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The supplementary material is organised as follows. In Section S1, we
prove consistency results for the PQL estimator separately for the condi-
tional and unconditional regimes. Section S2 focuses on the distributional
results, and Section S3 treats the remainder term in the Taylor expansion.
Section S4 contains results for unpartnered fixed effects, for some special
cases. Section SH provides extra simulation results, such as for the condi-
tional regime and different choices of G.

In the developments, we prove all results below assuming the working
dispersion parameter (13 is equal to the true dispersion parameter (;5 Then
for the general result using any O,(1) working ¢, we note that solving

o7 X {y — pu(0)}

vQO) = | ) | = Ot
o' Z{y —p0)} - (L, G )b
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for 6 is equivalent to solving

. ¢~ X {y — p(6)}
VQ(G) = _ . . . = 0(m+1)p7
o' Z{y —pn0)} — (I, ® G, b
where G5 = ¢ 'G, whose inverse is still O,(1) and positive definite. This
is equivalent to setting 45 to qﬁ and scaling G by (;5&_1. The general result

then follows since the results proved under gg = ¢ hold for any G that has

an O,(1), positive definite inverse.

S0.1 Bias and Identifiability in the Conditional Regime

By differentiating (2.2), we see that the PQL estimators satisfy Y ;" gzgle,iT{yi—
pi(0)} =0 and o' Z  {y; — p;(0)} — G'b; = 0,7 = 1,...,m. Sum-
ming both sides of the second equation across all 7, since X; = Z,, it
follows that » ", b, = 0,. That is, the PQL estimators of the random
effects must satisfy a sum-to-zero constraint regardless of the underly-
ing true parameter values. Under a conditional regime, this induces an
asymptotic bias as captured by the term 1%, @ (m~' 3.7, b;) in Theo-
rem |1, which can be interpreted as shifting the mean of the random ef-
fects into the corresponding fixed effects. We can deal with the bias by
reparametrising the model a priori to satisfy a sum-to-zero constraint.

That is, we can define a reparametrized vector of true values * which
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satisfy 1%, @ (m™' 32", b%) = Opni1y, and the PQL estimator will then
be asymptotically normally distributed centered around 0*. Furthermore,
Theorem (1| remains practically useful as, for any given sample size, we can
always reparameterise the GLMM to satisfy this identifiability constraint.

The asymptotic bias discussed above is analogous to that seen in a
over-parametrized one-way analysis of variance (ANOVA) model. That is,
in the ANOVA model one can always reparametrise to satisfy a sum-to-zero
constraint, and the corresponding estimator is consistent for this vector of
the reparametrized true values. Note however that when we work uncon-
ditionally (Section , reparametrising in this way will lead to a different

model to the original, since the clusters are no longer independent.

S1 Proofs for Consistency

To establish our large sample distributional results, we first require the

following consistency result.

Lemma 1. Suppose Conditions (C1)-(C5) hold and mn;* — 0. Then, as

m,ny, — 0o and unconditional on the random effects b, |0 — 0o = op(1).

These results are required to control the remainder term in the Taylor
expansions we use to derive the distributional results in Section [S2} To

prove the result, we wish to show that for any given € > 0, there exists a
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large enough constant C' > 0 such that, for large m, ny, we have

lullc=C

P{ sup Q(G + 5;071%11,) < Q(G)} >1—e¢,

for some positive, unbounded, monotonically increasing sequence 9y, .,
The above result implies that with probability tending to one, there ex-
ists a local maximum 6 in the ball {6 + O, ¢ JJtullse < C} so that
[y, (8 — 8) ]| = Op(1), and thus |6 — 8| = 0,(1).

Consider the difference Q(0 + u) — Q(8). By a Taylor expansion, we

obtain
Q(G +u) — Q(B) = uT{VQ(é)} — O.5uT{—V2Q(§)}u. (S1.1)

where 0 lies on the line segment joining 0 and 0 + . If we can prove that

(S1.1) is negative as m,ny, — oo for any choice of C, then there must exist

some 0,,.,, such that Q(0+0;1 u)—Q(8) is negative for large enough C,

mnr

and the required result follows. We have

. o' X (y — fa) o' X (y — fa) 0,
VQ(O) = = +
6 Z Yy —f) - Tn®@G b 6727 (y—p)| |-T.©G )b

2+ Ao,
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and

~V*Q(6)

>

XWX

XTW, X,

XWX,
XWX

XWX,

XTW, X,

Fl(é) + I,

XWX,

XTW,, X,

XWX, +G!

XWX,

XWX,

X'W, X, +G!

X'W,,X,,

0

XTW, X,

+ blockdiag(0,, I, ® G™*)

where W, = gﬁ_ldiag{a”(ﬁil), oo, @"(Min,) } and W = é‘ldiag{a”(ﬁll), oy @ (Mo ) }-

Also, let T'y(8) + I’y denote the analogous decomposition of —V2Q(8). For

both the conditional and unconditional regimes, we will prove that the sec-

ond term is positive and dominates the first. However, the treatment of

the terms differs between the two cases, and as such the proofs will need to

be dealt with separately. In the following three sections, we will first treat

the Poisson pure random intercept example, followed by the more general

conditional and unconditional regimes.

Before proceeding, we demonstrate an inequality that is used in the
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proofs below. Write u = (u],ug)", uy = (ugy,...,uy,)" . First, for any

0 we have
uw' T (0)u=u X" WXu, +2u X" WZuy +uy Z'W Zu, >0.
Next, we have

uw'T1(0)u —u'T(0)u

=u X' (W —EW)Xu, +2u] X' (W - EW)Zuy +ug Z' (W — W) Zu, .

If we denote W* = W — ¢2W |, then by Condition (C1) W* is a diagonal
matrix with non-negative entries as the entries of c2W are upper bounded

by the smallest component in W. Therefore
uw' T (0)u—cu'T(0)u=u X W*Xu, +2u X W*Zuy +uy Z'W*Zu, >0,

so that u Ty (8)u > c2u'T;(0)u. Finally, note that we can choose 6 =

or @ = E(0) without altering the above argument.

S1.1 Poisson pure random intercept example

We begin with the Poisson pure random intercept example, which gives in-
sight and covers a case where X; # Z;. The following result is unconditional

on the random effects b.
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Lemma 2. Assume Conditions (C1)-(C5) hold, and let mn=2 — 0. Then
for the Poisson pure random intercept model, as m,n — oo and uncondi-

tional on the random effects b, it holds that || — 6|« = 0,(1).

Proof. Let w = uy = (g1, ... Upm)", @ = b = (by,....bn)", G = 62 (a
scalar),

—V2Q(0) = diag(ne™ + 6;2,... ,ne + 5;2) = T'1(6) 4 Ty, and

S (1 — €)= 6, %y

_Z?:l (Ymj — €"™) — &b_%m_
Let M = E{diag(ne®, ... neb»)}. Then M = Var{¢p—'Z(y — j)}. By
Condition (C1), Zu'Mu < uw'Ty(0)u. Next, let A\ = 26,2 Then

Var(Xg) = 026, *I,,, and

A ug (026,74 ug = ug (65 21,)uy = u' Thu.

Finally, by the laws of iterated expectation and variance we have

E{VQ(8)VQ(9)"} = Var{VQ(0)}
= E[Var{VQ(0)|b}] + Var[E{VQ(0)|b}]

— E{Var(\]b)} 4 Var(\,)
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= Var(A;) + Var(As).
Therefore, we have that

u' {=V?Q(0)}u > min(\!, ) {u" Mu + uj (526, *I,,)us}

=min(A\™, Q) E{VQ(O)VQ() "},

where the latter and hence former term grows at the same rate as {u' VQ(0)}2.
Since at least one component of u equals +C, for any given u, u ' {—V2Q(0)}u
is at least of order O,(m) in probability and hence always dominates.

Since the choice of which |uy| = C is arbitrary however, we also
need to make sure that the mth order statistic ieglaxm}[{zyzl(yij — ebi) _
6;251-}/(71651' + 6, 2)], which grows with the dimension, is of order o,(1). We
know that the leading term in ({&.3H) is (ZTW Z) "¢ 'Z7 (y — 1)} when
mn~! — oo; for this Poisson random intercept example, up to some smaller
order terms, this simplifies to the ratio {3 _7_, (yzj—ebi)—5'17_2(.71'}/(%6[”—’—5'[)_2).

Intuitively then, proving a result for ||@ — ||, should involve studying

e ({3500 — ) = 632} (neb + %)
Put another way, consider the set of w such that one component of u

equals £C' and zero elsewhere. When C' is the ¢th component of w, this

corresponds to deviating away from 0 in the ith direction. In this case, we



S1. PROOFS FOR CONSISTENCY

need C{>_7_, (i —eb)—5;2b;} to be dominated by C2neb for any C' and all
m,n large enough, i.e., {Z?Zl(yij—ei’i)—&b’zbi}/nebi = 0,(1). This is indeed
true as this ratio is O,(n~"/?), since Y7, (yi; — ) — &;2b; = O,(n'/?) due
to conditional independence and Chebyshev’s inequality, and ebi = »(1).
However, although the ratio is of order O,(n~'/2), for any given m,n there
is still a positive probability that the ratio (a random variable) is greater
than one in magnitude. On the other hand, for the consistency argument
to hold we need to make sure the ratio is smaller than one in magnitude
for all m directions with probability tending to one, as m,n — oo. In
particular, it is sufficient for the maximum of m of these ratios to be o,(1):
this maximum grows with m, corresponding to the number of directions we
need to bound. Intuitively, this should hold if m does not grow too fast
relative to n.

