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The supplementary material is organised as follows. In Section S1, we

prove consistency results for the PQL estimator separately for the condi-

tional and unconditional regimes. Section S2 focuses on the distributional

results, and Section S3 treats the remainder term in the Taylor expansion.

Section S4 contains results for unpartnered fixed effects, for some special

cases. Section S5 provides extra simulation results, such as for the condi-

tional regime and different choices of Ĝ.

In the developments, we prove all results below assuming the working

dispersion parameter ϕ̂ is equal to the true dispersion parameter ϕ̇. Then

for the general result using any Op(1) working ϕ̂, we note that solving

∇Q(θ̂) =

 ϕ̂−1X⊤{y − µ(θ̂)}

ϕ̂−1Z⊤{y − µ(θ̂)} − (Im ⊗ Ĝ−1)b̂

 = 0(m+1)p
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for θ̂ is equivalent to solving

∇Q(θ̂) =

 ϕ̇−1X⊤{y − µ(θ̂)}

ϕ̇−1Z⊤{y − µ(θ̂)} − (Im ⊗ Ĝ−1
s )b̂

 = 0(m+1)p,

where Ĝs = ϕ̇ϕ̂−1Ĝ, whose inverse is still Op(1) and positive definite. This

is equivalent to setting ϕ̂ to ϕ̇ and scaling Ĝ by ϕ̇ϕ̂−1. The general result

then follows since the results proved under ϕ̂ = ϕ̇ hold for any Ĝ that has

an Op(1), positive definite inverse.

S0.1 Bias and Identifiability in the Conditional Regime

By differentiating (2.2), we see that the PQL estimators satisfy
∑m

i=1 ϕ̂
−1X⊤

i {yi−

µi(θ̂)} = 0 and ϕ̂−1Z⊤
i {yi − µi(θ̂)} − G−1b̂i = 0, i = 1, . . . ,m. Sum-

ming both sides of the second equation across all i, since Xi = Zi, it

follows that
∑m

i=1 b̂i = 0p. That is, the PQL estimators of the random

effects must satisfy a sum-to-zero constraint regardless of the underly-

ing true parameter values. Under a conditional regime, this induces an

asymptotic bias as captured by the term 1∗
m ⊗ (m−1

∑m
i=1 ḃi) in Theo-

rem 1, which can be interpreted as shifting the mean of the random ef-

fects into the corresponding fixed effects. We can deal with the bias by

reparametrising the model a priori to satisfy a sum-to-zero constraint.

That is, we can define a reparametrized vector of true values θ̇∗ which
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satisfy 1∗
m ⊗ (m−1

∑m
i=1 ḃ

∗
i ) = 0(m+1)p, and the PQL estimator will then

be asymptotically normally distributed centered around θ̇∗. Furthermore,

Theorem 1 remains practically useful as, for any given sample size, we can

always reparameterise the GLMM to satisfy this identifiability constraint.

The asymptotic bias discussed above is analogous to that seen in a

over-parametrized one-way analysis of variance (ANOVA) model. That is,

in the ANOVA model one can always reparametrise to satisfy a sum-to-zero

constraint, and the corresponding estimator is consistent for this vector of

the reparametrized true values. Note however that when we work uncon-

ditionally (Section 4), reparametrising in this way will lead to a different

model to the original, since the clusters are no longer independent.

S1 Proofs for Consistency

To establish our large sample distributional results, we first require the

following consistency result.

Lemma 1. Suppose Conditions (C1)-(C5) hold and mn−2
L → 0. Then, as

m,nL → ∞ and unconditional on the random effects ḃ, ∥θ̂ − θ̇∥∞ = op(1).

These results are required to control the remainder term in the Taylor

expansions we use to derive the distributional results in Section S2. To

prove the result, we wish to show that for any given ϵ > 0, there exists a
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large enough constant C > 0 such that, for large m,nL, we have

P

{
sup

∥u∥∞=C

Q(θ̇ + δ−1
m,nL

u) < Q(θ̇)

}
≥ 1− ϵ,

for some positive, unbounded, monotonically increasing sequence δm,nL
.

The above result implies that with probability tending to one, there ex-

ists a local maximum θ̂ in the ball {θ̇ + δ−1
m,nL

u : ∥u∥∞ ≤ C} so that

∥δm,nL
(θ̂ − θ̇)∥∞ = Op(1), and thus ∥θ̂ − θ̇∥∞ = op(1).

Consider the difference Q(θ̇ + u) − Q(θ̇). By a Taylor expansion, we

obtain

Q(θ̇ + u)−Q(θ̇) = u⊤{∇Q(θ̇)} − 0.5u⊤{−∇2Q(θ̄)}u. (S1.1)

where θ̄ lies on the line segment joining θ̇ and θ̇ + u. If we can prove that

(S1.1) is negative as m,nL → ∞ for any choice of C, then there must exist

some δm,nL
such that Q(θ̇+ δ−1

m,nL
u)−Q(θ̇) is negative for large enough C,

and the required result follows. We have

∇Q(θ̇) =

 ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

 =

ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)

+

 0p

−(Im ⊗ Ĝ−1)ḃ


≜ λ1 + λ2,
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and

−∇2Q(θ̄) =



X⊤W̄X X⊤
1 W̄1X1 · · · X⊤

mW̄mXm

X⊤
1 W̄1X1 X⊤

1 W̄1X1 + Ĝ−1 0

...
...

. . .
...

X⊤
mW̄mXm 0 X⊤

mW̄mXm + Ĝ−1



=



X⊤W̄X X⊤
1 W̄1X1 · · · X⊤

mW̄mXm

X⊤
1 W̄1X1 X⊤

1 W̄1X1 0

...
...

. . .
...

X⊤
mW̄mXm 0 X⊤

mW̄mXm


+ blockdiag(0p, Im ⊗ Ĝ−1)

≜ Γ1(θ̄) + Γ2,

where W̄i = ϕ̇−1diag{a′′(η̄i1), . . . , a′′(η̄ini
)} and W̄ = ϕ̇−1diag{a′′(η̄11), . . . , a′′(η̄mnm)}.

Also, let Γ1(θ̇) +Γ2 denote the analogous decomposition of −∇2Q(θ̇). For

both the conditional and unconditional regimes, we will prove that the sec-

ond term is positive and dominates the first. However, the treatment of

the terms differs between the two cases, and as such the proofs will need to

be dealt with separately. In the following three sections, we will first treat

the Poisson pure random intercept example, followed by the more general

conditional and unconditional regimes.

Before proceeding, we demonstrate an inequality that is used in the
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proofs below. Write u = (u⊤
1 ,u

⊤
2 )

⊤, u2 = (u⊤
21, . . . ,u

⊤
2m)

⊤. First, for any

θ we have

u⊤Γ1(θ)u = u⊤
1 X

⊤WXu1 + 2u⊤
1 X

⊤WZu2 + u⊤
2 Z

⊤WZu⊤
2 ≥ 0.

Next, we have

u⊤Γ1(θ̄)u− c20u
⊤Γ1(θ)u

= u⊤
1 X

⊤(W̄ − c20W )Xu1 + 2u⊤
1 X

⊤(W̄ − c20W )Zu2 + u⊤
2 Z

⊤(W̄ − c20W )Zu⊤
2 .

If we denote W ∗ = W̄ − c20W , then by Condition (C1) W ∗ is a diagonal

matrix with non-negative entries as the entries of c20W are upper bounded

by the smallest component in W̄ . Therefore

u⊤Γ1(θ̄)u− c20u
⊤Γ1(θ)u = u⊤

1 X
⊤W ∗Xu1 + 2u⊤

1 X
⊤W ∗Zu2 + u⊤

2 Z
⊤W ∗Zu⊤

2 ≥ 0,

so that u⊤Γ1(θ̄)u ≥ c20u
⊤Γ1(θ)u. Finally, note that we can choose θ = θ̇

or θ = E(θ̇) without altering the above argument.

S1.1 Poisson pure random intercept example

We begin with the Poisson pure random intercept example, which gives in-

sight and covers a case whereXi ̸= Zi. The following result is unconditional

on the random effects ḃ.
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Lemma 2. Assume Conditions (C1)-(C5) hold, and let mn−2 → 0. Then

for the Poisson pure random intercept model, as m,n → ∞ and uncondi-

tional on the random effects ḃ, it holds that ∥θ̂ − θ̇∥∞ = op(1).

Proof. Let u = u2 = (u21, . . . , u2m)
⊤, θ = b = (b1, . . . , bm)

⊤, Ĝ = σ̂2
b (a

scalar),

−∇2Q(θ̄) = diag(neb̄1 + σ̂−2
b , . . . , neb̄m + σ̂−2

b ) ≡ Γ1(θ̄) + Γ2, and

∇Q(θ̇) =


∑n

j=1(y1j − eḃ1)− σ̂−2
b ḃ1

...∑n
j=1(ymj − eḃm)− σ̂−2

b ḃm

 ≡ λ1 + λ2.

Let M = E{diag(neḃ1 , . . . , neḃm)}. Then M = Var{ϕ̇−1Z⊤(y − µ̇)}. By

Condition (C1), c20u
⊤Mu ≤ u⊤Γ1(θ̄)u. Next, let λ = ˙̂σ2

b σ̂
−2
b . Then

Var(λ2) = ˙̂σ2
b σ̂

−4
b Im and

λ−1u⊤
2 (

˙̂σ2
b σ̂

−4
b Im)u2 = u⊤

2 (σ̂
−2
b Im)u2 = u⊤Γ2u.

Finally, by the laws of iterated expectation and variance we have

E{∇Q(θ̇)∇Q(θ̇)⊤} = Var{∇Q(θ̇)}

= E[Var{∇Q(θ̇)|ḃ}] + Var[E{∇Q(θ̇)|ḃ}]

= E{Var(λ1|ḃ)}+Var(λ2)
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= Var(λ1) + Var(λ2).

Therefore, we have that

u⊤{−∇2Q(θ̄)}u ≥ min(λ−1, c20){u⊤Mu+ u⊤
2 (

˙̂σ2
b σ̂

−4
b Im)u2}

= min(λ−1, c20)E{∇Q(θ̇)∇Q(θ̇)⊤},

where the latter and hence former term grows at the same rate as {u⊤∇Q(θ̇)}2.

Since at least one component of u equals±C, for any given u, u⊤{−∇2Q(θ̄)}u

is at least of order Op(m) in probability and hence always dominates.

Since the choice of which |u2i| = C is arbitrary however, we also

need to make sure that the mth order statistic max
i∈{1,...,m}

[{
∑n

j=1(yij − eḃi)−

σ̂−2
b ḃi}/(neḃi + σ̂−2

b )], which grows with the dimension, is of order op(1). We

know that the leading term in (4.3b) is (Z⊤ẆZ)−1{ϕ̇−1Z⊤(y− µ̇)} when

mn−1 → ∞; for this Poisson random intercept example, up to some smaller

order terms, this simplifies to the ratio {
∑n

j=1(yij−eḃi)−σ̂−2
b ḃi}/(neḃi+σ̂−2

b ).

