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This document provides detailed proofs of the main theoretical results
as well as full numerical studies. In Section we demonstrate how to
combine our proposed tail-adaptive methods with the wild binary segmen-
tation technique to detect multiple change points. In Section we provide
detailed numerical experiments. In Section [S3| we apply our proposed new
method to the S&P100 data to detect multiple change points. In Section
[S4] we introduce some additional notations. In Section [S5, we provide the
detailed model assumptions for the theory developed in the main paper. In

Section [S6, some useful lemmas are provided. In Section we give the



detailed proofs of theoretical results in the main paper. In Section [S§ we
provide the proof of lemmas used in Section [S7} In Sections[S9 and [SI0] we

prove the useful lemmas in Section [S6| as well as some additional lemmas.

S1 Extensions to multiple change point detection

In practical applications, it may exist multiple change points in describ-
ing the relationship between X and Y. Therefore, it is essential to perform
estimation of multiple change points if Hy is rejected by our powerful tail-
adaptive test. In this section, we extend our single change point detection
method by the idea of WBS proposed in [Fryzlewicz| (2014) to estimate the
locations of all possible multiple change points.

Consider a single change point detection task in any interval [s, e, where
0<qyo<s<e<1-—qy Following Section we can compute the corre-
sponding adaptive test statistics as ﬁad(s, e) using the subset of our data,
e, { X ns)s Xnsj+1,+ » Xne)} and {Yjns), Yinsj+1, -+, Yine|}. Following
the idea of WBS, we first independently generate a series of random intervals
by the uniform distribution. Denote the number of these random intervals
as V. For each random interval [s,, e,] among v = 1,2,--- |V we compute
ﬁad(sy,ey) as long as 0 < ¢qp < s, < e, <1—qy and e, — s, > vy, where

v is the minimum length for implementing Section 2.4] The threshold vy



Algorithm S1.1 : A WBS-typed tail-adaptive test for multiple change point detection
Input: Given the data (X,Y) = {(X1,Y1),...,(Xn,Ys)}, set the values for 7, the

significance level v, sg, qgo, the bootstrap replication number B, the candidate
subset A C [0,1], and a set of random intervals {(s,,e,}/_; with thresholds vy

and v;. Initialize an empty set C.
Step 1: For each v =1,--- ,V compute ]3“1(3”7 e,) following Section
Step 2: Perform the following function with S = ¢y and E =1 — qp.

Function(S, E): S and F are the starting and ending points for the change point

detection.

(a) RETURN if E — S < ;.

(b) Define M ={1<v <V|[s,,e,] C[E,S]}.

(c) Compute the test statistics as Paq = min ﬁad(s,,, e,) and the corre-
veEM,vo<e,—s,

sponding optimal solution v*.

(d) If P.q > «v/V, RETURN. Otherwise, add the corresponding change point

estimator %,+ to C, and perform Function(S, v*) and Function(v*, E).

Output: The set of multiple change points C.

is used to reduce the variability of our algorithm for multiple change point

detection. Based on the test statistics computed from the random intervals,

we consider the final test statistics as Pnq = min ﬁad(sl,, e, ), based
1<v<Vwp<e,—su

on which we make decisions if there exists at least one change point among



these intervals. We stop the algorithm if P,q > ¢, otherwise we report the

change point estimation in [s,«, e,+], where v* € arg min ﬁad(sl,,e,,),
1<v<Vywo<e, —s,
and continue our algorithm. Given the first change point estimator denoted
by t,, we split our data into two folds, i.e., before and after the estimated
change point. Then we apply the previous procedure on each fold of the
data using the same set of the random intervals as long as it satisfies the
constraints. We repeat this step until the algorithm stops returning the
change point estimation. For each step, we choose ¢ = ~/V, where 7 is
the significance level used in each single change point detection algorithm.
While we do not have the theoretical guarantee of using ¢ in the proposed
algorithm for controlling the size, the selection of this constant is based
on the idea of Bonferroni correction, which is conservative. The numerical
experiments in the appendix demonstrate the superiority of our proposed
method in detecting multiple change points. Nevertheless, it is interesting

to study the asymptotic property of P,q, which we leave for the future work.

The full algorithm of the multiple change point detection can be found in

Algorithm [ST.1}



S2 Numerical experiments

In this section, we investigate the numerical performance of our pro-
posed method and compare with the existing techniques in terms of change
point detection and identification. In Sections -[52.3] we consider sin-
gle change point testing and estimation. In Section [S2.5] we investigate

multiple change point detection.

S2.1 Single change point testing

We consider the performance of singe change point testing for the fol-

lowing model:
Vi=X,"BY1{i <k} + X, B8P1{i >k} +e, i=1,...,n, (S21)

where k; = |nt;]. To show the broad applicability of our method, we gen-
erate data from various model settings. Specifically, for the design matrix

X, we generate X; (i.i.d) from N(0,X) under two different models:

e Model 1: We generate X; with banded X. Specifically, we set X = X/,

where X' = (07,) € RP*P with of; = 0.8 for 1 <4, < p.

e Model 2: We generate X; with blocked ¥. Specifically, we set 3 =
3%, where ¥* = (07;) € RP*? with o VS U(1,2), o3 = 0.6 for

5k—1)+1<i#j<5k(k=1,...,|p/5]), and o}; = 0 otherwise.

5



S2.1 Single change point testing

Moreover, to show the tail-adaptivity of our new testing method, we gen-
erate the error term ¢; from various types of distributions including both
lighted-tailed and heavy-tailed distributions. In particular, we generate ¢;
from the Gaussian distribution N(0,1) and the Student’s ¢, distribution
with a degree of freedom v € {1,2,3,4}. Note that ¢, with v = 2 and
v = 1 correspond to the error without second moments and first moments,
respectively. For the regression coefficient BV, for each replication, we
generate 3 = (1,1,1,1,1,0,---,0)" € R”. In other words, only the first
five elements in BY) are non-zero with magnitudes of ones, which are called
the active set. Under Hy, we set 33 = B := 8O, Under H;, we set

B = pBW +§, where § = (61,...,8,)" € RP is the signal jump with

cy/log(p)/n, for s € {1,2,3,4,5},

0, for s € {6,...,p}.

In other words, we add a signal jump with a magnitude of cy/log(p)/n on
the first five elements of 3. To avoid the trivial power performance (too
low or high powers), we set ¢ = 1 and ¢ = 1.5 for the normal and the
Student’s ¢ distributions, respectively.

Throughout the simulations, we fix the sample size at n = 200 and the
dimension at p = 400. The number of bootstrap replications is B = 200.

Without additional specifications, all numerical results are based on 1000



S2.2  Empirical sizes

replications. In addition, we consider the L; — Ly composite loss by setting
7=05and K =1in , which is of special interest in high dimensional
data analysis. Note that our proposed method involves the optimization
problem in . We use the coordinate descent algorithm for obtaining
the corresponding LASSO estimators. As for the tuning parameters \,, for
a = 1, we use the cross-validation technique to select the "best” A;; for
a = 0, we adopt the method recommended in |Belloni and Chernozhukov
(2011) (see Section 2.3 therein) to set Ag; for o € (0, 1), we use an idea of

weighted combination and let A\, = (1 — a)Xg + aA;.

S2.2 Empirical sizes

We consider the size performance with a significance level v = 5%.
Tables provides the size results for the individual tests T, with a €
A = {0,0.1,0.5,0.9,1} and the tail-adaptive test T,q under Models 1
and 2 with various error distributions. Note that the construction of our
testing statistic involves a selection of sy € {1,...,p}. To show the effect
of different sy, we consider various sq € {1,3,5,7}. Note that s = 1
corresponds to the ¢, -norm based individual test and sy = 5 corresponds
to the test that aggregates the active set of variables in 8. As shown

in Table for a given sg, our individual test T, and tail-adaptive test



S2.2  Empirical sizes

Table S2.1: Empirical sizes of the individual and tail-adaptive tests for Models 1-2
with banded and blocked covariance matrices for s € {1,3,5,7}. The results are based

on 1000 replications with B = 200 for each replication.

Empirical sizes for Model 1 with p = 400

Dist so a=0 a=0.1 a=0.5 a=0.9 a=1 Adaptive

N(0,1) so=1 0.062 0.041 0.036 0.033 0.038 0.040
sop =3 0.052 0.056 0.041 0.032 0.034 0.045

so =25 0.051 0.053 0.040 0.032 0.027 0.040

so =T 0.050 0.048 0.041 0.035 0.027 0.046

ta so=1 0.049 0.056 0.052 0.048 0.040 0.062
so =3 0.058 0.057 0.052 0.050 0.040 0.051

so =5 0.049 0.035 0.041 0.038 0.035 0.041

so =17 0.064 0.043 0.045 0.050 0.048 0.048

ts so=1 0.058 0.052 0.046 0.038 0.048 0.064
so =3 0.053 0.053 0.045 0.050 0.052 0.058

so =5 0.062 0.060 0.055 0.053 0.063 0.074

so =7 0.051 0.051 0.053 0.053 0.055 0.066

Empirical sizes Model 2 with p = 400

Dist so a=0 a=0.1 a=0.5 a=20.9 a=1 Adaptive

N(0,1) so=1 0.052 0.049 0.043 0.030 0.028 0.042
so =3 0.068 0.062 0.042 0.025 0.025 0.048

so =25 0.068 0.058 0.028 0.018 0.017 0.043

so =7 0.043 0.043 0.022 0.015 0.011 0.031

ty so =1 0.059 0.050 0.047 0.041 0.040 0.053
so =3 0.048 0.046 0.044 0.041 0.036 0.044

so =25 0.073 0.059 0.034 0.036 0.042 0.060

so =17 0.064 0.051 0.030 0.038 0.038 0.055

ts so=1 0.059 0.063 0.044 0.036 0.041 0.058
so =3 0.070 0.055 0.042 0.041 0.043 0.057

so =5 0.052 0.055 0.047 0.042 0.042 0.049

so =T 0.056 0.048 0.044 0.042 0.035 0.054




S2.2  Empirical sizes

Table S2.2: Empirical sizes of the individual and tail-adaptive tests for Models 1-2
for the error term being Student’s ¢t and ¢ distributed. The results are based on 1000

replications with B = 200 for each replication.

Empirical sizes for Mode 1 with heavy tails

P Dist So a=0 a=01 a=05 a=09 aa=1 Adaptive

400 t2 sop=1 0.041 0.057 0.079 0.087 0.085 0.077
12 so=3  0.057 0.060 0.092 0.088 0.090 0.090
ta so=5  0.068 0.074 0.110 0.107 0.129 0.128
t2 so=7 0.062 0.065 0.116 0.115 0.113 0.126
400 t1 so=1 0.057 0.207 0.222 0.217 0.217 0.192
t1 so=3 0.043 0.228 0.244 0.240 0.232 0.208
t1 so=5  0.058 0.299 0.315 0.310 0.300 0.266
t1 so=7 0.057 0.276 0.306 0.308 0.300 0.267

Empirical sizes for Mode 2 with heavy tails

P Dist So a=0 a=01 a=05 a=09 «o=1 Adaptive

400 to sp=1 0.066 0.082 0.095 0.096 0.094 0.106
t2 so=3 0.072 0.086 0.115 0.113 0.118 0.127
to so=5  0.058 0.074 0.138 0.151 0.152 0.147
to so=7 0.056 0.085 0.113 0.127 0.118 0.136
400 t1 sp=1 0.070 0.220 0.249 0.251 0.247 0.223
t1 so=3 0.046 0.402 0.440 0.432 0.430 0.406
t1 so =5 0.055 0.455 0.500 0.487 0.489 0.462
t1 so =7 0.057 0.479 0.526 0.511 0.501 0.488




S2.2  Empirical sizes

T,q can have a size that is very close to the nominal level. This strongly
suggests that our bootstrap-based procedure in Algorithms 1 and 2 can
approximate the theoretical distributions very well. Interestingly, it can
be seen that under a specific error distribution, the individual test T, may
have different size performance in the sense that the corresponding size
can be slightly above or below the nominal level. In contrast, after the
combination, the size of the tail-adaptive test T,4 is near the nominal level
as compared to its individual test. This indicates that in practice, the
tail-adaptive test is more reliable in terms of size control.

Table provides additional size performance under Student’s 5 and
t; distributions. Note that these two distributions are known as seriously
heavy-tailed. It is also well known that controlling the size for these two
distributions is a challenging task, especially for high-dimensional change
point analysis. As can be seen from Table[S2.2] in these cases, the individual
test T, except o = 0 suffers from serious size distortion. In particular, as
a increases from 0.1 to 1, it is more difficult to control the size. Moreover,
when the error is Cauchy distributed, the size is completely out of control
for a € {0.1,...,1}. As a result, the corresponding tail-adaptive method
becomes oversized. As an exception, we can see that the individual test

T, with a = 0 enjoys satisfactory size performance for both t; and ¢,

10



S2.3 Empirical powers

distributions. A reasonable explanation is that for a = 0, our individual
test reduces to the median regression based method which does not require
any moment constraints on the error terms. Hence, our proposed individual
test with @ = 0 contributes to the literature for handling the extremely
heavy-tailed case. In practice, if the practitioners strongly believe that the

data are seriously heavy-tailed, we can just set A = {0}.

S2.3 Empirical powers

We next consider the power performance, where various error distribu-
tions, data dimensions as well as change point locations are investigated.
The results are summarized in Tables and [S2.4l Note that accord-
ing to our model setups, there are five coordinates in ) having a change
point. It can be seen that for light-tailed error distributions such as N (0, 1),
the individual tests with a = 0.5,0.9,1 have the best power performance
and those with o = 0 have the worst performance. This indicates that
for a light-tailed error distribution, using median regression can lose power
efficiency, and using the moment information with a larger weight o can
increase the signal to noise ratio. Interestingly, in this empirical study, the
individual test with a = 0.5 generally has slightly higher powers than that

with a = 1, even though the latter one is expected to have the best power

11



S2.3 Empirical powers

performance (see Figure . As for the tail-adaptive test, in the light-tailed
case, it has very close powers to the best individual tests.

We next turn to the heavy-tailed case, where the individual tests have
power performance that is very different from the light-tailed case. Specif-
ically, for t3 distributions, the individual test with &« = 0 and a = 0.1 have
higher powers than the remaining ones. This indicates that for data with
heavy tails, it is beneficial to use more rank information instead of using
only moments. More specifically, we see that T, with o = 0.1 has the
highest powers and that with o = 1 has the lowest powers. This result
is consistent with the theoretical SNR in Figure [Il In this case, using a
non-trivial weight (o = 0.1) can significantly enhance the power efficiency
via increasing the SNR. As for the tail-adaptive method, it still has very
close powers to the best individual test, i.e. a@ = 0.1 when the data are
heavy-tailed. In addition to N(0,1) and t3 distributions, we can observe
that for ¢4 distributions, even though the individual tests may present var-
ious power performances, the tail-adaptive method consistently has powers
close to that of the corresponding best individual test. The above results
suggest that our proposed tail-adaptive method can sufficiently account for
the unknown tail-structures, and enjoy satisfactory power performance un-

der various data generating mechanisms. Lastly, we remark that when the

12
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change point location gets closer to the boundary of data observations, e.g.
from t; = 0.5 to t; = 0.3, it becomes more difficult to detect a change point,
which is also consistent with our theoretical result.

Next, we consider the effect of different sq on the power performance.
We find that for any given sy, the performance of the individual and the
tail-adaptive tests are similar to our above findings. This suggests that the
tail-adaptivity of our testing method is robust to the choice of s5. Moreover,
for each case with a specific error distribution and data dimension, both the
individual and tail-adaptive tests with sq = 3,5, 7 have higher powers than
those with so = 1. More specifically, tests with sy = 5 generally have the
best performance and those with so = 3 and sy = 7 have close powers
to s = 5. This indicates that for high dimensional sparse linear models,
instead of using the /,.-norm, it is more efficient to detect a change point

via aggregating the CUSUM statistics using the first sy > 1 order statistics.

13
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Table S2.3: Empirical powers of the individual and tail-adaptive tests for Model 1
with banded covariance matrix under various distributions with so € {1,3,5,7} and
t; € {0.3,0.5}. The dimension is p = 400. The results are based on 1000 replications

with B = 200 for each replication.

Empirical powers for N(0,1)

Dist t1 So a=20 a=20.1 a=0.5 a=0.9 a=1 Adaptive
so=1 0.482 0.612 0.768 0.732 0.722 0.733
N(0,1) 0.5 so =3 0.529 0.655 0.787 0.759 0.739 0.759
so =25 0.546 0.641 0.783 0.759 0.749 0.760
so =17 0.525 0.634 0.802 0.778 0.773 0.765
so =1 0.295 0.398 0.546 0.506 0.489 0.495
N(0,1) 0.3 so =3 0.318 0.415 0.573 0.534 0.516 0.518
so =25 0.286 0.418 0.568 0.543 0.514 0.505
so =17 0.315 0.418 0.560 0.522 0.505 0.522
Empirical powers for Student’s t4
Dist t1 so a=20 a=0.1 a=0.5 a=0.9 a=1 Adaptive
so =1 0.792 0.880 0.835 0.769 0.756 0.873
ty 0.5 so =3 0.836 0.903 0.852 0.795 0.782 0.904
so =25 0.847 0.914 0.884 0.813 0.787 0.915
so =7 0.831 0.895 0.861 0.813 0.807 0.896
so =1 0.595 0.724 0.687 0.588 0.555 0.722
ty 0.3 so =3 0.644 0.762 0.737 0.627 0.591 0.765
sop =5 0.646 0.773 0.745 0.618 0.606 0.765
so =17 0.603 0.765 0.712 0.582 0.564 0.743
Empirical powers for Student’s t3
Dist t1 so a=0 a=0.1 a=0.5 a=0.9 a=1 Adaptive
so =1 0.773 0.819 0.663 0.580 0.572 0.802
t3 0.5 so =3 0.777 0.826 0.693 0.612 0.583 0.827
so =25 0.791 0.840 0.685 0.604 0.594 0.822
so =17 0.789 0.847 0.713 0.623 0.602 0.829
so =1 0.554 0.629 0.475 0.380 0.362 0.599
t3 0.3 so =3 0.599 0.692 0.527 0.422 0.403 0.656
so =25 0.587 0.697 0.525 0.404 0.390 0.640
so =17 0.549 0.650 14  0.487 0.362 0.348 0.613
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Table S2.4: Empirical powers of the individual and data-adaptive tests for Model 2
with blocked covariance matrix under various distributions with so € {1,3,5,7} and
t; € {0.3,0.5}. The dimension p is 400. The results are based on 1000 replications with

B = 200 for each replication.

Empirical powers for N(0,1)

Dist t1 so a=20 a=20.1 a=0.5 a=0.9 a=1 Adaptive
so =1 0.328 0.441 0.651 0.626 0.626 0.594
N(0,1) 0.5 so =3 0.428 0.547 0.733 0.714 0.704 0.695
so =25 0.462 0.585 0.761 0.712 0.702 0.714
so =17 0.476 0.591 0.760 0.718 0.703 0.712
so =1 0.175 0.232 0.361 0.326 0.321 0.301
N(0,1) 0.3 so =3 0.245 0.334 0.486 0.453 0.437 0.458
sop =05 0.244 0.356 0.483 0.428 0.412 0.428
so =17 0.246 0.338 0.470 0.409 0.389 0.419
Empirical powers for Student’s t4
Dist t1 So a=0 a=20.1 a=0.5 a=0.9 a=1 Adaptive
so=1 0.618 0.722 0.749 0.654 0.659 0.742
ta 0.5 so =3 0.791 0.862 0.849 0.784 0.763 0.873
so =25 0.780 0.866 0.855 0.778 0.769 0.874
so =17 0.802 0.879 0.868 0.806 0.782 0.889
so=1 0.398 0.518 0.547 0.427 0.404 0.511
ty 0.3 so =3 0.511 0.661 0.645 0.535 0.514 0.665
so =25 0.522 0.663 0.631 0.505 0.483 0.651
so =17 0.531 0.661 0.637 0.509 0.482 0.655
Empirical powers for Student’s t3
Dist t1 so a=20 a=20.1 a=0.5 a=0.9 a=1 Adaptive
so =1 0.571 0.640 0.571 0.460 0.455 0.621
t3 0.5 so =3 0.726 0.790 0.683 0.588 0.579 0.782
so =25 0.761 0.794 0.674 0.583 0.576 0.808
so =17 0.753 0.803 0.717 0.619 0.600 0.807
so =1 0.359 0.455 0.360 0.293 0.261 0.422
t3 0.3 so =3 0.470 0.574 0.485 0.370 0.349 0.560
so =5 0.490 0.581 0.451 0.339 0.328 0.567
so =17 0.498 0.601 15 0.440 0.330 0.308 0.581
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S2.4 The choices of A and s;

Table S2.5: Empirical powers of the tail-adaptive tests for Model 1 with banded covari-

ance matrix under various choices of sy and A. The dimension is p = 400. The results

are based on 1000 replications with B = 200 for each replication.

