “standard
deviation”.

Name Description Mean SD

age Age (year) 67.1 17.0

aniongap max Maximum anion gap (mmol/L) 18.0 5.5

bun mean Mean level of blood urea nitrogen (mmol/L) 36.2 26.3

cretinine min Minimum cretinine concentration in blood (mmol/L) 1.6 1.4

inr max Maximum international normalized ratio 1.9 1.6

lactate min Minimum lactate concentration in blood (mmol/L) 1.9 1.5

metastatic cancer Having metastatic cancer (1) or not (0) 0.1 0.3

sodium max Maximum sodium concentration in blood (mmol/L) 140.7 6.3

spo2 mean Mean fraction of oxygen-saturated hemoglobin relative to 96.7 2.9

total hemoglobin (unsaturated+saturated) in the blood

sysbp min Minimum systolic blood pressure (mmHg) 83.2 16.8

urineoutput Urine output (ml/kg/hr) 1666.7 1419.8



Table S5: Results of the real data analysis in Section 6: components of the

plug-in estimator θ̂PI in (21). The nuisance estimator µ̂(·) is constructed us-
ing logistic regression (LR), kernel smoothing (KS) or random forest (RF).

LR KS RF

age -0.65 -0.78 -0.65

aniongap max 0.53 0.52 0.55

bun mean 0.39 0.47 0.34

cretinine min -0.28 -0.28 -0.30

inr max 0.42 0.49 0.40

lactate min 0.01 -0.03 0.01

metastatic cancer 0.07 0.04 0.10

sodium max -0.40 -0.44 -0.36

spo2 mean -0.26 -0.29 -0.24

sysbp min 0.07 0.08 0.06

urineoutput 1.24 1.29 1.21

S8. An auxiliary lemma and technical proofs

Lemma S1. Let M̂ ∈ Rp×p be an estimator for a matrix M ∈ Rp×p.

Suppose that M and M̂ are both invertible, and that ‖M̂ −M‖ = op(1).

Then ‖M̂−1 −M−1‖ = Op(‖M̂−M‖).

Proof of Lemma S1: Since M̂−1 −M−1 = M̂−1(M− M̂)M−1, we know

‖M̂−1 −M−1‖ ≤ ‖M̂−1‖‖M̂−M‖‖M−1‖

≤ ‖M−1‖(‖M̂−1 −M−1‖+ ‖M−1‖)‖M̂−M‖



≤ c1(‖M̂−1 −M−1‖+ c2)‖M̂−M‖,

which implies

(1− c1‖M̂−M‖)‖M̂−1 −M−1‖ ≤ c2‖M̂−M‖. (S22)

Considering the assumption that ‖M̂−M‖ = op(1), we have

P(c1 ‖M̂−M‖ ≤ 1/2)→ 1. (S23)

Further, we can obtain from (S22) that on the event {c1 ‖M̂−M‖ ≤ 1/2},

‖M̂−1 −M−1‖ ≤ (1− c1‖M̂−M‖)−1c2‖M̂−M‖ ≤ c ‖M̂−M‖,

which combined with (S23) gives ‖M̂−1 −M−1‖ = Op(‖M̂−M‖).

Proof of Theorem 1: In the following proof, the fact that P(θ̂IN ∈ B0)→

1 from Assumption 2 will be used implicitly here and there. Write

θ̂ − θ0 ≡ T̂1 + Ω̂(T̂2 + T̂3), where (S24)

T̂1 := θ̂IN − θ0 + Ω̂[αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}],

T̂2 := α(1− δn)(EN − EV)[{µ̂(Z)− µ∗(Z)}ψ(W, θ̂IN)] and

T̂3 := α(EV∪N − EV){µ∗(Z)ψ(W, θ̂IN)}.

We first control T̂1. According to Assumption 1, we have from Taylor’s

expansion that for any θ1,θ2 ∈ B0,

|D{ψ[j](W,θ1)−ψ[j](W,θ2)}| ≤ supθ∈B0‖ψ
′
[j](W,θ)‖‖θ1 − θ2‖ (S25)



with E{supθ∈B0‖ψ
′
[j](W,θ)‖2 | S = 1} < ∞ (j = 1, . . . , p). Hence, it

follows from Example 19.7 of Van der Vaart (2000) that {Dψ[j](W,θ) :

θ ∈ B0} is PW|S=1-Donsker. Similarly, we can show {ψ[j](W,θ) : θ ∈ B0}

is PW|S=0-Donsker. Moreover, applying Taylor’s expansion yields for j =

1, . . . , p that

ED,W|S=1[D
2{ψ[j](W, θ̂IN)−ψ[j](W,θ0)}2]

≤ ‖θ̂IN − θ0‖2E{supθ∈B0‖ψ
′
[j](W,θ)‖2 | S = 1} = Op(u

2
n) = op(1) and

(S26)

EW|S=0[{ψ[j](W, θ̂IN)−ψ[j](W,θ0)}2] = op(1).