Intuitively then, proving a result for ∥θ̂ − θ̇∥∞ should involve studying

max
i∈{1,...,m}

[{
∑n

j=1(yij − eḃi)− σ̂−2
b ḃi}/(neḃi + σ̂−2

b )].

Put another way, consider the set of u such that one component of u

equals ±C and zero elsewhere. When C is the ith component of u, this

corresponds to deviating away from θ̇ in the ith direction. In this case, we
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need C{
∑n

j=1(yij−eḃi)−σ̂−2
b ḃi} to be dominated by C2neḃi for any C and all

m,n large enough, i.e., {
∑n

j=1(yij−eḃi)−σ̂−2
b ḃi}/neḃi = op(1). This is indeed

true as this ratio is Op(n
−1/2), since

∑n
j=1(yij − eḃi)− σ̂−2

b ḃi = Op(n
1/2) due

to conditional independence and Chebyshev’s inequality, and eḃi = Op(1).

However, although the ratio is of order Op(n
−1/2), for any given m,n there

is still a positive probability that the ratio (a random variable) is greater

than one in magnitude. On the other hand, for the consistency argument

to hold we need to make sure the ratio is smaller than one in magnitude

for all m directions with probability tending to one, as m,n → ∞. In

particular, it is sufficient for the maximum of m of these ratios to be op(1):

this maximum grows with m, corresponding to the number of directions we

need to bound. Intuitively, this should hold if m does not grow too fast

relative to n.

Now, Downey (1990) proves that the maximum over m realisations of

independently and identically distributed random variables with a finite qth

moment is op(m
1/q). By Condition (C5), the ratio n1/2{

∑n
j=1(yij − eḃi) −

σ̂−2
b ḃi}/(neḃi + σ̂−2

b ) has finite fourth moments for all i and n. Thus, the

maximum of these (normalised) ratios over m clusters is of order op(m
1/4).

As a result, the maximum ratio of interest is op(m
1/4n−1/2). Therefore,

when mn−2 → 0, there exists δm,n such that we can always choose a large
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enough C for δ−1
m,nu

⊤∇Q(θ̇) to be dominated by δ−2
m,nu

⊤{−∇2Q(θ̄)}u, and

hence ∥δm,n(θ̂ − θ̇)∥∞ = Op(1) as required.

To conclude this section, we remark that although mn−2 → 0 is needed

for the consistency and thus distributional result, this is a sufficient con-

dition. Intuitively, in the Poisson pure random effects model there are

no fixed parameters to estimate, and the estimate of the random effects for

each cluster only depends on observations in that cluster. Thus, the relative

rates of m and n should not matter for a distributional result concerning a

finite subset of the random effects.

S1.2 Conditional on the Random Effects

In this section, we prove the consistency result under the conditional regime.

In the conditional regime, we assume without loss of generality that
∑m

i=1 ḃi =

0p, recalling that we can always reparametrise the random effect coefficients

so this holds.

Let M = Γ1(θ̇). Then M = Var(λ1|ḃ) = E(λ1λ
⊤
1 |ḃ) since E(λ1|ḃ) =

0(m+1)p. By Condition (C1), we have c20u
⊤Mu ≤ u⊤Γ1(θ̄)u.

We now consider two cases: the special case when u1 = −u2i for all i,

and when this is not the case. For the former, we have u⊤λ1 = u⊤Mu = 0.
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Then we must examine u⊤λ2 and u⊤Γ2u. In this case, we have u⊤λ2 =∑m
i=1 u

⊤
2iĜ

−1ḃi = −u⊤
1 Ĝ

−1
∑m

i=1 ḃi = 0, and u⊤Γ2u = mu⊤
1 Ĝ

−1u1 > 0

since Ĝ is a positive definite matrix. Thus the difference (S1.1) is negative

for large enough m,nL and any choice of constant C.

Next, consider the case when u1 = −u2i for all i does not hold. Un-

der this setting, as Γ2 is a positive semi-definite matrix, we still have

u⊤{−∇2Q(θ̄)}u ≥ u⊤Γ1(θ̄)u ≥ c20u
⊤Mu, where the last and hence for-

mer terms grow at the same rate as (u⊤λ1)
2. Since at least one component

of u equals ±C, by Conditions (C1)-(C3) we have that u⊤{−∇2Q(θ̄)}u

is at least of order Op(nL), and always dominates since u⊤λ2 = Op(m) at

most.

Since the choice of u is arbitrary, we must take into account the growth

rate of the mth order statistic. That is, for any 1 ≤ k ≤ p, we need

max
i∈{1,...,m}

[(X⊤
i ẆiXi + Ĝ−1)−1{ϕ̇−1X⊤

i (yi − µ̇i) − Ĝ−1ḃi}][k] = op(1), as

per the argument for the Poisson pure random intercept model. Since

the responses yij are from the exponential family and thus the moment

generating function always exists, the maximum is of order op(m
1/rn

−1/2
L )

for any r ∈ N (Downey, 1990), and hence op(1) since mn−1
L → 0 by taking

r = 2, for example. Note that the first p components of ∇Q(θ̇), which are

associated with the fixed effects, do not need to be bounded in this way
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because the dimension is fixed.

S1.3 Unconditional on the Random Effects

In this section, we prove the consistency result under the unconditional

regime. The main differences to the derivation under the conditional regime

arise from the treatment of λ2, and the distribution of y. In the uncon-

ditional regime it holds that
∑m

i=1 ḃi = Op(m
1/2), while in the conditional

regime we impose a sum to zero constraint. Furthermore, in the uncondi-

tional regime we bound u⊤λ2 using its variance, while in the conditional

regime this is not possible because λ2 is not a random variable. Finally, in

the unconditional regime we cannot use the properties of the exponential

family to bound the mth order statistic, instead requiring Condition (C5).

Let M = E{Γ1(θ̇)}. Then M = Var(λ1) = E(λ1λ
⊤
1 ) since E(λ1) =

0(m+1)p. By Condition (C1), c20u
⊤Mu ≤ u⊤Γ1(θ̄)u.

We consider two cases: the special case when u1 = −u2i for all i, and

when this is not the case. In the former, we have u⊤λ1 = u⊤Mu = 0.

Thus we must examine u⊤λ2 and u⊤Γ2u. In this case, we have u⊤λ2 =∑m
i=1 u

⊤
2iĜ

−1ḃi = −u⊤
1 Ĝ

−1
∑m

i=1 ḃi = Op(m
1/2), and u⊤Γ2u = mu⊤

1 Ĝ
−1u1 >

0 since Ĝ is a positive definite matrix. Hence the difference (S1.1) is nega-

tive for large enough m,nL, and any choice of constant C.
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Next, consider the case when u1 = −u2i for all i does not hold. Then we

still have u⊤{−∇2Q(θ̄)}u ≥ c20u
⊤Mu. Letting λ = λmax(Ĝ

−1ĠĜ−1)/λmin(Ĝ
−1),

we have

Var(λ2) = Im ⊗ Ĝ−1ĠĜ−1

and

λ−1u⊤
2 (Im ⊗ Ĝ−1ĠĜ−1)u2 ≤ u⊤

2 (Im ⊗ Ĝ−1)u2 = u⊤Γ2u.

Now, by the laws of iterated expectation and variance,

E{∇Q(θ̇)∇Q(θ̇)⊤} = Var{∇Q(θ̇)}

= E[Var{∇Q(θ̇)|ḃ}] + Var[E{∇Q(θ̇)|ḃ}]

= E{Var(λ1|ḃ)}+Var(λ2)

= Var(λ1) + Var(λ2).

Thus we have that

u⊤{−∇2Q(θ̄)}u ≥ min(λ−1, c20){u⊤Mu+ u⊤
2 (Im ⊗ Ĝ−1ĠĜ−1)u2}

= min(λ−1, c20)u
⊤E{∇Q(θ̇)∇Q(θ̇)⊤}u,

where the latter and hence former term grows at the same rate as {u⊤∇Q(θ̇)}2.
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Since at least one component of u equals ±C, for any given u we have that

u⊤{−∇2Q(θ̄)}u is at least of order Op(nL) and always dominates.

Since the choice of u is arbitrary, we must take into account the growth

rate of the nth order statistic. That is, for any 1 ≤ k ≤ p, we require

max
i∈{1,...,m}

[(X⊤
i ẆiXi + Ĝ−1)−1{ϕ̇−1X⊤

i (yi − µ̇i)− Ĝ−1ḃi}][k] = op(1), as per

the argument for the Poisson pure random intercept model. By Condition

(C5), this term is of order op(m
1/4n

−1/2
L ), and hence the result follows. Note

that the first p components of ∇Q(θ̇), which are associated with the fixed

effects, do not need to be bounded in this way because the dimension is

fixed.

S2 Proofs of Distributional Results

For both the conditional and unconditional regimes, our proof relies on

examining the behaviour of the leading term in the Taylor expansion of the

estimating function. Under Conditions (C1) and (C3), we take the Taylor

expansion of ∇Q(θ̂) around θ̇ and obtain, as m,nL → ∞,

∇Q(θ̂) = 0(m+1)p = ∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +
1

2
R(θ̃), (S2.1)

where θ̃ is a (m + 1)p × (m + 1)p matrix with each row lying on the line

segment between θ̇ and θ̂ and R(θ̃) is the remainder term. Rearranging,
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we have

θ̂ − θ̇ = −{∇2Q(θ̇)}−1∇Q(θ̇)− 1

2
{∇2Q(θ̇)}−1R(θ̃). (S2.2)

We show in Section S3 that the remainder term is of smaller order than the

leading term and thus negligible in the limit, in both the conditional and

unconditional regimes.

From (S2.2), to study the asymptotic behaviour of the PQL estima-

tor we will first apply the blockwise matrix inversion formula to obtain an

expression for −{∇2Q(θ̇)}−1. Using this result, we will then obtain an ex-

pression for −{∇2Q(θ̇)}−1∇Q(θ̇), and subsequently study the asymptotic

behaviour of each constituent term. Note that since ∇Q(θ̇) is a (m+ 1)p-

vector and −{∇2Q(θ̇)}−1 is a (m+1)p×(m+1)p matrix, we cannot simply

take their limits as per standard fixed dimension asymptotics. Instead, we

must evaluate −{∇2Q(θ̇)}−1∇Q(θ̇) as a whole.

We can write

∇Q(θ̇) =

 ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

 =



ϕ̇−1
∑m

i=1

∑ni

j=1 xij(yij − µ̇ij)

ϕ̇−1
∑n1

j=1 x1j(y1j − µ̇1j)− Ĝ−1ḃ1

...

ϕ̇−1
∑nm

j=1 xmj(ymj − µ̇mj)− Ĝ−1ḃm


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≜



S1

S21 + S31

...

S2m + S3m


≜

 S1

S4 + S5

 ≜

S1

S6

 ,

B(θ̇) = −∇2Q(θ̇) =

X⊤ẆX X⊤ẆZ

Z⊤ẆX Z⊤ẆZ + Im ⊗ Ĝ−1

 ≜


B1
p×p

B2
p×mp

B⊤
2

mp×p

B3 +B4
mp×mp

 .

