
Statistica Sinica: Supplement

Robust Inverse Regression for

Multivariate Elliptical Functional Data

Eftychia Solea, Eliana Christou, and Jun Song

Queen Mary University of London,

University of North Carolina at Charlotte, and Korea University

The supplementary consists of four main sections. Section S1 provides the proofs of the main

results of the paper, unless it is explicitly stated there that the proof is omitted. The proofs

appear in the same order as the one they are presented in the main manuscript. Section S2

provides details on the development of the algorithms outlined in Section 5 of the paper. Finally,

Sections S3 and S4 present additional simulation results that are not presented in the paper due

to limited space. Note that, all the equations in the supplementary are labeled as (S1), (S2),

and so on, while all the lemmas that appear exclusively here are labelled as “S” followed by a

number (such as Lemma S1). This is to distinguish them from their counterparts in the paper,

such as Lemma 1.
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S1 Proofs of Main Results

S1.1 Useful Lemmas

Lemma S1. Suppose A,B ∈ B (⊕p
i=1H i) are self adjoint and invertible

operators. Then

A−1 −B−1 =(A−B)A−2 +B−2(A−B)−B−2A2(A−B)A−2

−B−2(A−B)B2A−2 −B−2A(A−B)BA−2.

If ϵn and δn are two sequences of positive numbers such that ϵn/δn → 0,

then we write ϵn ≺ δn or δn ≻ ϵn. If the sequence ϵn/δn either goes to

zero or is bounded, then we write ϵn ⪯ δn or δn ⪰ ϵn. The next lemma

reveals the role played by Tychonoff regularization in the asymptotic order

of magnitude and is given in Li and Solea (2018).

Lemma S2. For any self adjoint operator A, ϵn ≺ 1, and a > 0, b >

0, we have ∥(A + ϵnI)
−bAa∥ = O(ϵmin{0,a−b}

n ). If Ân is a sequence of self

adjoint random operator with ∥Ân∥ = OP (1), then ∥(Ân + ϵnI)
−bÂa

n∥ =

OP (ϵ
min{0,a−b}
n ).

Lemma S3. If A and B are self adjoint and invertible linear operators,
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then

A−1/2 −B−1/2 =A−3/2(B3/2 − A3/2)B−1/2 + A−3/2(A−B)

=A−1/2(B3/2 − A3/2)B−3/2 + (A−B)B−3/2.

S1.2 Proof of Lemma 1

We extend the arguments of Han and Liu (2018) to the functional setting.

Since X, X̃ ∼ Ep(µX,Σ, φ), then there exists a bounded linear operator

A : ⊕p
i=1H i 7→ Rd, d ≥ 1, such that AX ∼ E d(AµX, AΣA

∗, φ) and AX̃ ∼

E d(AµX, AΣA
∗, φ). By independence of X and X̃, we have

E[exp{itTA(X − X̃)}] = φ2{tT(AΣA∗)t}.

Therefore, X− X̃ ∼ Ep(0,Σ, φ2). Further, by the characterization of ellipti-

cal random elements, X− X̃ d
= S ′N , where S ′ and N are independent, S ′ is

a nonnegative random variable such that E(S ′2) = 1, and N is a Gaussian

random element with zero mean and with the same covariance operator as

X − X̃. Then,

E
{(X − X̃)⊗ (X − X̃)T

∥X − X̃∥2
⊕H

}
= E

{(S ′N)⊗ (S ′N)T

∥S ′N∥2
⊕H

}
= E

(N ⊗NT

∥N∥2
⊕H

)
.

(S1.1)
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Since X ∼ Ep(µX,Σ, φ), then X−µX
d
= SN for some S nonnegative random

variable, independent of N , and

E
{(SN)⊗ (SN)T

∥SN∥2
⊕H

}
= E

{(X − µX)⊗ (X − µX)
T

∥X − µX∥2
⊕H

}
. (S1.2)

Combining (S1.1) and (S1.2) completes the proof. □

S1.3 Proof of Theorem 2

The proof uses similar steps as in Chen et al. (2022) and it suffices to show

that

span{TXXβ1, . . . , TXXβK} = span{ΣXXβ1, . . . ,ΣXXβK}.

Let h ∈ ⊕p
i=1H i and B = (β1, . . . , βK). Then, by the spectral decomposition

TXX =
∑∞

r=1
δrψr ⊗ ψr, we have

BTXXh = B
∞∑
r=1

δr⟨ψr, h⟩⊕H ψr = B
∞∑
r=1

E
( γrY

2
r∑∞

k=1
γkY

2
k

)
⟨ψr, h⟩⊕H ψr

= B

∞∑
r=1

E
( Y 2

r∑∞
k=1
γkY

2
k

)
γr⟨ψr, h⟩⊕H ψr

= B

∞∑
r=1

E
( Y 2

1∑∞
k=1
γkY

2
k

)
γr⟨ψr, h⟩⊕H ψr

= B
∞∑
r=1

θγr⟨ψr, h⟩⊕H ψr = B

∞∑
r=1

γr⟨ψr, θh⟩⊕H ψr = BΣXX(θh),

where θ = E
(
Y 2

1 /
∑∞

k=1
γkY

2
k

)
and the fourth equality follows by the fact

that Yr, r = 1, . . ., are independent standard normal random variables. This
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completes the proof. □

S1.4 Proof of Theorem 3

The Karhunen-Loève decomposition (2.3) of X givesX−µX =
∑∞

r=1
γ1/2
r ρr ψr.

Let ρ∗r = γ1/2
r ρr and write

E(X|Y )− E(X) = E
(∑∞

r=1
ρ∗
rψr|Y

)
=
∑∞

r=1
E(ρ∗

r|Y )ψr. (S1.3)

Let {ψ1, . . . , ψp} be an orthonormal basis in ⊕p
i=1H i, for some p < ∞ and

p ≤ p′ ≤ ∞ for a large integer p′. By Proposition 2.2 and Theorem 1 of

Wang et al. (2022) it is enough to show that the coefficients {E(ρ∗
r|Y )ψr, r ≥

1} are coordinate-wise symmetric. In other words, E(X|Y ) is functional

coordinate symmetric (FCS) and hence weakly FCS.

Note that, since X is an elliptical element in ⊕p
i=1H i, it is also FCS; see

Proposition 2.2 in Wang et al. (2022). Hence,

(ρ∗
1, . . . , ρ

∗
p)

T = (⟨X − µX, ψ1⟩⊕H, . . . , ⟨X − µX, ψp⟩⊕H)
T = ΩψZψ, (S1.4)

where Ωψ is a p× p′ matrix such that ΩψΩ
T
ψ = Ip and Zψ is a p-dimensional

random vector such that GZψ = Zψ, where G is a diagonal matrix with
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diagonal elements Gii ∈ {−1, 1}. Then, using equation (S1.3) we obtain

(⟨E(X|Y )− E(X), ψ1⟩⊕H, . . . , ⟨E(X|Y )− E(X), ψp⟩⊕H)
T

= (E(ρ∗
1|Y ), . . . ,E(ρ∗

p|Y ))T = E((ρ∗
1, . . . , ρ

∗
p)

T|Y ) = ΩψE(Zψ|Y ),

where the last equality follows from (S1.4). Then, E(GZψ|Y ) is coordinate-

wise symmetric since GE(Zψ|Y ) = E(GZψ|Y ) = E(Zψ|Y ) and the proof is

complete. □

S1.5 Proof of Proposition 1

First we show that T † 1
2

XXTXX|YT
† 1
2

XX is well-defined. For any u ∈ R
T

1
2
XX

, we need

to show that TXX|YT
† 1
2

XXu ∈ R
T

1
2
XX

, i.e
∑∞

i=1
δ−1
i |⟨TXX|YT

† 1
2

XXu, ψi⟩|2 < ∞. Re-

call the definitions of T † 1
2

XX =
∑∞

i=1
δ −1/2ψi⊗ψi and TXX|Y =

∑∞
=1

∑∞
j=1
Rijψi⊗

ψj, where

Rij = E

[
{E(ρ∗

i |Y )− E(ρ∗
i |Ỹ )}{E(ρ∗

j |Y )− E(ρ∗
j |Ỹ )}∑∞

r=1
{E(ρ∗

r|Y )− E(ρ∗
r|Ỹ )}2

]
.