Here we use Assumptions 1 and 2. The above derivations have verified the

conditions of Lemma 19.24 in Van der Vaart (2000), which ensures

GV [D{ψ(W, θ̂IN)−ψ(W,θ0)}] = op(1) and GC{ψ(W, θ̂IN)−ψ(W,θ0)} = op(1).

Therefore, we have

αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}

= αEV{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}+

αED,W|S=1{Dψ(W, θ̂IN)}+ (1− α)EW|S=0{ψ(W, θ̂IN)}+ op(n
−1/2).

(S27)

Using Taylor’s expansion again, we obtain

αED,W|S=1{Dψ(W, θ̂IN)}+ (1− α)EW|S=0{ψ(W, θ̂IN)}



= Φ′(θ0)(θ̂IN − θ0) +Op(‖θ̂IN − θ0‖2) = Φ′(θ0)(θ̂IN − θ0) +Op(u
2
n)

(S28)

= Op(un), (S29)

where the first step holds by Assumption 1 and the last two steps are due

to Assumption 2. Let D̂ := Ω̂−Ω. Combining (S27) and (S29) yields

D̂[αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}]

= D̂[αEV{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}+Op(un) + op(n
−1/2)]

= D̂{Op(n
−1/2) +Op(un) + op(n

−1/2)} = Op(unvn) + op(n
−1/2), (S30)

where the second step holds by the central limit theorem and the last step

is due to Assumption 2. Then, putting (S27), (S28) and (S30) together

gives

Ω̂[αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}]

= Ω[αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}] +Op(unvn) + op(n
−1/2)

= Ω[αEV{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}]− (θ̂IN − θ0) +

Op(unvn + u2n) + op(n
−1/2),

which implies

T̂1 = Ω[αEV{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}] +



Op(unvn + u2n) + op(n
−1/2). (S31)

Next, we handle Ω̂T̂2. For j = 1, . . . , p, let

Û∞(V−m) := supz∈Z |µ̂m(z)− µ∗(z)|, Fj,m := {{µ̂m(Z)− µ∗(Z)}ψ[j](W,θ) : θ ∈ Bn} and

Û2,j(V−m) := E1/2
Z,W|S=1[{µ̂m(Z)− µ∗(Z)}2supθ∈Bnψ

2
[j](W,θ)] (j = 1, . . . , p),

where Bn := {θ : ‖θ − θ0‖ ≤ tnun} for some positive sequence tn → ∞

satisfying tnun = o(1) and Bn ⊂ B0 for every n. Using Taylor’s expansion,

we have

EZ,W|S=1[{µ̂m(Z)− µ∗(Z)}2supθ∈Bn{ψ[j](W,θ)−ψ[j](W,θ0)}2])

≤ Û 2
∞(V−m)E{supθ∈B0‖ψ

′
[j](W,θ)‖2}supθ∈Bn‖θ − θ0‖

2 = Op(t
2
nu

2
na

2
n,∞),

where the last step holds by Assumptions 1 and 3. Therefore, Assumption

3 ensures

Û 2
2,j(V−m) ≤ c (EZ,W|S=1[{µ̂m(Z)− µ∗(Z)}2ψ2

[j](W,θ0)] +

EZ,W|S=1[{µ̂m(Z)− µ∗(Z)}2supθ∈Bn{ψ[j](W,θ)−ψ[j](W,θ0)}2])

= Op(a
2
n,2 + t2nu

2
na

2
n,∞). (S32)

In addition, we also have

Û2,j(V−m) ≥ Ũ2,j(V−m) := E1/2
Z,W|S=1[{µ̂m(Z)− µ∗(Z)}2ψ2

[j](W,θ0)]. (S33)