LettingC = B1−B2(B3+B4)
−1B⊤

2 , by the matrix block inversion formula

we have

B−1 =

 C−1 −C−1B2(B3 +B4)
−1

−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1 + (B3 +B4)
−1B⊤

2 C
−1B2(B3 +B4)

−1

 .

(S2.3)

Next, based on the forms of B2 and (B3 +B4), we obtain

B2(B3 +B4)
−1 = [Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1].

Then since Zi = Xi for all i, we can show that

B2(B3 +B4)
−1B⊤

2 =
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi

=
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1 − Ĝ−1)(X⊤

i ẆiXi + Ĝ−1)−1X⊤
i ẆiXi
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=
m∑
i=1

X⊤
i ẆiXi − Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1X⊤
i ẆiXi

= B1 −
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi.

It follows that

C =
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi =
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1Ĝ−1,

(S2.4)

where the second equality arises from the fact that as a covariance matrix,

C must be symmetric. We may also write C as

m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi =
m∑
i=1

{Ip − Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1}Ĝ−1

= Ĝ−1

m∑
i=1

{Ip − (X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1}.

(S2.5)

Note that C is of order Op(m) component-wise in probability in both the

conditional and unconditional regimes. Using the fact that C−1 must also

be symmetric, we obtain

C−1 =

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi

}−1

Ĝ = Ĝ

{
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1

}−1

(S2.6)
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or equivalently

C−1 = C−1⊤ =

[
m∑
i=1

{Ip − (X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1}

]−1

Ĝ

=

{
m−1Ip +m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1C−1

}
Ĝ, (S2.7)

where the last line is derived from (a special case of) the Woodbury iden-

tity, given by (Q−R)−1 = Q−1 +Q−1R(Q−R)−1 for arbitrary matrices

Q and R such that Q and (Q − R) are invertible. The first term in

(S2.7) is the dominating term, being of order O(m−1), while the second

term is Op(m
−1n−1

L ) in both the conditional and unconditional regimes.

We will use all the above forms of C and C−1 in subsequent develop-

ments. Similarly, we can apply the Woodbury identity to (B3 +B4)
−1 and

(X⊤
i ẆiXi+ Ĝ−1)−1 to obtain nL(B3+B4)

−1 = nLB
−1
3 −nLB

−1
3 B4(B3+

B4)
−1 = Op(1) +Op(n

−1
L ) and ni(X

⊤
i ẆiXi + Ĝ−1)−1 = ni(X

⊤
i ẆiXi)

−1 −

ni(X
⊤
i ẆiXi)

−1Ĝ−1(X⊤
i ẆiXi+ Ĝ−1)−1 = Op(1)+Op(n

−1
i ), where the or-

der results hold component-wise. These hold irrespective of whether we are

conditioning on the random effects.

To further simplify expressions, for the rest of this article we will only

use order results when representing quantities associated with these smaller

order terms. Furthermore, as we want the derivations for the remainder of
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this section to be applicable to both the conditional and unconditional

regime, we will not distinguish between O(·) and Op(·) in the following

developments, and simply use Op() to represent both as appropriate. The

terms we use “big-O notation” for will have the same order under both the

conditional and unconditional regime. To simplify expressions, we will also

drop the dependence on θ, unless stated otherwise.

Finally, it is worth emphasising that

[−Ip, Ip, . . . , Ip]

ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)

 = −S1 +
m∑
i=1

S2i = S1 −
m∑
i=1

S2i = 0p,

(S2.8)

due to the Xi = Zi assumption. This is a key identity that is critical to

the proofs throughout this article.

We now use the expressions above to multiply out −{∇2Q(θ̇)}−1∇Q(θ̇)

and obtain expressions for β̂− β̇ and b̂− ḃ. From equation (S2.2), the first

p components of θ̂ − θ̇ are

β̂ − β̇ =

[
C−1 −C−1B2(B3 +B4)

−1

]
∇Q+

1

2
{B−1R(θ̃)}[1:p]

= C−1

[
Ip −[Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1]

]
∇Q

+
1

2
{B−1R(θ̃)}[1:p]
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= C−1

(
S1 −

m∑
i=1

S2i −
m∑
i=1

S3i

)
+C−1Ĝ−1

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S2i

+
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S3i

}
+

1

2
{B−1R(θ̃)}[1:p]

= C−1Ĝ−1

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S2i − Ĝ

m∑
i=1

S3i

+
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S3i

}
+

1

2
{B−1R(θ̃)}[1:p],

where the final equality uses equation (S2.8). Thus, letting V1 =
∑m

i=1(X
⊤
i ẆiXi+

Ĝ−1)−1S2i−Ĝ
∑m

i=1 S3i+
∑m

i=1(X
⊤
i ẆiXi+Ĝ−1)−1S3i and applying equa-

tion (S2.7), we obtain

β̂ − β̇ = m−1V1 +
1

2
{B−1R(θ̃)}[1:p] +Op(n

−1
L )×m−1V1.

Finally, using the Woodbury identity for (X⊤
i ẆiXi+Ĝ−1)−1, we have that∑m

i=1(X
⊤
i ẆiXi + Ĝ−1)−1S2i =

∑m
i=1(X

⊤
i ẆiXi)

−1S2i +
∑m

i=1Op(n
−2
L )S2i.

Letting V2 =
∑m

i=1(X
⊤
i ẆiXi)

−1S2i − Ĝ
∑m

i=1 S3i +
∑m

i=1(X
⊤
i ẆiXi +

Ĝ−1)−1S3i, we obtain

β̂ − β̇ = m−1V2 +
1

2
{B−1R(θ̃)}[1:p] +Op(n

−1
L )×m−1V1 +m−1

m∑
i=1

Op(n
−2
L )S2i.

Next, the last mp components of θ̂ − θ̇ are

b̂− ḃ = [−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1 + (B3 +B4)
−1B⊤

2 C
−1B2(B3 +B4)

−1]∇Q



S2. PROOFS OF DISTRIBUTIONAL RESULTS

+
1

2
{B−1R(θ̃)}[p+1:(m+1)p]

= [−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1B⊤
2 C

−1B2(B3 +B4)
−1]∇Q

+ [0mp×p (B3 +B4)
−1]∇Q+

1

2
{B−1R(θ̃)}[p+1:(m+1)p]

= −(B3 +B4)
−1B⊤

2 [C
−1 −C−1B2(B3 +B4)

−1]∇Q

+ [0mp×p (B3 +B4)
−1]∇Q+

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Notice that we already have an expression for [C−1 − C−1B2(B3 +

B4)
−1]∇Q from the fixed effects above. Namely, it is m−1V1 + Op(n

−1
L ) ×

m−1V1. Thus we have

b̂− ḃ = −(B3 +B4)
−1B⊤

2 (m
−1V1 +Op(n

−1
L )×m−1V1)

+ (B3 +B4)
−1S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Applying the Woodbury identity for (B3 +B4)
−1, we obtain

b̂− ḃ = −1m ⊗ (m−1V1 +Op(n
−1
L )×m−1V1) +Op(n

−1
L )(m−1V1 +Op(n

−1
L )×m−1V1)

+B−1
3 S6 +Op(n

−2
L )S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p]

= −1m ⊗m−1V1 +Op(n
−1
L )×m−1V1 +Op(n

−2
L )×m−1V1

+B−1
3 S4 +B−1

3 S5 +Op(n
−2
L )S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Replacing all the V· and S· terms in the above with their definitions, we
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finally obtain

β̂ − β̇ = m−1

m∑
i=1

(X⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi +

1

2
{B−1R(θ̃)}[1:p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}
+m−1

m∑
i=1

Op(n
−2
L )ϕ̇−1X⊤

i (yi − µ̇i),

(S2.9)

and

b̂− ḃ = −1m ⊗

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}

+B−1
3 {ϕ̇−1Z⊤(y − µ̇)} −B−1

3 {(Im ⊗ Ĝ−1)ḃ}+ 1

2
{B−1R(θ̃)}[p+1:(m+1)p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}

+Op(n
−2
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}
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+Op(n
−2
L ){ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ}. (S2.10)

The expressions for β̂ − β̇ and b̂ − ḃ above underlie our proofs. We use

these same expressions in both the conditional and unconditional regimes,

but the asymptotic behaviours of the terms on the right hand side, and the

way we treat them, will differ greatly between the two cases.

As we will show later, the key leading terms for the fixed effects are

m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) and m−1

∑m
i=1 ḃi. The key leading

terms for the random effects are −1m ⊗m−1
∑m

i=1 ḃi and B−1
3 {ϕ̇−1Z⊤(y −

µ̇)}. When conditioning on the random effects ḃ, we have m−1
∑m

i=1 ḃi =

O(1), while in the unconditional regime the same quantity is of order

Op(m
−1/2) in probability. In both the conditional and unconditional regimes,

we have that m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi− µ̇i) is of order Op(N

−1/2)

component-wise, while the quantityB−1
3 {ϕ̇−1Z⊤(y−µ̇)} is of orderOp(n

−1/2
L )

component-wise.

S2.1 Proof of Theorem 1

The dominating terms on the right hand sides of equations (S2.9) and

(S2.10) are m−1
∑m

i=1 ḃi and 1m ⊗ m−1
∑m

i=1 ḃi for the fixed and random

effects, respectively. Conditional on the random effects ḃi, these dominat-
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ing terms are deterministic and of order O(1). Thus we treat them as bias

terms and move them to the left hand side. Next, by Conditions (C1)-(C2),

B−1
3 is a component-wise O(n−1

L ) block-diagonal matrix, while we also have

B⊤
2 = O(nU), X

⊤
i ẆiX

⊤
i = O(ni), and C−1 = O(m−1) component-wise.

Since E{Z⊤(y−µ̇)|ḃ} = 0mp and Var{Z⊤(y−µ̇)|ḃ} = Z⊤ẆZ, we obtain

ϕ̇−1D−1
r Z⊤(y − µ̇) = Op(1) using Chebyshev’s inequality and the condi-

tional independence.

Multiplying both sides of (S2.9) and (S2.10) by N1/2 and Dr respec-

tively, and applying the order results for the remainder term in Section

S3.1, we obtain

N1/2

(
β̂ − β̇ −m−1

m∑
i=1

ḃi

)
= m−1/2

m∑
i=1

n1/2n
−1/2
i (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i)

+Op(m
1/2n

−1/2
L ),

and

Dr

(
b̂− ḃ+ 1m ⊗m−1

m∑
i=1

ḃi

)
= DrB

−1
3 DrD

−1
r {ϕ̇−1Z⊤(y − µ̇)}+Op(n

−1/2
L ).

Recalling that Xi = Zi, to prove Theorem 1 we will show a Lindeberg



S2. PROOFS OF DISTRIBUTIONAL RESULTS

condition for

A



m−1/2
∑m

i=1 n
1/2n

−1/2
i (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i)

(n−1
1 X⊤

1 Ẇ1X1)
−1{n−1/2

1 ϕ̇−1X⊤
1 (y1 − µ̇1)}

...