Now, Downey| (1990) proves that the maximum over m realisations of
independently and identically distributed random variables with a finite gth
moment is 0,(m'/?). By Condition (C5), the ratio n'/2{3°"_ (y;; — ebi) —
6;26i}/(nebi + 6, ?) has finite fourth moments for all + and n. Thus, the
maximum of these (normalised) ratios over m clusters is of order o,(m'/4).
As a result, the maximum ratio of interest is o,(m!/4n=1/2). Therefore,

when mn=2 — 0, there exists d,,, such that we can always choose a large
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enough C for §,,},u"VQ(8) to be dominated by 6,2,u" {—V?Q(8)}u, and

hence |8, (0 — 6)||oo = O,(1) as required.

To conclude this section, we remark that although mn=2 — 0 is needed
for the consistency and thus distributional result, this is a sufficient con-
dition. Intuitively, in the Poisson pure random effects model there are
no fixed parameters to estimate, and the estimate of the random effects for
each cluster only depends on observations in that cluster. Thus, the relative
rates of m and n should not matter for a distributional result concerning a

finite subset of the random effects.

S1.2 Conditional on the Random Effects

In this section, we prove the consistency result under the conditional regime.
In the conditional regime, we assume without loss of generality that " b; =
0,, recalling that we can always reparametrise the random effect coefficients
so this holds.

Let M = T',(0). Then M = Var(X,|b) = E(AA] |b) since E(A|b) =
O¢nt1)p- By Condition (C1), we have ciu" Mu < u'T(0)u.

We now consider two cases: the special case when w; = —uo; for all 7,

and when this is not the case. For the former, we have u' Ay = u' Mu = 0.
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Then we must examine w' Ay and w'T'yu. In this case, we have u' Ay =
ST ug,Glby = —u] GTLY by = 0, and w Tou = mu] G luy > 0
since G is a positive definite matrix. Thus the difference (S1.1)) is negative
for large enough m,ny and any choice of constant C'.

Next, consider the case when w; = —uy; for all ¢ does not hold. Un-
der this setting, as I's is a positive semi-definite matrix, we still have
u'{-V2Q(0)}u > u'T1(0)u > c2u"” Mu, where the last and hence for-
mer terms grow at the same rate as (u' X;)2. Since at least one component
of u equals +C, by Conditions (C1)-(C3) we have that u'{—V2Q(0)}u
is at least of order O,(nz), and always dominates since u' Xy = O,(m) at
most.

Since the choice of u is arbitrary, we must take into account the growth
rate of the mth order statistic. That is, for any 1 < k < p, we need
max [(XTWX0 + G771 X (g — i) — G0}y = oy(1), as
per the argument for the Poisson pure random intercept model. Since
the responses y;; are from the exponential family and thus the moment
generating function always exists, the maximum is of order op(ml/ Tnzl/ 2)
for any r € N (Downey, [1990), and hence o0,(1) since mn;' — 0 by taking

r = 2, for example. Note that the first p components of VQ(Q), which are

associated with the fixed effects, do not need to be bounded in this way
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because the dimension is fixed.

S1.3 Unconditional on the Random Effects

In this section, we prove the consistency result under the unconditional
regime. The main differences to the derivation under the conditional regime
arise from the treatment of Ay, and the distribution of y. In the uncon-
ditional regime it holds that 7", b; = O,(m!/?), while in the conditional
regime we impose a sum to zero constraint. Furthermore, in the uncondi-
tional regime we bound w' Ay using its variance, while in the conditional
regime this is not possible because Ay is not a random variable. Finally, in
the unconditional regime we cannot use the properties of the exponential
family to bound the mth order statistic, instead requiring Condition (C5).

Let M = E{I';(6)}. Then M = Var(X\;) = E(AA]) since E(A\;) =
O(nt1)p- By Condition (C1), cdu"Mu < u'T1(6)u

We consider two cases: the special case when u; = —uy; for all ¢, and
when this is not the case. In the former, we have u'A\; = u'Mu = 0.
Thus we must examine u' Xy and w' Tyu. In this case, we have u' Ay =
S ug, Gl = —ul G by = 0,(m'/?), and u Tou = mu] G,
0 since G is a positive definite matrix. Hence the difference is nega-

tive for large enough m,ny, and any choice of constant C.
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Next, consider the case when u; = —uy; for all 7 does not hold. Then we
still have u™ {—V2Q(0)}u > c2u” Mwu. Letting A = )\max(é_léé_l)//\min(é_l),

we have

Var(Ag) = I, ® G'GG™!

and

Ay (I, @ GGG Nuy < u) (I, G Huy = u' Tou

Now, by the laws of iterated expectation and variance,

E{VQ()VQ(6)"} = Var{VQ(6)}
= E[Var{VQ(0)|b}] + Var[E{VQ(6)|b}]
— E{Var(A\]b)} 4 Var(\,)

= Var(A;) + Var(Ag).

Thus we have that

u{=V2Q(0)}u > min(\!, A){u Mu + u] (I, ® GGG )u,}

= min(A\™, Au' E{VQ(0)VQ(8) }u,

where the latter and hence former term grows at the same rate as {u” VQ(0)}2.
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Since at least one component of u equals +C', for any given u we have that
u"{-V2Q(0)}u is at least of order O,(ny) and always dominates.

Since the choice of u is arbitrary, we must take into account the growth
rate of the nth order statistic. That is, for any 1 < k < p, we require
ie{rﬁéf(m}[(XiTmXi +G ) O X (i — fu:) — G'bi}pg = 0,(1), s per
the argument for the Poisson pure random intercept model. By Condition
(C5), this term is of order o, (m!/ 4n;1/ %), and hence the result follows. Note
that the first p components of VQ(Q), which are associated with the fixed

effects, do not need to be bounded in this way because the dimension is

fixed.

S2 Proofs of Distributional Results

For both the conditional and unconditional regimes, our proof relies on
examining the behaviour of the leading term in the Taylor expansion of the
estimating function. Under Conditions (C1) and (C3), we take the Taylor

expansion of VQ(é) around 6 and obtain, as m,ny — oo,

VO(6) = Ons1)y = VQ(B) + V2Q(8)(6 — 6) + %R(é), (S2.1)

where 0 is a (m + 1)p x (m + 1)p matrix with each row lying on the line

segment between 6 and 6 and R(0) is the remainder term. Rearranging,
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we have
66 = —{(V°Q0))'VQ(B) ~ L {V’Q(0)) 'R(D) (52.2)

We show in Section [S3]that the remainder term is of smaller order than the
leading term and thus negligible in the limit, in both the conditional and
unconditional regimes.

From (52.2), to study the asymptotic behaviour of the PQL estima-
tor we will first apply the blockwise matrix inversion formula to obtain an
expression for —{V2Q(0)}~'. Using this result, we will then obtain an ex-
pression for —{V2Q(0)}'VQ(8), and subsequently study the asymptotic
behaviour of each constituent term. Note that since VQ(8) is a (m + 1)p-
vector and —{V2Q(8)} ' is a (m+1)p x (m~+1)p matrix, we cannot simply
take their limits as per standard fixed dimension asymptotics. Instead, we

must evaluate —{V2Q(8)}'VQ(8) as a whole.

We can write

D > i @i (Yiy — fuij)
VQ(Q) _ ¢_1XT<y - I"l’> _ ¢_1 Zyil wl](ylj _ Nl]) . G_lbl
61 ZT(y—p) — (I, G )b
_éil Z;L;nl Lmj (ymj - Mm]) — éili)m
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S1
s So1 + S s S1 s S,
Si+ S5 S
S2m + SSm
, . XWX X"WZz B, B,
B(0) = -V?Q(0) = =
ZWX Z'WZ+1,2G™ B] B;+ B,

mpXxp mpXxXmp
Letting C = B, — By(B3+ B,) !B, , by the matrix block inversion formula

we have

c! —C'By(B3 + By) ™!
B '=

—(Bg + B4)71.B;Cil (Bg + B4>71 + (Bg + B4>71.B;CilBg(Bg + B4)71

(52.3)

Next, based on the forms of By and (B3 + By), we obtain
By(Bs+B,) ' =[[,-G (XWX, +G Y. [,-G X W, X, + G
Then since Z; = X for all 7, we can show that

By(Bs+ By)'B; = > X/ W X,(X/ WX, +G") ' X/ W, X;

i=1

=Y (XWX, + G - GTH)XWiX; + G XWX,
=1
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=Y XWX, - GUX/W.X; + GT) ' XWX,

i=1

=B, - Y G YX/WX +G ") XWX,

i=1
It follows that

C=> G'X/WX;+G")'X/WX,; =) X WX,(X/WX;+G )G,
=1

=1

(S2.4)

where the second equality arises from the fact that as a covariance matrix,

C must be symmetric. We may also write C' as

Y GUXWX + G XWX, =) {I, -G (X/ WX, +G )G

i=1 =1

=G {L - (X/ WX, +G)'G'}

i=1

(S52.5)
Note that C' is of order O,(m) component-wise in probability in both the
conditional and unconditional regimes. Using the fact that C~! must also

be symmetric, we obtain

m -1 m -1
Cc = {Z(X;W}Xi + él)lxjwixi} G=G {Z X W, X,(XW, X, + Gl)l}
i=1 1=1

(S2.6)
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or equivalently

m -1
oo Y w6 6| 6

i=1

— {mle +m ) (XWX + él)lélcl} G, (S2.7)

i=1
where the last line is derived from (a special case of) the Woodbury iden-
tity, given by (Q — R)™' = Q'+ Q7 'R(Q — R)™! for arbitrary matrices
Q and R such that Q and (Q — R) are invertible. The first term in
is the dominating term, being of order O(m™1!), while the second
term is O,(m~'n;') in both the conditional and unconditional regimes.
We will use all the above forms of C and C~! in subsequent develop-
ments. Similarly, we can apply the Woodbury identity to (Bz + B,)~! and
(XZTVVZXZ + éil)*l to obtain ny (B3 + By) ™' = nLB3_1 — nLB?)_lB4(Bg +
B,)' = 0,(1) 4+ 0,(n7') and n;( X, W; X, + G~ = ny( X, W, X;) ™" —
ni( X W X)) LG XWX, + Gt = 0,(1) + 0, (n; ), where the or-
der results hold component-wise. These hold irrespective of whether we are
conditioning on the random effects.