N(0,1) ts

50 A A A A A A A A A A A A As Ar
1 0.456 0.746 0.725 0.546 0.682 0.698 0.700 0.760 0.634 0.524 0.804 0.486 0.786 0.748
2 0.479 0.800 0.748 0.584 0.718 0.706 0.708 0.792 0.666 0.544 0.828 0.520 0.786 0.778
4 0.521 0.773 0.752 0.608 0.738 0.704 0.662 0.766 0.728 0.584 0.840 0.534 0.812 0.788
llog(p)] 0.498 0.780 0.746 0.586 0.682 0.742 0.682 0.822 0.676 0.560 0.820 0.538 0.814 0.758
8 0.488 0.798 0.724 0.586 0.650 0.710 0.678 0.788 0.688 0.592 0.860 0.536 0.826 0.762
16 0.442 0.738 0.716 0.554 0.680 0.714 0.626 0.722 0.616 0.480 0.806 0.516 0.750 0.676
32 0.426 0.692 0.644 0.470 0.590 0.586 0.526 0.646 0.616 0.416 0.720 0.448 0.736 0.608
64 0.346 0.586 0.512 0.398 0.476 0.524 0.508 0.584 0.516 0.350 0.630 0.384 0.574 0.508
128 0.264 0.556 0.436 0.320 0.426 0.396 0.354 0.468 0.476 0.322 0.550 0.336 0.540 0.396

Note that our approach involves the selection of the candidate set A

and the parameter sy, both of which can be regarded as tuning parame-

ters. Intuitively, A determines the weight between the quantile loss and

the least squared losses, whereas sg indicates how much information on

change points among regression coefficient components should be integrated

into the CUSUM statistic. Therefore, we conducted numerical simula-

16



S2.4 The choices of A and sg

tions to investigate how different choices of A and sy affect the efficacy
of change point detection. We selected seven different subsets for A includ-
ing A; = {0}, Ay = {0.5}, A3 = {1}, Ay = {0,0.1}, A5 = {0.9,1}, Ag =
{0,0.1,0.5,0.9, 1} and A; = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. Ad-
ditionally, we selected different values for s¢, including s, = 2°, 2, ..., 2llog2(P)+1]
Table displays the performance of the adaptive change point detection
method under N(0,1) and ¢3 distributions for these selections of A and s.
The model settings are the same as in Section S4.3. We observed that for
any given A, when sy increases from small to large, the efficacy of the adap-
tive detection method initially increases and then decreases, indicating that
as sg increases, the statistic extracts more change point information from
the regression components, enhancing the efficacy of change point detection.
However, once sy becomes larger, additional noise accumulates, leading to
a decrease in the detection efficacy. Considering the sparsity assumptions
for regression coefficients and the requirements of Gaussian approxima-
tion theory, which requires sjlog(pn) = O(n®') for some 0 < & < 1/7
and s§log(pn) = O(n®) for some 0 < & < g, we recommend the use of
so = |log(p)] in practice.

Regarding the selection of A, we note that for data with light-tailed dis-

tributions, sets with larger values such as A, As, As, Ag, A7 exhibit higher
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S2.5 Multiple change point detection

efficacy. Conversely, for data with heavy-tailed distributions, sets with
smaller values such as A;, A4, Ag, A7 perform satisfactorily. Therefore, if
the tail structure of the data is unknown in practical applications, we might
consider a candidate set that includes both larger and smaller values. In-
terestingly, we find that adding too many weights, such as in A; does not
yield much additional benefit. Considering the balance between detection
efficacy and computational efficiency, we recommend A = {0,0.1,0.5,0.9, 1}

for practical use.

S2.5 Multiple change point detection

In this section, we consider the performance of multiple change point
detection and compare our method with the existing techniques. In this
numerical study, we set n = 1000 and p = 100 with three change points
(m = 3) at ky = 300, ks = 500, and k3 = 700, respectively. The above three
change points divide the data into four segments with piecewise constant

regression coefficients 31, B, 34 and BW as follows:

7

}/;:XZTB(I)—{—GZ, fOI'Z.Zl,...,k’l,
V=X, 8% 46, fori=Fk +1,... ks,

Y;=X,B% ¢, fori=ky+1,..., ks,

Y;=XBW +¢, fori=ks+1,...,n.
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S2.5 Multiple change point detection

Table S2.6: Multiple change point estimation results with (n,p) = (1000, 100). The

results are based on 100 replications with B = 100 for each replication.

N(0,1) (¢=3) N(0,1) (c=6) t3 (c=4) t3 (¢ =6)
Methods Haus (Sd) Haus (Sd) Haus (Sd) Haus (Sd)
a =0 (BS) 0.186 (0.1310) 0.028 (0.0374) 0.144 (0.1300) 0.040 (0.0603)

a=0.1(BS) 0.138 (0.1286) 0.033 (0.0442) 0.111 (0.1229) 0.032 (0.0580)
a =05 (BS) 0.072 (0.1018) 0.028 (0.0432) 0.145 (0.1353) 0.051 (0.0740)
a=0.9 (BS) 0.088 (0.1092) 0.030 (0.0443) 0.180 (0.1371) 0.063 (0.0877)
a=1(BS) 0.095 (0.1146) 0.024 (0.0394) 0.187 (0.1405) 0.065 (0.0963)

Adaptive (BS)  0.092 (0.1085) 0.032 (0.0428) 0.113 (0.1260) 0.039 (0.0638)

a=0(WBS) 0087 (0.0926) 0.018 (0.0381) 0.046 (0.0690) 0.018 (0.0381)
a=0.1(WBS) 0060 (0.0846) 0.012 (0.0277) 0.049 (0.0710) 0.012 (0.0277)
a=0.5(WBS) 0.036 (0.0599) 0.012 (0.0279) 0.077 (0.0908) 0.012 (0.0279)
a =09 (WBS) 0041 (0.0662) 0.011 (0.0216) 0.095 (0.0999) 0.011 (0.0216)
a=1(WBS) 0043 (0.0659) 0.012 (0.0216) 0.101 (0.1014) 0.012 (0.0216)

Adaptive (WBS) 0.031 (0.0478) 0.014 (0.0292) 0.033 (0.0511) 0.014 (0.0292)

VPWBS 0.135 (0.1004) 0.038 (0.0474) 0.138 (0.0782) 0.085 (0.0636)

DPDU 0.082 (0.1097) 0.009 (0.0087) 0.118 (0.0830) 0.045 (0.0598)
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S2.5 Multiple change point detection

The covariates X; are generated from N(0,X) with 3 being banded which
is introduced in Model 1. For each replication, we first randomly se-
lect five covariates (denoted by &;) from {1,...,10}. For generating B,
we set Bgl) = 1if s € & and ﬁél) = 0if s ¢ S;. For B?, we set

@ = 59) - c\/m if s € 8 and 69 =0if s ¢ S;. Then, we
set B3 = B and BW = B We compare our proposed method with the
Variance-Projected Wild Binary Segmentation (VPWBS) method in [Wang
et al.| (2021) and the dynamic programming with dynamic update method
in | Xu et al.| (2022). As compared in Wang et al.| (2021]), VPWBS has better
performance than the binary segmentation based technique in [Leonardi and
Bihlmann| (2016) and the sparse graphical LASSO based method in |Zhang
et al| (2015). Hence, we do not compare with Leonardi and Bithlmann
(2016) and |Zhang et al.|(2015]). For VPWBS, we use the R codes published
by the authors on GitHub (https://github.com/darenwang/VPBS) and em-
ploy a cross-validation method to select tuning parameters for estimating
change points. For DPDU, we utilize the DPDU.regression.R function from
the R package named “changepoints” to estimate multiple change points.
As for our methods, we combine the individual and tail-adaptive procedures
with the Binary Segmentation and Wild Binary Segmentation techniques.

For WBS, we use Algorithm with parameters as v = 0.05, so = 5,
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S2.5 Multiple change point detection

qo = 0.1, B =100, V = 150, and vy = 0.1. In this numerical study, we set
the replication number as 100.

To evaluate the performance in identifying the change point, we use
the scaled Hausdorff distance to evaluate the performance in change point
estimation, which is defined as:

max(maxg, cs, Mil,es, |S1 — Sa|, MaxXg,es, Ming, s, |1 — Sa)

d(S1,52) = 1000 ’

where §; = {300, 500, 7000, 1000} are the true change points and S, are the
estimated change points. Note that scaled Hausdorff distance is a number
between 0 and 1, and a smaller one indicates better change point estima-
tion. Table provides the results for N(0,1) and ¢3 distributions with
various signal strength ¢ € {3,4,6}. For light-tailed error distributions,
the individual methods with a larger a generally have better performance
than those with a smaller one for identifying the change point number and
locations. This can be seen by smaller Hausdorff. On the contrary, in the
heavy-tailed case, the individual methods with a smaller o are more pre-
ferred. As for the tail-adaptive method, it has comparable performance to
the best individual one under both light and heavy-tailed errors.
Additionally, we note that for both individual and tail-adaptive test-
ing methods, those based on Wild Binary Segmentation (WBS) generally

outperform those based on Binary Segmentation (BS). Therefore, we recom-
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S2.5 Multiple change point detection

mend combining our proposed method with the WBS algorithm for multiple
change point estimation in practical applications. For VPWBS and DPDU,
these methods show satisfactory performance under light-tailed distribu-
tions such as the normal distribution. Particularly, DPDU, which employs
a dynamic programming algorithm for multiple change point estimation,
achieves the lowest estimation errors when data follow a normal distribu-
tion with strong signals. Our adaptive method performs comparably to
these two methods under light-tailed distributions. However, their detec-
tion capabilities decrease when the data follow heavy-tailed distributions,
such as the Student’s t3 distribution. This indicates that methods based on
the least squared loss are not robust for heavy-tailed data.

Lastly, we report the computational complexity of the algorithm. For
our individual and tail-adaptive testing methods, when combined with the
WBS algorithm, the complexities are O(M Lasso(n, p)) and O(M|.A|Lasso(n, p)),
respectively, where M represents the number of small intervals in WBS,
and Lasso(n,p) denotes the computational cost for calculating lasso with
sample size n and data dimension p. For the DPDU algorithm, it uses a
backward iterative dynamic programming approach, and its complexity is
O(n*p? + n’Lasso(p)). Figure shows the computational time of our

method and the DPDU algorithm under various n € {200, 300,400, 500}

22



S2.5 Multiple change point detection

and p € {200, 300,400,500}, where the model setup is the same as in Sec-
tion $2.3. We set the number of intervals in WBS to log*(n). We can
observe that the computational costs of both our method and the DPDU
method increase with n and p. Our individual testing method has compa-
rable computational time to that of the DPDU. The computational cost for
the tail-adaptive testing method is the highest. This is not surprising, as
we aim to construct a testing method that is adaptive to the tail structure
of the error terms. To that end, we need to calculate lasso estimates with
different weights « to obtain the best individual testing method.

Computation Time across Different n (p=200) Computation Time across Different p (n=200)

250
300

method method

N
8

Adaptive Adaptive

@
8

alpha=0
# alpha=0.1
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alpha=1
DPDU

alpha=0
& alpha=0.1
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200 300 400 500 200 300 400 500
Sample Size (n) Number of Predictors (p)

Figure S2.1: Computational time for our proposed method and the DPDU algorithm

with n € {200,300, 400,500} and p € {200, 300, 400, 500}.
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S3 An application to the S&P 100 dataset
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Figure S3.1: Plots of the Ted spread (left) and the S&P 100 index (right) with the

estimated change points (vertical lines) marked by # in Table

In this section, we apply our proposed method to the S&P 100 dataset
to find multiple change points. We obtain the S&P 100 index as well as
the associated stocks from Yahoo! Finance (https://finance.yahoo.com/)
including the largest and most established 100 companies in the S&P 100.
For this dataset, we collect the daily prices of 76 stocks that have remained
in the S&P 100 index consistently from January 3, 2007 to December 30,
2011. This covers the recent financial crisis beginning in 2008 and some
other important events, resulting in a sample size n = 1259.

In financial marketing, it is of great interest to predict the S&P 100
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index since it reveals the direction of the entire financial system. To this
end, we use the daily prices of the 76 stocks to predict the S&P 100 index.
Specifically, let Y; € R! be the S&P 100 index for the ¢-th day and X; €
R7*2 he the stock prices with lag-1 and lag-3 for the ¢-th day. Our goal is
to predict Y; using X; under the high dimensional linear regression models
and detect multiple change points for the linear relationships between the
S&P 100 index and the 76 stocks’ prices. Note that we have calculated
differences of the data to remove the temporal trend. It is well known that
the financial data are typically heavy-tailed and we have no prior-knowledge
about the tail structure of the data. Hence, for this real data analysis, it
seems very suitable to use our proposed tail-adaptive method. We combine
our proposed tail-adaptive test with the WBS method (Fryzlewicz| (2014))
to detect multiple change points, which is demonstrated in Algorithm [S1.1]
To implement this algorithm, we set A = {0,0.1,0.5,0.9,1}, so =5, B =
100, and V' = 500 (number of random intervals). Moreover, we consider
the Ly — Ly weighted loss by setting 7 = 0.5 in . The data are scaled
to have mean zeros and variance ones before the change point detection.
There are 14 change points detected which are reported in Table [S3.1]

To further justify the meaningful findings of our proposed new methods,

we refer to the T-bills and ED (TED) spread, which is short for the differ-
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ence between the 3-month of London Inter-Bank Offer Rate (LIBOR), and
the 3-month short-term U.S. government debt (T-bills). It is well-known
that TED spread is an indicator of perceived risk in the general economy
and an increased TED spread during the financial crisis reflects an increase
in credit risk. Figure shows the plot of TED where the red dotted
lines correspond to the estimated change points. We can see that during
the financial crisis from 2007 to 2009, the TED spread has experienced very
dramatic fluctuations and the estimated change points can capture some
big changes in the TED spread. In addition, the S&P 100 index obtains
its highest level during the financial crisis in October 2007 and then has
a huge drop. Our method identifies October 29, 2007 as a change point.
Moreover, the third detected change point is January 10th, 2008. The Na-
tional Bureau of Economic Research (NBER) identifies December of 2007
as the beginning of the great recession which is captured by our method. In
addition, it is well known that affected by the 2008 financial crisis, Europe
experienced a debt crisis from 2009 to 2012, with the Greek government
debt crisis in October 2009 serving as the starting point. Our method iden-
tifies October 5, 2009 as a change point after which S&P 100 index began
to experience a significant decline. Moreover, it is known that countries

such as Italy and Spain were facing severe debt issues in July 2011, rais-
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ing fears about the stability of the Eurozone and the potential impact on

global financial markets. As a result, there exists another huge drop for the

S&P 100 index in July 26, 2011, which can be successfully detected by our

method.

Table S3.1: Multiple change point detection for the S&P 100 dataset.

Change points Date Events
117 2007/06/21 TED Spread#
207 2007/10/29 TED Spread#
257 2008/01/10 Global Financial Crisis (TED Spread)#
360 2008,/06/09 TED Spread#
439 2008/09/30 TED Spread#
535 2009/02/18 Nadir of the crisis#
632 2009/07/08
694 2009/10/05 Greek debt crisis#
840 2010/05/05 Global stock markets fell due to fears of
contagion of the European sovereign debt crisis#
890 2010/07/16
992 2010/12/09
1074 2011/04/07
1149 2011/07/26 Spread of the European debt crisis to Spain and Italy#
1199 2011/10/05
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S4 Some notations

Before the proofs, we give some notations. Under Hy, we set 30 :=
BN = 8@ and s := s = s@ . Under Hy, For the regression vectors
BY and B, define SM = {1 < j < p: ﬂj(.l) 4 0} and S® = {1 <
j<p: Bj(-z) # 0} as the active sets of variables. Denote s = |S()|
and 5? = |S?)| as the cardinalities of S and S®), respectively. We set
S =8MUS? and s = |S|. For a vector v € RP, we denote J(v) = {1 <
Jj < p:v; # 0} as the set of non-zero elements of v and set M(v) := |J(v)]
as the number of non-zero elements of v. For a set J and v € RP, denote
vy as the vector in R? that has the same coordinates as v on J and zero
coordinates on the complement J¢ of J. For any vector € R” and a matrix
A € RP*P_ define ||z||% = =" Az. Denote X = {X,Y}. We use C},Cy, ...
to denote constants that may vary from line to line. We use w.p.a.1 for the
abbreviation of with probability approaching to one. For g > 0, we define
the function v : [0,00) — [0,00) as ¥z(z) := exp(z?) — 1. Then, for any

random variable X, we define
| X ||y, := inf {C > 0: Eyp(|X|/C)]) < 1}.

For any 0 < s <t <1, we denote

|nt]
S(s:t) = T insj 5 Soxx/ (54.2)

i=|ns]+1
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S5 Basic assumptions

We introduce some basic assumptions for deriving our main theorems.

K
Before that, we introduce some notations. Let e;(7) := K'Y (1{e; <
k=1

K
b,(f)} — 1) = K713 ei(m). We set Vy, := {v € SP : ||[v]jo < so}, where
k=1

SP = {v € R? : ||v|| = 1}. For each a € [0,1], we introduce B* =

~

(BT, ()7)T € RPTX with 8* € R?, b* = (b,...,b%)" € RX, where

n K n
B" = argmin E[u - a)% > % > o (Yi—bi— X B) + % > (v - XJﬁ)Q]. (S5.3)
k=1

BERP beERK i—1 i—1

Note that by definition, we can regard 3* as the true parameters under

the population level with pooled samples. We can prove that under Hy,
B = (BT, ()T with b = (bgo), e ,bg))T. Under Hy, 8" is gener-
ally a weighted combination of the parameters before the change point and
those after the change point. For example, when o = 1, it has the explicit
form of 8% = ((t,8W + 1,8%)7T, (b©)T)T. With the above notations, we
are ready to introduce our assumptions as follows:

Assumption A (Design matrix): The design matrix X has i.i.d rows
{X.},. (A.1) Assume that there are positive constants k; and ks such
that Apin(2) > k1 > 0 and A\pax(E) < k2 < oo hold. (A.2) There ex-

ists some constant M > 1 such that max;<;<, maxi<;<, | X;;| < M almost

surely for every n and p.
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Assumption B (Error distribution): The error terms {¢;}7, are i.i.d.
with mean zero and finite variance 0. There exist positive constants ¢, and
Ce such that ¢ < Var(e;) < C? hold. In addition, ¢; is independent with
X, fort=1,...,n.

Assumption C (Moment constraints): (C.1) There exists some con-
stant b > 0 such that E(v' X;¢;)? > b and E(v' X;e;(7))? > b, for v € V,,
and all i = 1,...,n. Moreover, assume that inf; ; E[X?] > b holds. (C.2)
There exists a constant K > 0 such that E|e;|*** < K¢, for £ = 1,2.
Assumption D (Underlying distribution): The distribution function
¢ has a continuously differentiable density function f(¢) whose derivative
is denoted by f/(t). Furthermore, suppose there exist some constants C'y,

C_ and C', such that

(D.1)sup fe(t) < C4;(D.2) inf ian foxT(B* = BYU)) +b;) > C;

R J=1,21<k<
(D.3)sup |(1)] < .
teR
Assumption E (Parameter space):
(E.1) We require sg log(pn) = O(n®) for some 0 < & < 1/7 and sg log(pn) =

O(n®) for some 0 < & < 2.
s2s%log®(pn)

(E.2) Assume that — 0 as (n,p) — oo, where s is the overall

n

sparsity of B and B®).

(E.3) We require max (|| || o, [|8?||oc) < Cg for some Cg > 0. Moreover,

30



we require ||3® — BW||; < Ca for some constant Ca > 0.
(E.4) For the tuning parameters A, in (2.10)), we require A\, = Cx+/log(pn)/n
for some C, > 0.

Assumption A gives some conditions for the design matrix, requiring
X has a non-degenerate covariance matrix X in terms of its eigenvalues.
This is important for deriving the high-dimensional LASSO property with
a € [0,1] under both Hy and H;. Assumption B mainly requires the un-
derlying error term ¢; has non-degenerate variance. Assumption C imposes
some restrictions on the moments of the error terms as well as the design
matrix. In particular, Assumption C.1 requires that v' Xe, v Xe(T), as
well as X;; have non-degenerate variances. Moreover, Assumption C.2 re-
quires that the errors have at most fourth moments, which is much weaker
than the commonly used Gaussian or sub-Gaussian assumptions. Both
Assumptions C.1 and C.2 are basic moment conditions for bootstrap ap-
proximations for the individual-based tests. See Lemma C.6 in the proof.
Assumptions D.1 - D.3 are some regular conditions for the underlying dis-
tribution of the errors, requiring € has a bounded density function as well
as bounded derivatives. Assumption D.2 also requires the density function
at ' (8% — BY) + b; to be strictly bounded away from zero. Lastly, As-

sumption E imposes some conditions for the parameter spaces in terms of
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(s0,m,p,5,BY,B8%). Specifically, Assumption E.1 scales the relationship
between sg, n, and p, which allows sy can grow with the sample size n.
This condition is mainly used to establish the high-dimensional Gaussian
approximation for our individual tests. Assumption E.2 also gives some
restrictions on (sg, s,n,p). Note that both Assumptions E.1 and E.2 allow
the data dimension p to be much larger than the sample size n as long as
the required conditions hold. Assumption E.3 requires that the regression
coefficients as well as signal jump in terms of its /;-norm are bounded. As-
sumption E.4 imposes the regularization parameter \, = O(+/log(pn)/n),
which is important for deriving the desired error bound for the LASSO esti-
mators under both Hy and H; using our weighted composite loss function.