(n−1
m X⊤

mẆmXm)
−1{n−1/2

m ϕ̇−1X⊤
m(ym − µ̇m)}


=: S,

and thus apply the Lindeberg-Feller central limit theorem, from which the

result follows from Slutsky’s theorem.

To prove the condition, first define U = [ZB−1
3 (1m ⊗ Ip),ZB−1

3 ], and

Uk as the kth row of U , noting it only has 2p non-zero components. Then

we can write S =
∑N

k=1ADUkϕ̇
−1{yk − µk(θ̇)}

∆
=
∑N

k=1 ξk, where yk is

the kth component in (y11, y12, . . . , y1n1 , y21, . . . , ymnm)
⊤, and similarly for

µk(θ̇).

Conditional on ḃ, the quantities {ξk}Nk=1 are independent q-vectors with

expectation zero and covariance Var(ξk|ḃ) = ADUkWkU
⊤
k DA⊤, whereWk

is the kth diagonal component in Ẇ . Therefore, we have that

N∑
k=1

Var(ξk|ḃ) =
N∑
k=1

ADUkWkU
⊤
k DA⊤
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= A



1
m

∑m
i=1

n
ni

(
X⊤

i ẆiXi

ni

)−1
1√
m

√
n
n1

(
X⊤

1 Ẇ1X1

n1

)−1

· · · 1√
m

√
n
nm

(
X⊤

mẆmXm

nm

)−1

1√
m

√
n
n1

(
X⊤

1 Ẇ1X1

n1

)−1 (
X⊤

1 Ẇ1X1

n1

)−1

0 0

... 0
. . . 0

1√
m

√
n
nm

(
X⊤

mẆmXm

nm

)−1

0 0
(

X⊤
mẆmXm

nm

)−1


A⊤.

Hence using the finite selection property ofA, and the fact thatm−1/2n1/2n
−1/2
i

(
n−1
i X⊤

i ẆiXi

)−1

=

o(1) component-wise, we obtain

lim
m,nL→∞

N∑
k=1

Cov(ξk|ḃ)

= lim
m,nL→∞

A bdiag

{
1

m

m∑
i=1

n

ni

(
X⊤

i ẆiXi

ni

)−1

,

(
X⊤

1 Ẇ1X1

n1

)−1

, . . . ,

(
X⊤

mẆmXm

nm

)−1}
A⊤

= Ω.

Next, by the Cauchy-Schwarz inequality, we have

E{∥ξk∥2I(∥ξk∥ > ϵ)|ḃ} ≤ E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2.

Finally, we make a note about the form of Cov[DUk{yk−µk(θ̇)}]. Without

loss of generality, suppose k = 1. Then

Cov[DU1{y1 − µ1(θ̇)}] =
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n(mn2

1)
−1H1x11W1x

⊤
11H

⊤
1 n−1

1 m−1/2(nn−1
1 )1/2H1x11W1x

⊤
11H

⊤
1 0

n−1
1 m−1/2(nn−1

1 )1/2H1x11W1x
⊤
11H

⊤
1 n−1

1 H1x11W1x
⊤
11H

⊤
1 0

0 0 0

 .

(S2.11)

Again without loss of generality, consider the case A = [I2p,0(p+p)×(m−1)p].

Then by equation (S2.11) and Chebyshev’s inequality, when k ∈ {1, 2, . . . , n1}

we have that P (∥ξk∥ > ϵ|ḃ) ≤ tr{Cov(ξk|ḃ)}/ϵ2 = O(n−1
1 ). Thus, given

ḃ, we obtain ∥ξk∥ = Op(n
−1/2
1 ) and E(∥ξk∥4|ḃ) = O(n−2

1 ) by Conditions

(C1)-(C3) and the properties of the exponential family. However when

k > n1, by equation (S2.11) and Chebyshev’s inequality, we have that

P (∥ξk∥ > ϵ|ḃ) ≤ tr{Cov(ξk|ḃ)}/ϵ2 = O(N−1) since n(mn2
1)

−1 = O(N−1).

Thus given ḃ, it holds that ∥ξk∥ = Op(N
−1/2) and E(∥ξk∥4|ḃ) = O(N−2).

Therefore

N∑
k=1

E{∥ξk∥2I(∥ξk∥ > ϵ)|ḃ} ≤
N∑
k=1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

=

n1∑
k=1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

+
N∑

k=n1+1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

≤ n1 max
1≤k≤n1

{E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2}
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+ (N − n1) sup
k>n1

{E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2}

= n1 ×O(n
−3/2
1 ) + (N − n1)×O(N−3/2)

= O(n
−1/2
1 ) +O(N−1/2)

= o(1).

The required result follows by Conditions (C1)-(C2) and the Lindeberg-

Feller Central Limit Theorem. Furthermore, the general result holds straight-

forwardly by replacing n1 with O(nL) in the above argument, noting that

any row of A can only select a fixed number of clusters.

S2.2 Proof of Equation (4)

For the Poisson pure random intercept model, we have B = diag(neḃ1 +

σ̂−2
b , . . . , neḃm + σ̂−2

b ) and R(θ̃) = {neb̃1(b̂1 − ḃ1)
2, . . . , neb̃m(b̂m − ḃm)

2}⊤.

Next, suppose that A picks out the first random intercept, i.e., A =

[1,0⊤
m−1]. Then we have

n1/2(b̂1 − ḃ1) = n1/2AB−1∇Q(θ̇) +
1

2
n1/2AB−1R(θ̃)

= n−1/2

{(
n∑

j=1

y1j − eḃ1

)
− ḃ1/σ̂

2
b

}/{
eḃ1 + 1/(σ̂2

bn)
}

− 1

2

{
n1/2eb̃1(b̂1 − ḃ1)

2
}/{

eḃ1 + 1/(σ̂2
bn)
}



S2. PROOFS OF DISTRIBUTIONAL RESULTS

=

[
n−1/2

{(
n∑

j=1

y1j − eḃ1

)
− ḃ1/σ̂

2
b

}/{
eḃ1 + 1/(σ̂2

bn)
}]/

[
1 +

{
1

2
eb̃1(b̂1 − ḃ1)

}/{
eḃ1 + 1/(σ̂2

bn)
}]

= n−1/2

n∑
j=1

(y1je
−ḃ1 − 1) + op(1),

where b̃1 lies between b̂1 and ḃ1, and for the last line we have used the fact

that b̂1 − ḃ1 = op(1).

Now, {y1je−ḃ1 −1}mj=1 is an exchangeable collection of uncorrelated ran-

dom variables with mean zero and finite non-zero variance. Furthermore,

we have for k ̸= l

Cov{(y1ke−ḃ1 − 1)2, (y1le
−ḃ1 − 1)2} = E[Cov{(y1ke−ḃ1 − 1)2, (y1le

−ḃ1 − 1)2|ḃ1}]

+ Cov[E{(y1ke−ḃ1 − 1)2|ḃ1}, E{(y1le−ḃ1 − 1)2|ḃ1}]

= 0 + Cov(e−ḃ1 , e−ḃ1)

= eσ̇
2
b (eσ̇

2
b − 1) ̸= 0.

Thus by the Central Limit Theorem for exchangeable random variables

(Blum et al., 1958), it holds that n−1/2
∑n

j=1(y1je
−ḃ1−1)

D

̸→ N(0, eσ̇
2
b ). Since

we know Var{n−1/2
∑n

j=1(y1je
−ḃ1−1)} = eσ̇

2
b/2 and also that n−1/2

∑n
j=1(y1je

−ḃ1−

1) = Op(1) by Chebyshev’s inequality, there is no other normalization pos-

sible for an asymptotic normality result to hold.
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Finally, we also have

n1/2(b̂1 − ḃ1) = n−1/2

n∑
j=1

(y1je
−ḃ1 − 1) +Op(n

−1/2)

=⇒ b̂1 = ḃ1 + n−1

n∑
j=1

(y1je
−ḃ1 − 1) +Op(n

−1)

= ḃ1 + op(1), by the Weak Law of Large Numbers.

S2.3 Proof of Theorem 2

We begin by developing two key equations, (S2.12) and (S2.13), that will be

used throughout the unconditional regime. These are derived from equa-

tions (S2.9) and (S2.10) and are used in the proofs of Theorems 2-5 as

well as Corollary 1. Under Conditions (C1)-(C2), the following order re-

sults are used: B−1
3 is a component-wise Op(n

−1
L ) block-diagonal matrix,

B2 = Op(nU) component-wise, X⊤
i ẆiX

⊤
i = Op(ni) component-wise, and

C−1 = Op(m
−1) component-wise. Also, by the conditional independence,

we have

E{Z⊤(y − µ̇)} = E[E{Z⊤(y − µ̇)|ḃ}] = 0mp,

Var{Z⊤(y − µ̇)} = E[Var{Z⊤(y − µ̇)|ḃ}] + Var[E{Z⊤(y − µ̇)|ḃ}] = E(Z⊤ẆZ),
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so that ϕ̇−1D−1
r Z⊤(y−µ̇) = Op(1) using Chebyshev’s inequality. Therefore

we have the key equations

β̂ − β̇ = m−1

m∑
i=1

ḃi +Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[1:p] (S2.12)

and

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi +B−1
3 {ϕ̇−1Z⊤(y − µ̇)}

+Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[p+1:(m+1)p]. (S2.13)

By equation (S2.12), we have

m1/2(β̂ − β̇) = m−1/2

m∑
i=1

ḃi +Op(n
−1/2
L ) +Op(m

1/2n−1
L ) +

1

2
m1/2{B−1R(θ̃)}[1:p].

Next, we consider two separate scenarios. First, suppose that mn−1
U → ∞.

Then by the order results for the remainder term in Section S3.2, the first

p components of D∗B−1R(θ̃) are of order Op(m
1/2n−1

L ), and so the first p

components of D∗(θ̂ − θ̇) can be shown to be

m1/2(β̂ − β̇) = m−1/2

m∑
i=1

ḃi + op(1).

The required result then follows from the independence of the random ef-

fects and the normal assumption on the ḃi; note the mn−2
L → 0 assumption
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is required for the remainder term to be smaller order than the linear term.

On the other hand, when mn−1
L → 0, the only difference from the

mn−1
L → ∞ case is that the first p components of D+B−1R(θ̃) are now

of order Op(m
−1/2) due to the different convergence rate of the prediction

gap. The result however follows along similar lines as above.

S2.4 Proof of Theorem 3

Again we consider two different scenarios. First, suppose mn−1
L → ∞.

Then from equation (S2.13) and the order results for the remainder term

in Section S3.2, we have that

Dr(b̂− ḃ) = Op(n
1/2
U m−1/2) +Op(1) +Op(n

−1/2
L ).

Based on the above, we obtain Drb̂ = Drḃ + Op(1), and thus b̂ = ḃ +

Op(n
−1/2
L ). The required result follows by multiplying both sides by Ar.