To further simplify expressions, for the rest of this article we will only
use order results when representing quantities associated with these smaller

order terms. Furthermore, as we want the derivations for the remainder of
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this section to be applicable to both the conditional and unconditional
regime, we will not distinguish between O(-) and O,(-) in the following
developments, and simply use O,() to represent both as appropriate. The
terms we use “big-O notation” for will have the same order under both the
conditional and unconditional regime. To simplify expressions, we will also
drop the dependence on @, unless stated otherwise.

Finally, it is worth emphasising that

o' X (y — fa) = S
' :—51+ZSQizsl—ZSQi:0pa
61Z T (y - f) = =

(52.8)

due to the X; = Z; assumption. This is a key identity that is critical to
the proofs throughout this article.

We now use the expressions above to multiply out —{V2Q(8)}'VQ(0)
and obtain expressions for B — ,6 and b— b. From equation , the first

p components of 0 — 0 are

B ~-B= [C_l —C'By(Bs + B,y)™! V@ + %{BlR(é)}[lrpl

=C™ [Ip [, -G (XWX, +G ) .. L,-G (X W, X,,+G )| VQ

+ (B RO}y
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=Cc™! (sl =) Sy ss> + C—lé-l{ (XWX, +G )8y
i=1 1=1

=1

m . R 1 B

+ Z(XZTVV@XI + GI)IS;J,Z} + §{B*1R(9)}[1:p]
=1

- c—lé—l{ Y (XWX +G ) 'Sy~ G Sy

i=1 i=1
m

. A 1 ~
+ Y (XWX + Gl)lssi} + §{B*1R(0)}[1;p],
i=1

where the final equality uses equation (S52.8). Thus, letting V; = > (X" W, X,+
G ) 1Sy —G Y Sy + S (XWX, +G )18y, and applying equa-

tion (S2.7), we obtain
.. 1 _
B—B=m"'V;+ §{B_1R(9)}[1;p] +O,(n;") x m™'Vy,

Finally, using the Woodbury identity for (X, W, X, —1—(3'*1)*1, we have that

S XTWiXi+ G S = 3 (X Wi X) T 8o+ 01 Op(n?) S

Letting Vo = Y7 (X W, X)) 'S0 — G, Ssi + 200 (X WX +

G 1)"1Ss;, we obtain

. ) 1 - m

B B=m"Vot (BT ROy + Oplng) xm™ Vit m™ 3" 0,n%)
i=1

Next, the last mp components of 0 — 6 are

b—b=[-(B;+B,) 'B]C™' (B3y+B,) '+ (Bs;+ B,) 'B,C 'By(B; + B,) " '|VQ
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+ B RO s

=[-(B3+B,) 'B,C™' (B3+ B,)"'B, C'By(B;3 + B,)'|VQ
Oy (Byt Ba) ' IVQ+ L (B RO prmony

= —(B3+B,)) 'B,[C™"  —C'By(Bs+ By)'|VQ

_ L i
+ [Ompxp <B3 + B4) 1]VQ + §{B 1R(9)}[p+11(m+1)1°]‘

Notice that we already have an expression for [C™' — C7'By(Bs +
B,)7YVQ from the fixed effects above. Namely, it is m=*Vj + O,(n;') x

m~'V;. Thus we have

~ .

b—b=—(Bs+ By 'By (m'Vi + Op(n;') x m™'Vy)

_ | AP RS
+ (Bs+ By)'Ss + §{B "R(0)} pr1:(mi1yp)-
Applying the Woodbury identity for (Bs + B,)~!, we obtain

b—b=—1,,@ (m 'Vi+Op(n;") x m™' Vi) + Op(n;")(m ™' Vi + Op(n; ') x m™'W))
1 ~
+ By S5+ 0p(n,")Ss + 5{ B R(6)}ps1:(ms1yp
= ~1, @m~ Vi + Oy(n;') x m™'Vi + Op(n;*) x m™'WV;

1 3
+By'Si+ By S5 + 0p(n")Ss + 5{B 7 R(0)}pr1:(mrp-

Replacing all the V. and S. terms in the above with their definitions, we
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finally obtain

m m

B—B=m S (XTWiX) 67 X (g — ) +m™ 3 b,
=1 =1
_ —1m TYW.X. . (—-1\-1A-1f L ipnig
m™ D) (XWX + GG+ SABT'R(0)}y)
=1
O ST G ) Y
i=1 i=1

—m Y (XWX + G)Gb} +m Y 0,6 X (yi — fu),

=1

bobm 1,0 {m SOKTWX,+ G )X (- i)

i=1

+ m_l Z bz — m_l Z(XZTV‘/ZXZ + é_l)_lé_lbi}

i=1 i=1
—15i-1rT . —1 N—1\% 1 —1p/p

+B3 {07 Z (y— )} = By {(In @ G7)b} + S {B™ R(0) }jp+1:(n+1ypi

+0p(n21){mlz(Xmei+él)1451Xf(yi )

=1
S b S (XTWIX, G)Gb}
=1 =1

s o,,<n;2>{m—1 SOKTWX, 4 G X (s

=1

S b S XWX, - G)Gb}

i=1 i=1
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+ O 2T (y — 1) — (L& G)b}. (52.10)

The expressions for B — B and b — b above underlie our proofs. We use
these same expressions in both the conditional and unconditional regimes,
but the asymptotic behaviours of the terms on the right hand side, and the
way we treat them, will differ greatly between the two cases.

As we will show later, the key leading terms for the fixed effects are
m " (X Wi X))o X (ys — fu) and mt S0 by The key leading
terms for the random effects are —1,, @ m~* 3" b; and By {¢~'Z7 (y —
f1)}. When conditioning on the random effects b, we have m=' 327" b; =
O(1), while in the unconditional regime the same quantity is of order
Op(m’l/ 2) in probability. In both the conditional and unconditional regimes,
we have that m= 3> (X W, X,) "¢ X" (y; — f1;) is of order O,(N—/?)
component-wise, while the quantity B3 {¢~'Z T (y—f1)} is of order Op(nzl/ %)

component-wise.

S2.1 Proof of Theorem 1

The dominating terms on the right hand sides of equations (52.9) and
(S2.10) are m=t3>>7", b, and 1,, @ m™ S b; for the fixed and random

effects, respectively. Conditional on the random effects b;, these dominat-
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ing terms are deterministic and of order O(1). Thus we treat them as bias
terms and move them to the left hand side. Next, by Conditions (C1)-(C2),
B; ' is a component-wise O(n; ') block-diagonal matrix, while we also have
B] = O(ny), X, W, X = O(n;), and C~' = O(m™") component-wise.
Since E{Z" (y— f1)|b} = 0,,, and Var{Z T (y— 1)|b} = ZTW Z, we obtain
¢'DZT(y — 1) = O,(1) using Chebyshev’s inequality and the condi-
tional independence.

Multiplying both sides of and by N'/2 and D, respec-

tively, and applying the order results for the remainder term in Section

[S3.1], we obtain

i (B Bty b) =Y XWX X ()

i=1 i=1

+ Op(m**n; '),
and

D’" (i’ bt emT ) b) = D,B;' DD M6 2T (y — i)} + Oyl

i=1

Recalling that X; = Z;, to prove Theorem [I| we will show a Lindeberg
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condition for

m 2y nl/Qnﬂﬂ(n;lX;mX@')_ln;1/2¢_1X¢T(yi — f1;)

7

(' XTWA X)) " P X (g — g}

(1 X W X)) 267 X T (Y — fum) }

and thus apply the Lindeberg-Feller central limit theorem, from which the
result follows from Slutsky’s theorem.

To prove the condition, first define U = [ZB;'(1,, ® I,,), ZB3 '], and
U, as the kth row of U, noting it only has 2p non-zero components. Then
we can write S = Z]kvzl ADU ¢ Hye — jux(0)} 2 Zszl &, where y, is
the kth component in (Y11, Y12, -+, Yiny, Y21s - - - » Ymm,, ) |, and similarly for
1 (6).

Conditional on b, the quantities {&:}_, are independent g-vectors with
expectation zero and covariance Var(€;|b) = ADU,W, U, DAT, where W},
is the kth diagonal component in W. Therefore, we have that

N N
> Var(g|b) =Y ADUW,U/DA’
k=1

k=1
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. 1 . 1 . -1
Ly o (XWX, A [n (XWX o L (XWX
m =1 Mg g \/ﬁ ni ni \/’IZ Nm MNm
. -1 - —1
1 n (XWX, X, Wi X, 0 0
vm\/ ni ni ni
—A AT
0 0
TA -1 W -1
L ( XaWnXm 0 0 X Wi Xom
L vVm'V nm Tom, Nm i

, 1
Hence using the finite selection property of A, and the fact that m_1/2n1/2n;1/2 (n{lX; VVin-> =

o(1) component-wise, we obtain

N
i, >, CoviEb)
L& (XWX wx XIW,. X, \ |
= lim Abdiag{—zﬁ<i—”> ’< A 1) PH,( mYWm m) }AT
m,np—r00 m i—1 n; n; nq Ny,

= Q.