In the following, we will use the symbols N[ ](·, ·, ·) and J[ ](·, ·, ·) to represent

the bracketing number and the bracketing integral defined in Van der Vaart

and Wellner (1996). Since for any θ1,θ2 ∈ Bn,

|ψ[j](W,θ1)−ψ[j](W,θ2)| ≤ supθ∈Bn‖ψ
′
[j](W,θ)‖‖θ1 − θ2‖ and

E[{µ̂m(Z)− µ∗(Z)}2supθ∈Bn‖ψ
′
[j](W,θ)‖2] ≤ c Û 2

∞(V−m)

due to Assumption 1, we know from Example 19.7 of Van der Vaart (2000)

that

N[ ]{ε,Fj,m | V−m, L2(PZ|S=1)} ≤ max{1, c {tnunÛ∞(V−m)/ε}p} ≤ 1 + c {tnunÛ∞(V−m)/ε}p

≤ {1 + c tnunÛ∞(V−m)/ε}p

for any ε. It follows that

J[ ]{1,Fj,m | V−m, L2(PZ|S=1)} ≡
∫ 1

0
[1 + logN[ ]{ε Û2,j(V−m),Fj,m | V−m, L2(PZ|S=1)}]1/2dε

≤
∫ 1

0
1 + logN[ ]{ε Û2,j(V−m),Fj,m | V−m, L2(PZ|S=1)}dε

≤ c [1 +
∫ 1

0
log{ε+ tnunÛ∞(V−m)/Û2,j(V−m)}dε−

∫ 1

0
log ε dε]

≤ c [1 + log{1 + tnunÛ∞(V−m)/Û2,j(V−m)}]

≤ c [1 + log{1 + tnunÛ∞(V−m)/Ũ2,j(V−m)}]

= Op(log(2 + tnunan,∞/an,2)), (S34)

where the fifth step uses (S33) and the last step holds by Assumption 3.

The above derivations are conditional on V−m and treats the function µ̂m(·)



as nonrandom. Because {{µ̂m(Zi) − µ∗(Zi)}ψ(Wi,θ) : i = n + 1, . . . , N1}

are conditionally independent given V−m, Theorem 2.14.2 of Van der Vaart

and Wellner (1996) ensures

EZ,W|S=1(supθ∈Bn|GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W,θ)]|)

≤ c J[ ]{1,Fj,m | V−m, L2(PZ|S=1)}Û2,j(V−m) = Op((an,2 + tnunan,∞) log(2 + tnunan,∞/an,2)),

where the last step holds by (S32) and (S34). Then, applying Markov’s

inequality, we have for any positive sequence sn →∞,

P(supθ∈Bn|GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W,θ)]| ≥

sn(an,2 + tnunan,∞) log(2 + tnunan,∞/an,2) | V−m) = op(1).

which, combined with Lemma 6.1 of Chernozhukov et al. (2018), implies

supθ∈Bn|GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W,θ)]| = Op((an,2 + tnunan,∞) log(2 + tnunan,∞/an,2)).

Considering the fact that P(θ̂IN ∈ Bn) → 1 from Assumption 2, it follows

that

GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)] = Op((an,2 + tnunan,∞) log(2 + tnunan,∞/an,2)).

Because tn can diverge arbitrarily slowly, we know

GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)] = Op((an,2 + unan,∞) log(2 + unan,∞/an,2)). (S35)



Noticing that {{µ̂m(Zi)− µ∗(Zi)}ψ(Wi,θ) : i ∈ Im} are also conditionally

independent given V−m according to (7), we can show for j = 1, . . . , p,

GVm [{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)] = Op((an,2 + unan,∞) log(2 + unan,∞/an,2)), (S36)

similarly to (S35). Combining (S35)–(S36) yields

|T̂2[j]| ≤
∑M

m=1|{(N1 − n)−1/2GN − (n/M)−1/2GVm}[{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)]|

≤
∑M

m=1(|(N1 − n)−1/2GN [{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)]|+

|n−1/2GVm [{µ̂m(Z)− µ∗(Z)}ψ[j](W, θ̂IN)]|)

= Op((an,2 + unan,∞) log(2 + unan,∞/an,2)/n
1/2) + op(n

−1/2).

Hence, due to the fact that Ω̂ = Ω + D̂ = Op(1 + vn) = Op(1) from

Assumption 2, we have

Ω̂T̂2 = Op((an,2 + unan,∞) log(2 + unan,∞/an,2)/n
1/2) + op(n

−1/2). (S37)

We now deal with Ω̂T̂3. Since µ∗(·) is bounded according to Assump-

tion 3, we can show {µ∗(Z)ψ[j](W,θ) : θ ∈ B0} is PZ|S=1-Donsker by the

arguments around (S25). Also, similarly to (S26), we can obtain by using

Taylor’s expansion that for j = 1, . . . , p,

EZ,W|S=1([µ
∗(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}]2) = op(1).