On the other hand, suppose now mn−1
L → 0. Then a normalization

by m1/2 is needed instead, and the third derivative term is consequently of

order Op(m
−1/2) in probability. We thus obtain

m1/2(b̂− ḃ) = Op(1) +Op(m
1/2n

−1/2
L ) +Op(m

−1/2),

and the result follows.
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As an side remark, note from the above proof when mn−1
L → 0, it holds

that ∥b̂− ḃ∥2 = Op(1), where ∥ · ∥2 denotes the l2-norm. But if mn−1
U → ∞

then we instead obtain ∥b̂− ḃ∥2 = Op(m
1/2n

−1/2
U ). This implies that, under

the unconditional regime, a consistency result based on the l2-norm cannot

hold for the entire vector of random effects when there is a partnered fixed

effect. If there is no partnered fixed effect though, consistency of the entire

vector is sometimes possible. For example, in the Poisson counterexample,

we demonstrate that ∥b̂− ḃ∥2 = Op(m
1/2n−1/2) = op(1) when mn−1 → 0.

S2.5 Proof of Theorem 4 and Corollary 1

We will prove each of the three parts of the theorem separately. The proof

of part (a) also proves Corollary 1.

Part (a): When mn−1
U → ∞, we have from equation (S2.13) and the

order results for the remainder term in Section S3.2 that

Dr(b̂− ḃ) = DrB
−1
3 DrD

−1
r ϕ̇−1Z⊤(y − µ̇) + op(1).

This is identical to the proof of Theorem 3. Next, without loss of generality,

suppose Ar selects the first cluster only. Then we have

n
1/2
1 (b̂1 − ḃ1) = (n−1

1 X⊤
1 Ẇ1X1)

−1n
−1/2
1 {ϕ̇−1X⊤

1 (y1 − µ̇1)}+ op(1)
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∆
= Pn1 + op(1).

We wish to study the distribution of Pn1 as m,nL → ∞. By definition,

lim
m,nL→∞

FPn1
(x) = lim

m,nL→∞

∫
FPn1 |ḃ1

(x)f(ḃ1)dḃ1.

Since FPn1 |ḃ1
(x) is a cdf, then FPn1 |ḃ1

(x)f(ḃ1) is bounded by f(ḃ1). Hence

applying
∫
f(ḃ1)dḃ1 = 1 and the dominated convergence theorem, we obtain

lim
m,nL→∞

FPn1
(x) =

∫
lim

m,nL→∞
FPn1 |ḃ1

(x)f(ḃ1)dḃ1 =

∫
ΨPn1 |ḃ1

(x)f(ḃ1)dḃ1,

where ΨPn1 |ḃ1
(·) is the cdf associated with N(0,K1), a result which fol-

lows from conditional independence and the Lindeberg-Feller Central Limit

Theorem used in Theorem 1. The general result follows by noting that the

same argument can be applied to any finite subset of the random effects.

Note also that the result holds regardless of the true distribution of ḃi.

Part (b): When mn−1
i → γi ∈ (0,∞), we have from (S2.13) and the

order results for the remainder term in Section S3.2 that

n
1/2
i (b̂i − ḃi) = (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i {ϕ̇−1X⊤

i (yi − µ̇i)} − (γim)−1/2

m∑
i=1

ḃi +Op(n
−1/2
L ),

from the same development as in the proof of Part (a). Letting

E1 = (n−1
i X⊤

i ẆiXi)
−1n

−1/2
i ϕ̇−1X⊤

i (yi−µ̇i) and E2 = m−1/2
∑m

i=1 ḃi, then
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since E1 and E2 are independent given ḃi, we obtain for any i,

lim
m,nL→∞

FE1,E2(x,y) = lim
m,nL→∞

∫
FE1,E2|ḃi(x,y)f(ḃi)dḃi

= lim
m,nL→∞

∫
FE1|ḃi(x)FE2|ḃi(y)f(ḃi)dḃi

=

∫
lim

m,nL→∞
FE1|ḃi(x)FE2|ḃi(y)f(ḃi)dḃi

=

∫
lim

nL→∞
FE1|ḃi(x) lim

m→∞
FE2|ḃi(y)f(ḃi)dḃi

= ΨE2(y)

∫
lim

nL→∞
FE1|ḃi(x)f(ḃi)dḃi,

where ΨE2(·) is the cdf of N(0, Ġ). The third line follows from the Dom-

inated Convergence Theorem since FE1|ḃi(x) and FE2|ḃi(y) are cdfs and∫
f(ḃi)dḃi = 1. Thus E1 and E2 are asymptotically independent. The

result follows from this asymptotic independence.

Part (c): When mn−1
L → 0, we have from (S2.13) and the order results

for the remainder term in Section S3.2 that

m1/2(b̂− ḃ) = −1m ⊗ Ipm
−1/2

m∑
i=1

ḃi + op(1).

The result then follows immediately from the normality assumption on ḃi.
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S2.6 Proof of Theorem 5

Given mn−2
L → 0 and mn

−1/2
U → ∞, by summing equations (S2.12) and

(S2.13) we see that the m−1
∑m

i=1 ḃi terms cancel. Therefore, we are left

with

n
1/2
i (β̂ + b̂i − β̇ − ḃi) = ni(X

⊤
i ẆiXi)

−1n
−1/2
i {ϕ̇−1X⊤

i (yi − µ̇i)}

+Op(m
−1/2) +Op(n

−1/2
L ) +Op(m

−1n
1/2
U )

= ni(X
⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i) + op(1).

The required result follows from the Dominated Convergence Theorem.

S2.7 Result for Difference Between the Prediction Gaps of Two

Clusters

Assume Conditions (C1)-(C5) are satisfied, mn−2
L → 0, mn

−1/2
U → ∞, and

nin
−1
i′ → γ ∈ (0,∞). Then as m,nL → ∞ and unconditional on the random

effects ḃ, for each i ̸= i′ ∈ {1, . . . ,m} we have

n
1/2
i {(b̂i − ḃi)− (b̂i′ − ḃi′)}

D→ mixN(0, K̇i, Fḃi
) ∗ mixN(0, γK̇i′ , Fḃi′

).

Proof: Theorem 4 implies that, given mn−2
L → 0, mn

−1/2
U → ∞, and
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nin
−1
i′ → γ ∈ (0,∞), we have

n
1/2
i (b̂i − ḃi − b̂i′ + ḃi′) = (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i X⊤

i (yi − µ̇i)

+ γ1/2(n−1
i′ X⊤

i′ Ẇi′Xi′)
−1n

−1/2
i′ X⊤

i′ (yi′ − µ̇i′)

+Op(m
−1/2) +Op(n

−1/2
L ) +Op(m

−1n
1/2
U ),

and the result follows by the independence of ḃi and ḃi′ .

S3 Remainder Term in the Taylor Expansion

In this section, we show that in the Taylor expansion (S2.2), the remain-

der term −1
2
{∇2Q(θ̇)}−1R(θ̃) is of smaller order component-wise than

−{∇2Q(θ̇)}−1∇Q(θ̇). To deal with this remainder term, we have the fol-

lowing from equation (S2.2)

θ̂ − θ̇ = B−1∇Q(θ̇) +
1

2
B−1R(θ̃)

⇒ θ̂ − θ̇ − 1

2
B−1R(θ̃) = B−1∇Q(θ̇)

⇒ (I(m+1)p −Λ)(θ̂ − θ̇) = B−1∇Q(θ̇)

⇒ θ̂ − θ̇ = (I(m+1)p −Λ)−1B−1∇Q(θ̇)

= B−1∇Q(θ̇) +

(
∞∑
s=1

Λs

)
B−1∇Q(θ̇),
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where the last line is derived from repeated application of the Woodbury

identity, and Λ is the appropriate (m+1)p× (m+1)p matrix defined in de-

tail later on. The convergence of the geometric sum and thus invertibility

of (I(m+1)p − Λ) is shown in Lemma 4. We will show, using the consis-

tency result ∥θ̂− θ̇∥∞ = op(1), that
∑∞

s=1Λ
sB−1∇Q(θ̇) is of smaller order

component-wise than B−1∇Q(θ̇). This is equivalent to 0.5B−1R(θ̃) being

smaller order component-wise than B−1∇Q(θ̇) in (S2.2).

Let T1 denote the first p components of R(θ̃), T2 its remaining mp

components, and T2i denote the {(i− 1)p+ 1}-th to (ip)-th components of

T2. We first prove a result needed for later developments.

Lemma 3. Assume Conditions (C1) and (C3) are satisfied. Then irrespec-

tive of whether ḃ is conditioned on, it holds that R(θ̃)[1:p] =
∑m

i=1R(θ̃)[ip+1:(i+1)p].

Proof. Recall the Taylor expansion ∇Q(θ̂) = 0 = ∇Q(θ̇) + ∇2Q(θ̇)(θ̂ −

θ̇) +R(θ̃). Then

0p×1 = ∇Q(θ̂)[1:p]

= {∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[1:p]

=
m∑
i=1

∇Q(θ̂)[ip+1:(i+1)p]

=
m∑
i=1

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[ip+1:(i+1)p].
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Since Zi = Xi for all i = 1, . . . ,m under our simplifying assumption, and∑m
i=1 b̂i = 0, then we obtain

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[1:p] =
m∑
i=1

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[ip+1:(i+1)p].

Therefore, we have T1 = R(θ̃)[1:p] =
∑m

i=1R(θ̃)[ip+1:(i+1)p] =
∑m

i=1 T2i,

which follows from the fact that
∑m

i=1∇Q(θ̇)[ip+1:(i+1)p] = ∇Q(θ̇)[1:p] −∑m
i=1 Ĝ

−1ḃi and
∑m

i=1{∇2Q(θ̇)(θ̂− θ̇)}[ip+1:(i+1)p] = {∇2Q(θ̇)(θ̂− θ̇)}[1:p]+∑m
i=1 Ĝ

−1ḃi −
∑m

i=1 Ĝ
−1b̂i.

Next, let S(θ) = ∇Q(θ), W̃ ′ = ϕ̇−1diag{a′′′(η̃11), . . . , a′′′(η̃1n1), . . . , a
′′′(η̃mnm)}.

Then the remainder term can be written as

R(θ̃) =


(θ̂ − θ̇)⊤

∂2S[1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 .

Now, for 1 ≤ j ≤ p, we have S[j](θ) = ϕ̇−1X⊤
[,j]{y−µ(θ)} = ϕ̇−1

∑m
i=1

∑ni

l=1 xil[j]{yil−

a′(ηil)}, noting this is a scalar. Thus

∂

∂θ
S[j](θ) = −ϕ̇−1

m∑
i=1

ni∑
l=1

 xil

∂
∂b
ηil

 a′′(ηil)xil[j] = −

X⊤WX[,j]

Z⊤WX[,j]

 ,

which is an (m+1)p-vector. Hence the (m+1)p× (m+1)p matrix can be
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written as

∂2S[j](θ̃)

∂θ∂θ⊤ = −ϕ̇−1

m∑
i=1

ni∑
l=1

 xil

∂
∂b
ηil

 a′′′(η̃il)xil[j]

 xil

∂
∂b
ηil


⊤

= −

X⊤diag(X[,j])W̃
′X X⊤diag(X[,j])W̃

′Z

Z⊤diag(X[,j])W̃
′X Z⊤diag(X[,j])W̃

′Z

 , 1 ≤ j ≤ p.