Next, by the Cauchy-Schwarz inequality, we have

E{||&IP1(I€l > €)lb} < E(l1&xI*[6)" 2 P(lI€]l > €[b)'/2.

Finally, we make a note about the form of Cov[DU,{y; — 11(0)}]. Without

loss of generality, suppose £ = 1. Then

Cov[DU, {y; — 1 (0)}] =
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_ n(mn?) " Hyzy Wz, H ny 'm” V2 (g )V Hyey W] HY
ny ' m= Y2 (nn Y2 Hyz Wi HY ny HhenWia |, HYf
L 0 0
(S2.11)

Again without loss of generality, consider the case A = [Ia,, 0(p4p)x(m—1)p)-
Then by equation and Chebyshev’s inequality, when k € {1,2,... ,n;}
we have that P(||&] > €|b) < tr{Cov(&|b)}/e? = O(n7'). Thus, given
b, we obtain ||&]| = O,(n; ") and E(||&]*b) = O(n;?) by Conditions
(C1)-(C3) and the properties of the exponential family. However when
k > ni, by equation and Chebyshev’s inequality, we have that
P(||&]] > €|b) < tr{Cov(&k|b)}/e2 = O(N) since n(mn?)~! = O(N1).
Thus given b, it holds that ||&| = O,(N~'/2) and E(||&|'d) = O(N~2).

Therefore

E(||&]1*16)"* P[]l > €[b)*/?

M =

> E{I&IPIIE] > €)1b) <

k=1

3

E(1&:1418)* P(&| > elb)””

i
Z

+ Y BI&NB) 2P| > elb)/?

k=ni1+1

< nu max {E(I1€1'19) 2P > elb)'/*}

0

0

0
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+ (N — 1) sup { E(||€*16)"* P(||€ll > €[b)?}

k>n1

=1 x O(n;*?) + (N = ny) x O(N*?)
=O0(n;'*) + O(N7'/2)

=o(1).

The required result follows by Conditions (C1)-(C2) and the Lindeberg-
Feller Central Limit Theorem. Furthermore, the general result holds straight-
forwardly by replacing n; with O(ny) in the above argument, noting that

any row of A can only select a fixed number of clusters.

S2.2 Proof of Equation (4)

For the Poisson pure random intercept model, we have B = diag(nei’1 +
6,2, ... netm +6;2) and R(0) = {ne (by — b1)2, ... ,ne (by — b))}
Next, suppose that A picks out the first random intercept, i.e., A =

(1,07 ,]. Then we have

» Ym—1

R . . 1 ~
n2(by — b)) =n'?AB7'VQ(0) + §n1/2AB*1R(0)

172 { (Zylj —e ) —bl/ab}/{ebl + 1/(&5@}

- % {nlﬂei’l(él - 61)2} /{el‘71 + 1/(6271)}
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e { (z - ) ] bl/ab} / oy 1/<&zn>}] /
1+{2 (bl—b1>}/{ebl+1/<&§n>}]

n

= /2 Z(ylje*bl — 1)+ 0,(1),

j=1

where l~)1 lies between 131 and 61, and for the last line we have used the fact
that by — by = 0,(1).

Now, {ylje_i’l — 1}, is an exchangeable collection of uncorrelated ran-
dom variables with mean zero and finite non-zero variance. Furthermore,

we have for k # [

Cov{(ywe™™ — 1), (yue™™ — 1)2} = E[Cov{(yme ™" — 1), (yue " — 1)[b1}]
+ Cov[E{ (e — 1)2[b1}, E{(yue™™ — 1)%|iy}]
=0+ Cov(e_i”7 6_61)

= edg(edg —1) #0.

Thus by the Central Limit Theorem for exchangeable random variables
D -
(Blum et al.} 1958), it holds that n="/2 37" (y1;e” bi_1) 4 N(0,e). Since
we know Var{n="2 37" (y1;e ~b1_1)} = ¢%/2 and also that n~1/2 > (e —bi_
1) = O,(1) by Chebyshev’s inequality, there is no other normalization pos-

sible for an asymptotic normality result to hold.
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Finally, we also have

n2(by — ) =07 (e ™ — 1) + 0p(n71V?)

j=1
— by=b+n" Z(ylje’i’l — 1)+ O0y(n7")

j=1

— by 4 0,(1), by the Weak Law of Large Numbers.

S2.3 Proof of Theorem 2

We begin by developing two key equations, ((S2.12)) and (S2.13), that will be

used throughout the unconditional regime. These are derived from equa-

tions (S2.9) and (S2.10) and are used in the proofs of Theorems as

well as Corollary 1. Under Conditions (C1)-(C2), the following order re-
sults are used: Bj;' is a component-wise O,(n}') block-diagonal matrix,
B, = O,(ny) component-wise, X, ‘/VZXZT = Op(n;) component-wise, and
C~! = O,(m™") component-wise. Also, by the conditional independence,

we have

E{ZT(?J — )} = E[E{ZT(?J - N)‘b}] = 0y,

Var{ZT (y — 1)} = E[Var{Z" (y — 2)[b}] + Var[E{Z " (y — 1) b}] = E(Z"W Z),
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so that ¢ 'D; ' Z T (y— 1) = O,(1) using Chebyshev’s inequality. Therefore
we have the key equations
. ) mo. 1 -
B—B=m") b+ 0N ") +0,(n;") + 5{3—11%(9)}[111,} (S2.12)
i=1

and

b—b=-1,0m'Y b +B;'{¢'Z (y— 1)}

i=1

1 _
+ 0N ) + O + S{BT RO bprominy: (52.13)

By equation ((S2.12]), we have
_ 1 ~
m!*(B ) = ”2Zb + Oyl ) + Op(m* ) + 5m'2{BR(8) oy,

Next, we consider two separate scenarios. First, suppose that mn(}l — 00.
Then by the order results for the remainder term in Section [S3.2] the first
p components of D*B~'R(8) are of order O,(m'/*n;'), and so the first p

components of D*( — 0) can be shown to be

m'?(6 ~ B) = 1/2Zb + 0p(1

The required result then follows from the independence of the random ef-

fects and the normal assumption on the bl, note the ngQ — 0 assumption
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is required for the remainder term to be smaller order than the linear term.

On the other hand, when mnz1

— 0, the only difference from the
mn;' — oo case is that the first p components of D*B'R(6) are now

of order O,(m~1/2) due to the different convergence rate of the prediction

gap. The result however follows along similar lines as above.

S2.4 Proof of Theorem 3

Again we consider two different scenarios. First, suppose mnzl — 00.
Then from equation (S2.13)) and the order results for the remainder term

in Section [S3.2] we have that
D, (b—b) = O,(n/*m™1?) + 0,(1) + O,(n; ).

Based on the above, we obtain D,b = D,b + O,(1), and thus b=>b+
Op(nzl/ 2). The required result follows by multiplying both sides by A,.

1

On the other hand, suppose now mn;~ — 0. Then a normalization

by m'/? is needed instead, and the third derivative term is consequently of

order O,(m~1/2) in probability. We thus obtain
m! (b —b) = Op(1) + Op(m' P ) + Op(m~17),

and the result follows.
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As an side remark, note from the above proof when mn;1 — 0, it holds
that ||b— b||, = O,(1), where | - ||2 denotes the l»-norm. But if mng' — oo
then we instead obtain [|b— b||y = O,(m/?n;,'/?). This implies that, under
the unconditional regime, a consistency result based on the ls-norm cannot
hold for the entire vector of random effects when there is a partnered fixed
effect. If there is no partnered fixed effect though, consistency of the entire
vector is sometimes possible. For example, in the Poisson counterexample,

we demonstrate that ||b — blly = O,(m'/>n~"/2) = 0,(1) when mn~! — 0.

S2.5 Proof of Theorem 4 and Corollary 1

We will prove each of the three parts of the theorem separately. The proof
of part (a) also proves Corollary 1.

Part (a): When mn;,' — oo, we have from equation (S2.13) and the

order results for the remainder term in Section that

~

D,.(b—b)=D,B;'D,D ¢ Z" (y — 1) + 0,(1).