Then, Lemma 19.24 in Van der Vaart (2000) gives

GV∪N [µ∗(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}] = op(1) and



GV [µ∗(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}] = op(1).

It follows that

T̂3 = α(EV∪N − EV){µ∗(Z)ψ(W,θ0)}+

α(N
−1/2
1 GV∪N − n−1/2GV)[µ∗(Z){ψ(W, θ̂IN)−ψ(W,θ0)}]

= α(EV∪N − EV){µ∗(Z)ψ(W,θ0)}+ op(n
−1/2) (S38)

= α(N
−1/2
1 GV∪N − n−1/2GV){µ∗(Z)ψ(W,θ0)}+ op(n

−1/2) = Op(n
−1/2),

where the last step uses Chebyshev’s inequality under the conditions that

µ∗(·) is bounded from Assumption 3. It follows that D̂T̂3 = Op(vn/n
1/2) =

op(n
−1/2) due to Assumption 2. This coupled with (S38) implies

Ω̂T̂3 = ΩT̂3 + D̂T̂3 = αΩ(EV∪N − EV){µ∗(Z)ψ(W,θ0)}+ op(n
−1/2).

(S39)

Finally, putting (S24), (S31), (S37) and (S39) together yields the ex-

pansion (10), which can be rewritten as

n1/2(θ̂ − θ0) = ΩGn + op(1) (S40)

under the condition rn = op(n
−1/2), where

Gn := n1/2(αEV [{D − (1− δn)µ∗(Z)}ψ(W,θ0)] + αEN{(1− δn)µ∗(Z)ψ(W,θ0)}+

(1− α)EC{ψ(W,θ0)}).



Then, we have cov(Gn) ≡ An(µ∗) and

E(Gn/n
1/2) = αE[{D − (1− δn)µ∗(Z)}ψ(W,θ0) | S = 1] +

αE{(1− δn)µ∗(Z)ψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0}

= αE{Dψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0} = 0.

Further, Assumption 3, the condition that E{‖ψ(W,θ0)‖2(1+c)} < ∞ for

some c > 0, and the fact that ‖Ω‖ <∞ together ensure

nE[‖Ω{D − (1− δn)µ∗(Z)}ψ(W,θ0)‖2(1+c) | S = 1]/n1+c = o(1),

(N1 − n)E[‖Ω{(1− δn)µ∗(Z)}ψ(W,θ0)‖2(1+c) | S = 1]/{(N1 − n)/n1/2}2(1+c) = o(1),

N0 E{‖Ωψ(W,θ0)‖2(1+c) | S = 0}/(N0/n
1/2)2(1+c) = o(1),

which, combined with the fact that

λmin{cov(ΩGn)} = λmin{ΩAn(µ∗)Ω} ≥ λmin{An(µ∗)}λ2min(Ω) ≥ c,

verify the Lyapunov condition. Hence, Lyapunov’s central limit theorem

gives

{ΩAn(µ∗)Ω}−1/2Gn
d−→ N(0, I).

This, coupled with (S40), concludes (13).

Proof of Proposition 1: Denote Dj := {Dψ′[j](W,θ) : θ ∈ B0}. Using



Taylor’s expansion, we have for any θ1,θ2 ∈ B0,

‖D{ψ′[j](W,θ1)−ψ′[j](W,θ2)}‖ ≤ supθ∈B0‖ψ
′′
[j](W,θ)‖ ‖θ1 − θ2‖

with E{supθ∈B0‖ψ
′′
[j](W,θ)‖ | S = 1} < ∞ as assumed. Therefore, Exam-

ple 19.7 of Van der Vaart (2000) indicates N[ ]{ε,Dj, L1(PD,W|S=1)} < ∞

for any ε > 0. Then, Theorem 19.4 of Van der Vaart (2000) implies Dj is

PD,W|S=1-Glivenko-Cantelli, i.e.,

supθ∈B0‖EV{Dψ
′
[j](W,θ)} − E{Dψ′[j](W,θ) | S = 1}‖ = op(1),

which, combined with the fact that P(θ̂IN ∈ B0)→ 1, ensures

‖EV{Dψ′[j](W, θ̂IN)} − ED,W|S=1{Dψ′[j](W, θ̂IN)}‖ = op(1). (S41)

Similarly, we can show

‖EC{ψ′[j](W, θ̂IN)} − EW|S=0{ψ′[j](W, θ̂IN)}‖ = op(1). (S42)

In addition, applying Taylor’s expansion again, we can obtain from the

assumption that

‖ED,W|S=1[D{ψ′[j](W, θ̂IN)−ψ′[j](W,θ0)}]‖

≤ supθ∈B0‖E{ψ
′′
[j](W,θ)}‖ ‖θ̂IN − θ0‖ = op(1) and (S43)

‖EW|S=0{ψ′[j](W, θ̂IN)−ψ′[j](W,θ0)}‖ = op(1). (S44)



Putting (S41)–(S44) together yields Ω̂−1 −Ω−1 = op(1). Then, Lemma S1

implies

Ω̂−Ω = op(1).