Similarly, for 1 ≤ k ≤ mp, S[p+k](θ) = ϕ̇−1Z⊤
[,k]{y−µ(θ)}−{(Im⊗Ĝ)b}[k],

such that

∂

∂θ
S[p+k](θ) = −

 X⊤WZ[,k]

Z⊤WZ[,k] +
∂
∂b
{(Im ⊗ Ĝ)b}[k]

 ,

where ∂/∂b{(Im ⊗ Ĝ)b}[k] is not a function of θ. Thus

∂2S[p+k](θ̃)

∂θ∂θ⊤ = −

X⊤diag(Z[,k])W̃
′X X⊤diag(Z[,k])W̃

′Z

Z⊤diag(Z[,k])W̃
′X Z⊤diag(Z[,k])W̃

′Z

 , 1 ≤ k ≤ mp.

Next, recall that B2(B3+B4)
−1 = [Ip−Ĝ−1(X⊤

1 Ẇ1X1+Ĝ−1)−1, . . . , Ip−

Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1]. By Lemma 1 and the blockwise inversion for-

mula for B−1, the first p components of B−1R(θ̃) are given by

[
C−1 −C−1B2(B3 +B4)

−1

]
R(θ̃)

= C−1

[
Ip −[Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1]

]
R(θ̃)
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= C−1

{
T1 −

m∑
i=1

T2i +
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1T2i

}
. (S3.1)

Similarly, the last mp components of B−1R(θ̃) are

[
−(B3 +B4)

−1B⊤
2 C

−1 (B3 +B4)
−1 + (B3 +B4)

−1B⊤
2 C

−1B2(B3 +B4)
−1

]
R(θ̃)

= −(B3 +B4)
−1B⊤

2

[
C−1 −C−1B2(B3 +B4)

−1

]
R(θ̃) + (B3 +B4)

−1T2.

(S3.2)

Hence the first p components of B−1R(θ̃) are given by

F1 = C−1

m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1T2i,

and the last mp components of B−1R(θ̃) are given by

F2 = −(B3 +B4)
−1B⊤

2 F1 + (B3 +B4)
−1T2.

Next, we have

T2 =


(θ̂ − θ̇)⊤

∂2S[p+1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 =


(θ̂ − θ̇)⊤

∂2S[p+1](θ̃)

∂θ∂θ⊤

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤

 (θ̂ − θ̇) ≜ F3(θ̂ − θ̇)
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and

T2i =


(θ̂ − θ̇)⊤

∂2S[(i−1)p+1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[ip](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 =


(θ̂ − θ̇)⊤

∂2S[(i−1)p+1](θ̃)

∂θ∂θ⊤

...

(θ̂ − θ̇)⊤
∂2S[ip](θ̃)

∂θ∂θ⊤

 (θ̂ − θ̇) ≜ F3i(θ̂ − θ̇).

Here, F3 is a mp × (m + 1)p matrix and F3i is p × (m + 1)p. Notice that

F3 = [F⊤
31, . . . ,F

⊤
3n]

⊤. Furthermore,

B−1R(θ̃) =

F1

F2

 =


∑m

i=1 C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1T2i

−(B3 +B4)
−1B⊤

2 F1 + (B3 +B4)
−1T2



=


∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i(θ̂ − θ̇)

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i(θ̂ − θ̇) + (B3 +B4)

−1F3(θ̂ − θ̇)



=


∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i + (B3 +B4)

−1F3

 (θ̂ − θ̇)

= 2Λ(θ̂ − θ̇).

The kth row of F3i for 1 ≤ k ≤ p is given by

− (θ̂ − θ̇)⊤

X⊤diag(Z[,(i−1)p+k])W̃
′X X⊤diag(Z[,(i−1)p+k])W̃

′Z

Z⊤diag(Z[,(i−1)p+k])W̃
′X Z⊤diag(Z[,(i−1)p+k])W̃

′Z


= −δ−1

m,nL

[
δm,nL

(β̂ − β̇)⊤X⊤diag(Z[,(i−1)p+k])W̃
′X + δm,nL

(b̂− ḃ)⊤Z⊤diag(Z[,(i−1)p+k])W̃
′X,
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δm,nL
(β̂ − β̇)⊤X⊤diag(Z[,(i−1)p+k])W̃

′Z + δm,nL
(b̂− ḃ)⊤Z⊤diag(Z[,(i−1)p+k])W̃

′Z
]
,

(S3.3)

where δm,nL
is a positive unbounded monotonically increasing sequence such

that δm,nL
∥θ̂ − θ̇∥∞ = Op(1). The consistency results proved in Section S1

ensure that such a δm,nL
must exist; this is true for both the conditional

and unconditional regimes.

Observe that only the {(
∑i−1

l=0 nl) + 1}th to (
∑i

l=0 nl)th components of

Z[,(i−1)p+k] are non-zero, where we define n0 := 0. This means that, for any

1 ≤ k ≤ p, only the {(i− 1)p+ 1}th to (ip)th columns of both

X⊤diag(Z[,(i−1)p+k])W̃
′Z and Z⊤diag(Z[,(i−1)p+k])W̃

′Z will be non-zero.

In other words, other than the first p columns, only the (ip + 1)th to

{(i + 1)p}th columns of F3i are non-zero. Thus F3, disregarding its first p

columns, is an mp×mp block-diagonal matrix.

The non-zero components of δm,nL
F3 and δm,nL

F3i are allOp(nU) component-

wise, again because at most ni components of Z[,(i−1)p+k] are non-zero.

For ease of notation and understanding, we now represent all terms using

their orders only. Since C−1 = Op(m
−1) and Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1 =

Op(n
−1
i ), from the above discussion we have that∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i is a p× (m+1)p matrix of the form

δ−1
m,nL

[Op(1), Op(m
−1), . . . , Op(m

−1)]. Next, (B3+B4)
−1B⊤

2 = [Ip+Op(n
−1
1 ), . . . , Ip+
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Op(n
−1
m )]⊤ and (B3+B4)

−1 is a block-diagonal Op(n
−1
L ) matrix component-

wise. Therefore, we find that Λ is of the form

0.5


∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

+ 0.5

 0p×(m+1)p

(B3 +B4)
−1F3


≜ Λ1 +Λ2

=
1

δm,nL


Op(1) Op(m

−1) · · · Op(m
−1)

...
...

...
...

Op(1) Op(m
−1) · · · Op(m

−1)

+
1

δm,nL



0p×(m+1)p

Op(1) Op(1) 0 · · · 0

Op(1) 0 Op(1) · · · 0

...
...

...
. . .

...

Op(1) 0 · · · 0 Op(1)



=
1

δm,nL



Op(1) Op(m
−1) Op(m

−1) · · · Op(m
−1)

Op(1) Op(1) Op(m
−1) · · · Op(m

−1)

Op(1) Op(m
−1) Op(1) · · · Op(m

−1)

...
...

...
. . .

...

Op(1) Op(m
−1) · · · Op(m

−1) Op(1)


. (S3.4)

Writing Λ = δ−1
m,nL

Λδ, we see that the component-wise order of Λδ remains

the same no matter how many times it is multiplied by itself. Further-

more, each row of Λs
δ is Op(1) for only a finite number of components, and

Op(m
−1) for the others. We will use these facts to examine the behaviour
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of
∑∞

s=1 Λ
sB−1∇Q(θ̇) =

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇), and we will do so sep-

arately for the conditional and unconditional regimes. Before proceeding,

we first confirm the convergence of
∑∞

s=1 Λ
s.

Lemma 4. Assume Conditions (C1)-(C5) are satisfied. Then with proba-

bility tending to one as m,nL → ∞, the geometric sum
∑∞

s=1Λ
s converges.

Proof. To prove the result we will show that, with probability tending to one

as m,nL → ∞, ∥Λ∥ < 1 for some sub-multiplicative matrix norm ∥ · ∥. In

particular, we will consider the maximum absolute row sum of Λ, denoted

by ∥ · ∥∞ i.e., the operator norm induced by the vector infinity norm.

From (S3.4), we have ∥Λ∥∞ ≤ ∥Λ1∥∞ + ∥Λ2∥∞. We first examine

∥Λ1∥∞. We may break up Λ1 into

0.5



∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

−
∑m

i=1 C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

−
∑m

i=1 C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

...


+
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0.5



0p

(X⊤
1 Ẇ1X1 + Ĝ−1)−1Ĝ−1

∑m
i=1 C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

(X⊤
2 Ẇ2X2 + Ĝ−1)−1Ĝ−1

∑m
i=1 C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

...

(X⊤
mẆmXm + Ĝ−1)−1Ĝ−1

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i


≜ Λ3 +Λ4Λ5,

whereΛ4 = bdiag(0p×p, (X
⊤
1 Ẇ1X1+Ĝ−1)−1Ĝ−1, . . . , (X⊤

mẆmXm+Ĝ−1)−1Ĝ−1),

and Λ5 = (0,1⊤
m)

⊤ ⊗
∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i. We can also

write

Λ3 = −0.5(1∗
m ⊗ Ip)

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i and use the

(component-wise) order results as used in (S3.4) to see that ∥Λ3∥∞ ≤

∥−0.5(1∗
m⊗Ip)∥∞∥

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi+Ĝ−1)−1F3i∥∞ = op(1). Next,

we have ∥Λ4Λ5∥∞ ≤ ∥Λ4∥∞∥Λ5∥∞. We know ∥Λ5∥∞ = op(1), and under

conditions (C1)-(C2), we have ∥Λ4∥∞ = Op(1). Thus we obtain ∥Λ1∥∞ =

op(1).

Turning to Λ2, we examine each row of (B3 +B4)
−1F3. First, ∥(B3 +

B4)
−1F3∥∞ ≤ ∥(B3+B4)

−1∥∞∥F3∥∞ and by conditions (C1)-(C2), we have

∥(B3 +B4)
−1∥∞ = Op(n

−1
L ). Now, without loss of generality consider the
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first row of F3. This is given by

−

[
(β̂ − β̇)⊤X⊤diag(Z[,1])W̃

′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃
′X,

(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′Z + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′Z

]

= −

[
(β̂ − β̇)⊤X⊤diag(Z[,1])W̃

′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃
′X,

(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′X,0⊤
(m−1)p

]
,

since diag(Z[,1]) selects for the first cluster. Let 1̄p be a p-vector whose en-

tries consist of the (component-wise) signs of (β̂−β̇)⊤X⊤diag(Z[,1])W̃
′X+

(b̂− ḃ)⊤Z⊤diag(Z[,1])W̃
′X. Then the absolute row sum of the first row of

F3 is given by

2|{(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′X}1̄p|

=2|{(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂1 − ḃ1)

⊤X⊤diag(Z[,1])W̃
′X}1̄p|

=2|{(β̂ − β̇ + b̂1 − ḃ1)
⊤X⊤diag(Z[,1])W̃

′X}1̄p|

≤2p∥{X⊤diag(Z[,1])W̃
′X(β̂ − β̇ + b̂1 − ḃ1)}∥∞

≤2p∥{X⊤diag(Z[,1])W̃
′X}∥∞∥β̂ − β̇ + b̂1 − ḃ1∥∞

≤2p∥{X⊤diag(Z[,1])W̃
′X}∥∞(∥β̂ − β̇∥∞ + ∥b̂1 − ḃ1∥∞)

≤2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞(∥β̂ − β̇∥∞ + ∥b̂1 − ḃ1∥∞)
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=2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥β̂ − β̇∥∞

+ 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥b̂1 − ḃ1∥∞

≜ α + α1 ≜ ω1,

where the second equality follows from diag(Z[,1]) selecting for only the

first cluster, and Xi = Zi. The first inequality is due to Hölder’s inequality.