Let u ∈ R
T

1
2
XX

. By the orthonormality of the {ψi}i≥1 and the Cauchy-

Schwartz inequality we have

∑∞
i=1
δ−1
i |⟨TXX|YT

† 1
2

XXu, ψi⟩|2 ≤
∑∞

i=1

∑∞
j=1

R2
ij

δiδj

∑∞
ℓ=1

|⟨ψℓ, u⟩|2

≤
∑∞

i=1

∑∞
j=1

R2
ij

δiδj
∥u∥2

H <∞
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due to Assumption 3 and the last inequality is due to Parseval’s identity.

Thus, the operator T † 1
2

XXTXX|YT
† 1
2

XX is a well-defined operator from R
T
1/2
XX

to

R−1

T
1/2
XX

. Next, we show that the eigenfunctions η1, . . . , ηK of T † 1
2

XXTXX|YT
† 1
2

XX

are well-defined in ⊕p
i=1H i. Since ηk is an eigenfunction, we need to show

that T † 1
2

XXTXX|YT
† 1
2

XXηk belongs to R
T
1/2
XX

, for any k = 1, . . . , K. By the or-

thonormality of the {ψi}i≥1 and the Cauchy-Schwartz inequality, we have

for any k, by

∑∞
i=1
δ−1
i |⟨T † 1

2
XXTXX|YT

† 1
2

XXηk, ψi⟩|2 ≤
∑∞

i=1

∑∞
j=1

R2
ij

δ2i δj
∥ηk∥2

H =
∑∞

i=1

∑∞
j=1

R2
ij

δ2i δj
<∞

due to the fact that ∥ηk∥2
H = 1 and by Assumption 3. Therefore, ηk ∈ R

T
1/2
XX

.

□

S1.6 Proof of Theorem 5

We extend the proof of Proposition 2 in Chen et al. (2022) to random

operators in B (⊕p
i=1H i). First, we decompose T̂XX|Y −TXX|Y = A1+A2+A3,

where

A1 =
2

n(n− 1)

∑
1≤u<u′≤n

{m(Yu)−m(Y
u′ )}⊗{m(Yu)−m(Y

u′ )}
T

∥m(Yu)−m(Y
u′ )∥

2
⊕H

− E
[{m(Y )− m(Y ′)} ⊗ {m(Y )− m(Y ′)}T

∥m(Y )− m(Y ′)∥2
⊕H

]
,
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A2 =
2

H(H − 1)

∑
1≤h<h′≤H

{µX|Y (h)−µX|Y (h′)}⊗{µX|Y (h)−µX|Y (h′)}T

∥µX|Y (h)−µX|Y (h′)∥2⊕H

− 2

n(n− 1)

∑
1≤u<u′≤n

{m(Yu)−m(Y
u′ )}⊗{m(Yu)−m(Y

u′ )}
T

∥m(Yu)−m(Y
u′ )∥

2
⊕H

,

A3 =
2

H(H − 1)

∑
1≤h<h′≤H

{µ̂X|Y (h)−µ̂X|Y (h′)}⊗{µ̂X|Y (h)−µ̂X|Y (h′)}T

∥µ̂X|Y (h)−µ̂X|Y (h′)∥2⊕H

− 2

H(H − 1)

∑
1≤h<h′≤H

{µX|Y (h)−µX|Y (h′)}⊗{µX|Y (h)−µX|Y (h′)}T

∥µX|Y (h)−µX|Y (h′)∥2⊕H
.

Then, ∥T̂XX|Y − TXX|Y ∥op ≤ ∥A1∥op + ∥A2∥op + ∥A3∥op, and therefore, it is

enough to derive the convergence rates of ∥A1∥op, ∥A2∥op, and ∥A3∥op.

First, use Theorem 4 to get

∥A1∥op = Op(n
−1/2). (S1.5)

Next, decompose the second term at the right hand side of A2 into

2

n(n− 1)

∑
1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1

{m(Yhj)−m(Y
h′k)}⊗{m(Yhj)−m(Y

h′k)}
T

∥m(Yhj)−m(Y
h′k)∥

2
⊕H

+
2

n(n− 1)

∑
H

h=1

∑
1≤j<k≤ℓ

{m(Yhj)−m(Yhk)}⊗(m{Yhj)−m(Yhk)}T
∥m(Yhj)−m(Yhk)∥2⊕H

and write A2 as A21 + A22, where

A21 =
2

H(H − 1)

∑
1≤h<h′≤H

{µX|Y (h)−µX|Y (h′)}⊗{µX|Y (h)−µX|Y (h′)}T

∥µX|Y (h)−µX|Y (h′)∥2⊕H

− 2

n(n− 1)

∑
1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1

{m(Yhj)−m(Y
h′k)}⊗{m(Yhj)−m(Y

h′k)}
T

∥m(Yhj)−m(Y
h′k)∥

2
⊕H

,

A22 =
2

n(n− 1)

∑
H

h=1

∑
1≤j<k≤ℓ

{m(Yhj)−m(Yhk)}⊗{m(Yhj)−m(Yhk)}T
∥m(Yhj)−m(Yhk)∥2⊕H

.

Then, ∥A2∥op ≤ ∥A21∥op+∥A22∥op and it is enough to derive the convergence

rates of ∥A21∥op and ∥A22∥op. By noting that µX|Y (h) = E(X|Y ∈ Jh) =
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E(X|Y ∈ J(hj)) = m(Yhj), the first term of A21 can be rewritten as

2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1

{m(Yhj)−m(Y
h′j)}⊗{m(Yhk)−m(Y

h′k)}
T

∥µX|Y (h)−µX|Y (h′)∥2⊕H
.

Moreover, by Jensen’s inequality

E(∥µX|Y (h)∥2

⊕H) ≤ E{E(∥X∥2|Y ∈ Jh)} = E(∥X∥2) <∞.

Thus, ∥µX|Y (h)− µX|Y (h
′)∥2

⊕H = Op(1).

Now, further decompose A21 into A211 + A212 + A213 + A214, where

A211 =
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1
{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yhk)}T,

A212 =
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1
{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yh′k)}T,

A213 =
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1
{m(Yhj)− m(Yh′k)} ⊗ {m(Yhj)− m(Yh′k)}T,

A214 =
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1
{m(Yhj)− m(Yh′k)} ⊗ {m(Yh′j)− m(Yh′k)}T.

Since ∥A21∥op ≤ ∥A211∥op + ∥A212∥op + ∥A213∥op + ∥A214∥op it is enough to

derive the convergence rates of ∥A21k∥op, k = 1, 2, 3, 4.

For A211, note that

A211 =
2

Hℓ2
∑

H

h=1

∑
ℓ

j=1

∑
ℓ

k=1
{m(Yhj)− m(Yhk)} ⊗ {m(Yhk)− m(Yhj)}T,

where A211 = 0 when j = k. Therefore, we can rewrite A211 as

A2111 + A2112 =
2

Hℓ2
∑

H

h=1

∑
1≤j<k≤ℓ{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yhk)}T

+
2

Hℓ2
∑

H

h=1

∑
1≤j<k≤ℓ{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yhk)}T.
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Hence, ∥A211∥op ≤ ∥A2111∥op + ∥A2112∥op. Below we derive the convergence

rate of A2112. The convergence rate of A2111 is derived using similar argu-

ments, and thus we omit the details. For the derivation we use similar

arguments as in the proof of Theorem 1 of Zhu and Ng (1995). In particu-

lar, arrange the inner double summation and move the summation over h

to obtain

∥A2112∥ ≤ 2

nℓ

∑
H

h=1

∑
ℓ−1

m=1

∑
ℓ−m
k=1

∥m(Yh(k+m))− m(Yhk)∥⊕H∥m(Yh(k+m))− m(Yhk)∥⊕H

=
2

nℓ

∑
ℓ−1

m=1

∑
m

d=1
Cdm,

where

Cdm =
∑

H

h=1

∑
∗∥m(Yh(d+km))− m(Yh(d+(k−1)m))∥2

⊕H,

and the summation ∗ is over d subject to the restriction d + km ≤ ℓ −m.