Proof of Theorem 2: Write

θ̂ − θ0 ≡ T̂1 + Ω̂T̃2, where (S45)

T̂1 ≡ θ̂IN − θ0 + Ω̂[αEV{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}],

T̃2 := α(1− δn)(EN − EV){µ̂(Z)ψ(W, θ̂IN)}

≡ α(1− δn)M−1∑M
m=1(EN − EVm){µ̂m(Z)ψ(W, θ̂IN)}.

Recalling (S31), we have

T̂1 = Ω[αEV{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}] +Op(unvn + u2n) + op(n
−1/2)

= Ω[αGV{Dψ(W,θ0)}+ (1− α)GC{ψ(W,θ0)}] +Op(unvn + u2n) + op(n
−1/2)

= Op(n
−1/2 + unvn + u2n), (S46)

where the last step holds by the central limit theorem. Regarding T̃2,

Taylor’s expansion guarantees for any θ1,θ2 ∈ B0,

|µ̂m(Z){ψ[j](W,θ1)−ψ[j](W,θ2)}| ≤ supθ∈B0‖ψ
′
[j](W,θ)‖‖θ1 − θ2‖

with E{supθ∈B0‖ψ
′
[j](W,θ)‖2 | S = 1} < ∞ (j = 1, . . . , p), because of As-

sumption 1 and the boundedness of µ̂m(·). Hence, it follows from Example



19.7 of Van der Vaart (2000) that {µ̂m(Z)ψ[j](W,θ) : θ ∈ B0} is (condi-

tionally) PW|S=1-Donsker given V−m. Further, applying Taylor’s expansion

yields for j = 1, . . . , p that

EW|S=1[µ̂
2
m(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}2]

≤ ‖θ̂IN − θ0‖2E{supθ∈B0‖ψ
′
[j](W,θ)‖2 | S = 1} = Op(u

2
n) = op(1).

Here we use Assumptions 1 and 2, as well as the boundedness of µ̂m(·). The

above derivations have verified the conditions of Lemma 19.24 in Van der

Vaart (2000), which ensures

P(GVm [µ̂m(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}] ≥ c | V−m) = op(1)

for any constant c > 0. Due to Lemma 6.1 of Chernozhukov et al. (2018),

it follows that

GVm [µ̂m(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}] = op(1). (S47)

Also, we know from Chebyshev’s inequality that for any positive sequence

sn →∞,

P[GVm{µ̂m(Z)ψ[j](W,θ0)} > sn | V−m] = op(1)

because µ̂m(·) is bounded. Hence, Lemma 6.1 of Chernozhukov et al. (2018)

indicates

GVm{µ̂m(Z)ψ[j](W,θ0)} = Op(1). (S48)



Putting (S47) and (S48) together yields

GVm{µ̂m(Z)ψ[j](W, θ̂IN)}

= GVm{µ̂m(Z)ψ[j](W,θ0)}+ GVm [µ̂m(Z){ψ[j](W, θ̂IN)−ψ[j](W,θ0)}] = Op(1). (S49)

Similarly, we can show

GN{µ̂m(Z)ψ[j](W, θ̂IN)} = Op(1). (S50)

Therefore, we have

|T̃2[j]| ≤ |
∑M

m=1{(N1 − n)−1/2GN − (n/M)−1/2GVm}{µ̂m(Z)ψ[j](W, θ̂IN)}|

≤
∑M

m=1|(N1 − n)−1/2GN{µ̂m(Z)ψ[j](W, θ̂IN)}|+∑M
m=1|(n/M)−1/2GVm{µ̂m(Z)ψ[j](W, θ̂IN)}| = Op(n

−1/2).

Considering the fact that Ω̂ = Ω + D̂ = Op(1 + vn) = Op(1) from Assump-

tion 2, we have

Ω̂T̃2 = Op(n
−1/2). (S51)

Finally, combining (S45), (S46) and (S51) yields θ̂−θ0 = Op(n
−1/2+unvn+

u2n).