Again, using Conditions (C1)-(C2) we have max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞ =

Op(nU).

Now, p is a constant and the absolute row sum of any row of F3 can

be bounded analogously in the above way, the only difference being that

for the kth row, then the quantity (b̂1 − ḃ1) changes to the prediction gap

for the cluster that diag(Z[,k]) selects for. This means that the absolute

row sums for the first p rows of F3 are bounded by ω1, the next p rows by

ω2, and so on. Hence, to ensure ∥Λ2∥∞ = op(1) it suffices to ensure that

∥ω ⊗ 1p∥∞ = ∥ω∥∞ = op(nL), where ω = (ω1, . . . , ωm)
⊤.

To show this, define α = (α1, . . . , αm)
⊤. Then ∥ω∥∞ ≤ ∥α1m∥∞ +

∥α∥∞. By Conditions (C1)-(C2), we have ∥α1m∥∞ = α = Op(nU)×op(1) =

op(nU) = op(nL). We also have

∥α∥∞ = 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞ max

i∈{1,...,m}
∥b̂i − ḃi∥∞



S3. REMAINDER TERM IN THE TAYLOR EXPANSION

= 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥b̂− ḃ∥∞

= Op(nU)× op(1) = op(nU) = op(nL),

where the last line follows from conditions (C1)-(C2), and the fact that

∥θ̂ − θ̇∥∞ = op(1). The result follows since ∥Λ∥∞ is therefore of order

op(1), and for any ϵ > 0 we have ∥Λ∥∞ < ϵ with probability tending to one

as m,nL → ∞. The argument above holds for both the conditional and

unconditional regime, and the required result follows.

S3.1 Conditional Regime

In the conditional regime, we assume without loss of generality that
∑m

i=1 ḃi =

0p, recalling that we can always reparametrise the random effects to sat-

isfy this. From previous derivations, we know that when mn−1
L → 0,

the quantity B−1∇Q(θ̇) is of order Op(N
−1/2) for the first p components

and Op(n
−1/2
L ) for the last mp components. By the two properties of Λs

δ

noted above, we therefore know that Λs
δB

−1∇Q(θ̇) is at most Op(n
−1/2
L )

component-wise for any s. Hence
∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(n
−1/2
L ) =

op(n
−1/2
L ) for sufficiently large m,nL by the properties of a geometric sum.

This is sufficient to show that the lastmp components of
∑∞

s=1Λ
sB−1∇Q(θ̇)

are of smaller order component-wise than B−1∇Q(θ̇), so that the result
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for the prediction gap holds. In particular, we thus know that b̂ − ḃ =

Op(n
−1/2
L ). Furthermore, we also know that the convergence rate of β̂ − β̇

is at least of order Op(n
−1/2
L ). As a result, we can choose δm,nL

= n
1/2
L

without affecting the component-wise order properties of Λδ. Applying

δm,nL
= n

1/2
L , we thus have that

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of order

Op(n
−1
L ) component-wise. This is smaller than Op(N

−1/2) when mn−1
L → 0,

and the required result follows.

S3.2 Unconditional Regime

For the unconditional regime, we consider two cases: when mn−1
L → 0, and

when mn−1
U → ∞ but mn−2

L → 0.

First, consider the case when mn−1
L → 0. From previous derivations, we

know that when mn−1
L → 0, the quantity B−1∇Q(θ̇) is of order Op(m

−1/2)

for the first p components and Op(m
−1/2) for the last mp components. By

the two properties of Λs
δ noted above, we therefore know that Λs

δB
−1∇Q(θ̇)

is at most Op(m
−1/2) component-wise for any s. Hence∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(m
−1/2) = op(m

−1/2) for sufficiently

large m,nL, by the properties of a geometric sum. The required result

follows from this. Furthermore, this implies we may set δm,nL
= m1/2

without affecting the component-wise order properties of Λδ. Applying
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δm,nL
= m1/2, we thus have that

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of

order Op(m
−1) component-wise.

Next, consider the case when mn−1
U → ∞ and mn−2

L → 0. From pre-

vious derivations, we know in this setting it holds that B−1∇Q(θ̇) is of

order Op(m
−1/2) for the first p components and Op(n

−1/2
L ) for the last mp

components. By the two properties of Λs
δ noted above, we therefore ob-

tain that Λs
δB

−1∇Q(θ̇) is at most Op(n
−1/2
L ) component-wise for any s.

Hence
∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(n
−1/2
L ) = op(n

−1/2
L ) for suffi-

ciently large m,nL, by the properties of a geometric sum. This is suffi-

cient to show that the last mp components of
∑∞

s=1Λ
sB−1∇Q(θ̇) are of

smaller order component-wise than B−1∇Q(θ̇), so that the result for the

prediction gap holds. In particular, we thus know that b̂− ḃ = Op(n
−1/2
L ).

Furthermore, we also know that the convergence rate of β̂ − β̇ is at least

Op(n
−1/2
L ). As a result, we can set δm,nL

= n
1/2
L without affecting the

component-wise order properties of Λδ. Applying δm,nL
= n

1/2
L , we thus

have that
∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of order Op(n
−1
L ) component-

wise. This is smaller than Op(m
−1/2) when mn−1

U → ∞, mn−2
L → 0 and the

result follows.
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S4 Unpartnered Fixed Effects

S4.1 Generalised Linear Models

In the special case when Ġ = 0p×p, i.e., all fixed effects are unpartnered in

the true data generating process, the GLMM reduces to a GLM. We may

then obtain a result based on a special case of our results in the conditional

case, when all the true random effects are equal to zero. The result is as

follows.

Corollary A1. Assume Conditions (C1) - (C5) are satisfied andmn−1
L → 0.

Then as m,nL → ∞ and when the true vector of random effects ḃ = 0mp,

it holds that AD(θ̂ − θ̇)
D→ N(0,Ω).

S4.2 Linear Mixed Models

Suppose for i = 1, . . . ,m and j = 1, . . . , ni we observe data from the

model yij = x⊤
ijβ + z⊤

ijbi + x
(O)⊤
ij β(O) + ϵij, where xij = zij for all (i, j),

bi
i.i.d.∼ N(0, Ĝ) and ϵij

i.i.d.∼ N(0, ϕ). Note that this is part of the exponential

family. Partition β = (β(P )⊤,β(U)⊤)⊤, corresponding to the pP partnered

and pU unpartnered fixed effects (pP +pU = p). That is, if we partition bi =

(b
(P )⊤
i , b

(U)⊤
i )⊤, then b

(U)
i = 0pU for all i, and the corresponding elements

in Ġ are zero. Let θ× = (β⊤, b
(P )⊤
1 , . . . , b

(P )⊤
m , b

(U)⊤
1 , . . . , b

(U)⊤
m ,β(O)⊤)⊤,
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θ− = (β⊤, b⊤,β(O)⊤)⊤,

D× = diag(m1/21pP , N
1/21pU ,m

1/21mpP , n
1/2
1 1pU , . . . , n

1/2
m 1pU , N

1/21pO), and

D− = diag(m1/21pP , N
1/21pU , n

1/2
1 1p, . . . , n

1/2
m 1p, N

1/21pO). Also letX
(O)
i =

[x
(O)
i1 , . . . ,x

(O)
ini

]⊤ and X(O) = [X
(O)⊤
1 , . . . ,X

(O)⊤
m ]⊤. The pO orthogonal

fixed effects x
(O)
ij satisfy X(O)⊤Z = 0pO×mp, for example orthogonal poly-

nomials of xij. This implies X
(O)⊤
i Xi = 0pO×p for all i. For a q × {(m +

1)p+pO}matrixA∗ with the finite selection property, we have the following.

Corollary A2. Assume Conditions (C1) - (C4) are satisfied. Then as

m,nL → ∞ and unconditional on the random effects ḃ, it holds that

1. A∗D×(θ̂× − θ̇×)
D→ N(0,Ωa) if mn−1

L → 0, and

2. A∗D−(θ̂− − θ̇−)
D→ N(0,Ωb) if mn−1

U → ∞,

where

Ωa = lim
m,nL→∞

A∗



Ġ[1:pP ,1:pP ] 0pP×pU 1⊤
m ⊗ Ġ[1:pP ,1:pP ] 0pP×mpU 0pP×pO

0pU×pP Ω1 0pU×mpP 0pU×mpU 0pU×pO

1m ⊗ Ġ[1:pP ,1:pP ] 0mpP×pU 1m×m ⊗ Ġ[1:pP ,1:pP ] 0mpP×mpU 0mpP×pO

0mpU×pP 0mpU×pU 0mpU×mpP Ω2 0mpU×pO

0pO×pP 0pO×pU 0pO×mpP 0pO×mpU Ω3


A∗⊤
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Ωb = lim
m,nL→∞

A∗



Ġ[1:pP ,1:pP ] 0pP×pU 0pP×mp 0pP×pO

0pU×pP Ω1 0pU×mp 0pU×pO

0mp×pP 0mp×pU Ω4 0mp×pO

0pO×pP 0pO×pU 0pO×mp Ω3


A∗⊤

Ω1 =

{
ϕ̇

m

m∑
i=1

n

ni

(
X⊤

i Xi

ni

)−1
}

[(p−pU+1):p,(p−pU+1):p]

Ω2 = bdiag

{ϕ̇(X⊤
1 X1

n1

)−1
}

[(p−pU+1):p,(p−pU+1):p]

, . . . ,

{
ϕ̇

(
X⊤

mXm

nm

)−1
}

[(p−pU+1):p,(p−pU+1):p]


Ω3 = ϕ̇

(
X(O)⊤X(O)

N

)−1

Ω4 = bdiag

[{
ϕ̇

(
X⊤

1 X1

n1

)−1
}
, . . . ,

{
ϕ̇

(
X⊤

mXm

nm

)−1
}]

.