This is identical to the proof of Theorem [3] Next, without loss of generality,

suppose A, selects the first cluster only. Then we have

ny?(by — by) = (n ' X Wi X)) " 0TI (yr — )} + 0,(1)
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2 P, +0,(1).
We wish to study the distribution of P, as m,n; — oo. By definition,

lim Fp, (@)= lim [ Fp (@) f(b1)db;.

m,ny,—0o0 m,ny,—0o0

Since Fpnl‘bl( x) is a cdf, then Fp b () f(by) is bounded by f(b;). Hence

applying [ f (bl)dbl = 1 and the dominated convergence theorem, we obtain

i @)= [ P @) b0db = [, (@) (6db,

where Wp ;. () is the cdf associated with N(0, K;), a result which fol-
lows from conditional independence and the Lindeberg-Feller Central Limit
Theorem used in Theorem [I] The general result follows by noting that the
same argument can be applied to any finite subset of the random effects.
Note also that the result holds regardless of the true distribution of b;.
Part (b): When mn; ' — 7; € (0,00), we have from ([S2.13) and the

order results for the remainder term in Section that

Y2 (b, — by) = (0 X7 Wi X)) "0 VAT X (ys — )} — (vem WZb + Oy

from the same development as in the proof of Part (a). Letting

Ey = (0" X, W, X)) 'n; ¢ X[ (y;— 1;) and By = m~/2 3™ | b;, then

1/2)
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since F; and FE» are independent given bi, we obtain for any 1,

lim  Fg,om(®,y) = lim [ Fg g (2,y)f(b)db;

m,ny,—00 m,ny,—00

= lim Fg,i, (a’:)FE2|bi(y)f(bi>dbi

m,ny,—00

_ / i Fi, o, (%) i, 6, () £ (b:)db;

m,ny,—00

:/ lim Fg ;. () lim FE2|bi(y>f<bi)dbi

ny,—0o m—oo

where W, (-) is the cdf of N(0,G). The third line follows from the Dom-
inated Convergence Theorem since Fp ;, (z) and Fg ; (y) are cdfs and
[r (bz)dbz = 1. Thus E; and E, are asymptotically independent. The
result follows from this asymptotic independence.
Part (c): When mn;* — 0, we have from (S2.13)) and the order results
for the remainder term in Section that
m*?(b - b) = —1,, ® Im™'/? zm: b; + 0,(1).
i=1

The result then follows immediately from the normality assumption on b;.
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S2.6 Proof of Theorem 5

Given mn;? — 0 and mn(;l/2 — 00, by summing equations (S2.12)) and
(S2.13) we see that the m= 3", b; terms cancel. Therefore, we are left

with

n2(B+ b, — B — b)) = ni( X W, X0) " O X (s — fu)}

+ 0, (m™Y2) + 0y (n; ) + Op(m ™ ny)?)

= ni(X;mXi)_lnfl/%_lX;(yi — f1;) + 0, (1).

)

The required result follows from the Dominated Convergence Theorem.

S2.7 Result for Difference Between the Prediction Gaps of Two

Clusters

Assume Conditions (C1)-(C5) are satisfied, mn;* — 0, mn&l/2 — 00, and
niny' — v € (0,00). Then as m,n;, — oo and unconditional on the random

effects b, for each i # i € {1,...,m} we have

1/2

n;

/2

Proof: Theorem M| implies that, given mni2 — 0, mn&1 — 00, and
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niny,t — v € (0,00), we have

nZI/Q(l;Z — bz — Bi’ + bg) ( _1XTWX ) 1 _1/2xT( Hz)
1 XT W X)X (e — )

+ Op(m ™) + Op(n %)+ Op (™),

and the result follows by the independence of bZ and bZ/

S3 Remainder Term in the Taylor Expansion

In this section, we show that in the Taylor expansion , the remain-
der term —%{V2Q(9)}_1R(0~) is of smaller order component-wise than
—{V2Q(0)}"'VQ(8). To deal with this remainder term, we have the fol-
lowing from equation ([S2.2))
6—-6=B"'VQ() + %BlR(é)
=60-0-— %B‘lR(é) — B7'VQ(8)
= (Insry — M0 — 6) = BVQ(6)

~

=66 = Iy, — A) ' B'VQ(6)

=B'VQ(0 (ZAS> “'vQ(8),
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where the last line is derived from repeated application of the Woodbury
identity, and A is the appropriate (m+ 1)p x (m+ 1)p matrix defined in de-
tail later on. The convergence of the geometric sum and thus invertibility
of (I(my1p — A) is shown in Lemma . We will show, using the consis-
tency result [|@ — 0|0 = 0,(1), that 3°°°, A*B~'VQ(8) is of smaller order
component-wise than B~'VQ(8). This is equivalent to 0.5B~'R(8) being
smaller order component-wise than B~'VQ(0) in (52.2).

Let T denote the first p components of R(é), T, its remaining mp
components, and T5; denote the {(i — 1)p + 1}-th to (ip)-th components of

T,. We first prove a result needed for later developments.

Lemma 3. Assume Conditions (C1) and (C3) are satisfied. Then irrespec-

tive of whether b is conditioned on, it holds that R(6 )[1 o =2, R(O ) [ip-+1:(i+1)p] -

Proof. Recall the Taylor expansion VQ(8) = 0 = VQ(0) + V2Q(6)(6 —

6) + R(6). Then

p><1 VQ( )[1!P]

={VQ(8) + V2Q(0)(6 — 0) + R(6) } 1,

[
NgE

VQ( )[lp+l (i4+1)p]

=1

{VQ(6) + V2Q(6)(0 — 8) + R(6) }ipr1:(i-+1)5)-

I
NE

1

.
I
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Since Z; = X for all ¢ = 1,...,m under our simplifying assumption, and

S b; = 0, then we obtain

{VQ(8) + V*Q(8)(6 — 0) + R(O) iy = D_{VQ(O) + V*Q(O)(0 — 0) + R(0) }ipi1.(i41)p)
i=1

Therefore, we have T} = R(60 ) =>" R0 )zp+1 (it = Doy Tos,

which follows from the fact that > ", VQ(O')[ipH;(iH)M = VQ(O')D;I,} —

> G and Y07 {V2Q(6)(8 — 6)Yipt vy = {VQ(0)(6 —6) Y1y +
Y Gl - G 0

Next, let §(0) = VQ(8), W’ = ¢~ diag{a” (f11), ..., a" (7i1tn, ) - - - »@" (T, ) }-

Then the remainder term can be written as

A~ 82
(6-0)T om0 - )

02 S[(m11)p
(6 — G)T%(é’ 9)]

Now, for 1 < j < p, we have S;(6) = ¢ X[ {y—p(6)} = ¢~ 327 S0 wag {ya—

a’'(ni) }, noting this is a scalar. Thus

m XTWX[J‘}

5’ :
a _¢ ! Z Z nzl Tillj]) = — )

==t abnll ZTWXLJ’]

which is an (m + 1)p-vector. Hence the (m + 1)p x (m + 1)p matrix can be
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written as

-
9? S n Ty
e D M I Pt

= o
=1 =1 | a5l

X Tdiag(X;)W'X X "diag(X,;) )W'Z
ZTdiag(X(;))W'X  Z"diag(X;))W'Z
Similarly, for 1 < k < mp, Spex(0) = 0 Z {y—1(0)} — {(In® G)b}y,
such that
8 XTWZLk]

a_OS[p-‘rk](H) = - )
ZTW Zyy + S{(I, ® G)b}y

where 0/0b{(I,, ® (A}’)b}[k} is not a function of 8. Thus

S, 11(6) X Tdiag(Z ) )W'X X "diag(Z,))W'Z
00007 - | ks
ZTdiag(Z[,k})W’X ZTdiag(Z[,k})W’Z

Next, recall that By(Bs+By) ™' = [[,—G (X[ W1 X, + G )L, ... I,—

G X W, X,, + G 1)"]. By Lemma 1 and the blockwise inversion for-

mula for B!, the first p components of B~'R(0) are given by

{Cl —C'By(B;s + B,)"'| R(6)

=C™! {Ip [, - G HX{W X, +G ), L - G X W, X,, + G| B(6)
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—C! {T1 =) T+ Y GNXWX+ (;—1)—113,} . (S3.1)

i=1 i=1

Similarly, the last mp components of BilR(ON) are

{—(B3 + By 'BJC' (By+By)) '+ (By+ B, 'B]C'By(B; + B,)'| R(9)

~(Bs+By)'B;] |C-' —C'By(B; + B,)"'| R(0) + (Bs + By) ' Ty,

(S3.2)
Hence the first p components of B _1R(é) are given by
= Z YX WX+ G Y ' Ty,
and the last mp components of B~'R(0) are given by
Fy,=—(B3+ By) 'B, F, + (B; + B,) ' To.
Next, we have
[ 025, 1 [ .4 41800
(6 6)T 5600 - ) (60— 6)" 550
T, = - (6-6)2 Fy(6-6)
A 92S (1 1)) (0) A AT 2S(ms 1)) (0)
_(0 O)T [a(ege)T (‘9 0) _(‘9 B O)T [a(oge)T] i
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and
i 925y, 6) ] [ 928151y i
(6 6)T G0 —0)| (0 6) g
Ty = = (0 —0) = F3(0 - 0)
928y ( 9“Spip
| (0-0)T 550 -6) (6—6)T 2o

Here, F3 is a mp x (m + 1)p matrix and F3; is p x (m + 1)p. Notice that

F; =[F],..., F]|". Furthermore,
- F Y CTIGH XWX, + G Ty
B 'R(9) = =
F2 —(B3 + B4)71B2TF1 + (Bg + B4)71T2

ST CTIGTY XWX, + G ) LFy(0 - 6)

—(Bs+ By) 'B] Y0, CT'G XWX, + G ) ' F5(0 — 0) + (Bs + By) ' F3(6 — )

S CTIGTY XWX, + G LRy, 6 6)
—(Bg —+ B4)_1B£r Z:il C_IG_I(XZT“/ZXZ + é_l)_ngi + (Bg + B4)_1F3

= 2A(0 - 9).
The kth row of F3; for 1 < k < p is given by

(é H)T Xleag(Z[ (i—=1)p+k] )WX Xleag<Z (i— 1p+k])W Z
Zleag(Z (i—1 p+k])W X Zleag(Z[ (i—1)p-+K] )W Z

= _57:1,1nL[ m,ny, (ﬁ /B)TXleag(Z[ (i—-1 P+k]>W X + 5m nL<b b) Zleag(Z (i— 1)P+k])W/X7
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Sy (B — B) " X T diag(Z(,i—1)p+1)W'Z + Sy, (b — b) " Z T diag(Z (i-1)p41)) W' Z],

(93.3)

where 9, ,, is a positive unbounded monotonically increasing sequence such
that 0, |6 — 0]lc = Op(1). The consistency results proved in Section
ensure that such a d,,,, must exist; this is true for both the conditional
and unconditional regimes.