Next, for any δ such that 0 < δ < 1/2, we partition the outer sum over h

into three intervals [1, Hδ], [Hδ+1, H(1− p)] and [H(1− p)+1, H]. Then,

Cdm = C1
dm + C2

dm + C3
dm. Under the conditions of Theorem 5 and following

the same arguments as in the proof of Lemma A.3 in Hsing and Carroll

(1992), we can show that for each C i
dm, i = 1, 2, 3, the maximum over d and

m has order Op(n
1/2). Hence, ∥A2112∥op has order Op(n

−1/2). Therefore,

∥A211∥op ≤ ∥A2111∥op + ∥A2112∥op = Op(n
−1/2).
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Next, we consider A212. Using the same arguments as with A211, we can

decompose A212 as

A2121 + A2122 =

2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
1≤k<j≤ℓ{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yhk)}T

+
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
1≤j<k≤ℓ{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yh′k)}T.

Again, it suffices to consider the term A2122 since the terms A2121 and A2122

are essentially identical. Note that,

∥A2122∥op ≤
2

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
1≤k<j≤ℓ∥m(Yhj)− m(Yhk)∥⊕H∥m(Yh′j)− m(Yhk)∥⊕H

which can be written as

∥A2122∥op =
2

n(H − 1)ℓ

∑
ℓ−1

m′=1

∑
m′

b=1
Cbm′am,

where

Cbm′am =
∑

H−1

m=1

∑
m

a=1

∑
∗

∑
∗∗

[
∥m(Ya+hm,b+jm′)− m(Ya+(h−1)m,b+(j−1)m′)∥⊕H

×∥m(Ya+(h−1)m,b+jm′)− m(Ya+(h−1)m,b+(j−1)m′)∥⊕H

]
,

where the summation ∗ is over h subject to the restriction a+hm ≤ H−m

and the summation ∗∗ is over j subject to the restriction b+ jm′ ≤ ℓ−m′.

Parallel to the proof of Lemma A.3 in Hsing and Carroll (1992), if we can

choose small δ such that 0 < δ < 1/2 and divide the outer summation over
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h into three summations over [1, (H − 1)δ], [(H − 1)δ + 1, (H − 1)(1 − δ)]

and [(H − 1)(1− δ) + 1, H − 1] such that C1

bm′am+C2

bm′am+C3

bm′am, then we

can show that the maximum over a, b,m and m′ is of the order Op(n
1/2).

Hence, the term A2122 is of order Op(n
−1/2). Therefore, ∥A212∥op = Op(n

−1/2).

Similarly, we can derive ∥A214∥op = Op(n
−1/2). For A213, we have

∥A213∥op ≤ ∥A2131∥op + ∥A2132∥op,

where

A2131 =
4

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
1≤j<k≤ℓ∥m(Yhj)− m(Yh′k)∥2

⊕H,

A2132 =
4

H(H − 1)ℓ2
∑

1≤h<h′≤H

∑
ℓ

j=1
∥m(Yhj)− m(Yh′j)∥2

⊕H.

It can be shown using the same arguments for the terms A211 and A212, that

A2131 = Op(n
−1/2). For A2132,

∥A2132∥ ≤ 4

H(H − 1)ℓ2
∑

H−1

m=1

∑
H−m
h=1

∑
ℓ

j=1
∥m(Yh+m,j)− m(Yhj)∥2

⊕H

≤ 4

H(H − 1)ℓ2
∑

H−1

m=1

∑
h=1

n−m∥m(Yh+m)− m(Yh)∥2
⊕H

≤ 4

H(H − 1)ℓ2
∑

H−1

m=1

∑
m

h1=1

∑
n−1

h2=1
∥m(Yh2+1)− m(Yh2)∥2

⊕H

≤ 4

Hℓ2
∑

n−1

h2=1
∥m(Yh2+1)− m(Yh2)∥2

⊕H

≤ 4

nℓ

∑
n−1

h2=1
∥m(Yh2+1)− m(Yh2)∥2

⊕H = Op(n
−1/2),

by Lemma A.3 in Hsing and Carroll (1992).
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Combining the results of ∥A21k∥op, k = 1, 2, 3, 4, yields that the first

term at the right hand side of A21 is of order Op(n
−1/2). Next, for the

second term at the right hand side of A21, we have

∥∥∥∥{m(Yhj)− m(Yh′k)} ⊗ {m(Yhj)− m(Yh′k)}T

∥m(Yhj)− m(Yh′k)∥⊕H

∥∥∥∥
op

≤ 1.

Hence,

∥∥∥∥ 2

n(n− 1)

∑
1≤h<h′≤H

∑
ℓ

j=1

∑
ℓ

k=1

{m(Yhj)−m(Y
h′k)}⊗{m(Yhj)−m(Y

h′k)}
T

∥m(Yhj)−m(Y
h′k)∥⊕H

∥∥∥∥
op

≤ 2

n(n− 1)

= Op(n
−1).

Therefore, ∥A21∥op = Op(n
−1/2 + n−1) = Op(n

−1/2).

Next, we consider ∥A22∥op. Since

∥∥∥∥{m(Yhj)− m(Yhk)} ⊗ {m(Yhj)− m(Yhk)}T

∥m(Yhj)− m(Yhk)∥⊕H

∥∥∥∥
op

≤ 1,

then ∥A22∥op is of order Op(n
−1). By combining the results for ∥A21∥op and

∥A22∥op we have

∥A2∥op = Op(n
−1/2). (S1.6)

For A3, first we introduce some notation. Let Mhh′ = µX|Y (h)−µX|Y (h
′)

and M̂hh′ = µ̂X|Y (h)− µ̂X|Y (h
′). Following the same calculations as in Chen
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et al. (2022), we can decompose A3 = A31 + A32 where

A31 =
M̂hh′ ⊗ M̂T

hh′

∥M̂hh′∥2
⊕H

− M̂hh′ ⊗ M̂T

hh′

∥Mhh′∥2
⊕H

,

A32 =
M̂hh′ ⊗ M̂T

hh′

∥Mhh′∥2
⊕H

− Mhh′ ⊗MT

hh′

∥Mhh′∥2
⊕H

.

Hence, ∥A3∥ ≤ ∥A31∥op+∥A32∥op. For A31, we obtain after some calculations,

∥A31∥op ≤ ∥M̂hh′ ⊗ M̂T

hh′∥op

∣∣∣∣∣∥Mhh′∥2
⊕H − ∥M̂hh′∥2

⊕H

∥M̂hh′∥2
⊕H∥Mhh′∥2

⊕H

∣∣∣∣∣
= ∥M̂hh′ ⊗ M̂T

hh′∥op

∣∣∣∣∣(∥Mhh′∥⊕H + ∥M̂hh′∥⊕H)

∥M̂hh′∥2
⊕H∥Mhh′∥2

⊕H

∣∣∣∣∣ ∣∣∣∥Mhh′∥⊕H − ∥M̂hh′∥⊕H

∣∣∣
= ∥M̂hh′ ⊗ M̂T

hh′∥op

∣∣∣∣∣(∥Mhh′∥⊕H + ∥M̂hh′∥⊕H)

∥M̂hh′∥2
⊕H∥Mhh′∥2

⊕H

∣∣∣∣∣ ∥Mhh′ − M̂hh′∥⊕H.