See Lemmas C.9 - C.11 in the proof.

Remark 1. Assumption C.2 with the finite fourth moment is mainly for
the individual test with @ = 1, while Assumption D is for that with o =
0. Note that Assumption D only imposes some conditions on the density
functions of the errors instead of the moments, which can be statisfied for
the errors with heavy tails. Hence, in both cases, our proposed individual-
based change point method extends the high-dimensional linear models
with sub-Gaussian distributed errors to those with only finite moments or

without any moments, covering a wide range of errors with different tails.
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S6 Useful lemmas

Lemma 1 (Lemma E.1 in Chernozhukov et al.| (2017)). Let X4,..., X, €
R? with X; = (X, . .. ,Xip)T be independet and centered random vectors.
Deﬁne 7 = maxi<j<p ‘ E?:l Xij‘; M = maxij<ij<n MaXi<j<p ‘XU’ and 0'2 =

max; y_, E[X7]. Then,

E[Z] < C(o\/logp+ /E[M?]log p),
where C' is some universal constant.

Lemma 2 (Lemma E.2 in (Chernozhukov et al. (2017))). (a) Assume the

setting of Lemma holds. For everyn > 0,5 € (0,1] and t > 0, we have

P(Z>1+nE[Z]+1t) < exp(—g%;) + 3exp ( — (m)ﬁ),

where K = K(n, B) is a constant only depending on n and (.
(b) Assume the setting of Lemma holds. For everym > 0,s > 1 andt > 0,

we have

P(Z > (14 n)E(Z] +1) < exp(—oirg) + KL,

where K' = K(n, s) is a constant only depending on n and s.

Lemma 3 (Hoeffding’s inequality). Suppose X1,..., X, € R be indepen-

dent random variables with | X;| < K for some K > 0. Let X be the sample
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mean. Then, for any x > 0, we have

2
P(|X — EX| > z) < 2exp ( - %) (36.4)

Lemma 4 (Nazarovs inequality in Nazarov| (2003))). Let W = (W, W, -+ Wy)T €
RP be centered Gaussian random vector with infy<j<, E(W.)?> >b>0. Then

for any x € R? and a > 0, we have
P(W <x+a)—P(W <x) <Cay/logp,
where C' 1s a constant only depending on b.

Before introducing Lemmal3], we need some definitions for an m-generated
convex set A™. We say a set A™ is m-generated if it is generated by inter-
secting m half spaces. In other words, the set A™ is a convex polytope with
at most m facets. Moreover, for any € > 0 and an m-generated convex set
A™ we define

A= (] {weR:w v < Syn(v) + e}, (S6.5)
veV(A™)

where V(A™) consists m unit vectors that are outward normal to the facets
of A™, and Sym(v) is the support function for A™ (see |(Chernozhukov et al.
(2017)).

Let € = (z1,...,2p) € RP. For any 1 < 59 < p, define ||@||(5,2) =

(>, |z(5|?)Y/2, where |z(1) > |z@)| -+ > || be the order statistics of @.
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The following lemma shows that the set Végpg) ={x e R”: ||x||(s,2) < 2}

can be approximated by m-generated convex set.

Lemma 5 (Zhou et al| (2018)). Let E#P = {x € R? : |z|| < R} and
Viy = {z € RV [l@fl(s2) < 2z} For any v > e/4V/2, there is a m-

generated convex set A™ € RP and a constant €, such that for any 0 < e <

€y, we have

1.\%
A™ C ERPn Viray C A™EE and m < p* (l ln(—)) .
’ € e

The following Lemma [6] shows the Gaussian approximation theory for
the testing statistic, which is very important for the size control. To
show that, we need some notations and assumptions. In particular, let
Z,...,Z, ~ (0,%) be independent and centered random vectors in RP
with Z; = (Za,...,Zy)" for i = 1,...,n. Let Gy,...,G, be indepen-
dent centered Gaussian random vectors in R? such that each G; has the
same covariance matrix as Z;. Let Vs, := {v € ST : |jv|o < so}, where

St :={v € R?: ||v|| = 1}. We require the following conditions:

1n
(M1) There is a constant b > 0 such that infyey, — > E(v'Z;)? > b for
N =1

1=1,...,n.

1.
(M2) There exists some constant K > 0 such that max — S E|Z; P <
SISP M=

K*for 0 =1,2.
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(M3) There exists a constant X > 0 and ¢ > 0 such that E((max;<j<, |Z;;|/K)?) <

2 holds foralli=1,...,n

Lemma 6. Assume that that s3K?/"log(pn) = O(nf') for some 0 < & <

1/7 and s§K*/*log(pn) = O(n2) for some 0 < & < (1 —2/q). Let

7(22——2&)’ Sk (ZG 1Y)

(36.6)

ﬂ\

be the partial sum processes for (Z;);>1 and (G;);>1, respectively. If Zy, ..., Z,

satisfy (M1), (M2) and (M3), then there is a constant o > 0 such that

sup [P( max (870 oer < )P sup  [8CH) i < 2)| < Cn,
2€(0,00) 0SREN—FRO ko<k<n—ko

(56.7)

where C' is a constant only depending on b, q, K and ko := |nqo| for some

0 < qo<0.5.

The following Lemmas [7] and [§] present the orders for the partial sum
process of {X e} | as well as the f,-norm based uniform large deviation

bound for f)(O : 1) and f](t : 1) , which will be frequently used throughout

the proofs.
Lemma 7. Let X,,..., X, be independent centered random vectors in
R? and €,,...,€, be independent centered random wvectors in RY.  Sup-

pose further that {X;}, and {€;}!_, satisfy Assumptions A — C in the

36



main paper. Then, for any sequence a, € (0,1) and b, € (0,1) satisfying

|na,| — oo and |nb,| — oo as n — oo, we have

%( LnZtJ X — LntJ i_ilXijGZ)

max max
te[anylfbn] ISJSP

1l Lnt |
= = X6 — X z) ‘ S6.8
tllil?xbn \/_ Z n l_zl ‘ 00 ( )
- 0p<M¢1og<p<n — ki~ Fu)),
where k, = |na,| and k, = |nb,|. Moreover, we can also have the
following results:
|_ntJ 1 Int] X
tefandoba] 155 Sp n J el nt] 2 Z il (56.9)
1 1 '
~0, <M og(pn) max {1,711/4 og(pn) })
En ETL
Lemma 8. Let X4,..., X, be independent centered random vectors in RP

satisfying Assumption A. Let & = Cou(X,). Recall £(s : t) defined

in (S4.9). Then, for any sequence a, € (0,1) and b, € (0,1) satisfying

|na,| — oo and |nb,| — oo asn — oo, with probability at least 1—(np)~1,
we have:
~ 1
max S0 1) — Bl < Codr, |22
an<t<1=by [nan]
= 1
max St 1) = Sl < C5h2, 222
an<t<1-by [nbn]

37



Moreover, if we take a,, = b, = qo € (0,0.5), we have

~ 1
max ||X(0:¢) — Xl < CyM? og(pn))
q0<t<l—qo n
~ 1
max St 1) = Bl < o2, /08P
qo<t<l—qo n
where Cy,...,Cs are some universal constants. Note that Lemma[§ is a

direct consequence of Lemmal[3. The proof is ommitted.

Note that for proving our results, we need some theoretical analysis for
the lasso estimator defined in (2.10). The following Lemmas|[9]-[11] show the
lasso property for « € [0, 1] under both Hy and H;, which is very important
for deriving the theoretical results for the individual test. Before presenting
the details, for each a € [0, 1], we introduce 8" = ((8%)7, (b*)")" € RPHE

with b* = (b,...,b%)" € RE where

n n

K
B* = argmin I[-Z[(l—a)l Z % me (Y;—bi—XZ-TB)ﬂL% Z(Yi—XiTB)Q}

BERP bERK ne3 N4 2

=1

(S6.10)

Note that by definition, we can regard @* as the true parameters under

the population level. In this paper, we assume (3* enjoys some sparsity

property in the sense that M(8") = O(s). Moreover, the properties of 3"
are discussed in Sections - [S9.5] respectively.

The following Lemma[J] shows the lasso property with & = 1. The proof

of Lemma [9] is given in Section [S9.3]
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Lemma 9 (Lasso property with v = 1). Let [/3\ be the lasso estimator with
a =1 defined in . Let N\, = C\M?*/log(pn)/n for some big enough
constant C'y > 0. Assume Assumptions A, B, C.2, E.2 - E.3 hold.

Then, with probability tending to one, we have

X3 - B[ < €%, 1B - 8]l < CASE, and M(B) < Cus, Jorq =12

(S6.11)

The following Lemma shows the lasso property with a = 0 under

both Hy and H;. The proof of Lemma [I0]is given in Section

Lemma 10 (Lasso property with a = 0). Let ,é\ be the lasso estimator with
a = 0 defined in . Let X = C\M+/log(pn)/n for some big enough
constant Cy > 0. Assume Assumptions A, D, E.2 - E.3 hold. Then,

with probability tending to one, we have

1 ~ ~ ~
—[XB- )" < Cox%s, 1B BNl < CoAs¥e, and M(B) < Cis, for g =1,2

(S6.12)

The following Lemma shows the lasso property with a € (0, 1) under

both Hy and H;. The proof of Lemma [11]is given in Section

Lemma 11 (Lasso property with o € (0, 1)). Let B be the lasso estimator
with a € (0,1) defined in . Let A = Cy\M?y/log(pn)/n for some big

enough constant C) > 0. Assume Assumptions A, B, C.2, D, E.2 -
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E.3 hold. Then, with probability tending to one, we have
1 ~ ~ —~
~|IX(B - B < CaN?s, 1B~ B"llg < C3AsV9, and M(B) < Cus, for g =1,2.

(S6.13)

S7 Proof of main results

S7.1 Proof of Theorem (1

In this section, we prove the variance estimation results under Hy, which

are given in Sections [S7.1.1] - [S7.1.2] respectively. For simplicity, we omit

the subscript @ whenever needed.

S7.1.1 Proof of Theorem [I] with o =1

Note that for = 1, the variance estimators 62 (1,7) and 6% (1,7)

reduce to

o2 (1,7) = e |Z el , 0.(1,7) |n+| Z

€N — 1EN4

where €; is defined in (2.20). Moreover, under Hy, the change point esti-
mator ¢; can be an arbitrary number which satisfies t; € (g0, 1 — qo]. We

aim to prove both 62 (1,7) and 07 (1, 7) are consistent. We first consider
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S7.1 Proof of Theorem

52 (1,7). In fact, by the definition of ¥; = ¢; + X, B, we have:

63(1 7)
|n |ZE +5(1 |n |ZXXT 5(0))
1€En_ €eEn—
T 17
2
+ N} Z «X,; (8 —BW)
“lien_

111
For I, by Assumption C.2 and according to the law of large numbers,

2

1
we have [ — 0? = Oy(—=). For I, similar to the proof of Lemma H

NG

under Hy and Assumptions A, B, C.2, E.2 - E.4, one can prove

IT = O,(s

1
og(pn) ). For 111, using the Cauchy-Swartz inequality, we have:
n

IH<2\/’n|Ze>< (B — B |n,ZXXT51 BO) = O,(

1EN 1EN
Combining the above results, by Assumption E.2, we have:

]
. og(pn)
n

2 (1,7) — 0® = O,(

).

With a similar analysis, we can prove that the same bound applies to

0% (1,7) — o2, which yields:

[5%(1,7) =0 = [1x (32 (1, 7) —0®)+(1-11) x (3% (1, ) o) = Op(
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S7.1 Proof of Theorem

S7.1.2 Proof of Theorem [I] with o =0

Note that for a = 0, the true variance has the following explicit form:

1 K K

0'2(0,;1\:> = Var[el(?)] = ﬁ Z Z Vkikas with Vkike = min(Tkl,Tk2)—Tlek2.
k1=1ko=1

In this case, the variance estimators 02 (0, 7) and 5% (0, 7) reduce to

K
where ¢;(7) = K'Y ¢(r.) with €;(7;) being defined in (2.21). Let

FONE

be the true parameters under H, and @
~ ~ ~(2 ~ ~
(BT, 6T and [j( - (BT, bMWY T be the estimators using sam-

ples in n_ and n,, respectively. Similar to the proof of Lemma under

H; and Assumptions A, D, E.2 - E.4, we can prove that:

~(1) log(pn ~(2) log(pn

||/§ _@(0)||1:Op(8 7(1 ))7 ||/§ _@(0)||1:Op(8 7(1 ))
(S7.14)
We first prove the consistency of 62 (0, 7). For ¢;(7) with i € n_, it has the

following decomposition:

a(T) = el(T) + Efe(T) — ei(T)] + {@(7) — eilT) — Elei(T) — es(7)]},

N J/
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S7.1 Proof of Theorem

B () - () i= ¢ 2 Elm) - e (). (S7.16)
ViF) = 5 3 Vilm),

and

Vi) = [(L{Y: =B = XTBY <0} = 1{es < 0,}]
_ ) x T30 _ . (0)
E[1{Y; — b — X7 BW < 0} — 1{e; < b1].
By the Taylor’s expansion, for E[e;(7) — e;(7)], we can further decompose

1t into two terms:

S _ 1 X 1 E
Efei(7) — ei(7)] e ZE[€i<7—k)_€z )] = ZMO (T +E2Mi(2)
h=1 k=1
M}”(T) M}X(%)
(S7.17)

where

MO (m) = f () (B = b + XT(BD = BO)),
MP () = f () (0 = b + X (BY — pO))?,

(S7.18)

with & being some constant that between b and 5" + X (81 — g©).
Hence, based on the above decomposition, for 2 (0, 7) — o?(0,T), it can be

decomposed into ten terms:

5’3(0,:7\'/)—0'2(0,;1\:) :A1+"'+A107
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S7.1 Proof of Theorem

where Aq,--- , Ajg are defined as:
1 ~\12_ 200 = ! (1) (7212
Al = Z [61<T)] -0 (077-)7 A2 =T Z |:M’L (T)]
In_| i&n In_| &
1 ~ 1 ~
A3 - - [Mi(Q)(T)}Z, A4 _ Z [‘/Z(T)]2
‘n—’ 1EN_ ’n—‘ 1€En_
2 N - 2 ~ ~
Ay = —— [ei(T)Mi(l)(‘r)}, Ag 1= —— [ei(‘T)Mi(Q)(T)]
In_| & In_|i&n.
2 e 2 ~ ~
Ay = —— [ei(T)Vi(‘r)}, Ag = —— > [Ml(l)(‘r)Mi(Q) (‘Tﬂ
|TL_‘ 1EN_ ‘TL_| iEn_
2 I 2 e
Ay = — 3 MUEWVIE)], Api=— 2 [MPF)V(F)].
|n—‘ i€n_ |n—‘ i€n_

Next, we consider the above ten terms, respectively. For A;, by the law of
large numbers, we have A; = O,(n~/2). For A, and Az, by Assumption

A.2 and the bounds in (S7.14]), we can prove that
~(1) ~(1)
Aol = O,(I18"" = BYIR), 14| = 0,(I8 " — B,

For A4, similar to the proof in Lemma [I7] but using very tedious modifica-

tions, we can prove

441 = 0, (1B - B2 <)) — o, (5082, ).

n
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S7.1 Proof of Theorem

For As — Ay, using the obtained bounds and the Cauchy-Swartz inequality,
we have:
~(1) ~(1)
45| = 0,18 = BV1), 46l = 0, (118" = BYIR),

471 = 0, (18" - BOI (S BEY ) — o (s (BEM)3),

n n

log(pn) ) 1/4) |

n

~@) ~(1)
48] = 0,(18" = BN, 145l = 0, (18" ~ BOIT (s

~1) 1
|Ajo| = OP(H@ b_ @(O)H?M(S%Zm))lﬂ),

By Assumption E.2, we can see that |A5| and |A7| dominate the other terms.

Hence, we have:

log(pn) l(log(pn) )g> _

52(0,7) — 02(0,7) = op(s
With a similar analysis, we can prove that the same bound applies to
02(0,7) — 0*(0,7), which yields:

52(0,7) — 02(0,7)|

= [to x (32(0,7) — 0°(0,7)) + (1 — 1y) x (%.(0,7) — 0*(0,7))|

0, (8 /10g?(lpn) y S;<10g7(zpn)>g)'

S7.1.3 Proof of Theorem [1] with « € (0,1)

Note that for a € (0,1), the true variance has the following explicit

form:
o*(a,T) = (1 — a)’E[e} (T)] + o’ — 2a(1 — a)Ele;(T)e).
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S7.1 Proof of Theorem

In this case, the variance estimators 02 («, 7) and 07 (v, 7) reduce to

#(0.7)= Y [0- Ao = LY [0-
o (a,T) ]n ‘ —a)e; (T 0461} , 04 (a,T) ‘mr’ —a)e; (T

1EN_

K
where €; is defined in (2.20) and ¢;(7) = K'Y €(r) with ¢;(;) being

defined in (2.21)). Recall Q(O) = (BT, ()T T are the true parameters

~(1 ~ ~ ~(2 ~ ~
under H, and B := (B1)7,50)T)T as well as B := (82)7,5)T)T
are the estimators using samples in n_ and n, respectively. Similar to the
proof of Lemma [I1 under Hy and Assumptions A, B, C.2, D, E.2 -

E.4 | one can prove that:

3 log(pn ~(2) log(pn
H@ _@(0)“12010(8 #), H@ _@(O)leOp(S gflp ))’

~ 1
(B - pO) , > XX (B0 - B0) = 0,(s 22,
—| i€En_
~ 1
(B - BT ¥ XX (B2 - BO) = 0, (s 8P,
‘nJr’ 1EN4 n
(S7.19)
We first prove the consistency of 5% (a, 7). For 0% (a, T) — o*(, ), it can
be decomposed into three terms:
(/7\% (Oé, T) - 0'2(05, T)
1 ~
=(1-a)? m (&(T)* — E[e?(T)] | | Z & —o?
n_ n_
R 1EN g zEn; (872())
A B
1 i~
—2a(1 — a) ol (€(7)e; — Eles(T)e])
“lien_
) ¥
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S7.1 Proof of Theorem

Next, we consider the three terms A, B, and C|, respectively. For B, using

log(pn)

the bounds obtained in Section |S7.1.1, we have: B = O,(4/s
n

). For

A, using the bounds in Section [S7.1.2] we have:

A:0p<s log;pn) l(loggﬂn))g)

Next, we consider C'. By the decomposition of e;(7) in (S7.16) and the fact

that €; = ¢; + € — ¢;, we can decompose C' into eight terms:

|n_1| Z(a(;)é\z —Ele;(T)e;]) = CL + -+ + Cs,

“lien_
where
_ ! _ 1 (1)~
C, = — (e;(T)e; — Ele;(T)e]) Co = — M, (7T)e;,
|TL_| en— |7’L_| iEn_
1 1 _
Ci=— S MPFe, Ci=— 3 Vi(Fes,
|TL_| ren— |n—| iEn_
1 =\(2 1 (1) oy
C'5 - 7 SZ(T)(Q 61)7 OG = T Z Mz (T)(El — GZ),
|TL_| ren— |TL_| i€n_
_ 1 @)~ 1 _
Cr = M7 (T)(& — &), Cs=— > Vi(T)(& — ).
|TL_| ren— |TL_| i€En_

For Cy, by the law of large numbers, we have C; = O,(n~'/2). Note that

using the bounds in (S7.19)), with similar proof techniques as in Sections

S7.1.1] and [S7.1.2], we can prove:

1 N ~ 1 ) )
m ez: [Mz‘(l)(T)]Q — OP(H@(I) _ @(O)H%)v m ez: [Mi(Q)(T)]2 _ Op(H@(l) B @(0)”‘11)’
1 N - 1 1 |
7 55 I = 0,18 - 8+ o (220

L - 1
ey e —a]’ = Oys ogilpn)).
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S7.2 Proof of Theorem

Hence, for Cy — Cy using the above bounds and the Cauchy-Swartz inequal-
ity, one can see that Cy and C; dominate the other terms. Specifically, we

have:

1 ye L M) (7% — log(pn)
Cal < \/‘n| En_ & x \/‘n| ;en_j (MO @) = 0, (s 222,
and

0ol

1EN_

which implies

C=0, (s logflpn) V Sé(logipn))g)

Lastly, combining (S7.20)) and the obtained upper bounds for A, B and C,

we have

52 (0. 7) = 0%, 7) = Oy s logflp") v s%(log(p”))é).

With a similar analysis, we can prove the same bound applies to 073 (a, 7) —

o?(a, 7), which yields:

720 7) — 20, )| = O, (s B v o (B

S7.2 Proof of Theorem [2

In this section, we prove the Gaussian approximation results under Hy,

which are given in Sections [S7.2.1] - [S7.2.3] respectively. For simplicity, we

omit the subscript a whenever needed.
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S7.2 Proof of Theorem

S7.2.1 Gaussian approximation for a« =1

Proof. In this section, we give the size results for &« = 1. Note that in this
case, our individual based test statistic T} reduces to the least squared based
score type test statistic. Let z(z,y;8) = z(y —x'3) :== —Si(y, z; T, b, 3)
be the negative score for the fo-loss. Let Z;(X;,Y;; 8) = X;(Y; — X' B) be

the sample version. In this section, we aim to prove:
sup |P(Ty < z) — P(T? < 2| X)| = 0,(1), as n,p — oco. (S7.21)
z€(0,00)

The proof proceeds into three steps.
Step 1: Decomposition of 77. Note that for « = 1, the score based

CUSUM process reduces to:

[nt]

\/_0117- ZZ (X;.Yis B) WJZZAX@-,E;B)), (S7.22)

where 3 is the lasso estimator defined in (2.10) and o(cr, T) is the variance

Ci(t) =

estimator defined in (2.22)). By definition, we have 71 = max [|Ci(t)||(s,2)-
qo<t<l—qo

Replacing [/3\ by B in Cy(t), we have:
Ci(t) = C{(t) + C{'(1),

where C{(t) and C¥,(t) are defined as
1 L] [nt] &

Cl() E/I(j(l T)(ZXZZ_ ZXZ z)
1 nt

T & XX (B0 - B) - L”’”ZXXT(@'U B).