Observe that only the {(3°1_) n;) + 1}th to (3)_, 7:)th components of
Z[ (i-1)p+k) are non-zero, where we define ng := 0. This means that, for any
1 <k <p,only the {(i — 1)p + 1}th to (ip)th columns of both
XTdiag(ZL(i,l)pM])W’Z and ZTdiag(Z[,(i,l)p%])W’Z will be non-zero.
In other words, other than the first p columns, only the (ip + 1)th to
{(i + 1)p}th columns of F3; are non-zero. Thus Fj, disregarding its first p
columns, is an mp x mp block-diagonal matrix.

The non-zero components of d,, ,, F3 and 8, ,,, F3; are all O,(ny) component-
wise, again because at most n; components of Z[7(i_1)p+k] are non-zero.
For ease of notation and understanding, we now represent all terms using
their orders only. Since C~! = O,(m™") and G"Y(X, W;X; + G™")! =
O,(n; "), from the above discussion we have that
ST CTI G XWX, + G Fy; is a p x (m+ 1)p matrix of the form

6.1 [0,(1),0,(m™Y), ..., 0,(m™Y)]. Next, (Bs+By)"'B] = [I[,+0,(n;"),..., I+

m,nr



Xu Ning AND Francis Hui AND Alan Welsh

O,(n>1]" and (B3 + By) ™! is a block-diagonal O, (n; ') matrix component-

wise. Therefore, we find that A is of the form

2t C'G XWX, +G ') 'F Op s (m+1)p
0.5 +0.5
—(Bs+ By)"'B;y L, C G YX/W, X, + G ) 'Fy (Bs + By) ' F;
é Al + A2
Ops(m-+1)p
Op(1) Op<m_1) Op(m_l) 0,(1) 0,(1) 0 0
1 1
= Omony + S O,(1) 0 0,(1) 0
_Op<1) Op(m™") Op(mfl)_
Op(1) 0 0 0,(1)
0,(1) Oym™) Oyfm™) Oym™)
O0,(1)  O,(1)  Op(m™) 0,(m™Y)
1
= o |0 OmT) O Op(mTY] (53.4)
Op(1) Op(m™) Op(m™)  Oy(1) |

Writing A = 5;1717% Ay, we see that the component-wise order of Ay remains
the same no matter how many times it is multiplied by itself. Further-
more, each row of Aj is O,(1) for only a finite number of components, and

O,(m~1) for the others. We will use these facts to examine the behaviour
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of Y A*B7IVQ(8) = Y2 6,5, AsB7IVQ(8), and we will do so sep-

arately for the conditional and unconditional regimes. Before proceeding,

we first confirm the convergence of > 7~ A®.

Lemma 4. Assume Conditions (C1)-(C5) are satisfied. Then with proba-

bility tending to one as m,ny, — oo, the geometric sum Y .-, A® converges.

Proof. To prove the result we will show that, with probability tending to one
as m,ny — oo, ||A|| <1 for some sub-multiplicative matrix norm || - ||. In
particular, we will consider the maximum absolute row sum of A, denoted
by || - ||« i-€., the operator norm induced by the vector infinity norm.
From (S3.4)), we have ||Alloc < ||[A1lloc + ||A2lo. We first examine

IA1]|0o. We may break up A; into

>im C_lé_l(XiTVViXi + G_l)_1F3z'

—2 i C_lé_l(XiTVVz‘Xi + é_l)_lF:sz‘
0.5 .
- Z;il Ciléil(XiTVViXi + éil)le&‘
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Op
XWX, +G Y IGIY", C'\G X W, X, + G Fy;
1 =1 )

0.5 (X;WQXQ + éil)iléil 2211 C’lCA;'*l(XZTVVZXZ -+ GAfl)ilF;;i

(XWX, + GHY'G 'Y, C'GYX W, X, + G ) ' Fy,

2 Az + A4As,

where Ay = bdiag(0,,, (X, W1 X,+G )G ,... (X]W,, X,,+G)"'G™"),
and Ay = (0,17)T @ 3", C'G (X[ W, X, + G™)"'Fy;. We can also
write
As = —05(1% @ L)Y C'G Y (X[ W, X, + G )" Fy; and use the
(component-wise) order results as used in to see that ||Aszlle <
10515, ,) ol S0 €~ G (XTWiXi+-G)~ Byl = 0,(1). Next,
we have ||A4As|loc < || Ad]lcol|Asllco- We know [|As|le = 0,(1), and under
conditions (C1)-(C2), we have ||A4]lc = O,(1). Thus we obtain ||[Aq||e =
0p(1)-

Turning to Ay, we examine each row of (Bs + By) ' F3. First, ||(Bs +
B,) ' F|l < (Bs+By) Yoo || F3||o and by conditions (C1)-(C2), we have

(B3 + By) oo = Op(n;'). Now, without loss of generality consider the
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first row of F3. This is given by
—~ [(ﬁ — B)" X "diag(Z;,))W'X + (b—b)" Z diag(Z, ) W'X,

(B —B)" X "diag(Z;))W'Z + (b — b)" Z" diag(Z,))W'Z

— [(B — B)" X Tdiag(Z;))W'X + (b — b)" Z " diag(Z;,)) W' X,
(B —B)" X Tdiag(Z;))W'X + (b —b)" Z " diag(Z[,))W'X, O(Tm_l)p] ,

since diag(Z 1)) selects for the first cluster. Let 1, be a p-vector whose en-
tries consist of the (component-wise) signs of (B—B)TX Tdiabg;(Z[J])Vi/" X+
(b— b)" Z " diag(Z;;)W'X . Then the absolute row sum of the first row of

F3 is given by

2{(B—B)T X "diag(Z,))W'X + (b—b)" Z " diag(Z;,))W’' X }1,|
=2{(8 — B)" X "diag(Z)W'X + (bi — b)) " X " diag(Z;.) W' X1,
=2/{(8 — B+ b, — b)) X "diag(Z,)) W' X }1,|
<2p||{ X "diag(Z1)W'X (B~ B+ b1 — b))}
<2p||{ X T diag(Z},))W' X }HwlB = B + b1 — b1l
<2p|{X " diag(Z) W' X} (I8 — Bl + 11 — billoc)

<2p, _max {X "diag(Zi) W' X Hloo (18 = Blloo + 11 — b1l )

1,...,mp}
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77777

where the second equality follows from diag(Z)) selecting for only the
first cluster, and X; = Z;. The first inequality is due to Holder’s inequality.
Again, using Conditions (C1)-(C2) we have ke{rlr,l.z.i‘?;w}H{XTdiag(Z[,k])VV’X} oo =
Op(ny).

Now, p is a constant and the absolute row sum of any row of Fj can
be bounded analogously in the above way, the only difference being that
for the kth row, then the quantity (131 — bl) changes to the prediction gap
for the cluster that diag(Zy) selects for. This means that the absolute
row sums for the first p rows of F3 are bounded by w;, the next p rows by
wsy, and so on. Hence, to ensure ||As|lcc = 0,(1) it suffices to ensure that
lw® 1pllee = [|W]loo = 0p(nz), where w = (wy,...,wn)".

To show this, define & = (ay,...,q,,)". Then [|w]e < |laln|le +
||at]|oo. By Conditions (C1)-(C2), we have ||al,,|[c = a = Oy(ny) x0,(1) =
op(ny) = 0p(ny). We also have

el = 2p_mas (X diae(Z) WX oo o [b, b
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=2, _mex I{X "diag(Zx)W'X }H o [Ib — bl

= Op(ny) X 0,(1) = 0p(nyy) = 0p(ny),

where the last line follows from conditions (C1)-(C2), and the fact that
10 — 0]l.c = 0,(1). The result follows since ||Al|s is therefore of order
0p(1), and for any € > 0 we have ||A|l« < € with probability tending to one
as m,ny; — oo. The argument above holds for both the conditional and

unconditional regime, and the required result follows. O

S3.1 Conditional Regime

In the conditional regime, we assume without loss of generality that Y ;" | b
0,, recalling that we can always reparametrise the random effects to sat-

isfy this. From previous derivations, we know that when mnz1

— 0,
the quantity B~'VQ() is of order O,(N~Y2) for the first p components
and Op(nzl/ 2) for the last mp components. By the two properties of Aj
noted above, we therefore know that A{B~'VQ(8) is at most O,(n 1/2)
component-wise for any s. Hence 320, 6,5, AsB~'VQ(0) = 6,1, O, (ny"?
op(nzl/ 2) for sufficiently large m,n; by the properties of a geometric sum.

This is sufficient to show that the last mp components of > .~ | A°*B “1VQ(0)

are of smaller order component-wise than B_1VQ(9), so that the result

)=
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for the prediction gap holds. In particular, we thus know that b—b =
Op(nzl/ 2). Furthermore, we also know that the convergence rate of B -8

1/2

1/2
/ ). As a result, we can choose 0p,,, = 1/

is at least of order O,(n,
without affecting the component-wise order properties of As. Applying
Omm, = 1%, we thus have that >, 5,5, AjB71VQ(8) is at most of order

O,(n;") component-wise. This is smaller than O,(N~/2) when mn;' — 0,

and the required result follows.

S3.2 Unconditional Regime

For the unconditional regime, we consider two cases: when mn;1 — 0, and
when mng' — oo but mn;? — 0.