Meanwhile, by the Central Limit Theorem for independent and identically

distributed Hilbert-valued random elements (Itô and Nisio 1968),

∥µ̂X|Y (h)− µX|Y (h)∥⊕H = Op(n
−1/2),

which implies ∥µ̂X|Y (h)∥⊕H = Op(1). Moreover,

∥M̂hh′ −Mhh′∥⊕H = ∥{µ̂X|Y (h)− µ̂X|Y (h
′)} − {µX|Y (h)− µX|Y (h

′)}∥⊕H = Op(n
−1/2),

which implies ∥M̂hh′∥⊕H = ∥µ̂X|Y (h) − µ̂X|Y (h
′)∥⊕H = Op(1). So ∥A31∥op =

Op(n
−1/2). Finally, decompose ∥A32∥op as

1

∥Mhh′∥2
⊕H

∥(M̂hh′ −Mhh′)⊗ M̂T

hh′∥op +
1

∥Mhh′∥2
⊕H

∥Mhh′ ⊗ (M̂hh′ −Mhh′)
T∥op.
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It is easy to see that both terms are of order Op(n
−1/2). Hence, ∥A32∥op =

Op(n
−1/2). Therefore,

∥A3∥op = Op(n
−1/2). (S1.7)

Combining (S1.5), (S1.6) and (S1.7), we have,

∥A1∥op + ∥A2∥op + ∥A3∥op = Op(n
−1/2).

□

S1.7 Proof of Theorem 6

First, we define the following intermediate operator

M (ϵn) = (TXX + ϵnI)
− 1

2TXX|Y (TXX + ϵnI)
− 1

2 .

Then, by the triangle inequality, we have the following decomposition

∥M̂ (ϵn) −M∥op ≤ ∥M̂ (ϵn) −M (ϵn)∥op + ∥M (ϵn) −M∥op = I1 + I2.

For I1, note that M̂ (ϵn)−M (ϵn) is further decomposed as A1+A2+A3, where

A1 = [(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2]T̂XX|Y (T̂XX + ϵnI)
−1/2,

A2 = (TXX + ϵnI)
−1/2(T̂XX|Y − TXX|Y )(T̂XX + ϵnI)

−1/2,

A3 = (TXX + ϵnI)
−1/2TXX|Y [(T̂XX + ϵnI)

−1/2 − (TXX + ϵnI)
−1/2].
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Decompose A1 further as

[(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2](T̂XX|Y − TXX|Y )(T̂XX + ϵnI)
−1/2

+ [(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2]TXX|Y (T̂XX + ϵnI)
−1/2 = A11 + A12.

By Lemma S3

(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2 =

[(T̂XX + ϵnI)
−1/2{(T̂XX + ϵnI)

3/2 − (TXX + ϵnI)
3/2}+ T̂XX − TXX](TXX + ϵnI)

−3/2.

(S1.8)

Thus,

∥(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2∥op

≤ [∥(T̂XX + ϵnI)
−1/2∥op

{
∥(T̂XX + ϵnI)

3/2 − (TXX + ϵnI)
3/2∥op + ∥T̂XX − TXX∥op

}
]

× ∥(TXX + ϵnI)
−3/2∥op.

Moreover, by Lemma 8 in Fukumizu et al. (2007),

∥(T̂XX + ϵnI)
3/2 − (TXX + ϵnI)

3/2∥op = Op(n
−1/2). (S1.9)

Hence, by relation (S1.9), Theorem 5 and the fact that

∥(T̂XX + ϵnI)
−1/2∥op = Op(ϵ

−1/2

n ), and ∥(TXX + ϵnI)
−1/2∥op = Op(ϵ

−1/2

n ),

(S1.10)

we obtain

∥A11∥op = Op(n
−1ϵ−5/2

n ). (S1.11)
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For A12, by Assumption 5

A12 = [(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2]T 1+β

XX DXXT
1+β

XX (T̂XX + ϵnI)
−1/2.

By (S1.8),

A12 = A121A122,

where

A121 = [(T̂XX + ϵnI)
−1/2{(T̂XX + ϵnI)

3/2 − (TXX + ϵnI)
3/2}+ T̂XX − TXX]

× (TXX + ϵnI)
−3/2T 1+β

XX ,

A122 = DXXT
1+β

XX (T̂XX + ϵnI)
−1/2.

Now, by Lemma S2,

∥(TXX + ϵnI)
−3/2T 1+β

XX ∥op = Op(ϵ
min{0,−1/2+β}
n ).

Hence, ∥A121∥op = Op(n
−1/2ϵmin{−1/2,−1+β}

n ). For A122, first decompose as

∥A122∥op ≤ ∥DXX∥op∥T 1+β

XX {(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2}∥op

× ∥DXX∥op∥T 1+β

XX (TXX + ϵnI)
−1/2∥op.

By applying Lemma S2,

∥A122∥op = Op(n
−1/2ϵmin{−1/2,−1+β}

n ) +Op(1) = Op(1),

where we used the fact ϵmin{−1/2,−1+β}
n ≺ ϵ−1

n ≺ n2/5. It follows

∥A12∥op ≤ ∥A121∥op∥A122∥op = Op(n
−1/2ϵmin{−1/2,−1+β}

n ). (S1.12)
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Combining (S1.11) and (S1.12) we obtain

∥A1∥op ≤ ∥A11∥op + ∥A12∥op ≤ Op(n
−1ϵ−5/2

n + n−1/2ϵmin{−1/2,−1+β}
n ). (S1.13)

For A2, by Theorem 5 and relation (S1.10), it follows immediately that

∥A2∥op = Op(n
−1/2ϵ−1

n ). (S1.14)

Finally, for the term A3, by Assumption 5,

A3 = (TXX + ϵnI)
−1/2T 1+β

XX DXXT
1+β

XX {(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2}

= A31A32,

where

A31 = (TXX + ϵnI)
−1/2T 1+β

XX ,

A32 = DXXT
1+β

XX {(T̂XX + ϵnI)
−1/2 − (TXX + ϵnI)

−1/2}.

By Lemma S2,

∥A31∥ = Op(ϵ
min{0,−1+β}
n ) = Op(1). (S1.15)

Using the same arguments for deriving ∥A121∥op, we have

∥A32∥ = Op(n
−1/2ϵmin{−1/2,−1+β}

n ). (S1.16)

Thus, from (S1.15) and (S1.16),

∥A3∥ = Op(n
−1/2ϵmin{−1/2,−1+β}

n ). (S1.17)
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Combining (S1.13), (S1.14) and (S1.17), and using the fact ϵmin{−1/2,−1+β}
n ≺

ϵ−1
n ,

I1 = Op(n
−1ϵ−5/2

n + n−1/2ϵ−1

n ) (S1.18)

Next, we consider I2. First, we decompose M (ϵn)−M into B1+B2+B3,

where

B1 = {(TXX + ϵnI)
−1/2 − T−1/2

XX }TXX|Y {(TXX + ϵnI)
−1/2 − T−1/2

XX },

B2 = {(TXX + ϵnI)
−1/2 − T−1/2

XX }TXX|YT
−1/2

XX ,

B3 = T−1/2

XX TXX|Y {(TXX + ϵnI)
−1/2 − T−1/2

XX }.

Hence, I2 ≤ ∥B1∥op + ∥B2∥op + ∥B3∥op. For B1, by the smoothness Assump-

tion 5,

∥B1∥op ≤ ∥{(TXX + ϵnI)
−1/2 − T−1/2

XX }T 1+β

XX ∥op∥T 1+β

XX {(TXX + ϵnI)
−1/2 − T−1/2

XX }∥op.