CH( ) "
(S7.23)
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S7.2 Proof of Theorem

Note that we can regard CL(t) as the leading term of C;(t) and CIL(t) as
the residual term. Moreover, replacing (1, 7) by ¢ := Var(e) in C(t), we

can define the oracle leading term as:

I_’I’LtJ n
~ 1 |nt]
1(1) \/ﬁg(;e n;E) (57.24)
The following Lemma [12| shows that we can approximate T; by 6’1[ (t) in
terms of the (sg,2)-norm. The proof of Lemma |12]is provided in Section
S8.11
Lemma 12. Assume Asssumptions A, B, C.2, E.2-E.4 hold. Under

Hy, we have

P( max [|Ci(t)— (NZ'II(t)H(SOg) > ¢) =o(1), (S7.25)

qo<t<l—qo

where € 1= Csé/Qstlog(p)/\/ﬁ for some big enough universal constant C' >

0.

Step 2: Gaussian approximation for the oracle leading term. By
Lemma(l2] we only need to consider Gaussian approximation for the process
{CI(t),q0 <t <1—qo}. Recall the bootstrap based CUSUM process for

a=1 as:
[nt]

et = (> xet - 3" x), (57.26)

i=1

a0



S7.2 Proof of Theorem

where e? ~ N(0,1). By definition, the bootstrap based testing statistic is

b b
Tl - QOSI?SELl}{—qO HCl (t)”(so,g).

Let Zz = (Zih ey Zip)T with Zij = Xijéi/O' and Gz = (Gi17 ey Gz‘p)T with
G; ~ N(0,X%), where ¥ = Cov(X;). One can see that G; has the same

covariance matrix as Z;. Define

[ nt] n
1 | nt] C
Crn) = \/ﬁ( —1 G- [C— Gi)’ and 1y (IOSI?SaIX—QO i (t)||(so,2)'

By Assumptions A, C, E.1, we can verify that the Conditions (M1) -

(M3) in Lemma |§| hold. Hence, by Lemma |§|, we can prove

sup |P( max ||C~3’11||(5072) <2) —P(TT < z)| <n®, for some & > 0.
2€(0,00) qo<t<1l—qo
(S7.27)

Next, we aim to approximate TP|X by T¢. The result is based on the

following Lemma [13]

Lemma 13. Suppose Assumptions A, E.1 are satisfied. Then, under

H,, we have

sup [P( max [CF(t)llse2) > 2)~P( max [CT(t)]s2) > 2X)[ = 0,(1).

2€(0,00) qo<t<1—qo qo<t<1—qo
Hence, based on Lemma [13]| we show that the two Gaussian processes
CE(t) and C*(t)|X with o <t < 1 — gy can be uniformly close to each

other with the (sg,2)-norm. The proof of Lemma (13|is provided in Section
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S7.2 Proof of Theorem

S8.2
Step 3: Combining the previous results. In this step, we aim to

combine the previous two steps for proving:

sup |P(Ty < z) — P(T} < 2|X)| = 0,(1), as n,p — oo. (S7.28)

z€(0,00)

In particular, we need to obtain the upper and lower bounds of py, where
po = P(T) > 2) — P(T? > z|X). (S7.29)

We first consider the upper bound. Note that 77 = [max ] 1C1() |l (s0,2)-
t€lgo,1—qo

By plugging CNZ'{ (t) in T7 and using the triangle inequality of || - ||(s,,2), We

have

P(Ty > z) <P( max [|CH(t)|ls2) > 2 — €) + pi, (S7.30)

t€[qo,1—qo]

where p; == P( [max | |Cy(t) — 6’{(t)|](8072) > ¢). By Lemma , we have
t€lgo,1—qo
p1 = o(1). For P(max,,<i<1—g ||6'{(t)||(80,2) > z — €), by the triangle in-

equality, we have

]P)(qogl?giqo Hé{(t)“(smz) 2 Z_€> = P(qggl?gx_qo HClG(t)H(so,Q) = z—e) + P2,

(S7.31)

where

p2 = max |P( max ICE(t)|l(s02) > ) —P( max [|C'(t)]|(s02) > z)|.

x>0 qo<t<l—qo qo<t<1l—qo
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S7.2  Proof of Theorem
By Lemma @, we have p, < Cn~%. Therefore, by (S7.30) and (S7.31)), we

have proved that

P(_max [[CD] 0> 2) B marc [ €] > 2~ ) Fol0).

J/

-~

P3

(S7.32)
We next consider p3. We decompose p3 as p3s = ps + ps, where ps and ps

are defined as

_ _ G _ G
pr=P(z—e< max [CT)|,, <2) ps=P( max [CF)lle2 = 2).

By Lemmas [4] and [, we can show that ps = o(1). For p5, we have

P(, max |[CT(@)|,, 22) <P( max GV, = =1%) + s

(S7.33)

where

po= sup [P( max [CF(t)uoz > 2)-P(_max [|CHDllwz > 2|)]

2€(0,00) qo<t<l—qo qo<t<l—qo

By Lemma we have pg = 0,(1). Therefore, by (S7.30) — (57.33), we

have proved

P(T) > z) — P(T? > 2|X) = 0,(1),

uniformly for z > 0. Similarly, we can obtain the lower bound and prove
that

sup |P(Ty > z) — P(T} > z|X)| = 0,(1),

2€(0,00)
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S7.2 Proof of Theorem

which finishes the proof of Theorem [2| for the individual test with o = 1. [

S7.2.2 Gaussian approximation for a« =0

Proof. In this section, we give the size results for &« = 0. Recall 0 < 7y <
- < 7 < 1 are user-specified K quantile levels. Let T := (71,...,7x)"
and b = (by,...,bg)". Note that in this case, our individual based test

statistic Ty reduces to composite quantile loss based score type test statistic.

Define the score function as:

(@, y;7,b,8) : w({y—b—x'B <0} —7), (S7.34)

Mw

k:

and Z(X;,Y;;7,b,3) as its sample version. For o = 0, we aim to prove:

sup |P(Tp < z) — P(Ty < 2|X)| = 0,(1), as n,p — oo. (S7.35)

z€(0,00)
The proof proceeds into three steps.

Note that for a = 0, the score based CUSUM process reduces to:

[nt]
Colt) = Zz 7.b,0) - "” Zz X, Y;7,b,8)),

(57.36)
where b and 3 are the lasso estimators defined in , and o(a, T) is
the variance estimator defined in . By definition of Ty, we have Ty =

max ||Co(t)]|(so,2)- Before the proof, we need some notations. Let A =

qo<t<l—qo

B-BO R, §=b-b" cRE 6, =b —b" eR, Ay = (AT,5,)7 €

o4



S7.2 Proof of Theorem

RPFL and A = (AT,8")T € RPFE. Accordingly, we define 3, 3, gk,
éﬁ? A by using the corresponding estimators. Moreover, we define X; =
(X, )T e R or X; = (X1, 1k)" € RPTH whenever it is used, where
1x is an R¥ dimensional vector with elements being 1s. By the definition
of V; = X8 + ¢, we have Y; < b, + X,'3 which is equal to ¢ <
)&Téﬁ + béo). Hence, by replacing 8 by B8 and b by b©® in Cy(t), we

have the following decomposition:
Co(t) = Cy(t) + Gy (1), (S7.37)

where C{(t) and C}(t) are defined as

Gl = == (3 Xiet?) - L " x07)
0 - \/ﬁa Oé,'?) i=1 v n ;=1 v ’
Ol = (5 L $° Xu(1fer < X, B+ 1} — 1{es < 4
0 \/ﬁa\(a,?) i=1 Kk:l ‘ =Ll k t= Tk
nt] & 1 K ~
- Y5 XX < XTA ) - Ha <0)),
(S7.38)
1K o S
where ¢;(T) = 174 > (e < b —m) = 174 > ei(1,) be a random
k=1 k=1
sample satisfying
| KK
Ele;(7)] =0 and Var[e;(7)] = 72 Z Z Vi1 ko (S7.39)
k=1 ko=1

with gk, 1= min(7e,, Thy) — Thy Thy fOT Tk, Tk, € (0,1). Under this decompo-
sition, we can regard C{(t) as the leading term of Cy(t) and Cl’(t) as the
residual term. Moreover, replacing o(«, T) by o2 := Var(e;(7)) in Ci(t),
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we can define the oracle leading term as:

[nt) n
Citt) = (Y XeeF) - P Y X)) (s10)

The following Lemma (14| shows that we can approximate T by 5’? (t) in

terms of (Sg,2)-norm. The proof of Lemma [14]is provided in Section [S8.3|

Lemma 14. Assume Assumptions A, D, E.2-E.4 hold. Under Hy, we
have

P( max |[[Co(t) = C§(1)],,2 =€) = oll), (S7.41)

qo<t<l—qo
where € 1= C’M2s(1]/2(slog(pn))3/4/nl/4 for some big enough universal con-

stant C' > 0.

Note that for the case of a = 0, the error term ¢;(7) is a bounded ran-
dom variable, which satisfies the assumptions in Lemma [f] trivially. Hence,
by Lemma [14] Lemma [0, and using similar arguments of Steps 2 and 3 in

Section [S7.2.1] we can finish the proof of Theorem [2 O

S7.2.3 Gaussian approximation for « € (0,1)

Proof. In this section, we give the size results for & € (0,1). Recall 0 < 77 <

.-+ < 7 < 1 are user-specified K quantile levels. Let T := (71,...,7x) "

96



S7.2 Proof of Theorem

and b= (by,...,bx)". For a € (0,1), define the score function as:

K
z2(x,y;7,b,08) : 1 Za: 1{y—bk—a:TB < 0}—7'k)—aac(y—a:TB),
K
(S7.42)

and Z(X;,Y;;T,b, 3) as its sample version. For « € (0,1), we aim to prove:

sup |P(T,, < z) — P(T} < 2|X)| = 0,(1), as n,p — oo. (S7.43)

z€(0,00)

Note that for a € (0, 1), the score based CUSUM process reduces to:

L]
Ca(t) = \/—010”. ZZ i, Y7, b,8) — Lnt szz,Yz, b,8)),

(S7.44)
where b and 3 are the lasso estimators defined in , and o(a,T) is
the variance estimator defined in . By definition of T,,, we have T,, =
o dax |Ca(t)||(s0.2)- Recall A = 8 — B0 € R, § = b—b" € RE,
0 = by — b)) € R, Ay = (AT, 86)7 € R and A = (AT,87)7
RPHE  Accordingly, recall 3, g, ;5\;.3, é,’@ A by using the corresponding
lasso estimators. Moreover, we define X; = (X;/,1)T € R or X; =
(X,[,1%)" € RPYE whenever it is used, where 1x is an R¥ dimensional
vector with elements being 1s. Under Hy, by the definition of ¥; = X" 3(®
€, we have Y; < by, + X, B which is equal to ¢ < XJTé,’S + b,(co). Hence, by

replacing B by B© and b by b© in C,(t) , under Hy, we have the following
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S7.2 Proof of Theorem

decomposition:

C.(t) = CL(t) + C(1), (S7.45)

where CL(t) and C!I(t) are defined as
Int]

(£ X1 - 0)ei(®) —ae) = 224 2 X((1 - )es(7) - ac).

and CH(t) = (1 — a)CIH(t) + aC'lH(t),

'_

Cl() J

[0}

1
Vo (o, 7)

(S7.46)
where ¢;(7) := K! Z (1{e; < b(o)} T) = Klkflei(rk), Cli(t) is de-
fined in (S7.23), and C’él (t) is defined in (S7.38). Und_er this decomposition,
we can regard CL(t) as the leading term of C,(t) and CX!(t) as the residual
term. Moreover, replacing 7 (a, T) by 02 := Var[(1—a)e;(T) —ag;] in CL(t),

we can define the oracle leading term as:

|nt|

CL(t) \/_o ZX (1—a)ei(T)—ae; _[n_tz:: (1—a)e(T)—aeg)).
(S7.47)

The following Lemma |15 shows that we can approximate T, by CNZ'f (t) in
terms of the (sg,2)-norm. The proof of Lemma |15]is provided in Section

3.4l

Lemma 15. Assume Assumptions A, B, C.2, D, E.2 - E.4 hold. Under

H,, we have

P( max |[C.(t) — CL@)

q0<t<1 q0 H(SO,Q)

> €) = o(1), (S7.48)
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S7.3 Proof of Theorem

where € := CMQS(l)/?(S10g(pn))3/4/n1/4 for some big enough constant C > 0

and C' is a universal constant not depending on n or p.

Note that for the case of a € (0,1), the error term (1 — a)e;(T) — a;
is a combination of a bounded random variable e;(7) and ¢;, which can
be proved to satisfy the assumptions in Lemma [6l Hence, by Lemma [I4]
Lemmal6], and using similar arguments of Steps 2 and 3 as in Section[S7.2.1],

we finish the proof of Theorem [2] with o € (0, 1). O

S7.3 Proof of Theorem 3l

In this section, we give the change point estimation results for a =
1, « = 0 and a € (0,1), respectively. Before the proof, we need some
notations. Note that by Assumption A, we have ||x|/(s,2) = [|ZT][(s0,2)
for any & € RP. Hence, for simplicity, we assume 3 = I. Moreover, to make
a clear result, we assume s is fixed with so < s 1= |[SW| Vv |S®)]. Recall
M={j: ,Bj(-l) =+ 6](2)} C {1,...,p} as the set of coordinates having a change
point. For any @ € RP and the subset J C {1,...,p}, define the projection
operator II;x € R!/| being the sub-vector of & with the same coordinates
of x on J, e.g., Il & := (m’l,...,xIJ‘) with 2 = z; for j € J. Based on
the definition of ||| (s,,2), we have [|]|(s,2) = Mmaxjcq,. p},Jj=so [z ||2-

In addition, for notational simplicity, we also assume |[nt| = nt for any
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S7.3 Proof of Theorem

t e (0,1).

Throughout the following Sections [S7.3.1] - [S7.3.3] we assume

1 1
1Al > Cst2ar2y 8P g gz, BP0 _ 0y (s7.40)

for some big enough constant C* > 0.

S7.3.1 Change point estimation for a =1

Proof. Recall Z;(X;,Y:; B) = Xi(Y;— X, 3) is the negative score for a = 1.
For each t € [go, 1 — qo, define Cy(t) = (Chy (1), . .. ,6’1:0(15))T with
C.(t) = %Z X;,V; 8) — Lnt} ZZ»(X» Yi; B)) (S7.50)
1 1y L1y n o 1 1y L1y . .

Note that there is no variance estimator in C, (t). By definition, we have

;5\1 ‘= argmax “él(t)H(So,2)'
t€(go,1—qo)

Let A = 8V —B® be the signal difference. Moreover, define the estimation
eITor €, as:

log(pn
en = C(s0, M, qo)ﬁ. (S7.51)

802

To prove Theorem (3| with o« = 1, we need to prove that as n,p — oo, by

choosing a large enough constant C(sg, M, q) in €,, we have

P([t: — ] > €,) — 0. (S7.52)
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S7.3 Proof of Theorem

To that end, we have to prove

<P(h >t +e) +P( <t —e)

< P( max [Ci()ll) = 1C1 (1) o) +P(,max 1C(1) oy = 1C1(11)l| ).

t>t14€

(S7.53)
Hence, to prove ]P’(ﬁ\l —t] > en) — 0, it is equivalent to prove
P(énhé}én 1C () (s0,2) — 1C1(t1) ls0,2) < O)
A (S7.54)
+P(t§1tla_>§ ICL(B)[l(s0.2) = IC1 () [l (s0,2) < O) — 1.

Ay
Next, we prove P(A;) — 1 and P(A;) — 1. By the symmetry, we only

consider P(A;) — 1. Define the two events H; and Hs:

Hy = { max |Ci(t)l|o2) == max  max |[I;C(t)] = max max [TLCi(1)]2}.

t>t1+en t>t1+en JC{1,....p t>t1+en JCM
[T]=s0 [J1=s0
Ha = {[IC\(t1) | (s0.2) = Jmax [ILC (#)] = max ITLC(t1)]]2}-
[J]1=s0 [J]=s0
(S7.55)

The following Lemma [L6|shows that H; and Hs occur with high probability.

The proof of Lemma [16]is provided in Section [S8.5]

Lemma 16. Under Assumptions A, B, C.2, E.2 - E.4, we have

P(H:) — 1 and P(Hs) — 1. (S7.56)
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Now, under H; N H,, we have:

P(A1) =P( max [|Ci(#)llo2 — 1C1(t1)s0.2) < 0)

t>t1+en

= P(, max ma (LGBl — e MGt < 0)
J|=s9 J|=s¢g

= P(éﬂﬂfn g‘gﬁ ITLCL ()| g‘lcag ITL,C4(t1)]|* < 0).
=50 =sq

Note that under H;, we have the following decomposition

C\(t) = Cl(t) + &(t) + R(t), (S7.57)

where C{(t), 8(t) and R(t) are defined in ((S7.99)) and (S7.100)), respectively.

Similarly, we have

C,(t) = Cl(ty) + 8(t1) + R(ty), (S7.58)

by replacing ¢ by ¢;. To prove P(A;) — 1, we consider max max ||IT;C; ()2~
t>t1+en dg‘;o

max ITI,Cy ()] < 0. By the fact that max a; — max b; < max(a; — b;) for

[J|=s0

any {a;} and {b;}, we have:

~ 2 ~ 2
Jpax ‘r}‘l% ITL,CL (D) ] ?‘gi{ ITL,Cy(t)]
=50 =50

< max max ([T (C{(8) + 8(8) + R(0))|I* = T, (C1(t1) + (1) + R(11))*)
- [J]=s0

<A1+ Ao+ Ais+Aia+H A s+ A,
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S7.3 Proof of Theorem

where

A= e (LGOI + LG ()1
J|=sg

J— 1 2 2
Arzi= 3 max l},;gfj {ITL 81" — T8 ()7},
=%

A= e (ML RO+ MR
J =sp

Ara = Qtzr?laj(en l‘I];‘éa'il( {II;C{ () "I R(t) — 1, CY (t1) TTI; R(t1)},
Zeo

A1.5

1
= Jnax lg;é%( {2, C{ (1) 'T,8(t) — TG (t) " T8 (1)) + S (I8 * — [T () 1)},
=%

A1.6

1
= e 200,80 TLR() — Ia(e) TILEW)) + SO - 18]}

(S7.59)
Our gO&l is to prove that ]P)(Al.l + ALQ + A1.3 —+ A1.4 -+ A1‘5 -+ Al‘ﬁ < 0) — 1.

Next, we consider Ay 1,..., A1g, respectively. For A; 1, we have:

< I 2
Ay =2 max ‘I?‘c%‘ ML CL ()]
o

<92 I1,C(t)]|2
<24, e, ILGHO]
o

(S7.60)
<2 max (HC{(t)H?soz))

qo<t<l—qo
<2 max (s’ CI(t)]])?
qo<t<l—qo
< CsoM?log(pn) := Ci(sg, M) log(pn),

where the last inequality comes from Lemma(7l Next, we consider A; 5. By

the definition of d(¢t) and d(¢;) as defined in (S7.99), for t > ¢; + ¢, and
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S7.3 Proof of Theorem

J C M, we have:

1
Az =0 3 g mex (3O - I56)I)
_90

1
=@ 3, max (nti(t — )2 —t—t)[Alf, )

(S7.61)
1
=3 _gnent%@ — 2t — En)”AH%So,Q)

1
<(4) _éqonenHA||%so,2)7
where the last inequality comes from t; € [go, 1 — o], and €, = o(1). For

Aj 3, by the definition of R(t) and R(t;), and using Lemmas [7] and [0} we

have:

A5 < Csys®M? log(pn)HAH (s0.2) := C3(s0, M)s? log(pn)HA\|?5072).
(S7.62)

Next, we consider A.14. By the Cauchy-Swartz inequality, we have:

Ay =2 max %%({HJCI( )TIL Ry (1) — I, CY () TTL R (t) }

<(1) 4 max max ’{HJC]( )THJRl(t)l

- t€[q0,1—qo] lf,‘CM

<(z» 4 max max {IL, Cf (1)|2[|TL Ry (1) |2

t€(go,1— q]m 0

<34 max ||C1[(t)\|(so 2) X max HRl( M (s0,2)

t€[go,1—qo) ’ telqo,1—
log(pn
<o) Cstf? M /logpm) x /i %snmu%,m

<(s) C'sosM?log(pn)|| All(s0,2) := Cu(s0, M)slog(pn)[| Al (so,2)-
(S7.63)

where (4) comes from Lemma[7]and Lemma(8] Hence, combining (S7.61) -
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(S7.62)), if €, satisfies

! 2] Ciy(so, M)s]
€, = (' max { OI(SO, M)L@) 03(807 M)S Og(pn), 4(307 )3 Og(pn)
n||A||(5072) ~ ~ n N n”A”(So,Q)
be1.1 by Avs beIA

(S7.64)
for some big enough constant C' > 0, with probability tending to one, we
have Ay + Ao+ A1z + A4 <0.