First, consider the case when mnz1 — 0. From previous derivations, we
know that when mn;* — 0, the quantity B~'VQ(0) is of order O, (m~/?)
for the first p components and Op(mfl/ %) for the last mp components. By
the two properties of Aj noted above, we therefore know that AjB _1VQ(9)
is at most O,(m~*/2) component-wise for any s. Hence
S 6 ASBTIVQ(0) = 6,k O,(m?) = o,(m~Y/?) for sufficiently
large m,ny, by the properties of a geometric sum. The required result
1/2

follows from this. Furthermore, this implies we may set 0,,,, = m

without affecting the component-wise order properties of As. Applying
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Omny;, = mY?, we thus have that 320, 6. A;B~'VQ(0) is at most of
order O,(m™") component-wise.
Next, consider the case when mn[_]1 — o0 and mnz2 — 0. From pre-

vious derivations, we know in this setting it holds that B~'VQ(8) is of

order O,(m~'/2) for the first p components and Op(nzl/ ?) for the last mp

components. By the two properties of Aj noted above, we therefore ob-

tain that ASB~'VQ() is at most Op(nZI/Q) component-wise for any s.
0 -5 sp—1 ] -1 —-1/2 -1/2

Hence > 7, 6,5, AsB™'VQ(0) = 6., Oy(n;, ") = op(ny, ") for suffi-

ciently large m,ny, by the properties of a geometric sum. This is suffi-
cient to show that the last mp components of 3°°° A*B~'VQ(8) are of

smaller order component-wise than B_1VQ(9), so that the result for the

prediction gap holds. In particular, we thus know that b — b = Op(nzl/ 2).

Furthermore, we also know that the convergence rate of B — B is at least

Op(nzl/Q). As a result, we can set ., = nlL/Q without affecting the

component-wise order properties of As. Applying 0,,,, = nlL/ 2, we thus

have that >, (5;jnLA§B_1VQ(0') is at most of order O,(n; ') component-

wise. This is smaller than O,(m~2) when mng' — oo, mn;? — 0 and the

result follows.
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S4 Unpartnered Fixed Effects

S4.1 Generalised Linear Models

In the special case when G = 0pxp, i.€., all fixed effects are unpartnered in
the true data generating process, the GLMM reduces to a GLM. We may
then obtain a result based on a special case of our results in the conditional
case, when all the true random effects are equal to zero. The result is as

follows.

Corollary A1. Assume Conditions (C1) - (C5) are satisfied and mn; ' — 0.
Then as m,n;, — oo and when the true vector of random effects b = 0pp,s

it holds that AD(6 — 6) 2 N(0,9).

S4.2 Linear Mixed Models

Suppose for © = 1,...,m and 7 = 1,...,n; we observe data from the

model y;; = :B;;B + z;bi + wl(-jo)TB(O) + €, where x;; = z;; for all (i, ),

b, "L N(0,G) and € - N(0, ¢). Note that this is part of the exponential

family. Partition 3 = (BT, 3T T corresponding to the pp partnered

and py unpartnered fixed effects (pp+py = p). That is, if we partition b; =

pOT

P )

(bgp)T )T, then bgU) = 0,, for all ¢, and the corresponding elements

in G are zero. Let 0% = (ﬁT,bgp)T,...,bg)T,bgU)T,...,bg{)T,B(O)T)T,
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D* = diag(m'/?1,,, N*/21,, ,m'/?1,,,., n/?1,,,. .. i1

pu>

N'21,,), and

pu»

D~ = diag(m'/?1,,, N'/?1 n}/le, . ,n,lflp, NY21,.). Also let X,L»(O) =

pu>

[33510), . ,wgg)]T and X(©) = [XfO)T, . 7X,(nO)T]T. The po orthogonal
(0)

fixed effects @;;" satisfy X O)T7 = 0, xmp, for example orthogonal poly-

O x

nomials of @;;. This implies X, i = 0,,xp for all i. For a ¢ x {(m +

1)p+po} matrix A* with the finite selection property, we have the following.

Corollary A2. Assume Conditions (C1) - (C4) are satisfied. Then as

m,ny — oo and unconditional on the random effects b, it holds that
1. A*D*(6* — 6*) 5 N(0,9,) if mn;' — 0, and

2. A*D~ (6~ — 67) 3 N(0,9,) if mn;" — oo,

where
G[lipp,lipP] 0pp xpu 17—; ® G[lipp,lipp] 0y xmpy
OPUXPP 1 OPUXWWP OPUXWWU
Q2 = m,,lliLniooA* L ® G[lipPJiPP] Omppxpy  Lmxm @ G[lipp,lipp] 0rnpp xmpy
OmPU Xpp OmPU XpuU OmpU Xmpp 2
i OPOXPP OPOXPU OPOX"UU> OPOX"UW

O;DP Xpo
OPU Xpo
0

mpp Xpo

OmpU Xpo

2
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G[LPPJZPP] 0pp xpu
. N OPU Xpp 2
Q= lim A
m,ng,—00
OmepP OmepU
Opo Xpp Opo Xpu

—1
Q, = bdiag H¢ (Xl—;Xl) } s {
1

—1
} [(p—pu+1):p,(p—pU+1):p]

(22 )]

OPP xXmp OPP Xpo

OPU xXmp OPU Xpo

A*T

94 Omepo

Q3

OPO xXmp

—1 }
[(p—pr+1):p,(p—pu+1):p]

,”w{é(

XX

m

N

)}
[(p—pu+1):p,(p—pU+1):p]

Proof. We use the same approach as previous proofs and examine the Taylor

expansion ([S2.1). In this case, we have the expressions

vQ(8)

B(§) = —V*Q(6)

6 X (y — fa)

OIXOT(y — )

XWX

XOTwx

A

612 (y—p) — (I, ® G )b|

X"wWz

ZTWX ZWZ+1,2G!

XOTwz

XTwXx©
ZTWX©)

XOTw x ()
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X'X X'Z

OPXPO

_ -1 o
=90 |Z'X Z"Z+1,9G"  Oppxpo |

_Opo Xp Opo Xmp X(O)TX(O)

where the last equality follows from the fact that W = ¢ Iy and X(OTZ =

0,0 xmp- Since B(0) is block diagonal, we thus know that expressions (52.9)

and (|S2.10)) still hold. Recall

B-B=m > (X W.X) X (g — f) +m > b,
i=1 =1

| a1 ;
—m DY (XWX + GG b+ Q{B”R(O)}u:p]

=1

+ Op(nil){m_l SN XIWX+ GO X (g — ) +m ) b

i=1 i=1

—m ) (XWX + G—l)—lé-lbi} +m Y 0, ?)o X (i — pa)

i=1 =1

and

b—b=-1,0m'Y b+ By {6 Z (y— 1)}

=1

_ _ 1, _
+ Op(N 1/2) + Op(nLl) + §{B 1R(9)}[p+1:(m+1)p]'

In the LMM case, the remainder term in the Taylor expansion is zero.
Thus the dominating term on the right hand side for B(U) — BY) are

the last py components of m=' 327 (X, W, X,;) "¢~ X, (y; — f1,), since
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the last py components of m=t3 ", b; are zero. Noting that y;, — p; =
(€1, - - .,emi)T =: €;, the result for the unpartnered fixed effects follows
after normalising by N/2,

Next, again from the Taylor expansion we have from the block-diagonal
structure of B(#) that 3@ — B0 = (X(OT X)) ~1X O (y — 1) and the
result follows after normalising by N'/2 since y —f1 = (€11, . . ., €mn,, ) =: €.

Finally, the result for the unpartnered random effects follows from the
fact that the last py components of m= > 1", b; are zero so that the domi-
nating term on the right hand side is (X" X;) ™' X" (y; — f1;), and normal-
ising by n;.

The proofs for the partnered fixed and random effects are analogous to
the proofs of Theorems 2 and 4, based on examining the leading term in
the Taylor expansion.

For the joint behaviour of the estimator, we examine the joint behaviour
of the leading terms in the Taylor Expansion. Note that € is multivariate
normal with covariance matrix gz5I v, b is multivariate normal with covari-
ance matrix I,, ® G, € and b are independent, and all the leading terms
in the Taylor expansion are linear functions of € and b. To determine the
joint behaviour of the estimator it is thus sufficient to derive the limiting

covariance between the normalised leading terms, as we see (from the lead-
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ing terms) that the estimator itself is also (asymptotically) multivariate
normal. For example,

m

Cov {N1/2m1 (XZTXl)le'ZT(yZ o MZ)? Nl/Z(X(O)Tx(O))le(O)T(y o u)}

i=1

=nd > (X X)X X O(XOT X @)

7
=1

=0

PXpo

due to the mutual independence of the ¢;; and orthogonality condition of
X (). The pairwise limiting covariances between the leading terms can all
be derived in a similar way and the result follows. Notice here that quanti-
ties with different convergence rates are always asymptotically uncorrelated

and independent in this case.

Note that the results hold by the Lindeberg-Feller Central Limit The-
orem even if the true distribution of ¢;; is not normal, as long as it is mean
zero with finite variance. Also note that condition (C5) is no longer re-
quired, and that there is no restriction on the relative rates of m and ny,
since there is no remainder term to deal with. Our result is consistent
with the results derived in Lyu and Welsh| (2021a,b) who also derive a N'/?

convergence rate for unpartnered fixed effects that are time-varying.
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In practice, we do not know if a fixed effect is truly partnered with
a random effect or not, and therefore the correct asymptotic distribution
and convergence rate is also unknown. In this case, an appropriate finite
sample approximation, given consistent estimators G and gE of G and ¢

respectively, is

. s O Tx\ !
ﬂ—ﬁwN{O,m‘lGJrN_ngE(XlXl) }
m n; n;

i=1
which is based on the distribution of m=* 3" (X W, X,) "¢ X/ (y; —

fri) +m Yy b;, noting that the two terms are independent.