By Lemma S3 and the fact that TXX + ϵnI and TXX commute

{(TXX + ϵnI)
−1/2 − T−1/2

XX }T 1+β

XX = {T 3/2

XX − (TXX + ϵnI)
3/2}(TXX + ϵnI)

−3/2T 1/2+β

XX

+ ϵn(TXX + ϵnI)
−3/2T 1+β

XX . (S1.19)

By Lemma 8 in Fukumizu et al. (2007),

∥T 3/2

XX − (TXX + ϵnI)
3/2∥op = Op(ϵn). (S1.20)
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Moreover, by Lemma S2,

∥(TXX + ϵnI)
−3/2T 1/2+β

XX ∥op = O(ϵmin{0,−1+β}
n )

∥(TXX + ϵnI)
−3/2T 1+β

XX ∥op = O(ϵmin{0,−1/2+β}
n ).

(S1.21)

Thus, by (S1.19), (S1.20) and (S1.21),

∥{(TXX + ϵnI)
−1/2 − T−1/2

XX }T 1+β

XX ∥op = O(ϵmin(1,β)

n ).

Similarly, ∥T 1+β
XX {(TXX + ϵnI)

−1/2 − T−1/2

XX }∥op = O(ϵmin(1,β)
n ). Hence,

∥B1∥op = O(ϵmin(1,β)

n ). (S1.22)

By noting that ∥DXXT
1+β
XX ∥op = O(1), we can use the same arguments to

obtain

∥B2∥op = O(ϵmin(1,β)

n ), ∥B3∥op = O(ϵmin(1,β)

n ). (S1.23)

By combining (S1.22) and (S1.23), we have

I2 = O(ϵmin(1,β)

n ). (S1.24)

Relations (S1.18) and (S1.24) complete the proof. □

S1.8 Proof of Theorem 7

For the proof of Theorem 7, we need the following lemma.
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Lemma S4. Under the assumptions of Theorem 6, n−1/3 ≺ ϵn ≺ 1 and

β > 1, we have

∥(T̂XX + ϵnI)
−1/2M̂ (ϵn) − T−1/2

XX M∥op = Op(n
−1/2ϵ−3/2

n + ϵmin(1,β−1)

n ).

Proof of Lemma S4. First, by Assumption 5, the term ∥(T̂XX+ϵnI)−1/2M̂ (ϵn)−

T−1/2

XX M∥op is bounded from above by Θ1 +Θ2 +Θ3 +Θ4, where

Θ1 = ∥(T̂XX + ϵnI)
−1(T̂XX|Y − TXX|Y )(T̂XX + ϵnI)

−1/2∥op,

Θ2 = ∥[(T̂XX + ϵnI)
−1T 1+β

XX − T 1+β

XX ]DXX[T
1+β

XX (T̂XX + ϵnI)
−1/2 − T 1/2+β

XX ]∥op,

Θ3 = ∥[(T̂XX + ϵnI)
−1T 1+β

XX − T 1+β

XX ]DXXT
1/2+β

XX ∥op,

Θ4 = ∥T β

XXDXX[T
1+β

XX (T̂XX + ϵnI)
−1/2 − T 1/2+β

XX ]∥op.

By Theorem 5, the first term Θ1 is of order Op(n
−1/2ϵ−3/2

n ). By Lemma S7

and Lemma S8 in the Supplementary of Li and Song (2022), we have,

∥(T̂XX + ϵnI)
−1/2T 1+β

XX − T 1/2+β

XX ∥op = Op(n
−1/2ϵ−1/2

n + ϵmin(1,β)

n ), (S1.25)

∥(T̂XX + ϵnI)
−1T 1+β

XX − T β

XX∥op = Op(n
−1/2ϵ−1

n + ϵmin(1,β−1)

n ). (S1.26)

Hence,

Θ3 ≤ ∥[(T̂XX + ϵnI)
−1T 1+β

XX − T 1+β

XX ]∥op∥DXXT
1/2+β

XX ∥op,

where the second norm on the right is of the order O(1), and the first

norm is of the order Op(n
−1/2ϵ−1

n + ϵmin(1,β−1)
n ) by (S1.26). Similarly, Θ4 =
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Op(n
−1/2ϵ−1/2

n + ϵmin(1,β)
n ) by (S1.25). Finally, for Θ2, we have

Θ2 = Op(n
−1/2ϵ−1

n + ϵmin(1,β−1)

n )O(1)Op(n
−1/2ϵ−1/2

n + ϵmin(1,β)

n ).

Hence,

∥(T̂XX + ϵnI)
−1/2M̂ (ϵn) − T−1/2

XX M∥op

= Op(n
−1/2ϵ−3/2

n + n−1/2ϵ−1

n + ϵmin(1,β−1)

n + n−1/2ϵ−1/2

n + ϵmin(1,β)

n )

= Op(n
−1/2ϵ−3/2

n + ϵmin(1,β−1)

n ),

because n−1/2ϵ−1
n ≺ n−1/2ϵ−3/2

n , n−1/2ϵ−1/2
n ≺ n−1/2ϵ−1

n and ϵn ≺ ϵmin(1,β−1)
n . □

We now move to the proof of Theorem 7. First, by definition

∥β̂ℓ − βℓ∥⊕H = ∥(T̂XX + ϵnI)
−1/2η̂ℓ − T−1/2

XX ηℓ∥⊕H

= ∥(T̂XX + ϵnI)
−1/2M̂ (ϵn)(ζ̂−1

ℓ η̂ℓ)− T−1/2

XX M(ζ−1

ℓ ηℓ)∥⊕H.

The right-hand side above is bounded from above by Λ1 + Λ2 + Λ3, where

Λ1 = ∥[(T̂XX + ϵnI)
−1/2M̂ (ϵn) − T−1/2

XX M ](ζ̂−1

ℓ η̂ℓ − ζ−1

ℓ ηℓ)∥⊕H,

Λ2 = ∥[(T̂XX + ϵnI)
−1/2M̂ (ϵn) − T−1/2

XX M ]ζ−1

ℓ ηℓ∥⊕H,

Λ3 = ∥T−1/2

XX M(ζ̂−1

ℓ η̂ℓ − ζ−1

ℓ ηℓ)∥⊕H.

By Lemma S4, Λ2 is of the order Op(n
−1/2ϵ−3/2

n + ϵmin(1,β−1)
n ). For the term,

Λ3, by Assumption 5, we have

Λ3 ≤ ∥T 1+β

XX DXXT
1/2+β

XX ∥op∥(ζ̂−1

ℓ η̂ℓ − ζ−1

ℓ ηℓ)∥⊕H (S1.27)
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The first norm on the right-hand side of (S1.27) is of order O(1). The

second norm on the right-hand side of (S1.27) is upper bounded by

|(ζ̂−1

ℓ − ζ−1

ℓ )|∥η̂ℓ − ηℓ∥⊕H + ζ−1

ℓ ∥η̂ℓ − ηℓ∥⊕H + |ζ̂−1

ℓ − ζ−1

ℓ |∥ηℓ∥⊕H,

which is of order Op(n
−1ϵ−5/2

n + n−1/2ϵ−1
n + ϵn) by Corollary 1 and β > 1.

Finally, Λ1 is of the order Op(n
−1/2ϵ−3/2

n +ϵmin(1,β−1)
n )Op(n

−1ϵ−5/2
n +n−1/2ϵ−1

n +ϵn).

Hence,

∥β̂ℓ − βℓ∥⊕H = Op(n
−1ϵ−5/2

n + n−1/2ϵ−1

n + ϵn + n−1/2ϵ−3/2

n + ϵmin(1,β−1)

n )

= Op(n
−1ϵ−5/2

n + n−1/2ϵ−3/2

n + ϵmin(1,β−1)

n ).

Finally, by the Cauchy-Schwarz inequality,

|⟨β̂k, X⟩⊕H − ⟨βk, X⟩⊕H| ≤ ∥β̂ℓ − βℓ∥⊕H∥X∥⊕H

≤ Op(n
−1ϵ−5/2

n + n−1/2ϵ−3/2

n + ϵmin(1,β−1)

n ).