Now, we turn to proving the properties of θ̃. Write

θ̃ − θ0 ≡ R̂1 + Ω̂R̂2, where (S52)

R̂1 := θ̂IN − θ0 + Ω̂[αEṼ2{Dψ(W, θ̂IN)}+ (1− α)EC{ψ(W, θ̂IN)}],



R̂2 := α(EṼ2∪N − EṼ2){µ̃1(Z)ψ(W, θ̂IN)}.

Similarly to (S31), we can show

R̂1 = Ω[αEṼ2{Dψ(W,θ0)}+ (1− α)EC{ψ(W,θ0)}] +

Op(unvn + u2n) + op(n
−1/2
2 ). (S53)

Further, we know from (S47) that GṼ2 [µ̃1(Z){ψ(W, θ̂IN) − ψ(W,θ0)}] =

op(1). Similarly, we have GṼ2∪N [µ̃1(Z){ψ(W, θ̂IN) − ψ(W,θ0)}] = op(1).

It follows that

R̂2 = α(EṼ2∪N − EṼ2){µ̃1(Z)ψ(W,θ0)}+

α{(N1 − n1)
−1/2GṼ2∪N − n

−1/2
2 GṼ2}[µ̃1(Z){ψ(W, θ̂IN)−ψ(W,θ0)}]

= α(EṼ2∪N − EṼ2){µ̃1(Z)ψ(W,θ0)}+ op(n
−1/2
2 ). (S54)

Moreover, we know from (S49) and (S50) that

R̂2 = α{(N1 − n1)
−1/2GṼ2∪N − n

−1/2
2 GṼ2}{µ̃1(Z)ψ(W, θ̂IN)} = Op(n

−1/2
2 ),

which implies D̂R̂2 = Op(vn/n
1/2
2 ) = op(n

−1/2
2 ) due to Assumption 2. This

combined with (S54) gives

Ω̂R̂2 = ΩR̂2 + D̂R̂2 = αΩ(EṼ2∪N − EṼ2){µ̃1(Z)ψ(W,θ0)}+ op(n
−1/2
2 ).

(S55)



Putting (S52), (S53) and (S55) together yields θ̃ − θ0 =

Ω[αn−12

∑n
i=n1+1{Di − µ̃1(Zi)}ψ(Wi,θ0) + α(N1 − n1)

−1∑N1

i=n1+1µ̃1(Zi)ψ(Wi,θ0)+

(1− α)N−10

∑N
i=N1+1ψ(Wi,θ0)] +Op(unvn + u2n) + op(n

−1/2
2 ).

which can be rewritten as

n
1/2
2 (θ̃ − θ0) = ΩĤn + op(1) (S56)

under the condition unvn + u2n = op(n
−1/2
2 ), where

Ĥn := n
1/2
2 (αEṼ2 [{D − (1− δ̃n)µ̃1(Z)}ψ(W,θ0)] + αEN{(1− δ̃n)µ̃1(Z)ψ(W,θ0)}+

(1− α)EC{ψ(W,θ0)}).

Then, we have cov(Ĥn | Ṽ1) ≡ Ãn and

E(Ĥn/n
1/2
2 | Ṽ1) = αE[{D − (1− δ̃n)µ̃1(Z)}ψ(W,θ0) | Ṽ1, S = 1] +

αE{(1− δ̃n)µ̃1(Z)ψ(W,θ0) | Ṽ1, S = 1}+

(1− α)E{ψ(W,θ0) | S = 0} = 0.

Further, the boundedness of µ̃1(·), the condition that E{‖ψ(W,θ0)‖2(1+c)} <

∞ for some c > 0, and the fact that ‖Ω‖ <∞ together ensure

n2 E[‖Ω{D − (1− δ̃n)µ̃1(Z)}ψ(W,θ0)‖2(1+c) | S = 1]/n1+c
2 = o(1),

(N1 − n)E[‖Ω{(1− δ̃n)µ̃1(Z)}ψ(W,θ0)‖2(1+c) | S = 1]/{(N1 − n)/n
1/2
2 }2(1+c) = o(1),



N0 E{‖Ωψ(W,θ0)‖2(1+c) | S = 0}/(N0/n
1/2
2 )2(1+c) = o(1),

which, combined with the fact that

λ−1min{cov(ΩĤn | Ṽ1)} = λ−1min(ΩÃnΩ) ≤ λ−1min(Ãn)λ−2min(Ω) = Op(1),

indicate that with probability tending to one, the Lyapunov condition holds

and therefore

(ΩÃnΩ)−1/2Ĥn | Ṽ1
d−→ N(0, I). (S57)