Proof. We use the same approach as previous proofs and examine the Taylor

expansion (S2.1). In this case, we have the expressions

∇Q(θ̇) =


ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

ϕ̇−1X(O)⊤(y − µ̇)

 ,

B(θ̇) = −∇2Q(θ̇) =


X⊤ẆX X⊤ẆZ X⊤ẆX(O)

Z⊤ẆX Z⊤ẆZ + Im ⊗ Ĝ−1 Z⊤ẆX(O)

X(O)⊤ẆX X(O)⊤ẆZ X(O)⊤ẆX(O)


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= ϕ̇−1


X⊤X X⊤Z 0p×pO

Z⊤X Z⊤Z + Im ⊗ Ĝ−1 0mp×pO

0pO×p 0pO×mp X(O)⊤X(O)

 ,

where the last equality follows from the fact that Ẇ = ϕ̇−1IN andX(O)⊤Z =

0pO×mp. Since B(θ̇) is block diagonal, we thus know that expressions (S2.9)

and (S2.10) still hold. Recall

β̂ − β̇ = m−1

m∑
i=1

(X⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi +

1

2
{B−1R(θ̃)}[1:p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}
+m−1

m∑
i=1

Op(n
−2
L )ϕ̇−1X⊤

i (yi − µ̇i)

and

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi +B−1
3 {ϕ̇−1Z⊤(y − µ̇)}

+Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

In the LMM case, the remainder term in the Taylor expansion is zero.

Thus the dominating term on the right hand side for β̂(U) − β̇(U) are

the last pU components of m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i), since



Xu Ning AND Francis Hui AND Alan Welsh

the last pU components of m−1
∑m

i=1 ḃi are zero. Noting that yi − µ̇i =

(ϵi1, . . . , ϵini
)⊤ =: ϵi, the result for the unpartnered fixed effects follows

after normalising by N1/2.

Next, again from the Taylor expansion we have from the block-diagonal

structure of B(θ̇) that β̂(O)− β̇(O) = (X(O)⊤X(O))−1X(O)⊤(y− µ̇) and the

result follows after normalising by N1/2 since y−µ̇ = (ϵ11, . . . , ϵmnm)
⊤ =: ϵ.

Finally, the result for the unpartnered random effects follows from the

fact that the last pU components of m−1
∑m

i=1 ḃi are zero so that the domi-

nating term on the right hand side is (X⊤
i Xi)

−1X⊤
i (yi − µ̇i), and normal-

ising by ni.

The proofs for the partnered fixed and random effects are analogous to

the proofs of Theorems 2 and 4, based on examining the leading term in

the Taylor expansion.

For the joint behaviour of the estimator, we examine the joint behaviour

of the leading terms in the Taylor Expansion. Note that ϵ is multivariate

normal with covariance matrix ϕ̇IN , ḃ is multivariate normal with covari-

ance matrix Im ⊗ Ġ, ϵ and ḃ are independent, and all the leading terms

in the Taylor expansion are linear functions of ϵ and ḃ. To determine the

joint behaviour of the estimator it is thus sufficient to derive the limiting

covariance between the normalised leading terms, as we see (from the lead-
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ing terms) that the estimator itself is also (asymptotically) multivariate

normal. For example,

Cov

{
N1/2m−1

m∑
i=1

(X⊤
i Xi)

−1X⊤
i (yi − µ̇i), N

1/2(X(O)⊤X(O))−1X(O)⊤(y − µ̇)

}

= nϕ̇

m∑
i=1

(X⊤
i Xi)

−1X⊤
i X

(O)
i (X(O)⊤X(O))−1

= 0p×pO

due to the mutual independence of the ϵij and orthogonality condition of

X(O). The pairwise limiting covariances between the leading terms can all

be derived in a similar way and the result follows. Notice here that quanti-

ties with different convergence rates are always asymptotically uncorrelated

and independent in this case.

Note that the results hold by the Lindeberg-Feller Central Limit The-

orem even if the true distribution of ϵij is not normal, as long as it is mean

zero with finite variance. Also note that condition (C5) is no longer re-

quired, and that there is no restriction on the relative rates of m and nL,

since there is no remainder term to deal with. Our result is consistent

with the results derived in Lyu and Welsh (2021a,b) who also derive a N1/2

convergence rate for unpartnered fixed effects that are time-varying.
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In practice, we do not know if a fixed effect is truly partnered with

a random effect or not, and therefore the correct asymptotic distribution

and convergence rate is also unknown. In this case, an appropriate finite

sample approximation, given consistent estimators G̃ and ϕ̃ of Ġ and ϕ̇

respectively, is

β̂ − β̇ ∼ N

{
0,m−1G̃+N−1 ϕ̃

m

m∑
i=1

n

ni

(
X⊤

i Xi

ni

)−1
}
,

which is based on the distribution of m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi −

µ̇i) +m−1
∑m

i=1 ḃi, noting that the two terms are independent.
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S5 Additional Simulation Results

S5.1 Main Results for the Conditional Regime

Figures 1, 2 and 3 display the empirical coverage probabilities and results

from applying the Shapiro-Wilk test, respectively, under the conditional

regime and for the 25 combinations of (m,n). Although our coverage inter-

vals often undercovered or overcovered for small cluster sizes e.g., n = 25,

especially for the Bernoulli case, they all moved toward nominal coverage

as n becomes larger than m. This is consistent with Theorem 1. The fact

the empirical coverage probabilities were slow in tending towards the nom-

inal 95% level was also not overly surprising, as the third derivative term

in the corresponding Taylor expansion is Op(m
1/2n

−1/2
L ). The Shapiro-Wilk

tests overall did not indicate any evidence of deviations away from nor-

mality when m < n, although there were occasionally a few p-values less

than 0.05. Overall, these results strongly support the use of Theorem 1 for

inference under the conditional regime.
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Figure 1: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 2: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 3: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 4: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right
panels), under the conditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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S5.2 Frobenius Norm

Table 1: Empirical mean Frobenius norm of the difference between estimated and true
random effects covariance matrix.

Poisson Bernoulli
m n = 25 n = 50 n = 100 n = 200 n = 400 n = 25 n = 50 n = 100 n = 200 n = 400

Ĝ = m−1
∑m

i=1 b̂i

25 1.06 1.06 1.06 1.05 1.06 1.76 1.47 1.24 1.12 1.09
50 0.77 0.75 0.75 0.76 0.75 1.79 1.40 1.03 0.83 0.77

100 0.54 0.54 0.54 0.54 0.54 1.80 1.38 0.89 0.63 0.56
200 0.39 0.38 0.38 0.38 0.38 1.80 1.35 0.82 0.51 0.41
400 0.27 0.27 0.27 0.27 0.27 1.81 1.35 0.78 0.43 0.32

Ĝ = 0.25I2

25 1.02 1.01 1.03 1.05 1.04 1.90 1.71 1.47 1.23 1.04
50 0.73 0.73 0.74 0.74 0.76 1.90 1.70 1.44 1.15 0.91
100 0.56 0.53 0.52 0.53 0.54 1.90 1.69 1.42 1.11 0.84
200 0.44 0.39 0.37 0.38 0.38 1.90 1.68 1.41 1.09 0.79
400 0.38 0.29 0.27 0.27 0.27 1.89 1.68 1.40 1.08 0.77

Ĝ = 0.5I2

25 1.02 1.03 1.04 1.05 1.05 1.61 1.39 1.16 1.01 0.96
50 0.74 0.75 0.75 0.75 0.74 1.61 1.34 1.07 0.86 0.75
100 0.53 0.52 0.54 0.54 0.54 1.60 1.32 1.03 0.77 0.61
200 0.39 0.38 0.38 0.38 0.38 1.59 1.31 1.01 0.73 0.52
400 0.30 0.27 0.27 0.27 0.27 1.59 1.30 0.99 0.70 0.47

Ĝ = I2

25 1.06 1.05 1.04 1.04 1.06 1.21 1.06 0.98 0.97 1.00
50 0.74 0.75 0.75 0.75 0.76 1.17 0.93 0.78 0.73 0.71
100 0.53 0.53 0.54 0.53 0.54 1.13 0.86 0.65 0.56 0.53
200 0.38 0.38 0.38 0.38 0.38 1.12 0.82 0.58 0.44 0.39
400 0.27 0.27 0.27 0.27 0.27 1.10 0.80 0.55 0.38 0.30

Ĝ = 2I2

25 1.06 1.06 1.06 1.05 1.06 0.84 0.98 1.03 1.04 1.05
50 0.75 0.74 0.75 0.76 0.75 0.71 0.71 0.74 0.74 0.75
100 0.54 0.54 0.54 0.53 0.53 0.56 0.51 0.53 0.53 0.54
200 0.38 0.38 0.38 0.38 0.38 0.47 0.38 0.37 0.38 0.38
400 0.27 0.27 0.27 0.27 0.27 0.42 0.29 0.27 0.27 0.27

Ĝ = 4I2

25 1.06 1.06 1.06 1.06 1.06 1.33 1.42 1.25 1.16 1.11
50 0.77 0.76 0.76 0.75 0.76 1.18 1.07 0.93 0.83 0.80
100 0.55 0.54 0.54 0.54 0.54 0.97 0.86 0.70 0.61 0.57
200 0.39 0.38 0.38 0.38 0.38 0.86 0.72 0.55 0.45 0.41
400 0.27 0.27 0.27 0.27 0.27 0.80 0.65 0.46 0.34 0.30
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S5.3 Ĝ = 0.25 I2

Using a large Ĝ of 4I2 had the least impact on the results, while a small

Ĝ, e.g., 0.25I2 had more of a noticeable impact at small sample sizes. This

is not surprising since the latter corresponds to more shrinkage, such that

larger sample sizes are needed before asymptotic results apply.
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Figure 5: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 6: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 7: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 8: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 9: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 10: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 11: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 12: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 13: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.



S5. ADDITIONAL SIMULATION RESULTS

Rand1 Rand2 Rand3 Rand4 Rand5

Fixed1 Fixed2 Fixed3 Fixed4 Fixed5

10
0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0

10
0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0
40

0

0.88

0.90

0.92

0.94

0.96

0.85

0.90

0.95

1.00

0.95

0.96

0.97

0.98

0.99

1.00

0.95

0.96

0.97

0.98

0.99

1.00

0.96

0.98

1.00

0.94

0.96

0.98

1.00

0.94

0.96

0.98

1.00

0.94

0.96

0.98

1.00

0.93

0.94

0.95

0.96

0.94

0.96

0.98

1.00

Cluster size

E
m

pi
ric

al
 C

ov
er

ag
e

Number of Clusters 25 50 100 200 400

Bernoulli Responses

Figure 14: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 15: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 16: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 17: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 18: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 19: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 20: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 21: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 22: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 23: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.



S5. ADDITIONAL SIMULATION RESULTS

25 50 100 200 400

25
50

100
200

400

0 0 0 0 0

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Poisson Responses
25 50 100 200 400

25
50

100
200

400

0 0 0 0 0

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Poisson Responses

25 50 100 200 400

25
50

100
200

400

0 0 0 0 0

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Bernoulli Responses
25 50 100 200 400

25
50

100
200

400

0 0 0 0 0

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Bernoulli Responses

Figure 24: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 25: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 26: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 27: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 28: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 29: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 30: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 31: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 32: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 33: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 34: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 35: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 36: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 37: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 38: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 39: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 40: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 41: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 42: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 43: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 44: Histograms for the third components of β̂− β̇ (left panels) and b̂1− ḃ1 (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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