□

S2 Detailed development of the algorithm

S2.1 Coordinate mapping

In practice, the functions Xu(t), u = 1, . . . , n, cannot be observed for all

t ∈ T . Instead, they are observed on a finite set of points, say tu1, . . . , tuNu ,
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and they need to be estimated using the observed data {(t,Xu(t)) : t =

tu1, . . . , tuNu}. Commonly used methods for estimating Xu(t) are smoothing

splines or reproducing kernel Hilbert spaces, both of which can be formu-

lated as projections onto a finite-dimensional Hilbert space.

For i = 1, . . . , p, assume that H i is spanned by a finite set of functions

{gi1, · · · , gikn}, and each X i
u, u = 1, . . . , n, can be approximated by a lin-

ear combination, say ciu1gi1 + · · ·+ ciukng
i
kn

, where ciu1, . . . , ciukn are constants.

Strictly speaking, we should use a different notation to denote this approx-

imation, such as X̂ i
u. However, we do not make this distinction to keep the

notation simple. Because constants are irrelevant to our discussion, we will

restrict our attention to ran(Σ̂XiXi), which can be shown to be the (kn−1)-

dimensional subspace of H i spanned by {gi1−ḡi, . . . , gikn−ḡi} ≡ {bi1, . . . , bikn},

where ḡi = k−1
n

∑
kn

k=1
gik. We denote this set by B i and the space spanned by

it by G i. For an integer m, let Im be the m×m identity matrix, 1m be the

m-dimensional vector whose entries are 1, and Qm = Im − 1m1
T
m/m be the

projection onto the orthogonal complement of the subspace spanned by 1m.

For each i = 1, . . . , p, let Ki be the Gram matrix of the set {gi1, . . . , gikn}

for H i; that is, Ki = {⟨gik, giℓ⟩Hi
}knk,ℓ=1. Then the Gram matrix of the set B i is

QknKiQkn ≡ Gi. Each member f of G i is a linear combination of bi1, . . . , bikn .

The vector of linear coefficients is called the coordinate of f with respect



S2. DETAILED DEVELOPMENT OF THE ALGORITHM

to B i, and is written as [f ]Bi . For any operator A ∈ B (G i, G j), the matrix

([Abi1]Bj , . . . , [Ab
i
kn
]Bj) is called the coordinate of A, and is written as Bj[A]Bi .

The mapping Bj[·]Bi : A 7→ Bj[A]Bi is called the coordinate mapping and has

the following properties, which can be derived from the basic facts listed in

Horn and Johnson (1985); see also Theorem 5 of Solea and Li (2022).

S2.2 Coordinate representation of T̂XX and T̂XX|Y

We first compute the coordinate representations of T̂XX and T̂XX|Y with

respect to B = ⊕p
i=1B i. By properties 2, 4 and 5 of Lemma S5 in the

supplementary material, the coordinate of T̂XX is

[T̂XX] = En

(
[X − X̃][X − X̃]T

[X − X̃]TG[X − X̃]

)
G = ΩG, (S2.1)

where G = diag(Gi : i = 1, . . . p), [X] ∈ Rpkn is the coordinate representa-

tion of X whose jth block is the coordinate representation of X j, and

Ω = En

(
[X − X̃][X − X̃]T

[X − X̃]TG[X − X̃]

)
=

2

n(n− 1)

∑
1≤u<u′≤n

[Xu −Xu′ ][Xu −Xu′ ]
T

[Xu −Xu′ ]TG[Xu −Xu′ ]
.

(S2.2)

Note that Ω ∈ Rpkn×pkn is a symmetric matrix. We now compute the co-

ordinate representation of T̂XX|Y with respect to B = ⊕p
i=1B i. For a fixed

h = 1, . . . , H, by property 2 of Lemma S5,

[µ̂X|Y (h)] =
[En{XI(Y ∈ Jh)}]
En{I(Y ∈ Jh)}

=
En{[X]I(Y ∈ Jh)}
En{I(Y ∈ Jh)}

. (S2.3)
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Thus, following similar arguments as with the coordinate representation of

T̂XX, we obtain

[T̂XX|Y ] =
2

H(H − 1)

∑
1≤h<h′≤H

{
[µ̂X|Y (h)−µ̂X|Y (h′)][µ̂X|Y (h)−µ̂X|Y (h′)]T

[µ̂X|Y (h)−µ̂X|Y (h′)]TG[µ̂X|Y (h)−µ̂X|Y (h′)]

}
G = ΛG,

(S2.4)

where

Λ =
2

H(H − 1)

∑
1≤h<h′≤H

{
[µ̂X|Y (h)−µ̂X|Y (h′)][µ̂X|Y (h)−µ̂X|Y (h′)]T

[µ̂X|Y (h)−µ̂X|Y (h′)]TG[µ̂X|Y (h)−µ̂X|Y (h′)]

}
. (S2.5)

Lemma S5. Suppose

a. G 1, . . . , G p are finite-dimensional Hilbert spaces with spanning systems

B 1, · · · ,B p, G1 is the Gram matrix of B 1, and B = ⊕p
i=1B i;

b. T, T1, T2 ∈ B (G 1, G 2), U ∈ B (G 2, G 3), V ∈ ⊕p
i,j=1B (G i, G j), W ∈

B (G 1, G 1), h ∈ G 1, f ∈ G 1, g ∈ G 2, α1, α2 ∈ R.

Then,

1. (evaluation) [Th]B2
= (B2

[T ]B1
) [h]B1

;

2. (linearity) B2
[α1T1 + α2T2]B1

= α1(B2
[T1]B1

) + α2(B2
[T2]B1

);

3. (composition) B3
[UT ]B1

= (B3
[U ]B2

) (B2
[T ]B1

);

4. (inner product) ⟨h, f⟩G1
= ([h]B1

)TG1([f ]B1
);

5. (tensor product) B2
[g ⊗ h]B1

= [g]B2
[h]TB1

G1;

6. (inverse) If W ∈ B (G 1, G 1) is self-adjoint and G1 is the Gram ma-

trix of G 1, then for any c ∈ R for which (−1)c ∈ R, B1
[W c]B1

=
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G†1/2
1 (G1/2

1 B1
[W ]B1

G†1/2
1 )cG1/2

1 ;

7. (operator matrix) If B is a spanning system of ⊕p
i=1G i, then B[V ]B

is a block diagonal matrix with diagonal blocks Bi
[Vi]Bi ,, where Vi is the

Gram matrix of G i, i = 1, . . . , p.

S2.3 Algorithm for R-FSIR

To derive the coordinate representation of the eigenvalue problem (3.7),

we use the property 4 of Lemma S5 and write ⟨η, T † 1
2

XXTXX|YT
† 1
2

XXη⟩⊕H =

[η]TG[T
† 1
2

XX][TXX|Y ][T
† 1
2

XX][η], where ⟨η, η⟩⊕H = [η]TG[η] and ⟨η, ηℓ⟩⊕H = [η]TG[ηℓ],

ℓ = 1, . . . , K. Set [η] = G† 1
2v. Then, (3.7) can be implemented as the fol-

lowing standard eigenvalue problem with respect to v,

maximize vTG† 1
2G[T

† 1
2

XX][TXX|Y ][T
† 1
2

XX]G
† 1
2v

subject to vTv = 1, vTvℓ = 0, ℓ = 1, . . . , K − 1.