Next, we prove A5+ A1 < 0. For A5, using the triangle inequality,

we have:

Ay = max i {2(11,(1{ ()TIL8(t) — IL,C () T8 (t))
1 S7.65
— (e = L8 | (57.62)

= A1s1+ Aisa,

= max mae {21,C1 () (,6(1) — T1,8(0))) — (T3] — T3]}

t>t14en JCM
[J]=s0

A1.5.2

— max e {21,6() (L C(0) — L, (1) — (TS0 — T3}

t>t1+ep JCM
[J|=s0

(S7.66)
To bound A; 5, we prove P(A;5; <0) — 1 and P(A;52 < 0) — 1, respec-

tively. To bound A; 51, note that for any fixed t > ¢ +¢€, and J C M with
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|J| = so, we have:

201, C1 () "I (8(t) — 81(tr)) — é(llllﬂs(tl)ﬂ2 — [[TL,6()]%)

<@ 2L C{ ()2 (8(2) — 6(t1)) ]2 — é(nt?(t —t)(2 -t —t)[I;A[P)

1
<(2) 280 I CL () loov/mts (= 1)) | Al o,2) — 5 (it = 1) (1 + a0 — )] A, )
1
1/2
<(3) 250 1 CL () loo v/t (t = 1)) Allso.2) = 5 (it = 1) (14 a0 = 1) Al 2)-

(S7.67)

Hence, by (S7.67)), to prove P(A; 51 < 0) — 1, it is sufficient to prove that

/2 ~1 .
P(,max e (255G )/t ¢ = )| A

1
—<(n#i(t = ) (1 + a0 — 1) A%, )} <0) = L.

Equivalently, it is sufficient to prove that

1/2
P(,max e (255G )/t ¢ = )| Al
=SO

1
(0B = 0)(1+ 0 — 1) AR, )} <0)

1
> P max 251G Ot — 5 (VAR + @0 — 1) Al ) £0) = 1.

qo<t<l—qo

Note that by Lemmaﬂ, we have max {25(1)/2H5’{(t)|]00 = Op(sé/QM log(pn)).

qo<t<l—qo

Moreover, if we choose a big enough constant C* in (S57.49)), we have

~ 1
P( 255 CH @)1ty — (VIR + 00— £ All i) <0) = 1,

qo<t<l—qo

which yields P(A;51) — 1. After bounding A; 51, we next consider Aj 5.
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Note that for any fixed t > t; + ¢, and J C M with |J| = so, we have:
1
211, (t1) 'T1;(C1 (t) — C{(t1)) — 6(||HJ5(t1)||2 — [[TL;6()[1%)
1
<@ 2T (t) [T (CY(t) — Cf(t1)) |2 — g(nt?(t —t)(2 =t —t)T;A|?

~ 1
< 2yt (1= 1) Al 501G (1) = Cf (0)lloo — 5 (it = 0) (1 + g0 — ) A, -

(S7.68)
Note that by the definition of C{(t) and C{(t,), we have:
) |nt] — |nt;| <
cli) - clt) Y X erl (S7.69)
\/_ i=|nt1]+1

Hence, combining (S7.68|) and (S7.69), we have:
1
21L,8() L (C1 () = Ci(t) = G (ITL(E)1* = ITLE@)I?) < Avsa + AL,

where

[nt]
1/2
Al 5o =2t1(1 — 1) || Al (s6,2)50 PlY Xielw
i=|nt1]+1

1 2
0 = (3t —t1) (1 + g0 — )| A, 2, (S7.70)

[nt] — [nt,] &
Alsa = 20(1 = 1| Al (s.2)5 1/QH— 2 Xicillo

1
—E(nt%(t —t1)(1+q — tl)”AH%soz)'

Considering (S7.66)), (S7.68)), (S7.69)), and (S7.70)), to prove P(A;52) — 1, it

is sufficient to prove P(max; max; A! . , < 0) — 1 and P(max; max; AfL, <
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0) — 1. For Al ., we have to prove

[nt]
IP( max max {2t1(1—t1)||A||(80,2)33/2|| S Xie

t>t1+e, JCM

[J]=sg i=|nt;]+1
1
—< (n#(t = 1)L+ a0 — 1) Al o } <0)
P(max |~ > Xl < Clti sy 1 Alwa) - 1
= max.  |[=——=———"— i€illoo < ,qo)s s )
t>t1+en L”tJ—LmﬁJ o+ 1,40)Sg (50,2)

(S7.71)

Note that by Lemma [7], we have
[nt]

1 log(pn)
_ Xi€illoo = O, (Mnt/* =222,
i=|nt1|+1
Hence, if we choose
1

34| Al s0,2)
for some big enough constant Cs(sg, M) > 0, we have (S7.71)) holds, which

yields P(max; max; A! ., < 0) — 1. Similarly, we can prove P(max; max; AL, <

0) — 1, which y1elds ]P)(ALE,Q < O) — 1.

) s?log(pn)

With a very similar proof technique, if we choose €, = Cg(so, M
n

for some big enough constant Ci > 0, we can prove
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Combining the previous results, if €, satisfies

log(pn)  Cs(s0, M)s*log(pn) Ca(so, M)slog(pn)
nl| Al 2 Al

(50,2) _
by A1.1 by Avs beM
C5(sg, M) log(pn) Cols0. M )3 log(pn)}
WAl

€, = C'max { Cy(sg, M)

n
~~
A

J/

beLs by A1'6
log(pn)
= Cloo M) R s {1 PANR, ol Al 1A |
(s0,2

(S7.72)
we can prove P(A;) — 1. By symmetry, we can prove P(A;) — 1, which
finishes the proof.

Lastly, we need to discuss the five terms in (S7.72). Note that by
Assumption F and the assumption that |31 — B8®)|; < Ca, we have
s?[|A[l7,, 29 = O(1) and s[|Af|(sp,2) = O(1). Moreover, by the assumption

that n'/4 = o(s), we have n'/*||Al|(s,2) = o(1), which finishes the proof.

S7.3.2 Change point estimation for a =0

~ o~ K ~ ~
Proof. For a = 0, recall Z(X;,Y;;7,b,8) := Z (Y b — X8 <

mNI

0} — 7) as the score function. For each ¢ € [go, 1 — o], define Co(t) =

(501 (t), . ,50p<t>>T with
|t

Golt) —TZZ aa_Lg Y7 BB). (S5773)
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Note that there is no variance estimator in Co(t). Recall fy := argmax ||Co(t)|| (50,2)-
t€[g0,1—qo]

To prove Theorem (3] with @ = 0, we need to prove that as n,p — oo, by
choosing a large enough constant C(sg, M, T) in €, (which will be given in
(S7.84)), we have

P([to — 1] > €,) — 0. (S7.74)

Similar to Section [S7.3.1} we have to prove P(4;) — 1 and P(Ay) — 1,

where

A = Co()llso2) — ICo(t1) 5o < O,
1= max [[Co(t) oz — 1Co(t) o < (87.75)

Ay = max G002y — 1Co(t1) o2y < 0
By the symmetry, we only consider P(A;) — 1. Define the two events H;

and HQI

Hy = {tzmtﬁfgn 1Co() |l (s0.2) = fnax J%?ffp} ITL;Co(t)]]2 = Jnax llacag [T, Co(t)]2}
=s0 JI1=s50

.....

[71=s0 17[=s0

(S7.76)
Similar to the proof of Lemma we can prove P(H; N Hy) — 1. Now,

under H; N Ha, we have:

P(A;) = P( max ||C~'0(t)||(30,2) — ||60(t1)||(so,2) < 0)

t>t1+en

=P gy s 1G]z = e 1M, Ci(t) < 0)

= P(énhff; T%aﬁi( ITL,Co()|I” — g‘lca/a{ ITL,Co(t)[* < 0).
% 2
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Recall 0%(0,7) = \/K—2 Zkh,@ Virkyy WIth Vg, = Min(Tk,, Thy) — Ty Ths
and Cy(t) defined in (S7.106). Then, under H;y, we have the following
decomposition

Co(t) =0(0,7) x Co(t)

= 0(0,7) x (= SNR(0,7) x §(t) + C§”(t) = SNR(0,7) x R(t) + CP(t) + CS" (1)),
(S7.77)

where the second equation comes from the decomposition in (S7.116)). By
the fact that max a; — maxb; < max(a; — b;) and max(a; + b;) < maxa; +

max b; for any {a;} and {b;}, we have:

~ 2 ~ 2
fnax g‘lc%{ 1L, Co ()] g‘lgi( ITL;Co (1) ]
=30 =30

< 0%(0,7) x max Trlljﬂi; (ITL; (= SNR(0,7) x &(t) + CS"(#)
—~SNR(0,7) x R(t) + C{ (1) + C§V (1)) |2
—|ITL; (= SNR(0,7) x 8(t,) + CS"(t) — SNR(0,7) x R(t1) + CV (1) + CSV(t1)) %)

<0%(0,7) x (A1 + -+ A11s),
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where the fifteen parts A;;--- A 15 are defined as:

1 1
Avy o= max max {|[TLC7 ()2 + 11,657 ()7},
J|=sg

SNR*(0,7) 2 2
— — fax. %%({||HJ5(75)" — T, 11},
o

A1.2 =

Avg 1= SNEX0,7) mae max { TR + 1L R(1) ),
- [J]=s0

Avs:=25NR(0,7) max max {—I1,C¢" (t) T R(t) +11,C5" (1) T R(t1)},
=T e

Ay 5 :=2SNR(0,7) ,ax max { - HJC(()I)<t>THJ6(t> + HJC(()l)<t1)THJ6(t1)
=TT 1 T=sg

IO (1, 50y — )},

Ay :=2SNR*(0,7) ,fhax max {HJR(t)THﬂs(t) — I, R(ty) "T1,0(t1)
= 1750

SNR2(0,7)
_|_—
15)
Ar7 = max max{|[ILCS@)|? + |TL,C (11)]2},

t>t14+en JCM
[Jl=s0

(T8I — M,8()12) }.

4 4
Avs = max max {|[I1;C5" (1)]* + [1L,C5" (1)},
J|=sg

Arg =2 max max{IL,C")TIL,C¥ (t) — I,C" (t;,)TIL,C (t;)},
Ehre G

A1.10 = 2 max max {HJC(()l) (t)THJCé4) (t) — HJC(()l)(tl)THJCé4) (tl)},
t>t1+en l“]]‘C:/‘\%

A = 2SNR(0,7) max max {1, R(t) "TL,C5 (1) + T, R(1) 'TL,CEY (1)},
=T e

A1.12 = 25NR<0, ;F) ti’?ﬁén I}lél&( {_HJR(t)THJCé4) (t) + HJR<t1)THJC(()4) (tl)},
- [7]=s0

A1.13 =2 tiItIElX I%E}a( {HJC(()3) (t)THJCé4) (t) - HJC(()S) (tl)THJCé4) (tl)},
ZUl1T€n 17 =s0

Avua = 2SNR(0,7) max max { —T,C¥ () TIL6(t) + IL,CP (4) TIL,6 (1)
=T e

n  SNEO.T)

(LS 12 = () ) §

Ai15 :=25NR(0,7) Jhax max { — IL,CEY (1) TTL,8() + T,C5V (1) T8 (1)
= s

SNR2(0,7)
+—

= (IMLa)]* - HHJé(tl)\P)}-
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Next, we aim to prove that P(A;; + -+ + A5 < 0) — 1. The proof
proceeds into five steps: Step 1: We aim to prove that, with probability

tending to 1,
A+ Ao+ A s+ A a+ A+ s+ Ao+ Ao+ A i+ Are+ A <0.

The main idea of step 1 is to obtain the upper bound for each item. Note

that similar to the proofs in Section [S7.3.1) we can directly prove that:

A < Ci(s0, M, 7) log(pn),
SNR?(0,7T)
10
A1.3 < 03(80, M, ?)SNRQ(O, ?)82 log(pn) HA||?80,2)7

Ao < — qon GnHA“

802

Arg < Cy(s0, M, 7)SNR(0, 7)slog(pn)|| All (s, 2)-
For Ai 7, by (S7.121)), we have:

3
Ay = max lgrllcax{unjc 'O+ IT,C57 (1)1}
S0

<2 max ||CP()

qo<t<1—qo H(SO 2)

< 07(30a M T) 410g(pn)||A|| (s0,2)"
For Aig, by (S7.122)), we have:

4
Aig = max lgrllcax{umc 'O+ IT,C5Y ()17}
J|=s¢

(4)
< 2qogr?§aix—qo 1Co " ( )H(so 2)

S 08(307 M7 ;)82 1Og(pn) ||A||%50,2)'

73



S7.3 Proof of Theorem

For A, 9, by the Cauchy-Swartz inequality, Lemma and (S7.121)), we have:

Ao =2 max max{IL,Cg" (1)1, Ce" (1) — 1,C37 (1) TGy (1)}
T JZeg

<@y 4 max max |{HJC(1 (t )THJCég)(t)I

t€lgo,1~ao] J

<@ 4 _max max [{TLC"()[LIITLCEY (1))

telao1=ao] JEM

<@ 4 max ”C() ()]l ¢so 2) X maX HC ()H(SO:Q)

t€lg0,1-qo] R
C’so/ M/log(pn) x 30 log(pn)s 2||A|| (50,2)

< 5) 09(30, M, ;F>52 log(pn)”AH?So,2)
(S7.78)

Similarly, for Ay 19— A113, by (S7.117)), (S7.121)), (S7.122)), and the Cauchy-

Swartz inequality, we can prove that:

Ai10 < Cro(so, M, T)slog(pn) || All(s,2),

Ayq1 < Chi(sg, M, T)SNR(0,7)s 3log(pn)|\AH

80 2)7

A 12 < Cia(so, M, aSNR(O,%)SQ log(pn)HAH%so,Q),
Ay 13 < Cis(so, M, T)s% log(pn)||All?

(s0,2)"

Note that by Assumption F and the assumption that ||All; < Ca, we have
s? A7, 2 = O(1), s°[|A|l{,, 2 = O(1), and s[|All(52 = O(1). Hence,
for the above results, by Assumption E.2, up to some constants, the upper

bounds of A;; dominates the others. Hence, if €, satisfies:

log(pn)

&n 2 Cloo, M. T) om0, 7l a

(S7.79)

||(50 2 ’
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for some big enough C' > 0, w.p.a.1, we have

A+ Ao+ A s+ A+ A+ A s+ Ao+ A 0+ A+ AL 12+ A <0,

Step 2: We aim to prove that P(A; 5 < 0) — 1. With a very similar proof

procedure as (S7.65)) - (S7.71)) in Section [S7.3.1], if €, satisfies:

log(pn) (S7.80)

€n > Cs(s0, M, T) = ’
nSNR2(0,7)[| A7, 5

for some big enough C5 > 0, then, w.p.a.1, we have A; 5 < 0.

Step 3: We aim to prove that P(A;6 < 0) — 1. Note that with a very

similar proof procedure as ([S7.65)) - (S7.71]) in Section [S7.3.1} if €, satisfies:

., 5% log(pn) ~, log(pn)
€n = OG(SOJ M7 T)T = 06(507 M7 T)ms2”AH?so,2)v
(S7.81)

for some big enough Cg > 0, then, w.p.a.1, we have A;4 < 0.

Step 4: We aim to prove that P(A;14 < 0) — 1. Using similar analysis

as in (S7.119) - (S7.120)) and with a very similar proof procedure but some

tedious modifications of (S7.65) - (S7.71) in Section [S7.3.1} if €, satisfies:

_ 1
en > Cha(s0, M, 7) og(pn) N[ (S7.82)

TLSNR2(07 ;>||A”%50,2)

for some big enough C4 > 0, then, w.p.a.1, we have A; 14 <0.

Step 5: We aim to prove P(A; 15 < 0) — 1. Using some tedious modifica-

tions of Lemma([l7 with a very similar proof procedure as (S7.65)) - (S7.71)

(6]
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in Section [57.3.1] if €, satisfies:

~ log(pn
€n Z 015(80,M, T)TLSNR2( ( )H)AH 2||A||(250,2)a (8783)

(s0,2)

for some big enough Ci5 > 0, then w.p.a.1, we have A; 15 < 0.

Lastly, considering (S7.79) - (S7.83), if ¢, satisfies:

log(pn)

n>O* 7M’ ’
&n 2 (o0, M 7)o A2,

(S7.84)

for some big enough C* > 0, we have P(A; 1 + -+ + A115 < 0) — 1, which
yields P(A;) — 1. Similarly, we can prove P(Ay) — 1, which finishes the

proof of Theorem [3]| with a = 0. O

S7.3.3 Change point estimation for a € (0,1)

Proof. For a € (0,1), recall Z(X;,Y:;7,b,8) := (1 — a)%éXi(l{Yi -
b — X B < 0} — ) — aXi(Y; — X[ B) as the weighted score function.
For a € (0,1) and each ¢ € [qo, 1 — qo], define Co(t) = (Car (), . . ., Cop(t)T
with

Lt

Zz Y5 7,b,8)— %ZZ( 7.b,8)). (S7.85)

Note that there is no variance estimator in C,,(t). Recall f,, := argmax ||Ca(t)| (0,2)-
t€[go0,1—qo]
To prove Theorem [3| with a € (0, 1), we need to prove that as n,p — oo, by

choosing a large enough constant C'(sg, M, qo, ) in €, (which will be given
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S7.3 Proof of Theorem

in (S7.90)), we have
P([t, —ti] > €,) — 0. (S7.86)

Similar to Sections [S7.3.1] and [S7.3.2] we have to prove P(4;) — 1 and

P(Ay) — 1, where

Ay = max ([ Ca(t)lleo2) — [|Calt) ) < 0.
(S7.87)

Ay = max HC (Ol (s0.2) = 1Calt1)ll (50,20 < 0.

t<t1—

By the symmetry, we only consider P(A;) — 1. Similar to the previous two

sections, define the two events H; and Ho:

1= { max [[Ca(®)llw = max e, [T Ca(B)ll =  max: o IT1,Ca(
50

= {ICat)ll(s02) := ,nax ||HJC (t1)]l2 = max ||HJC t)ll2}

,,,,,

IJ|=So \J\

(S7.88)
Similar to the proof of Lemma we can prove P(H; NHz) — 1. Now,

under H; N Ha, we have:

P(A) =P( max |Ca(t)lis02) — I1Calt)ls0) < 0)

t>t14e€n

= P(tintfé T‘P\C%{ T Ca(t)]]2 — El‘cf}a{ ITL;Ca(th)[l2 < 0)
=50 =50

_ 2 ~ 2
= P(,max max T, Ca ()] e T, Ca(t1)]* < 0).
SO :SO

7

(6)]l2},



S7.3  Proof of Theorem
Recall 0%(a, 7) := Var[(1 — a)e;(T) — ag;] and C,(t) defined in (S7.128)).

Then, under H;, we have the following decomposition
C.(t) =o(a,T)x Cyu(t)
=o(a,T) X (éé(t) — SNR(a, T) x 8(t) — SNR(ar, 7) x R(t)

+(1 - a)C(t) + (1 — a)CSO (1)),
(S7.89)

where the second equation comes from the decomposition in (S7.129). By
the fact that maxa; — maxb; < max(a; — b;) and max(a; + b;) < maxa; +
max b; for any {a;} and {b;}, we have:

~ 2 ~ 2
{ max a1, Calt)|? = o PGt < 0}
=50 =50

C {UZ(Q,%) X max ‘m‘%( (||HJ(é;<t) — SNR(a, ) x 8(t) — SNR(a, 7) x R(t)
+(1 =) () + (1= ) (1) |1
— || (CL(t:) — SNR(a, 7) x 8(t1) — SNR(a, 7) x R(t))
+(1 = a)C (1) + (1= a)CE (1)) 1) < 0}.
Note that similar to Section [S7.3.2] for the above inequality, we can decom-

pose it into fifteen parts. Moreover, using the obtained bounds in Sections

S7.3.1] and [S7.3.2] if €,, satisfies:

log(pn)
nSNR2(047 ?) HAH(QSO,?) ’

€n > C*(s0, M, T, 0) (S7.90)

for some big enough C* > 0, it is not hard to prove that P(A;) — 1 and

P(As) — 1, which finishes the proof of Theorem [3| with « € (0, 1).
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]

S7.4 Proof of Theorem {4

Let ro(n) = y/slog(pn)/nif @ = 1 and ro(n) = s log(pn) \/s%(log(p”))g

n n

if @ € 0,1). In this section, we aim to prove the consistency of 6%(, 7) in
the sense that

5% (a, T) — 0% (a0, T)| = Op(ra(n)). (S7.91)
We consider the proof in two cases:

Case 1: the signal jump satisfies SNR(a, T)||A||(50,2) > +/log(pn)/n.

In this case, by Theorem 3, w.p.a.1, we have:
’n%\a — nt1| = o(n).