It follows that for any t ∈ Rp,

E[exp{itT(ΩÃnΩ)−1/2Ĥn} | Ṽ1]− exp(−‖t‖2/2) = op(1)

with i the imaginary unit. Then, the dominant convergence theorem ensures

E[exp{itT(ΩÃnΩ)−1/2Ĥn}]→ exp(−‖t‖2/2) for any t ∈ Rp,

which means (ΩÃnΩ)−1/2Ĥn
d−→ N(0, I). This, coupled with (S56), con-

cludes

n
1/2
2 (ΩÃnΩ)−1/2(θ̃ − θ0)

d−→ N(0, I) as n2 →∞. (S58)

Proof of Corollary S1: Since E{‖ψ(W,θ0)‖2} < ∞, µ∗(·) is bounded

and n = o(N), we have by Chebyshev’s inequality that

(EV∪N − EZ,W|S=1){µ∗(Z)ψ(W,θ0)} = Op(N
−1/2
1 ) = op(n

−1/2) and



(EC − EW|S=0){ψ(Wi,θ0)} = Op(N
−1/2
0 ) = op(n

−1/2),

which, combined with (10), imply (S5). Further, under the condition that

limn→∞ δn = 0, we know A−10 An(µ∗)→ I, which indicates

(ΩA0Ω)−1/2{ΩAn(µ∗)Ω}1/2 = Ω−1/2A
−1/2
0 An(µ∗)1/2Ω1/2 → I. (S59)

Based on (13) and (S59), applying Slutsky’s theorem gives (S6).

Proofs of Equations (S8), (S11), (S14) and (S15) in Section S3: We

first show (S8). Since

E{‖ψ(W,θ0)‖2} <∞

and µ(·) is bounded, Chebyshev’s inequality gives

n−1
∑n

i=1α{Di − µ(Zi)}ψ(Wi,θ0) = Op(n
−1/2),

which, combined with the fact that limn→∞δn = δ > 0, implies

(δ−1 − δ−1n )N−1
∑N

i=1α τ
−1RiSi{Di − µ(Zi)}ψ(Wi,θ0)

= (δn/δ − 1)N−1
∑N

i=1α(δnτ)−1RiSi{Di − µ(Zi)}ψ(Wi,θ0)

= (δn/δ − 1)n−1
∑n

i=1α{Di − µ(Zi)}ψ(Wi,θ0) = op(n
−1/2). (S60)

Because µ∗(·) = µ(·) and rn = op(n
−1/2), it follows from (10) and (S60)

that

θ̂ − θ0 = N−1
∑N

i=1[α(δnτ)−1RiSi{Di − µ(Zi)}+ α τ−1Siµ(Zi)+



(1− α)(1− τ)−1(1− Si)]ψ(Wi,θ0) + op(n
−1/2)

= N−1
∑N

i=1[α(δτ)−1RiSi{Di − µ(Zi)}+ α τ−1Siµ(Zi)+

(1− α)(1− τ)−1(1− Si)]ψ(Wi,θ0) + op(n
−1/2),

(S61)

In addition, we have

N−1
∑N

i=1[α τ
−1Si E{µ(Zi)ψ(Wi,θ0) | S = 1}+

(1− α)(1− τ)−1(1− Si)E{ψ(Wi,θ0) | S = 0})]

= αE{µ(Zi)ψ(Wi,θ0) | S = 1}+ (1− α)E{µ(Zi)ψ(Wi,θ0) | S = 0} = 0,

(S62)

where the first step uses the fact that N−1
∑N

i=1Si ≡ τ from the case-control

sampling, and the last step holds by the definition (1) of θ0. Combining

(S61) and (S62) yields (S8).

Next, we prove (S11). According to Theorem 4.5 of Tsiatis (2007),

the orthogonal complement of the tangent space Λ corresponding to the

semiparametric model M is given by Λ⊥ := ΛS̃ ⊕ ΛR|S̃,Z with

ΛS̃ := {g(S̃) ∈ Rp : E{g(S̃)} = 0, cov{g(S̃)} <∞} and

ΛR|S̃,Z := {g(R, S̃,Z) ∈ Rp : E{g(R, S̃,Z) | S̃,Z} = 0, cov{g(R, S̃,Z)} <∞}.

Denote W̃ := (S̃, Y,XT)T. Since µ(Z) ≡ E(D | Z, S = 1) = E(D | Z, S̃ =



1) and R ⊥⊥ D | S̃ from (S9), we have

E[RS̃{D − µ(Z)}ψ(W̃,θ0) | R, S̃,Z] = 0.