(S2.6)

Moreover, using property 6 of Lemma S5 and relation (S2.1), we have

[T
† 1
2

XX] = G† 1
2 (G

1
2 [TXX]G

† 1
2 )†

1
2G

1
2 = G† 1

2 (G
1
2ΩG

1
2 )†

1
2G

1
2 . (S2.7)

Therefore, using (S2.4) and (S2.7), the matrix G† 1
2G[T

† 1
2

XX][TXX|Y ][T
† 1
2

XX]G
† 1
2

in (S2.6) can be expressed as

MΛMT = (G
1
2ΩG

1
2 )†

1
2G

1
2ΛG

1
2 (G

1
2ΩG

1
2 )†

1
2 , (S2.8)

where M = (G
1
2ΩG

1
2 )†

1
2G

1
2 . Thus, we aim to find the first K eigenvectors,

v1, . . . , vK, of the matrix MΛMT. We then obtain [β̂ℓ] = G† 1
2 (G

1
2ΩG

1
2 )†

1
2vℓ,
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ℓ = 1, . . . , K, and the sufficient predictors are

β̂ℓ = vT

ℓ (G
1
2ΩG

1
2 )†

1
2G† 1

2 b, ℓ = 1, . . . , K, (S2.9)

where b = (b1⊤, . . . , bp⊤)⊤ and bi = (bi1, . . . , b
i
kn
). We summarize the algo-

rithm below

1. For each Xu, u = 1, . . . , n, calculate the centered version Xu − EnXu,

compute the coordinates [Xu] relative to the basis B of ⊕p
i=1H i, and

derive the gram matrix G = QknKQkn of the basis B .

2. Divide the range of Y into H equal slices, J1, . . . , JH.

3. For each h = 1, . . . , H, compute [µ̂X|Y (h)] according to (S2.3).

4. Compute the matrices Ω and Λ, as defined in (S2.2) and (S2.5), re-

spectively.

5. Compute the matrixMΛMT in (S2.8) and itsK eigenvectors, v1, . . . , vK.

6. Obtain the sufficient predictors β̂ℓ, ℓ = 1, . . . , K according to (S2.9).

S2.4 Order determination

In order to determine the dimension K of the central subspace, we use the

CVBIC criterion introduced by Li et al. (2011). Let

Gn(k) =
∑

k

i=1
ν̂i − aν̂1n

−1/4log(n)k, (S2.10)
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where ν̂i is the ith largest eigenvalue of the matrix representation of R-

FSIR given in (S2.8), and a is a constant determined by the LOOCV cri-

terion as follows. For each fixed a, maximize the criterion (S2.10) over

k = 0, . . . , knp to obtain K̂(a). Let ⟨β̂1X⟩⊕H, . . . , ⟨β̂K̂(a), X⟩⊕H be the suf-

ficient predictors. Then, the optimal a is the one that minimizes the

LOOCV score defined as LOOCV(a) =
∑

n

u=1
{Yu − m̂(−u)(Zu)}2, where

Zu = (⟨β̂1, Xu⟩⊕H, . . . , ⟨β̂K̂(a), Xu⟩⊕H) and m̂(−u)(·) is some nonparametric

estimate of the conditional expectation E(Y |Z) based on the sample with

the (Yu, Xu) observation removed. The implementation of the CVBIC cri-

terion relies on a nonparametric estimate of the conditional expectation

m(−u)(Zu). This can lead to the use of mutli-dimensional kernel estimator,

which can suffer from the curse of dimensionality. However, we note that,

in our simulations, we estimate the conditional expectation using additive

models, which do not require the computation of multi-dimensional kernels.

S3 Effect of n, p and H

In this section, we present some additional results to investigate the per-

formance of R-FSIR for a variety of combinations of (n, p,H). We as-

sume Models II and IV, where X is simulated as described in Section 6,

ϵ is generated according to a standard normal distribution, and the scores



Eftychia Solea, Eliana Christou and Jun Song

follow a Gaussian and a Cauchy distribution. We consider (n, p,H) ∈

{200, 400, 1000} × {10, 20} × {5, 10, 20}. Tables 1-4 report the observed,

over the 100 simulation runs, means and standard deviations (in parenthe-

sis) of the multiple correlation when no outliers are present (upper part)

and when outliers are added as described in Section 6 (lower part). We

observe that the efficiency of both methods increases with the sample size

n and decreases with p. Interestingly, R-FSIR seems to be more sensitive

to increasing p for the Gaussian case than FSIR. However, for the Cauchy

distribution, R-FSIR outperforms FSIR and is more robust to the changes

on p. As far as the number of slices, we observe that both methods are

not sensitive to the choice of H. Finally, R-FSIR is more robust to outliers

than FSIR, especially for the Cauchy case; see Tables 2 and 4.

S4 Estimation of structural dimension

In order to investigate the performance of the CVBIC order-determination

procedure (S2.10), we use Model II, where X is simulated as described in

Section 6, ϵ is generated according to a standard normal distribution, and

the scores follow a Gaussian and a Cauchy distribution. Note that K = 1

for Model II. Table 5 reports the number of times, over the 100 simulation

results, the CVBIC correctly estimates K.
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Table 1: Mean (and standard deviation) of the multiple correlation for Model II, Gaussian

distributed scores, with no outliers (upper) and with outliers added (lower) for Study 2

number of p H
n = 200 n = 400 n = 1000

outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

m = 0

10

5 0.91 (0.03) 0.89 (0.1) 0.96 (0.01) 0.96 (0.01) 0.98 (0.004) 0.98 (0.004)

10 0.90 (0.03) 0.88 (0.06) 0.96 (0.01) 0.96 (0.01) 0.98 (0.004) 0.99 (0.004)

20 0.87 (0.07) 0.84 (0.1) 0.96 (0.02) 0.96 (0.01) 0.98 (0.004) 0.99 (0.004)

20

5 0.77 (0.07) 0.41 (0.24) 0.90 (0.03) 0.89 (0.04) 0.96 (0.006) 0.96 (0.006)

10 0.75 (0.08) 0.42 (0.22) 0.90 (0.02) 0.90 (0.03) 0.97 (0.006) 0.97 (0.005)

20 0.64 (0.20) 0.44 (0.23) 0.90 (0.03) 0.89 (0.03) 0.97 (0.007) 0.97 (0.007)

m = 40

10

5 0.12 ( 0.09) 0.48 (0.21) 0.10 (0.07) 0.53 (0.27) 0.18 (0.07) 0.56 (0.27)

10 0.15 (0.11) 0.60 (0.24) 0.10 (0.07) 0.72 (0.21) 0.18 (0.07) 0.56 (0.28)

20 0.13 (0.10) 0.73 (0.22) 0.10 (0.08) 0.89 (0.13) 0.18 (0.08) 0.70 (0.29)

20

5 0.20 (0.12) 0.25 (0.19) 0.20 (0.10) 0.65 (0.21) 0.07 (0.04) 0.67 (0.17)

10 0.18 (0.13) 0.29 (0.19) 0.16 (0.09) 0.75 (0.17) 0.06 (0.05) 0.74 (0.14)

20 0.15 (0.11) 0.32 (0.21) 0.13 (0.09) 0.87 (0.12) 0.06 (0.04) 0.84 (0.11)

S5 Neuroimaging data application

To illustrate the performance of the methodology we use an fMRI dataset,

obtained from the ADHD-200 Consortium (http://fcon_1000.projects.

nitrc.org/indi/adhd200/index.html), consisting of resting-state fMRI

and anatomical datasets of children with and without ADHD aggregated

across 8 independent imaging sites. For our analysis, we consider the

resting-state fMRI of the New York University Child Study Center. This

dataset includes 222 subjects, of which 99 are the controls and the rest

are diagnosed with ADHD. The ADHD group is further divided into the

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html
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Table 2: Mean (and standard deviation) of the multiple correlation for Model II, Cauchy

distributed scores, with no outliers (upper) and with outliers added (lower) for Study 2

number of p H
n = 200 n = 400 n = 1000

outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

m = 0

10

5 0.14 (0.1) 0.90 (0.19) 0.14 (0.08) 0.89 (0.18) 0.14 (0.09) 0.91 (0.18)

10 0.12 (0.1) 0.87 (0.19) 0.14 (0.11) 0.83 (0.24) 0.12 (0.10) 0.85 (0.22)

20 0.13 (0.13) 0.77 (0.27) 0.13 (0.12) 0.81 (0.27) 0.12 (0.12) 0.80 (0.24)