Recall n_ = {i:i < nhty} and ny == {i: tan+ (1 —h)(1 —t)n <i<n}
for some 0 < h < 1. Hence, by Theorem [3, w.p.a.1, the samples in n_ are
before the true change point ¢; and those in n are after ¢;. Hence, we can
use a very similar proof technique as in Section to yield .

Case 2: the signal jump satisfies SN R(o, T) || A||(s0,2) = O(1/log(pn)/n).
In this case, the change point estimator t, can be an arbitrary number which

satisfies 1, € [q0, 1 — qo]. Note that in this case, the signal jump B — 3
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S7.5 Proof of Theorem

is very small in the sense that:

18 — 8 s = O(sy/ BL) g — g}, = oy /5B

In this case, using some modifications of Theorem [I]in Section we can
still prove

5% (a, T) — 0% (a0, T)| = Op(ra(n)). (S7.92)

Since the modifications are lengthy, to save space, we omit the details.

S7.5 Proof of Theorem [5l

Throughout the following proofs, we assume |3 —8W ||, > /log(p)/n

and [|3% — BW|lz > /slog(p)/n, as well as |32 — BV, > s\/log(p)/n.

Next, we give the power results for « = 1, @ = 0 and a € (0, 1), respectively.

For simplicity, we will omit the subscript a whenever needed.

S7.5.1 Power analysis for a =1

Firstly, we consider the oracle case that assumes the variance is known
by letting 5%(a, 7) = o2, where o® := Vare]. In addition, for the case
of @ = 1, we have SNR(a,T) := SNR(1,7) = 1/o, where o? = Var(e).
Without loss of generality, we assume o = 1. The proof of Theorem

proceeds in two steps. In Step 1, we obtain the upper bound of Cle(l —),

80



S7.5 Proof of Theorem

where ¢0 (1 — ) is the 1 —~ th quantile of 77, which is defined as
crp(1—7) :=inf {t : P(T} <#) > 1—~}. (S7.93)

In Step 2, using the obtained upper bound, we get the lower bound of

P(Ty > crp(1 — 7)) and prove
]P(Tl > ch(l — 7)) — 1, as n,p — oo. (S7.94)

Note that {W,; =1} < {T1 > ¢ (1 — )}, where

erp(1 =) =inf {t: (B+1)"" i {TY <t} >1—~}. (S7.95)

b=1

Finally, using the fact that ¢ (1 —+) is the estimation for ¢z (1 —7) based
on the bootstrap samples, we complete the proof. Now, we consider the
two steps in detail.

Step 1: By the definition of 77, we have: T? = maxy<i<i—g |C? ()l (s0.2)s

where
1 [ nt] LntJ n
Clt) = ——— Xt — =2 % X,eb
1(t) ﬁv(l,‘r)(izjl “ n 2:231 61)’

with €2 being i.i.d N(0,1), v(1,7) := Var[e!] = 1. Our next goal is to
obtain an upper bound of Cle(l — 7). To this end, for any 1 < ¢ < n,

1 <j<p,and [ng) <k < n—[ng), we define W), = Xj;ela;, where

7
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S7.5 Proof of Theorem

a;, = 1{i <k} — k/n. Using the above notations, for 7}, we have:

1/2
Th = maxge<r<i—go [|CY ()| s02) < 50 maxgy<i—go [CLH) oo

1 n

1/2 b

=5, —= max g W:2.|.

0 vn 1<5<p, | ”k’
[ngo)]<k<n—|ngg] =1

-~

Z

J/

Hence, according to the above inequality, let cz(1 — v) be the 1 — ~-th

quantile of Z, then we have:

om(l—-v>f;sa“;}ﬁcZ<1—-v» (37.96)

Next, we obtain an upper bound of ¢z(1 —~). The main technique is to use
Lemmaand Lemma. Let M = max; ;. [Wij| and o2 = max;y, Y, E[W7,].

Then, we have
LV )

o7 = max ]E[W?k] = H}%XE[X”E%M]Q <nM?*(1 - qo)* < CL(M, qo)n,

where the last inequality uses the fact that |X;;| < M and |a;| < 1 — go.

For E[M?], we have:
IE[MQ] = E[m;}xfx |Xijefa,~k|2] < M2(1 — qO)QE[maX |ei’|2} < Cy(M, qp) log(n),
1] 7

where the last inequality comes from Example 3.5.6 in [Embrechts et al.
(2013). Let n’ = n — 2|ngp). Using the above results, by Lemma [1 we

have:

E[Z] < C(o./log(pn’) + E[M?)] log pn') < Cy(M, o)/ log(pn).
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S7.5 Proof of Theorem

Note that X;; and e? are all sub-Gaussian random variables, which implies

| Xi;€t]| 4, exists. Hence, we have:
1M, := [T max | Xetai |, < Clog(pnn'+1) max | Xyefaix]lv, < Ca(M., q0) log(pn).

By Lemma 2 taking n = 1 and § = 1, we have:

t2

B(Z > 2B[Z) +1) < exp(—gmyr v

) +3exp ( T (M, q(f) 1og(pn>>'

Taking t = 2(t; V t3), where ¢; and t5 satisfy

t2 to
_— = lO 2 and —
3G gm0 G (M, q0) Tog (o)

= log(7/6)

we have

P(Z > 2E[Z] + 1) < .

By noting that ¢ := 2(¢1Vta) < C5(M, qo)/nlog(1/7) and E[Z] < Cs(M, qo)+/nlog(pn),
we have:

cz(1—7)=2E[Z]+¢

< 2C3(M, qo)+/nlog(pn) + C5(M, qo)/nlog(1/7) < Cs(y/nlog(pn) + /nlog(1/7)).
Lastly, considering , we have:

crp(1 =) < Cs(M, qo) so(\/log(pn) + v/1og(1/7)), (S7.97)

where Cg(M, qo) is some universal constant not depending on n or p.

Step 2: In this step, we aim to prove that IP’(Tl > ch(l — fy)) — 1 as
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S7.5 Proof of Theorem

n,p — oo. Note that in Step 1, we have obtained the upper bound of

CTf(l — 7). Hence, it is sufficient to prove that H; — 1 as n,p — oo, where
Hy :=P(Ty > C4(M, qp) so(\/log(pn) + v/log(1/7) ). (S7.98)

To prove H; — 1, we need the decomposition of 77 under H;. Recall the

decomposition of C(t) defined in (S7.22). Let the signal jump be

\/HLZL‘J n _rEntlJ S(BM — B, if t<t,
) (S7.99)
/i |nty | n— |nt]

N n n

S(BW —B@), if t>t.

Then, under Hy, for o = 1, we have the following decomposition:
C.(t) = C!(t) + SNR(1,7) x 6(t) + SNR(1,7) x R(t),

where C(t) and R(t) are defined as

I — L pa v.,Mn e — pl ; I ;
Ci(t) = T ) ( Zjl Xi€; - El qu), R(t) := R (t)1{i < |nt1]} + R (t)1{i > |nt1]},

(S7.100)

with R!(t) and R!(t) being defined as

ri) = O 1) (5010 - 3) (50 -
ettt = 0 (51 1) - ) (80 - B)
)~ Int)) gy, "

n3/2 L
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S7.5 Proof of Theorem

and

Ri (1) = 0] <:3/_2 ) (00 4) - ) (80 - B)
_ (n— [ntj)flg/l?ﬂ — [nt1]) (f)(tl Lt) — 2) (5(2) _ B)

B |nt] (2372 [nt]) (f)(t :1) — E) (5(2) — ﬁ)

To prove H; — 1, we need the analysis of C{(t), §(t), and R(t), respec-
tively. By definition, for §(), we have: #; = argmax, ;<1 0(t)[(s0,2)- In
other words, ||8(¢)||(s,,2) obtains its maximum value at the true change point
: T 1/2
location. For Cj(t), by Lemma |7| and the fact that [|v||(s2) < 50" ||V
for any v € RP, we have maxg,<i<1—g, ||C1 ()| (s0,2) < C’s(l)/zM\/log(pn) for

some constant C' > 0. As for R(t), using the triangle inequality, we have:

max || R(t)[(sp,2) < max ||Rl(t)||(so,2)+t max R ()] (s0..

qo<t<l—qo qo<t<t1 1<t<1—qo

For maxg,<i<t, | R (t)|/(s0,2), using Lemma [8 with probability at least 1 —

(pn)~C, we have

max || B (1)) < Cisg”*Viogp((|8Y = B, +[18% - B]|,).

qo<t<ti
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S7.5 Proof of Theorem

Note that by Lemma [10| and the fact that 8* = ;8" + (1 — ¢,)B?), we

have:

18 - All,
<w |8V -8

log(pn
<@ (1= t)IBY = B + CrsM g;p N1+ M8 — B0

<@ GlIBY - B,

<@ CislIBY = B

<) CisIZ7'E(BY = B)[l(50.2)

<(6) Cas]|Z(BY = B) | (s0.2);
where (2) comes from Lemma [10] (3) comes from the assumption that
sM?y/log(pn)/n = o(1), (6) comes from Assumption A. Similarly, we
can prove ||3? ,BHl (s[Z(BY — BD)||(s0,2))- Combining this result,

we can prove that

< 17
qoé?équ"R(t)”“w” < 2max ( nax IR (t )||(50,2)7t1§1§1§al>§q0||R )l s02))

< Csy*sv/1og || S(BY — B) | (40.2)-
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Using the above bounds of C¥(t), §(t), and R(t), and by the triangle in-

equality, we have:

Ty = max |[|Ci(1)l|(s.2)

qo<t<l—qo

> SNR(L7) x max (60 — wmax [C{Ole — max ROl

qo<t<l—qo q0<t<l—qo 0<t<1-—qo

> /nx SNR(1L,T) x t(1 — ) x [|[Z(BY = BP)]|(.2) — Csy'* M \/log(pn)
—Cys8/%sv/10g || Z(BY — B | (s0.9),

> i X SNR(1,7) x t1(1 —t1) x [|Z(8Y = BD)||(s.2)(1 — ) — Cusy/>M+/log(pn),
(S7.101)

where €, := (SNR(1, ?)th(l—tl))*lséﬂs\/log(p)/n = O(sé/st/log(p)/n).
Recall H; as defined in (S7.98|). Hence, to prove H; — 1, it is sufficient to
prove H{ — 1, where

H| = 1@(\/5 X SNR(1,7) x ti(1 —t1) x (B8 = BD)]| (50,2
y Csy/* M (1/log(pn) + /log(1/7)) )

1—e¢,

By (3.37), one can see that H{ — 1 as n,p — oo, which finishes the proof.

Remark 2. Note that for @ = 1, if we replace (1, 7) by an estimator
o?(a, T) which satisfies: [6%(a, T) —0%(1,7)| = 0,(1), then under condition

(3.37)), the power still converges to 1.
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S7.5.2 Power analysis for o« =0

Proof. Firstly, we assume 62(0,7) = 02(0, 7) by considering the variance as

unknown, where o2 (a, 7) = \/K—2 Zkl ey Vhrkas WIth Vg gy 1= min(7x, , Tk, ) —
Tk, Tky- 10 addition, for the case of v = 0, we have
Z £(0)

\/Zkl 1Zk2 1’7k1k2
Similar to Section [S7.5.1], the proof of Theorem| proceeds in four steps. In

SNR(0,T)

Step 1, we obtain the upper bound of ¢zs(1 — ), where cgp(1 — ) is the

(1 — 7)-th quantile of T, which is defined as
crp(1 =) :=inf {t : P(T5 <) > 1—~}. (S7.102)

In Steps 2-4, using the upper bound, we get the lower bound of P(TO >

crp(1— 7)) and prove
P(Ty > crp(1—7)) — 1, as n,p — oo. (S7.103)

Step 1: By the definition of T, we have: T¢ = maxg,<i<i—g [|CH ()|l (s0.2):

with
I_ntj n
1 . |nt] b/~
Cit) = ———=(D_Xiel(F) - == X;el(7)),
Vvno(0,7) < — n >
where et (T) = Z el (1y,) with el(7y,) := 1{eb < @7 (73)} =71, € is i.i.d N(0,1),

k=1
v(0,7) := Var[e®(T)], and ®(x) is the CDF for the standard normal dis-

tribution. Note that |e?(7)| < 1 by definition. Hence, we can use a very
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similar proof procedure as in Step 1 in Section to obtain

erp(1—7) < C(M, g0, 7)sy*(\/log(pn) + V/og(1/7)),  (S7.104)

where C'(M, qo, T) is some universal constant only depending on M, gy and
T.

Step 2 Decomposition of Cy(t). In this step, we aim to prove that
]P(TO > ch(l — fy)) — 1 as n,p — oo. Note that in Step 1, we have

obtained the upper bound of ¢z (1 —+). Hence, it is sufficient to prove that

H, — 1 as n,p — oo, where

Hy = P(Ty > C(M, 9, 7)sg/*(v/log(pn) + V/log(1/7))).  (ST7.105)

To prove H; — 1, we need the decomposition of Tj under H;. Note that
for a = 0, with known variance, the score based CUSUM process reduces

to:

Colt) = ——— (Y Z(X., Y 7.5, 8) - LZ—H S Z(X.,v57,b,B)),
j i=1
(S7.106)

s 1K ~ .
where Z(X;,Y;;7,b,3) := 74 > X (1{Y; — by — X, B <0} — 73,). Define
k=1
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S7.5 Proof of Theorem

where &;(,) 1= 1{Y; — by, — XZT,@ < 0} — 7. For €;(7), we have the following

decomposition:

H (S7.108)
whero
ei(F) = %éei(m), with ei(r) = 1{e; < 57} — 7.
E[6/(F) - ()] = kfl E[a(n) — ex(m)], (S7.109)
Vi) = 52 Vil

and
Vi(me) = 1{Yi=b— X B < 0}—1{e; < b} -E[1{Yi~b—X; B < 0}—1{e; < b"1].

Next, we analyze the three parts in (S7.108)). Note that the first term e;(7)
is a sum for simple Bernoulli random variables. For the second term, by

the Taylor’s expansion, we have

. N 1K 1 & 1 &
EE(F) - a(@] =5 LEEm) —alm)] = 3 M (0)+ 5 > M7 (),
= k=1 k=1
MO @) M)
(S7.110)

MO (1) = L) (b = b)) + XT (B~ BD))1{i < [nt1]}

+L.0) (b — 0 + X (B — BO))1{i > |nt1]},
(S7.111)
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S7.5 Proof of Theorem

M (7,) = %fé (&ir) @k - b(o) +X(B - 5(1)))21{i < [nt]}

+f&M} Dy X (B - BD)1{i > |nt.]},
(S7.112)

with & being some constant that between b,(go) and by, + XZT(B — BW) (or
b + X;(E— B)).

Hence, based on the above decomposition, for the composite quantile
based score function, its CUSUM process can be decomposed into four

parts:

Co(t) =CV )+ CP ) + P (t) + ), (S7.113)

where C[()I) t),..., C(()4) (t) are defined as:

Wy ] L"” _ M " X (F
CO (t)_ \/HU(OJ,T)<LZ”XZ Z( ) ZX’L z( ))7
cﬁwz—i—4zxwk>tm2XM%»,
ﬁ"i“’ 7) i) Lnt | - (S7.114)
Gy = (2) _ Lt Vi F
CO (t)_ \/HO'(OJ,’T)<ZXM ( ) n i:lXZMZ ( ))7
CcV(t) = ;( Wf X,Vi(7) — Lnt} S X V(7).
0 vno(a,7) Vo7 n o=

Note that C(()2) (t) consists of the signal jump and is very important for

~ 1 K
detecting a change point. To see this, recall Mi(l)(‘r) = % > Ml-(l)(Tk)
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S7.5 Proof of Theorem

defined in (S7.110)). Then, we have

nt) nt| n
o0 =<1>W(ZXKZM () - Ln”;XIKZM ()
K |nt] [nt] & a

(S7.115)

where §(t) is defined in (S7.99), and R(t) is defined in (S7.100]). Hence,

combining (S7.113)) - (S7.115)), under Hy, the score based CUSUM for the

quantile loss can be decomposed into four terms:

Co(t) = —SNR(0,7) x 8(t) + CS"(t) — SNR(0,7) x R(t) + C(t) + CiV(1).
(S7.116)
Step 3: Obtain the upper bounds for the residuals and random
noises in Cy(t).
We first consider max; HC(()I) | (so,2)- By definition, C(()l) is a partial sum pro-
cess based on Xe; (7). Hence, by Lemma , we can prove that maxg,<;<1—g, ||Cél) ()| (s0,2) =
Op(sé/QM\/W). For max; || R(t)|(s,2), using Lemma , Remark ,

and using a similar proof procedure as in Step 2 of Section [57.5.1 we can

prove that
Inax | R(t) || (s0,2) = (50 sv/1ogp||E(BY — BD)||(52)). (ST.117)
qo<t<l—qo

Next, we consider maxg,<;<i—q, ||Cég)(t)||(5072). To that end, we need some
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S7.5 Proof of Theorem
notations. Let @(1) = (BT (BT ¢ RrHK, @(2) = (BT, ()T €
RP+K, X =

(X, 1) € RPFEand Sy := diag(1,, ex), where e; € R is
a vector with the k-th element being 1 and the others being zeros, and 1

is a K{-dimensional vector with all elements being 1s. Moreover, recall S as

defined in (S9.191). Then, by the definition of C’ég) (t), we have:

3
max ||Cé )(t)||(8072)

qo<t<1l—qo
1/2 3)
<
< s max Gl

1 5 [nt [nt]
ol S xor]

e | o

+s5, max —=——"—= \/_0(04 =1 [ Z (1) N
<o Oy /mst/? 8 ~ 1/2 1z (2~
<@y C1v/nsg mjaxm;@x Tt JZ (7') + C1y/ns, mjax E;XijMi (T)

< Ciy/nsy>(IV I1) + CyM /s> (ITT V IV),
where I, ..., IV are defined as

Lnt)

K 1
L ) - o T
['_gﬁéqoé?ﬁiqo‘tnﬂzx 22 (6) (= 07+ XT (B = )Y,
II:= - L”f L5 L) (e — b + XT (B - 8,
TS it g nt] & TR gl
1

[If—max‘—ZX”KZ < (&) (\k—b —i—XT(,@ B¢ ))

1

IV = max |2 3 Xk 30 2 (6 (e — WO + XT(B - BW))?|.
7 M= K iz 2
(S7.118)
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S7.5 Proof of Theorem

Next, we consider I — IV, respectively. To that end, define

~ 1 K1 >
MP(FBY) = 2 30 5 fa) (b = 0 + X[ (B~ BY)), fori=1,....n,
k=1
~ 1 K1 -
MP(F:8%) = 2 30 S f(&w) (b — b + X[ (B = B?))", fori=1,....n.
k=1

M7 80) = (M (7 80), ..., M (7 V)T,
MO(F;89) = (M (7;:89), ..., M (7 B2)) .
For I, we then have:

1 Lot Mz'(Q) (7;

I = — > Xy ~
™12 nt] &M (F

max
1<j<p go<t<l—qo

(1)
llare a0

1 Lnt
< — 3 Xow; || M@ (F; W
= wz(??},ijnﬁ 125 g0 <21 g0 |nt ] l; | @89
wl|=1

<@ 0,V e g

(87.119)

where (3) comes from Assumption (A.2) and the Hoeffding’s inequality.
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S7.5 Proof of Theorem

Hence, to bound I, we need to consider | M ®)(7; B(l))H. In fact, we have:

IM® (7 8D)]|
= LIMP(F AP
n 1 K 1
=) 2 [g 2. 5 f(gan) (b — b + X (B — D))
=1 k=1
2 K
+N (0 A a0
<o ez o [ (=07 + X7 (B - 89))
C/Qn K R
=@ 4f+(2 [ E“bk — b+ M| B - BY)?? (S7.120)
012 ) W1 )
<) o [KM2(B — BOII]
M4C/2
<@ 18 =81+ 18— BY|L]"

]\/[46"2 log(pn 4
< L [0, 0BV 4 @) — )

<(s) Op(ns"|8® — g || (50.2))2

where (3) comes from Assumption D, (4) comes from Assumption A, (7)

comes from Lemma , (8) comes from |3 — BW||; < s||BP —BW]|(5.2)-

Combining (S7.119) and (S7.120]), we have

log(pn)
[ =0,(s" T||5(2) — BY7,2)-

With a similar proof procedure, we can prove I, [11, IV = O,(s%/log(pn)/n||3? —

@|12, ), which yields:

3 1/2
e (G (D)2 = Oplsy/*s* VIog(n) |S(BP — B, ).