Therefore, it follows from Theorem 4.5 of Tsiatis (2007) that the projections

of the influence function ϕ(V) onto ΛS̃ and ΛR|S̃,Z are

Π{ϕ(V) | ΛS̃} = E{ϕ(V) | S̃} − E{ϕ(V)} = 0 and

Π{ϕ(V) | ΛR|S̃,Z} = E{ϕ(V) | R, S̃,Z} − E{ϕ(V) | S̃,Z} = 0.

Hence, Theorem 4.3 of Tsiatis (2007) implies

ϕEFF(V) = Π{ϕ(V) | Λ} = ϕ(V)− Π{ϕ(V) | Λ⊥}

= ϕ(V)− Π{ϕ(V) | ΛS̃} − Π{ϕ(V) | ΛR|S̃,Z} = ϕ(V).

Now we turn to (S14). Because µ∗(Z) = µ(Z) ≡ E(D | Z, S = 1), we

have

αE{µ∗(Z)ψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0}

= αE{Dψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0} = 0,

where the last step holds by the definition (1) of θ0. This, combined with

(S5), gives (S14).

Regarding (S15), we know from Theorem 4.5 of Tsiatis (2007) that the

tangent space according to M0 is

Λ0 := {g(D,Z) ∈ Rp : E{g(D,Z) | Z, S = 1} = 0, cov{g(D,Z)} <∞},



and that the projection of the influence function ϕ0(D,Z) onto Λ0 is

Π{ϕ0(D,Z) | Λ0} = ϕ0(D,Z)− E{ϕ0(D,Z) | Z, S = 1}

= ϕ0(D,Z)− α{E(D | Z, S = 1)− µ(Z)}Ωψ{(S = 1, Y,XT)T,θ0}

= ϕ0(D,Z).

Then, it follows from Theorem 4.3 of Tsiatis (2007) that

ϕ
(0)
EFF(D,Z) = Π{ϕ0(D,Z) | Λ0} = ϕ0(D,Z).

Proof of Theorem S1: For θ̂, write

θ̂ − θ0 ≡ T1 + (1− n/N)T̂2, where (S63)

T1 := EL(Y − θ0) and T̂2 := (EU − EL){φ̂(X)} ≡M−1∑M
m=1(EU − ELm){φ̂m(X)}.

Since E(Y 2) = O(1), we know T1 = Op(n
−1/2). Further, considering the

assumption that EX{φ̂m(X)} = Op(1) for m = 1, . . . ,M and the fact that

{φ̂m(Xi) : i = n + 1, . . . , N} are conditionally independent given L−m, we

have from Chebyshev’s inequality that

P[GU{φ̂m(X)} > sn | L−m] = op(1)

for any positive sequence sn → ∞. This, combined with Lemma 6.1 of

Chernozhukov et al. (2018), implies GU{φ̂m(X)} = Op(1). Similarly, we can

show GLm{φ̂m(X)} = Op(1) since {φ̂m(Xi) : i ∈ Im} are also conditionally
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independent given L−m. Therefore, we have

|(1− n/N)T̂2| ≤
∑M

m=1[|(N − n)−1/2GU{φ̂m(X)}|+ |(n/M)−1/2GLm{φ̂m(X)}|]

= Op(n
−1/2).

Putting pieces together yields θ̂ − θ0 = Op(n
−1/2).

For θ̃, we have E(θ̃ − θ0 | L̃1) = 0. Notice also that n
1/2
2 (θ̃ − θ0) =

∑n
i=n1+1[n

−1/2
2 {Yi − φ̃1(Xi)}+ n

1/2
2 (N − n1)

−1φ̃1(Xi)] +
∑N

i=n+1n
1/2
2 (N − n1)

−1φ̃1(Xi). (S64)

Since φ̃1(·) involves L̃1 only, we know

{n−1/22 {Yi − φ̃1(Xi)}+ n
1/2
2 (N − n1)

−1φ̃1(Xi) : i = n1 + 1, . . . , n} ∪

{n1/2
2 (N − n1)

−1φ̃1(Xi) : i = n+ 1, . . . , N}

are conditionally independent given L̃1. Similaryly to (S57), applying the

Lyapunov central limit theorem to (S64) yields n
1/2
2 σ̃

−1/2
n (θ̃ − θ0) | L̃1

d−→

N(0, 1) as n2 → ∞. By the argument used to obtained (S58), we have

n
1/2
2 σ̃

−1/2
n (θ̃ − θ0)

d−→ N(0, 1) as n2 →∞.
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