S5. ADDITIONAL SIMULATION RESULTS

S5 Additional Simulation Results

S5.1 Main Results for the Conditional Regime

Figures [1] 2] and [3] display the empirical coverage probabilities and results
from applying the Shapiro-Wilk test, respectively, under the conditional
regime and for the 25 combinations of (m,n). Although our coverage inter-
vals often undercovered or overcovered for small cluster sizes e.g., n = 25,
especially for the Bernoulli case, they all moved toward nominal coverage
as n becomes larger than m. This is consistent with Theorem [I} The fact
the empirical coverage probabilities were slow in tending towards the nom-
inal 95% level was also not overly surprising, as the third derivative term
in the corresponding Taylor expansion is O, (m!/ anl/ ?). The Shapiro-Wilk
tests overall did not indicate any evidence of deviations away from nor-
mality when m < n, although there were occasionally a few p-values less
than 0.05. Overall, these results strongly support the use of Theorem [1| for

inference under the conditional regime.
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Poisson Responses
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Figure 1: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Bernoulli Responses
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Figure 2: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Poisson Responses
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Figure 3: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 4: Histograms for the third components of 8 — 3 (left panels) and b, — by (right
panels), under the conditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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S5.2 Frobenius Norm

Table 1: Empirical mean Frobenius norm of the difference between estimated and true
random effects covariance matrix.

G=m3 b

G = 0.251,

G =051,

G=1

G =4I,

Poisson Bernoulli
m n=25 n=50 n=100 n=200 n =400 n=25 n=50 n=100 n=200 mn =400
25 1.06 1.06 1.06 1.05 1.06 1.76 1.47 1.24 1.12 1.09
50 0.77 0.75 0.75 0.76 0.75 1.79 1.40 1.03 0.83 0.77
100 0.54 0.54 0.54 0.54 0.54 1.80 1.38 0.89 0.63 0.56
200 0.39 0.38 0.38 0.38 0.38 1.80 1.35 0.82 0.51 0.41
400 0.27 0.27 0.27 0.27 0.27 1.81 1.35 0.78 0.43 0.32
25 1.02 1.01 1.03 1.05 1.04 1.90 1.71 1.47 1.23 1.04
50 0.73 0.73 0.74 0.74 0.76 1.90 1.70 1.44 1.15 0.91
100 0.56 0.53 0.52 0.53 0.54 1.90 1.69 1.42 1.11 0.84
200 0.44 0.39 0.37 0.38 0.38 1.90 1.68 1.41 1.09 0.79
400 0.38 0.29 0.27 0.27 0.27 1.89 1.68 1.40 1.08 0.77
25 1.02 1.03 1.04 1.05 1.05 1.61 1.39 1.16 1.01 0.96
50 0.74 0.75 0.75 0.75 0.74 1.61 1.34 1.07 0.86 0.75
100 0.53 0.52 0.54 0.54 0.54 1.60 1.32 1.03 0.77 0.61
200 0.39 0.38 0.38 0.38 0.38 1.59 1.31 1.01 0.73 0.52
400 0.30 0.27 0.27 0.27 0.27 1.59 1.30 0.99 0.70 0.47
25 1.06 1.05 1.04 1.04 1.06 1.21 1.06 0.98 0.97 1.00
50 0.74 0.75 0.75 0.75 0.76 1.17 0.93 0.78 0.73 0.71
100 0.53 0.53 0.54 0.53 0.54 1.13 0.86 0.65 0.56 0.53
200 0.38 0.38 0.38 0.38 0.38 1.12 0.82 0.58 0.44 0.39
400 0.27 0.27 0.27 0.27 0.27 1.10 0.80 0.55 0.38 0.30
25 1.06 1.06 1.06 1.05 1.06 0.84 0.98 1.03 1.04 1.05
50 0.75 0.74 0.75 0.76 0.75 0.71 0.71 0.74 0.74 0.75
100 0.54 0.54 0.54 0.53 0.53 0.56 0.51 0.53 0.53 0.54
200 0.38 0.38 0.38 0.38 0.38 0.47 0.38 0.37 0.38 0.38
400 0.27 0.27 0.27 0.27 0.27 0.42 0.29 0.27 0.27 0.27
25 1.06 1.06 1.06 1.06 1.06 1.33 1.42 1.25 1.16 1.11
50 0.77 0.76 0.76 0.75 0.76 1.18 1.07 0.93 0.83 0.80
100 0.55 0.54 0.54 0.54 0.54 0.97 0.86 0.70 0.61 0.57
200 0.39 0.38 0.38 0.38 0.38 0.86 0.72 0.55 0.45 0.41
400 0.27 0.27 0.27 0.27 0.27 0.80 0.65 0.46 0.34 0.30




S5. ADDITIONAL SIMULATION RESULTS

S5.3 G =0.25 I,

Using a large G of 41, had the least impact on the results, while a small
G’, e.g., 0.251, had more of a noticeable impact at small sample sizes. This
is not surprising since the latter corresponds to more shrinkage, such that

larger sample sizes are needed before asymptotic results apply.
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Figure 5: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 6: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 7: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 8: Histograms for the third components of 8 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 9: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 10: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 11: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 12: Histograms for the third components of 8 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 13: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson

responses.
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Figure 14: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 15: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 16: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 17: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 18: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 19: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 20: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.



Xu Ning AND Francis Hui AND Alan Welsh

Poisson Responses
Fixedl Fixed2 Fixed3 Fixed4 Fixed5
1.001 1.00+ 1.001 1.00- 1.001
0.98+
0.98+ 0.98+ 0.98 0.98
0.96
0.961 0.96
0.96 1 0.961
o B A= O\ /| 0.94 _f_ N
g NV~ T '
S 0.94 0.94 1 0.94. 0.52. 0.94.
> T T T T T T T T T T T T - T T T T
o) QOO QOO QOO0 L QOO0 L
o INDSENN INDSENENY INDSENEN NDSENENY
S 100 Rand1 Rand2 Rand3 Rand4
a7 1.001 1.00 1.00
e
L
0.98
0.981! 0.984 0.98+
0.96 |
1 0.961 0.96. 0.96+
0.94
0.94+ 0.94+
QL0 L QL0 L OO L
NSO NSHSENENS DN SN
Cluster size

Number of Clusters — 25 — 50 — 100 — 200

400

Figure 21: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson

responses.
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Figure 22: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 23: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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and the red curve is a kernel density smoother.

15
10

00T

15
10

002
002

15
10

0ot

oov

00T
ON DO DXONDODDBONDDPONDD XN B O ®

-

e
FEE
FEEE

FERYE
Fobb]

25

400

75
5.0
25
0.0
75
5.0
25
0.0
75
5.0
25
0.0
75
5.0
25
0.0

ST
4

0S
0

00T

002

75
5.0
25
0.0

ooy
ooy

FEFEF]

00T
O B N O B N O B N O B N O B N

ek
et
=)
e
.




Xu Ning AND Francis Hui AND Alan Welsh

Poisson Responses

Fixedl Fixed2 Fixed3 Fixed4 Fixed5
0.98
0.97 0.97+ 0.98
0.96 0.971
0.964 0.971
0.961
0.95+ £-
%0.94- 0.951 0.951 /{ 0.95 7=
I
©ool, o Joeal O Joeal
o QLD QLD QO L QL0 LD QL0
SN LS A SN S SN S S SIS S S
8 Rand1 Rand2 Rand3 Rand4
5 0.971
g' 0.960
w 0.96 | ] 0.96+
o 0.9551 \ 0.954
0.950 1 0.95+ T 0.95+
0.957 0.945-
0.94+ 0.94 1
0.940 1 0.941
094- T T T T 0.935- T T T T T T T T 0.93- T T T T
QL0 L QLD QL0 L OO0
INDENN TSR RN NS REN
Cluster size

Number of Clusters — 25 — 50 — 100 — 200 400

Figure 25: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 26: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 27: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 28: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.



Xu Ning AND Francis Hui AND Alan Welsh

S5.6 G =21,

Poisson Responses

Fixed1 Fixed2 Fixed3 Fixed4 Fixed5
1.00+ 1.00+ 1.00+

0.981 0.98 0.98 0.98 1

o

©

>
1

0.961 0.96 1
]
& 0.94
g 0.94 0.941
>
(@]
@)
©
Q
p—
5 1.001 1.00 1.00+
£ 0.981
L
0.97
0.98 0.984 0.98+
0.961
0.951 0.96-
0.94
— 094+
Q0L OO Q0L O Q0L
NSOSESEN NSONENENS NSOSESENY NS
Cluster size

Number of Clusters — 25 — 50 — 100 — 200 400

Figure 29: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 30: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli
responses.
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Figure 31: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 32: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 33: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 34: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 35: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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Figure 36: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 37: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Poisson
responses.
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Figure 38: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the unconditional regime with Bernoulli

responses.
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Figure 39: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the unconditional regime.
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Figure 40: Histograms for the third components of 3 — 3 (left panels) and b, — by (right
panels), under the unconditional regime. Vertical facets represent the cluster sizes, while
horizontal facets represent the number of clusters. The dotted blue line indicates zero,
and the red curve is a kernel density smoother.
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Figure 41: Empirical coverage probability of 95% coverage intervals for the five fixed and
random effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 42: Empirical coverage probability of 95% coverage intervals for the five fixed
and random effects estimates, obtained under the conditional regime with Bernoulli
responses.
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Figure 43: p-values from Shapiro-Wilk tests applied to the fixed and random effects
estimates obtained using maximum PQL estimation, under the conditional regime.
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