(S7.121)

Lastly, we consider the control of maxg,<;<i—g, ||C(()4) (t)|l(s0,2)- Similar
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S7.5 Proof of Theorem

to the proof of Lemma using some tedious modifications, we can prove

that:

max  [|CS (D)l = Op(Msy*s1/10g(pn) (B2 — Bl (s0.2))-

qo<t<l—qo

(S7.122)

Step 4: Combining the previous results. Recall (S57.104)), (S7.105),

57.116)). Using the above bounds of C’(%)) (), R(t), C’((g’)) (1), C'((é‘))(t), and by

the triangle inequality, w.p.a.1, we have:

To = max ||CO(t)H(S0»2)

qo<t<l—gqo

> SNR(0,7) % max [60)]eon —  max G5 )0

q0<t<l—qo 0<t<1—
~SNR(0,7) x  max ||ROllwon ~  max (O Olo —  max NG5 1)l 2
> /i X SNR(0,7) x t1(1 —t1) x |Z(BY = BP)||(s0.2) — Crs5/ > M+/log(pn)
—Clsysv/10g pl BB = B)l|(s.2) — Caso/™s* /log(pn) BB — BV)]IE,, )
—CaMsy/*5:/10g(P)|2(B® = BM)| (50,2

> /n X SNR(0,7) x t1(1 —t1) x |Z(BY = BP)||(s0.2)(1 — €n) — Crsy/* M \/log(pn),
(S7.123)

where

log p log p
en 1= O(sg 51/ =) vV O (55" 18 = BM(50.2))-

n
Hence, considering (S7.123)), to prove (S7.105)), it is sufficient to prove H] —

1, where

H| = ]P’(ﬁ x SNR(0,7) x t1(1 —t1) x (B8 = BD)]| 5.2
_ Csy/*M (/log(pn) + /1og(1/7)) )

1—¢,
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By (3.37), it is straightforward to see that H] — 1 as n,p — oo, which

finishes the proof.

]

Remark 3. Note that for a = 0, if we replace 0?(0,7) by an estimator
02(0,7) which satisfies: [6%(a, T) — 02(0,T)| = 0,(1), then under condition

(3.37)), the change point test is still consistent.

S7.5.3 Power analysis for a € (0,1)

Proof. In what follows, we assume 6%(a,7) = o0%(a, T) by considering the
variance as unknown, where o?(«, 7) := Var[(1—a)e;(T) —ae;]. In addition,

for the case of o € (0,1), we define

K

(1-0)(% 5 £.00") +a
SNR(a,T) := Ul(zl =)

Similar to Sections [S7.5.1] and [S7.5.2] , the proof of Theorem [5| proceeds

in four steps. In Step 1, we obtain the upper bound of ch(l — ), where

crp(1 — ) is the (1 — 7)-th quantile of T, which is defined as
erp(1—7) ==inf {t : P(T, < t) > 1—~}. (S7.124)
In Steps 2-4, using the upper bound, we get the lower bound of ]P’(Ta >
¢re(1— 7)) and prove
P(T, > cpp(1—7)) = 1, as n,p — oc. (S7.125)
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S7.5 Proof of Theorem

Step 1: By the definition of 77, we have: T = maxgy<i<1—g [|C%(t) | (s0.2):

with

—

nt|

Cht) = m( | Xi{(1-a)el(F)-ac) Z (F)—aeh)),

%

where eb(T) = i b(1) with e?(73,) :== 1{e? < &~ (7)} =7y, €} is 1.i.d N(0,1),
and ®(z) is the CDF_for the standard normal distribution, and v*(a, T) :=
Var[(1 — a)e?(T) — ael].

Note that (1 — a)e?(T) — ae? is just a linear combination of a bounded
random variable e?(7) and a standard normal distribution. Hence, using a

very similar proof procedure as in Step 1 in Section one can prove

oy (1 —7) < C(M,qo, T, )se/2(v/log(pn) + /1og(1/7)), (S7.126)

where C (M, qo, T, ) is some universal constant only depending on M, qo,
T and a.

Step 2 Decomposition of C,(t). In this step, we aim to prove that
]P’(Ta > e (1 — 7)) — 1 as n,p — oo. Note that in Step 1, we have
obtained the upper bound of ¢z (1 —7). Hence, it is sufficient to prove that

H; — 1 as n,p — oo, where

Hy :=P(T, > C(M,qo, T, )so/%(v/1og(pn) + v/1og( (1/7))).  (S7.127)

To prove H; — 1, we need the decomposition of T, under H;. Note that for

€ (0,1), with known variance, the score based CUSUM process reduces
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S7.5 Proof of Theorem

to:

[nt]
1 . SN
Ca )= —F——= Z X’HK) b Xiv}/;;~7b7 ;
®) Vno(a,T) <Zz:; ( B) - z:: T B>>
(S7.128)
- 1 K . N
where Z(X;,Y;;7,b,8) := (1 _O‘)E X (1{Yi—b—XB<0}—7) —
k=1
aX,(Y; — X[ B).
Using the results obtained in Sections [S7.5.1] and [S7.5.2 we have the

following decomposition:

C.(t) = CL(t)=SNR(a, 7)x8(t)—SNR(ct, 7)x R(t)+(1—a) CP () +(1—a)C
(S7.129)

where éé(t) is the random noise based partial sum process defined in

(S7.47), 6(t) is the signal jump defined in (S7.99)), R(t) is defined in (S7.100)),

and C(()?’) (t) and C(()4) (t) are defined in ([S7.114)).

Step 3: Obtain the upper bounds for the residuals and random

noises in C,(t). We first bound max;, |](§é(t)]](so,2). Note that by its defi-
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S7.5 Proof of Theorem

nition in (S7.47)), we have:

max _[|CL(t)|(so.2)

t€[qo,1—qo]

= max |(1-a)Ci(t) = aC{(t) 502

t€[q0,1—qo]

<(1-a) max IIC’ (O l(s0,2) + max. HC ()l (s0,2)
t€[qo,1 t€(go,1

s<1—a>so/2 max IICé(t>Hoo+aso/ max r|0f<>uoo
t€(qo,1—qo) t€(qo,1

= Op(s(l)/QM\/log(pn)),
where the last equation comes from Lemmal[7] Next, we consider max; || R(t)[|(s).2)-

Using Lemma Remark [6] and using a similar proof procedure as Step 2

in Section [S7.5.1, we have

max || R(1)]] w02 = Op(s0*s/10g p Z(BY = B) ] 150.2))-

qo<t<l—qo

For C(()g) (t) and C’(()4) (t), using the obtained upper bounds in (S7.121f) and

(S7.122), we have:
max [|CF (1) s.2) = Op(s5*s*\/Tog(pn)|Z(BP — B)|12, ), and

qo<t<l—qo

max  [|CS ()|l = Op(Msy*s1/1og(pn) (B2 — BD) | (s0.2))-

qo<t<l—qo

Step 4: Combining the previous results. Recall (S7.126)), (S7.127),

S$7.116). Using the above bounds of CL(t), R(t), C((g)) (1), C((g)) (t), and by
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the triangle inequality, w.p.a.1, we have:

T = max [|Cu(t)lls.2)

q0<t<1—qo

> SNR(a,7) % max [[6(0)]woz — max [CLH)l2

qo<t<l—qo ’ qo<t<l—qo
_ o~ (1 _ (3)
SNR(@,F) % x| ROlla — (1= ) max [C 0l
(1 — (4)
(1-a) max [CE O

> /nx SNR(a,7) x t,(1 —t) x ||=(8W — ﬁ<2>)y|(50,2) — Cyst* M y/Tog(pn)
—Casq/2s\/10g pl|B(BY — BD) |02 — C5(1 — a) s> s?/log(pn)[|Z(BP — B2,
—@u—amu%aﬂ@ﬁmzw@—ﬁmm@m

> i X SNR(a, 7) x t1(1 — t1) x [|Z(BD — BD)||(s.2)(1 — €x) — Cysy/>M+/log(pn),
(S7.130)

where

1 1
€ 1= 0(8(1)/28\/ in) \/O( 257 [ 2P HB ﬁ(l)H(SO»2))'

Hence, considering (S7.123)), to prove (S7.105)), it is sufficient to prove H] —

1, where
H = P(\/ﬁ X SNR(a,7) x t(1 = t1) x (B = 8|52
- Csé/zM(\/log(pn) + \/log(l/’y))>
- 1—e¢, '

By (3.37)), it is straightforward to see that H] — 1 as n,p — oo, which

finishes the proof.

Remark 4. Note that for o € (0, 1), if we replace o%(, 7) by an estimator
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o2 (a, T) which satisfies: |02(a, 7) — 0%(a, T)| = 0,(1), then under condition

(3.37), the power still converges to 1.

S8 Proofs of lemmas in Section

S8.1 Proof of Lemma 12

Proof. In this section, we prove Lemma [I2] In other words, we will prove

P( max |[|Ci(t) = CI(D)]|,,2 =€) = o(1). (S8.131)

q0<t<1—qo

Using the triangle inequality, we have

P( max [Ci(t) = C{(1)]|,,2 =€) < D1+ Ds, (S8.132)

qo<t<l—qo
where Dy and D, are defined as

D1 — P(qoglgl}iqo HCl(t) - Cll<t)H(so,2) = 6/2)7 (88133)

Dy = ]P( max Hcll(t) - 6’11(15)“(5072) = 6/2)'

qo<t<1l—qo

By (S8.132)), to prove (58.131]), we need to bound D; and D,, respectively.

Step 1: Obtain the upper bound for D,. We first consider D;. To
this end, we define

E={c/4<5° <4C?}, (S8.134)
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where ¢, and C, are in Assumption B. By introducing £, we have

Dy <P( max ||Ci(t) f(t)H(SOQ) >e/2NE) +P(EY).  (S8.135)

- qo<t<l—qo

By Theorem [1} we have P(£°) = o(1) as n,p — oo. Under the event &, we

have
P(qoglgx_qo |Ci(t) — C1]<t)H(so,2) >¢/2NE) (58.136)
— [P(qoglgalx_qo ||01H(t)H<so,z) >e/2NE),

where C{!(t) is defined in (S7.23)). Hence, under the event £, we have

€
P(  max ||C1H(t)H(so,2)Z§mg)

qo<t<l—qo

Lnt] ~ n
:(1)1@(@{“%( p) XiXiT(B(O)—5)—%231)(1')(;(,3(0) Bl > 7 NE)
<@ P m?XHM(ﬁ(l t) = S(1:n)) (8" - ||<a 2 2 4 ﬂ‘g)

<(3) IP’(mtax H%(i(l 1) = 3(1:n)(BO - B)||_ > 55" CZ ms)
<@) P(mtaxH%(fl(l 1) = B(1: )| /I(BQ - B)|, > s 1/26c€ )
<6) P(mtax [(B:t) = Z(1:n) =B =B, > n*l/ng”Q%)

(S8.137)

1/2H’UH<>O for any v € R?,

where (3) comes from the fact that ||v||(s,2) < s
(4) comes from the fact that ||Av|e < [|Alleo||v]|1 for any matrix A
and vector v. By Lemma we have mgx”(f](l 1) — (1 n)) |l =
O,(M?y/log(p)/n). Moreover, under Hy, for the lasso estimator B, us-
ing Lemma , we have |8 — 8°||; = O,(s/log(p/n)). Hence, combining

(S8.137)) and letting € := Csé/2sM210g(p)/\/ﬁ for some big enough constant
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C > 0, we have:

P( max |C{'(t) ‘

qo<t<l—qo H (s0,2) = 2

NE) =o(1).

Step 2: Obtain the upper bound for D,. By definition, we have

D, ::IP’( max ||C{(t) It” >e/2>
IP’<|1—l max

qo<t<l—qo
nt] &
o QOStSI—qOH\/_(ZXl e ;XZEZ)H( >€/2>
[nt] n
P |

1 ntj
— 1 mae [l (0 X = 23 K 2 €12).
N—— =1 ,

L N ~~

I

SHESEREY

Hence, to bound D, we need to bound I; and I, respectively. To bound

I, define I = |1 — z|. Using the fact that a® —b* = (a—b)(a+b), we have:
o

~ ‘32—02

L-2Z—2
" lo(o +6)

0% — o?

1

n

S(l) S(Q) Cl 6'\2 — 0

Y

where (2) comes from Assumption B, (3) comes from Theorem By

Lemma C.1 in Zhou et al. (2018), we have: [; < C’ji. Next, we consider
. 1/2

I5. Using Lemma , and the fact that ||v]|(s,2) < 5'7[|v]|e for any v € RP,

we have:

I, = O][,(Ms(l)/2 log(pn)).

1
Hence, we have [ [, = Op(s(l)/zsl/?M%).
Lastly, combining Steps 1 and 2, if we choose € := Csé/QsMQIOg(p)/\/ﬁ
for some big constant C' > 0, we have Dy + Dy = o(1), which finishes the
proof. ]
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S8.2 Proof of Lemma [13|
Proof. In this section, we aim to prove sup,.q I, = 0,(1), where

L= [P max [ICEOluz > 2) —B( max [CHDs) > =1X) |

qo<t<1l—qo qo<t<1l—qo
To that end, let B = C'son and L = sup,¢(g 10y - Then, we can write L
as

L = max(Ly, Ly),

where Ly = sup,¢(g g I» and Ly = Sup,¢(g o) I-- Therefore, to prove L =
0p(1), we need to bound L; and Lo, respectively. We first bound Ly =
SUD,c(R,00) [~ Considering that for any v € RP, [[v]/(52) < sé/ZHUHOO <

so||v||s holds, we have

Ly= sup L <P( max [CF(t)]s >Cn)+P( max [C}(t)] > Cn|X).

2€(R,00) qo=t<l—qo q<t<l—qo
By the exponential inequality and similar to the proof of Lemma |7} we can

prove that

max [|CF(#)]l = Op(My/log(pn)),and max [|C}(t)llsc|X = Op(M+/log(pn)),

go<t<l—qo q0<t<1—qo
which yields

Ly= sup I, =o0,(1). (S8.138)
z€(R,00)

After bounding Ly in ([S8.138)), we now bound Ly := sup,¢ g I.- Let

ERp — {33 c RP - ”ag” < R} and V(zﬁz) = {m € RP : ”m”(5072) < Z}
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S8.2 Proof of Lemma

Considering ||z|| < p'/?||z|l < pY?[|@||(s02) for any = € RP, we have

V(z’p ) C ERP'%p for » < R. Therefore, considering Lemma , there is a

50,2

m-~generated convex set A™ and a € > 0 such that

1
A™ C VP C AFP% and m < pso(% In(=))% (by Vi C ERPp for 5 < R).
k) E 6 ’

(S8.139)
By setting € = (pn) /2, we have € = Rp'/?e = Csop~'n~"/2. By (S8.139),
for z € (0, R], we have

[z S [z,l + [z,27

where

L= max(]P’( N CS(t)eAam\ Am) P( N C{)(t)eAmve/\AmP()),

q0<t<1—qo q0<t<l—qo

Lo= max(|P( N CEMean)-P( [ Cit)e A |x)],

qo<t<l—qo q0<t<1—qo

P( N CSt)ye A —P( N C{’(t)eAm|X)|).

go<t<l—qo go<t<l—qo

Next, we consider I,; and I,,, respectively. Recall € = Csop~in~1/2,

For I.,, by Lemma {| and the definitions of A™ and A™< in 1} and

(S8.139)), for all z € (0, R], we have

I, < Csop_ln_l/Z\/log(m(n —2[nqo))) < Cs2p~in=2\/log(pn) = 0,(1).
(S8.140)

Recall V,, := {v € ST : ||v| = 1, ||lv]lo < so} and E(0 : ¢) defined in
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(S4.2)). We then have

sup sup ’Uir <E[C1G(t1)cla(t2>—q —E[C{’(tl)Cb(tg)T’XDvg

qo<t1,t2<1—qo v1,v2€Vs,

<@ sup
qo<t1,t2<1—qo

E[CE(1)CE (t)"] —E[CHE)C (1) T[] _[on],[lva]

<@ s sup ||min(ty, ) (E(0 : min(t, ) — )

qo<t1,t2<1—qo

~t1t2(B(0: 1)) = ) — tta(2(0: 1) — B) + 112(2(0: 1) - ) _,
(S8.141)

the last inequality in (S8.141)) comes from the Cauchy-Schwartz inequality,
and the fact vy,v2 € V,,. Therefore, based on (58.141f), using Theorem
4.1 and Remark 4.1 in [Chernozhukov et al| (2017) and Lemma [§ with

probability tending to one, we have

1o < (s 222 g (2L ))) < € (EL)
" n

(S8.142)

Considering ((S8.142)), by Assumptions A, E.1, we have I, = 0,(1) for

all z € (0, R].

Finally, combining (S8.138]), (58.140)), and (S8.142)), we have I, = 0,(1)

uniformly holds for z > 0, which finishes the proof for Lemma [13]
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S8.3 Proof of Lemma

S8.3 Proof of Lemma [14

Proof. In this section, we prove Lemma[l4] In other words, we aim to prove

lP( max ||Co(t) — C(1)]|, 5 > e) = o(1), (58.143)

qo<t<l—qo
where Cy(t) is defined in (S7.37), and CL(t) is defined in (S7.40). Using

the triangle inequality, we have

P( max |[|Co(t) = C5(1)]| 2 =€) < D+ Do, (S8.144)

qo<t<l—qo

where D; and D, are defined as

D, = ]P(qogr?gl)iqo HCO(t) - Cé(t>H(80,2) 2 6/2)7 (S8.145)

Dy:=P( max [|Ci(t) = Ci(t)]| ., = €/2)-

qo<t<l—qo

By (S8.144)), to prove (S8.143)), we need to bound D; and D,, respectively.

Step 1: Obtain the upper bound for D;. We first consider D;. To
this end, we define
E={0"/2<5% < 25"}, (S8.146)

where 2 := Var[e;(7)] is the true variance. By introducing &, we have

Dy <P( max |Co(t)— Cé(t)H(SOQ) >e/2NE) +P(EY).  (S8.147)

- qo<t<l—qo

By Theorem [1} we have P(£¢) = o(1) as n,p — oo. Under the event £, we

have
_ I
P max [ Colt) = €YD, = /20€) o
=B(, max GOl = /208).
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S8.3 Proof of Lemma

where CE!(t) is defined in (S7.38). Before controlling C!(t), given X =

(X1,...,X,), we need to decompose Cl!(¢)|X into two terms:
cllt) =i t) + CiP (1), (S8.149)

where C3"'(t) and C}"*(t) are defined as

. o i X (Ef1{e < X" g + 1"} ~ Efi{e; < 1"}])).
G0 ﬁato, a1 L_Ztl %é Xi(0 XA — 9u(0)
S S Xl RY - 0a(0).

(S8.150)
._ (0) (0) II,1
where g;;(t) :== 1{e; < b’ +t} —P{e; < b’ +t}. Next, we control C,"" ()
and CJ"2(t), respectively.
Let F.(t) :== P(e < t) be the CDF for € and f. be its density function.

For C}"'(t), by its definition, we have:

1 lnt] 1 K ~
CH,I " _ - X, (F. XlTA b(O) —F b(o)
0 = e (L e KR A+ 07 - E)
t] ». 1 K ~
S S X (TR ) - BO)) ).
=1 k=1

(S8.151)
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S8.3 Proof of Lemma

Using the Taylor’s expansion, we have:
F(X AL+ b)) = F(5)
= )X B+ S fE A X
= ) XT A+ R0~ 67) + 5 76 By X2
= LOP)XT (B = BO) + L0~ ) + 311 (Br X0
where & is some random variable between b,(f) and {(JTV&JE + b,(go). Hence,

by the above expansion, Cé]’l(t) can be decomposed into three terms:

CiM 1) = G 1) + CY12(e) + C4(), (85.152)

(S8.153)

Hence, to bound C{"'(t), we need to bound CJ"M' (1) — CIPY(t) respec-

tively. For CL"M!(¢), under the event £, with probability tending to 1, we
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S8.3 Proof of Lemma

have:

max CII,l,l t .
t€[go,1—qo) H 0 ( )H( 0,2)
[nt]

_ N 1 K N
<q) Osy* max | 72 (8(1: ) = B(L: m)) 2 3 L0 (B = BV
N . 1 K N
<o €5y max [V (£01:0) - B0 )l x I & £00)B - 5O
K ~
<w Osy "M logW) I X £01)(B - 89,
<@ Cso*M?/log(p)||(B — BV,

<(5) C’s(l]/QM2 \/log(p)s\/log(p)/n7

(S8.154)
where (1) comes from (S8.146)), (3) comes from Lemma[§] (4) comes from
Assumption D.2; and (5) comes from Lemma . With a similar procedure,

we can prove that

max [ CE(0)] ) = Opls M2 log(p)/v/n).  (S8.155)

t€[qo,1—qo]

Next, we consider C4""*(t). Using (a + )2 < 2(a® 4 b?), we have

K K

K
1 1 , —~ T C’ —~ —~ 1 —~ —~
_E Z ) (A Xi2‘<_+§ XTAZ < —E 52 ATXZXTA
‘Kkzlsz(f’“)(mﬁ X) _2Kk:1<5k+ i 8) _C+<Kk:16’“+ i A),

(S8.156)

where 0, = b, — b©@, A = 8 — B Hence, using the above result, under
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S8.3 Proof of Lemma

&, we have

I1,1,3
max [|Cy™ ()l (s0,2)

S
€| max Ln\/t—J (LntJ %X%é% é(gik)(éﬁT&)z)Hoo
o B S L@, )
< OVsy*mps (5 ) i YAl x )
sV (3 3 1Kl e 2 560 B X))

<) CC+\/_M51/2( 18]|2 + mtaXATZ(O 1)A)
+CC \/_Msl/2( 18]+ ATE(0: 1)A)
< CC" \/—MSW( 18112 + max |AT(E(0: ) - £)A| + ATEA
+OC’MM8”2< 18]+ |AT(2(0: 1) - £)A)| + ATZA
<o) CO MY (BT + MDA + M2y [EP R o)

<(6) Csy/*sM*log(p)/v/n,
(S8.157)

where (1) comes from and the triangle inequality, (2) comes from
max;|nt]/v/n < /i, (3) comes from Assumption D and (S8.156)), and (5)
comes from the fact that |AT(Z(0: 1) = Z)A)| < [|A2[|S(0: 1) = B <
s||AJ[2|(0 : 1) — | and Lemmas , (6) comes from Lemma and the

fact that sM?log(p)/v/n = o(1).
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S8.3  Proof of Lemma
Hence, combining (S8.153)), (S8.154)), (S8.155)), (S8.157)), we obtain that

max_{|C5"" (#)l|s0.2) < C'sg’*sM* log(p) /v/n. (S8.158)

t€[q0,1—qo]

After bounding C4""*(t), we next consider C4"*(t). The following lemma

provides the desired bound. The proof of Lemma is given in Section

SI01l

Lemma 17. Suppose Assumptions A, D, E.2 - E.4 hold. Then, with

probability tending to 1, we have:

max |Gy ()| s0.0) < Csy/*(slog(pn))>/* /n/4,
t€[q0,1—qo]

for some big enough constant C' > 0.