20

5 0.10 (0.06) 0.85 (0.23) 0.11 (0.07) 0.88 (0.22) 0.09 (0.06) 0.91 (0.16)

10 0.10 (0.08) 0.87 (0.20) 0.09 (0.07) 0.88 (0.20) 0.10 (0.08) 0.88 (0.20)

20 0.11 (0.10) 0.81 (0.26) 0.08 (0.08) 0.83 (0.24) 0.09 (0.10) 0.81 (0.27)

m = 40

10

5 0.59 (0.30) 0.89 (0.19) 0.67 (0.29) 0.89 (0.19) 0.67 (0.28) 0.89 (0.21)

10 0.69 (0.33) 0.85 (0.24) 0.64 (0.33) 0.87 (0.22) 0.60 (0.35) 0.83 (0.24)

20 0.66 (0.36) 0.81 (0.26) 0.70 (0.31) 0.81 (0.25) 0.74 (0.33) 0.85 (0.21)

20

5 0.59 (0.29) 0.87 (0.23) 0.62 (0.31) 0.87 (0.21) 0.67 (0.30) 0.90 (0.19)

10 0.61 (0.34) 0.90 (0.19) 0.67 (0.31) 0.86 (0.23) 0.70 (0.30) 0.84 (0.24)

20 0.66 (0.34) 0.80 (0.27) 0.68 (0.32) 0.83 (0.23) 0.73 (0.33) 0.85 (0.22)

ADHD Combined group (77 subjects), the ADHD Inattentive group (44

subjects) and the ADHD Hyperactive group (2 subjects); we use the 77

subjects in the ADHD Combined group for our analysis. Moreover, 5 sub-

jects were removed from the ADHD Combined group because of significant

amount of missing observations, resulting in n = 72 subjects. Technical

details regarding the sample and the scanning parameters can be found at

the ADHD-200 Consortium.

The dataset was preprocessed by the NeuroBureau community using

the Athena pipeline. 116 brain regions-of-interest (ROI) were constructed

http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Table 3: Mean (and standard deviation) of the multiple correlation for Model IV, Gaus-

sian distributed scores, with no outliers (upper) and with outliers added (lower) for Study

2

number of p H
n = 200 n = 400 n = 1000

outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

m = 0

10

5 1.61 (0.1) 1.63 (0.14) 1.78 (0.06) 1.81 (0.06) 1.90 (0.03) 1.91 (0.02)

10 1.70 (0.07) 1.70 (0.10) 1.84 (0.04) 1.85 (0.04) 1.93 (0.02) 1.93 (0.02)

20 1.67 (0.12) 1.60 (0.20) 1.84 (0.04) 1.85 (0.04) 1.93 (0.02) 1.94 (0.02)

20

5 1.41 (0.12) 1.35 (0.18) 1.63 (0.07) 1.64 (0.09) 1.81 (0.04) 1.83 (0.03)

10 1.50 (0.08) 1.33 (0.18) 1.72 (0.05) 1.73 (0.05) 1.87 (0.03) 1.87 (0.03)

20 1.41 (0.13) 1.21 (0.19) 1.73 (0.04) 1.71 (0.05) 1.87 (0.02) 1.88 (0.02)

m = 40

10

5 1.16 (0.12) 1.42 (0.20) 1.18 (0.08) 1.53 (0.15) 1.24 (0.05) 1.74 (0.09)

10 1.15 (0.16) 1.24 (0.19) 1.20 (0.09) 1.46 (0.20) 1.27 (0.04) 1.77 (0.06)

20 1.10 (0.16) 1.18 (0.18) 1.19 (0.11) 1.48 (.19) 1.27 (0.05) 1.79 (0.06)

20

5 0.91 ( 0.10) 1.20 (0.17) 0.98 (0.08) 1.25 (0.18) 1.08 (0.05) 1.58 (0.1)

10 0.91 (0.11) 0.53 (0.39) 1.02 (0.10) 1.24 (0.17) 1.11 (0.04) 1.60 (0.09)

20 0.88 (0.10) 0.62 (0.40) 1.00 (0.11) 1.25 (0.16) 1.13 (0.05) 1.64 (0.08)

for the preprocessed resting-state fMRI using the anatomical labelling at-

las (AAL) developed by Craddock et al. (2012). fMRI time series were

extracted for each of the 116 regions by averaging all voxels time series

within each region at each time point, resulting in 172 time points for each

of the 116 regions for each subject. Hence, for each subject we have 116

different regional fMRI time series, observed at 172 time points. The AAL

atlas and the regional fMRI time series are publicly available at NITRC

(www.nitrc.org).

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline#Details _{\scriptscriptstyle {o}}f _{\scriptscriptstyle {t}}he _{\scriptscriptstyle {A}}thena _{\scriptscriptstyle {P}}ipeline
www.nitrc.org
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Table 4: Mean (and standard deviation) of the multiple correlation for Model IV, Cauchy

distributed scores, with no outliers (upper) and with outliers added (lower) for Study 2

number p H
n = 200 n = 400 n = 1000

outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

m = 0

10

5 0.17 ( 0.07) 1.55 (0.36) 0.17 (0.07) 1.52 (0.37) 0.18 (0.10) 1.61 (0.36)

10 0.16 (0.09) 1.60 (0.36) 0.15 (0.08) 1.63 (0.33) 0.16 (0.07) 1.62 (0.34)

20 0.18 (0.12) 1.53 (0.37) 0.18 (0.12) 1.63 (0.33) 0.17 (0.10) 1.70 (0.31)

20

5 0.09 (0.04) 1.50 (0.39) 0.09 (0.04) 1.60 (0.37) 0.08 (0.04) 1.54 (0.36)

10 0.10 (0.05) 1.52 (0.36) 0.09 (0.06) 1.55 (0.38) 0.08 (0.05) 1.60 (0.34)

20 0.11 (0.08) 1.54 (0.37) 0.08 (0.06) 1.62 (0.33) 0.09 (0.06) 1.57 (0.37)

m = 40

10

5 0.17 (0.01) 1.59 (0.34) 0.14 (0.05) 1.58 (0.36) 0.16 (0.08) 1.58 (0.35)

10 0.19 (0.15) 1.59 (0.38) 0.15 (0.07) 1.61 (0.35) 0.17 (0.09) 1.63 (0.32)

20 0.16 (0.11) 1.60 (0.35) 0.14 (0.1) 1.60 (0.34) 0.14 (0.09) 1.63 (0.35)

20

5 0.10 (0.08) 1.46 (0.38) 0.08 (0.03) 1.55 (0.36) 0.08 (0.03) 1.50 (0.38)

10 0.11 (0.08) 1.55 (0.37) 0.09 (0.05) 1.64 (0.35) 0.07 (0.04) 1.65 (0.35)

20 0.11 (0.1) 1.56 (0.38) 0.08 (0.05) 1.62 (0.36) 0.07 (0.05) 1.60 (0.33)

Table 5: % of correct order determination by FSIR and R-FSIR for Gaussian and Cauchy

distributed scores with no outliers (upper) and with outliers added (lower) for Study 3

Gaussian Cauchy

FSIR R-FSIR FSIR R-FSIR

m = 0 82 72 84 85

m = 40 74 92 84 79

Figure 1 shows the smoothed spline fMRI curves with outliers in red,

as detected by the magnitude-shape plot of Dai and Genton (2018), imple-

mented using the R package fdaoutlier. Figure 2 shows the boxplots of

the first two principal components for two regions of interest. It is evident
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Figure 1: The smoothed fMRI curves, where the red curves represent outliers, for two

brain regions of interest (left: Precentral right region, right: Superior frontal gyrus

orbital right region).
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Figure 2: Boxplots of the first two scores for two brain regions of interest (left: Precentral

right region, right: Superior frontal gyrus orbital right region).

that the marginal distributions are heavy-tailed.
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