Hence, combining (S8.158) and Lemma , we have:

(s log(pn)*/*

11,2 1/2
max [1C3 (D)lleoa < Cs*M==——"5

t€[qo,1—qo

Step 2: Obtain the upper bound for D,. By Theorem [I} and similar

to the proof of Step 2 in Section we can prove that

max ||C{(t) — éé(t)H(SOQ) =ro(n) x Op(Ms(l)/Q\/log(pn))

qo<t<l—qo

log(pn) \V 53 (log(pn))

ol

where ro(n) = s
Lastly, combining Steps 1 and 2, if we choose € := Csg/? (s log(pn))*/4 /n}/4
for some big constant C' > 0, we have Dy + Dy = o(1), which finishes the

proof. ]
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S8.4 Proof of Lemma [15

Proof. In this section, we prove Lemma[I5 In other words, we aim to prove

P( max |[Cult) = CL(D)]| 2 =€) = ol1), (S8.159)

qo<t<l—qo

where C,(t) and éi(t) are defined in (S7.44)) and (S7.47). By the triangle

inequality, we have

P( max |[|Cu(t) = Ci(t)] 0 =€) < D1+ Da, (S8.160)

qo<t<1l—qo
where D; and D, are defined as

Dy =P(max ||Ca(t) = CL(1)]] ;. > €/2): (S8.161)

D, :=P( max |CL(t)- éé(t)H(sog) > €/2).

qo<t<l—qo

By (S8.160)), to prove ([S8.159)), we need to bound D; and D-, respectively.

Step 1: Obtain the upper bound for D;. We first consider D;. To

this end, we define

E={0%/2<7% <257}, (58.162)

where 02 := Var[(1 — a)e;(T) + ag;] is the true variance. By introducing &,

we have

Dy <P( max |Cu(t)— Cc{(t)||(8072) >e/2NE) +P(E°).  (S8.163)

- qo<t<l—qo
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S8.4 Proof of Lemma

By Theorem [1 we have P(£¢) = o(1) as n,p — oo. Under the event &, we

have

P(qogntlgaf(—qo |Calt) — ng(t)H(so,z) >e/2NE) = P<q0£51§aix—qo HCéI@)”(so,z) >e/2NE),

(S8.164)

where C1!(t) is defined in ((S7.46)), which is decomposed into two parts:
CIl(t) = (1 —a)CI(t) + aCl (1), (S8.165)

where C{!(t) is defined in (S7.23)), and C{!(t) is defined in (S7.38). Note

that by the proofs of Lemmas and [S8.3] we have proved that:

I _ 5. 1/2 log(pn)
qog?fiqoncl (t)H(so,z) _OP(M Sg S \/ﬁ )7
/4
1 _ 2 1/2(3108?(17”))3
W52 1 CE Ol y) = Op (M5 — 557

log(pn) _ (s log(pn))3/4

\/ﬁ n1/4

Moreover, by Assumption E.2, we have s , which

implies that:

3/4
max ||CY(0)]] . = O (MzngM)

qo<t<l—qo nl/4

Step 2: Obtain the upper bound for D,. By Theorem [I| and similar

to the proof of Step 2 in Sections [S8.1] and [S8.3], we can prove that

max HCé(t) - éi(t)“(sog) =714(n) x O, (Msé/Q\/log(pn)),

qo<t<l—qo
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S8.5 Proof of Lemma

¢. Note that by Assumption E.2,

where r,(n) = s

we have

1 3/4
ra(n) X MS(I)/Q\/ lOg(pn) <K M%éﬂm'

nl/4
Hence, combining Steps 1 and 2, if we choose € := 035/2(310g(pn))3/4/n1/4
for some big constant C' > 0, we have D; + Dy = o(1), which finishes the

proof. O]

S8.5 Proof of Lemma [16

Proof. Note that the proof for H; and H, is similar. We only give the proof
of Hi. The proof proceeds in two steps: In Step 1, we obtain the upper
bounds of max max ITL,Cy (t) —I1;01(t)||2. In Step 2, using the upper
bound and some regular inequalities, we finish the proof.

Step 1: By the decomposition of 6’1(25) as in (S7.57)), with probability
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S8.5 Proof of Lemma

tending to one, we have:

I1,C,(t) — I1,6(t
e, dpe, MG(O) ~ T e
-

< m m (~'I R
=1 tZtlaén Jc‘ﬁ?(,p} HH] 1 (t) + HJ (t)HZ
=s0

<(zy max max I, CL(t)|s + max max || R(t)],
t>t1+en Jc‘j‘lg-s»(;p} t>t1+e€n JC|§|1;;(SP}

=@ max [|C7(1)l(s0,2) + ,max [[R(D)] .2

t>t1+e€n

1/2 ~I 1/2
<
<@ so " max [CY(t)]lc + 57" max [R(1)]lw

<(5) C" (50" M\/log(pn) + s5/*s/og(pn) | Al ss.2)) -

t*

Recall M = {j: 81" # 8} Note that

max  max ||Hjél<t) —1L;6(t)]]2

t>t14en JC{1,....p

[J1=s0
= tﬁntﬁén g}lci}i(] ||HJC]_(t) — HJ(s(t)HQ + tgltﬁén %IZ}E HH]Cl(t) — H](S(f?)”g
Using the fact that |max;||a;||s — max; ||b;||2] < max;|||a;|la — ||bi]l2] <

max; |||a; — b;||2| for any vectors a; and b;, we have:

P(| e max I GOl - e max LS| < 1) =1
=350 J1=30
and IF’( max max ||[IL;C,(t)]|s < t*) — 1.
t>t1+en ‘JJC‘i‘;‘;
(S8.166)

Step 2: Note that Jpax g‘lc%( IITL;8(t)||2
J|=sq

= Vnti(1—ti—e)[[Alls.2)- By

chooing a big enough constant in (S7.49)), we have max max |[TT;8(¢)||2| >
t>t1+en &\C:/\SAO
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2t*. Moreover, by (S8.166|), we see that:

IP( max max ||[IL;C1(¢)]s — max max |[IL;C,(t)]|2 < 0)
t>t1+en ‘ﬂ‘cszjo t>t14€n |]JC|i:;

< B(,max s IT1,Cu(0)]l2 —  max s TG (1)])2
=sQ =50

< I L
< e s MO0l — ¢ )

<o P( g max GOl < max ma [0 — )
=50 =50

+IP<— max max
t>t14e, JCME
[J|=s0

MC\®)]l < ~#7) =0, as (n.p) = o<,

which finishes the proof. O

S9 Proofs of useful lemmas in Section

S9.1 Proof of Lemma

Proof. In this section, we aim to prove ((S6.7). Firstly, we define £ = {x €
R le|| < R} and Vi ,) = {x € R? : [|@[(s5,2 < z}. Then, by the

definition of V(Z 9, We have
50,2)

sup [P(max [[SZ(k)2) < 2) —P( _max [|S(k)l|2) < 2)]

2€(0,00) ko<k<n—ko ko<k<n—ko
= suwp [P( () {SPK)eVia)}-P( [) {S°K) eVi)}l-
2€(0,00) g ck<n—ko ko<k<n—ko )
A,
(S9.167)
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S9.1 Proof of Lemma@

By interting £F and (€8)¢ in A,, we have A, < A" + AP? where

AV =P N {STR e EM Ve ) —P( N {SR) € €N NV,

ko<k<n—kq ko<k<n—k
0SR>S 0

AP =P N {SFR EVEHnEM) ~B( N {SS(k) € ViznET)].
ko<k<n—ko ko<k<n—ko (Sg 168)

Next, we bound AY and A® respectively. For Agl), using the triangle

inequality, we have

AV <B( () {870 € €TV} )1B( () {89 € (€M)

ko<k<n-—ko ko<k<n—ko

Recall §Z and S in (S6.6). Let ay, = 1{i <k} —k/nfori=1...,n and
ko < k < n —ko. We then have SZ(k) = n=Y23"" | Z,ay and S¢(k) =
n~Y23" | Giai,. Moreover, by the definition of kg = [ngo ], we have ¢y <

lag| <1—gqo fori=1,...,nand kg < k <n — ko. Hence, we have

p( N {870 € €D NVE,,))

ko<k<n—ko
<P( N {7k e}
ko <k<n—ko
< P( N v Ziawl|, > R) (59.169)
ko<k<n—ko =1
<B(_ N o3|zl > R)
ko<k<n—ko i=1
n P RQ
< P 72 >
N 1221 <]§1 v n >
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By Assumption (M2) and Markov’s inequality, we further have:

n p n
ny > EZE  npmaxi<jc, > EZ
=1

n P R? i=1 j=1 n’pK?
;M;Z%ZF) = R? = R? - R
(59.170)

Hence, taking R? = n®?p and combining (S9.169)) and (S9.170), we have

IP( (| {S%k) e (53)00\/(10,2)}) < oL

ko<k<n—ko v
Similarly, for S¢(k), we have P( () {S%(k) € (EF)°n Véoa)}) <
ko<k<n—ko
1 1
C—~=. The above results yield that AWM <(C—.

Vi Vi

After bounding AS), we next consider A?. By Lemma , there exists

an m-generated convex set A™ such that
2

R, Z,p m,Re Y 1 50
A" CEMP NV T,y CA and mgps"(%ln(e)) :

By letting

p=lP( N (S eAm) B ) (S°k) e am))

)

ko<k<n—ko ko<k<n—ko
=P N (S%k)eA™E)) —P( N (S%k) e AmF))|,
ko<k<n—kqo ko<k<n—ko

we have

P( N {S7(k) €NV 5})

ko<k<n—ko

S P( ﬂ (SZ(]{Z) € Am,Re)) (by gR N ‘/’éog) C Am,Re)
ko<k<n—ko

<P () (S() € 4™ +max(pr, o)
ko<k<n—ko

N J/

TV
P

(89.171)

120



S9.1 Proof of Lemma@
Using Assumption (M1), by the definition of A™%¢ in (S6.5) and Lemma

[, we have

P.=P( N N (S0 < San(v) + Re) )

ko<k<n—ko veV(A™)

< IP( N (SSk)Tv < SA,,L(U)))
kogk%nfl)co
veEY(A™

+19>( N (San(v) < SE(k) v < Sam(v) + Re)>

ko<k<n—kq

vEV(A™)
<P( N (S9(K) € E°NVE,,)) + CRevIogmm(by A™ C RNV, ).
ko<k<n—ko
(89.172)
Therefore, by (59.171)) and (S9.172)), we have
P( N (S%(k) €ERNVE, o))
ko<k<n—ko
<P( N (SCk) e ERﬂVéO’z))) + C'Rev/log nm + max(py, pa2).
ko <k<n—ko
(S9.173)

Similar to the procedures in (S9.171)), (59.172)), and (S9.173]), we also have

P( N (S%(k)e&fn V(jog)))

ko<k<n—ko
>P( N (SC(k)e&fin V(z;)dp))) — C'Re/log nm — max(p1, p2).
ko<k<n—ko ’
(89.174)
Therefore, by (S9.168]), (S9.173)), and (S9.174)), we obtain
AP < max(py, p2) + CRey/lognm. (S9.175)
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Next, we consider p; and py. For p;, we have

p=[P( N N S%(k)Tv < San(v))

ko<k<n—ko veV(A™)

“P( N N SCk) 0 < Sun(w))].

ko<k<n—ko veV(A™)
Define Z-(k;,'v) = v' Z,a;, and éi(k;,'v) = v Gy fori =1,...,n, k =

ko,...,n — ko and v € V(A™). By letting

we have
pr = |P(S%H) < Sym(w), ko < k < n — ko, v € V(A™))

—P(SCED) < Sam(v), ko < k <n — ko, v € V(A™))],
which is a high dimensional Gaussian approximation for hyperrectangle in
terms of {Z;(k,v)}. To use Proposition 2.1 in (Chernozhukov et al. (2017),
we need to verify that under Assumptions (M1)-(M3), Z(k:, v) =v' Zay
satisfies Conditions (M.1), (M.2) and (E.2) in |Chernozhukov et al.| (2017)).
In fact, by Assumption (M1), we have inf,, EZ;(k, v)2 > b holds for i =
1,...,n, which implies Condition (M.1). Moreover, for v € V(A™), let J(v)
be the set of non-zero coordinates of v with |J(v)| < so. Using Hoélder’s

inequality, for any vector @ = (ay,...,a,)", we have (ZjeJ(v) la;|)?T* <
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507 X jesw las*+t. This implies that

1 n
= Y E|Zi(k, v) [
n

=1

1 n

<= S Elv" Z > (by qo < |ai] <1—qo)
=1

1 n

> E > | I ([J(v)] < sp and o] = 1)

nl:l jeJ(v

1+€ Z Z E’ZZ]‘Q—s-Z

n ;= IJEJ (v)

< 2+4 - 244

50 lrgjag;nZE! is]

< s$TKY = (B,), (by Assumption (M2)),

where B,, = K séﬂe)/ ‘. Hence, Condition (M.2) holds by taking B,

Ks 82“ £ Lastly, we verify Condition (E.2). In fact, we have

B((, max, |Z(k.v)]))
vEV(A™)

<E((,max _|Z(kv)))
%Ev@;m)o

E(( max |07 Zi)7) (by a0 < law] <1~ o)
vEV(A™)

<E(( max e Zil)?)

vEV(A™)

IN

< SEE((max | Z))7) == (B,)",

1<5;<p

where B! := soK. Hence, Condition (E.2) in (Chernozhukov et al.| (2017)
holds by taking B], := soK. Lastly, taking B, = s3K, we have

1o~ -
max — > E|Z;(k,v)]* < (B,)" for {=1,2;

vt =1
and maxlgign]E«k max \Z(k,v)])q) < (By)".
%Evam)O
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SSK? log7(mn2)>1/6 and D2 — (58K2 log® (mn?)

1/3 .
T2/ ) . Using

Let Dg) = (
n

Proposition 2.1 in |Chernozhukov et al| (2017), for p; and ps, we have

max(p1, p2) < C(DY + D), (59.176)

where C' is some universal constant not depending on n or p. Combining

(59.167), (59.168), (S9.175), and (S9.176), we have

1
sup A, < Ci——= + CyRe/lognm + Cs (D,(ll) + Df)). (S9.177)
z2€(0,00) \/ﬁ

2

1.\s
Recall R := n**p'/? and m < p* (\/ié 111(_)> " By letting ¢ = (pn*)~", we
€

have

6 2] 7 2)\ 1/6 6702 3 2)\1/3
Rey/logmn =< (SO og (mn )) , and Rey/logmn =< <SO n(l)i/(qmn >) .

n

(59.178)

Moreover, using the Assumption that s3K?7log(pn) = O(nf) for some

0 < & < 1/7 and s§K?*log(pn) = O(n®?) for some 0 < & < +(1 — 2/q),
we have

DY + DP < p~%  for some & > 0. (59.179)

n n

Lastly, combining (S9.177)), (59.178) and (S9.179), we finish the proof of

Lemma [6l O
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S9.2 Proof of Lemma [T

Proof. Let ay, = 1{i <k} —k/nfori=1...,nand k, < k <n — k, with
k, := |na,| and k, := |nb,|. Define Zij(k) = Xjj€ea;, for i = 1,....n,

j=1,...,pand k=k,,...,n — k,. By definition, we have:

1y [ntj
7( Z Xijei — Z Xije z)
= max max

Z \
k, <k<n—k, 1<i<p \/_ Z i (k)

Note that by Assumption A, C, we have E|Z;(k)[>** < a2 M?*+* K’ for

max max
tE[an,l—bn] ISJSP

(S9.180)

( =1,2. Let M = max; ;| Z;(k)| and 0® = max; >, E[Z}]. Then, by

Lemma [2] we have:

E [ max max

1 n
k,, <k<n—Fky 1<5<p \/ﬁ; 5(K)

< %(U\/Iogp(n — k, — kn) + VE[M?]logp(n — k, — ky,)).

For 02, using Holder’s inequality, we have 0% <) C'Y_ a3, M? <(o) CnMZ,
=1

where (2) comes from a, < |ag| < 1 —b,. For E[M?], by definition, we

have:

E[M?] = E[ma§<|Xij€iaik|Q] <@y M?E[max|¢;]?] <) CM*n!/?
0 (2

where (1) comes from Assumption A, (2) comes from Assumption C

and Theorem 3 in [Downey| (1990). Hence, we have

1 n —
E — Z,k;H<CM 1 ko~
e s |7 2 2] < ouyfosptn - £ -R

(S9.181)
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S9.3 Proof of Lemma@l

Hence, using Lemma, takingn =1,s =2andt = C’*M\/log(p(n —k, —ky))

for some big enough constant C* > 0, we have:

]P’( max  max
k, <k<n—k, 1<J<p

% > Zl-j(@‘ > C’lM\/log(p(n —k, — En))) < Cyn~Y2,
i=1

which completes the proof. n

S9.3 Proof of Lemma

Proof. In this section, we prove Lemma [9 Note that Lemma [9] applies to
both Hy and H;. To cover the above two cases in a unified way, we prove
the results by assuming there is a change point ¢; such that 8 = g0 if
i < |nt;| and B = B® if i > |nt;]|. Note that under Hy, we can always set
B = B even though t; is not identifiable. Now, we are ready to prove
Lemma [9.

Recall 8* is the minimizer under the population level which is defined
as:

B = argmin ;E[m - x/y|.

By the first-order condition, we can see that 3* satisfies:
1 n
- ZE[XZ»(Yi - Xjﬂ*)} ~0,. (59.182)
i=1

Moreover, since the model is linear, 3* € RP has the following explicit form,
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S9.3 Proof of Lemma@l

which is a linear combination of 8" and B8®

Note that under Hy with B = 8®) we have 8* = BV, In this case, B*
is the true parameter for the linear model. Recall ﬁ is the minimizer of the

empirical loss defined in (2.10]). Hence, we have:

1 ~ 1 n
Q—Z:(Yi—XiTﬁ)z— %;(E_Xi—rﬁ*y

0 55 33 (Y= XTB* = (XT (B - )" - 5 (Vi — X[ B
— 5B - ) TE0: V(B8 - (BB 3 XV - X/ 8
~ 5B B)TS0: 1)(B - 8)

n

(B8 5 (XY - X] ) ~BXA(Yi - X7 8Y),
- (S9.183)

~ 1n

where 3(0: 1) := = > X; X", and (3) comes from the first order condition
ni=1

in (S9.182)). Hence, by the fact that ,@ is the minimizer of 1 , we have:

22 (Yi = X/B)* - anZ(Y X8+ M8l - 187h) <

=1 =1
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S9.3 Proof of Lemma@l

where MSE(B) := || X(8 — 8%)||". Morcover, by ($9.183), we have:
S(B-B)TE0: 1) - 8)
(B =87 3 (XY= XT8) EX,(¥i = X7 8)) + (18l ~ 16°]1)
< SMSEB) — |17 3 (Xu(Y - X7 8) ~EXi(Y; = X)) |18 — 'l

+A(IBN: = 18*1l) <0
(S9.184)

Moreover, by the fact that V; = ¢; + BV1{i < [nt, |} + BP1{i > |nt,]},
we have:
| 32 (X0 - X787 ~ XY - X76) .
o Hﬁ 3 X+ (1= 1)(S(0: 1) ~ D)(BY — B2)
(1= 8)(S(h 1) - D)8 - 0|
S I3 35 Kl + 01~ 8IS0 1) - S8 ~ 5O,

(1 —1)|Z(t 1 1) = 2| ||BY = 8O,

1 1 1
<@ 1M M+C§M2 %WH,B(U—B@)HNLC?)MQ @Hg(l)

n

log(pn log(pn
<@ CyM? M(l + Hﬁ(l) _ 13(2)H1) <) Cs M? g(p )’
n n

(59.185)

where (3) comes from Lemmas|[7]and[§] and (5) comes from the assumption

log(pn) and

that |3 — B@| = O(1). Hence, by letting A > 2C5M? .

combining ([S9.184)) and ([S9.185|), we have:

—MSE( 3) — —||ﬂ B+ 2(18Ih — 18°1h) <

128

Il



S9.4 Proof of Lemma

Adding \|| B\ — B*]]; on both sides of the above inequality, we have:
1 ) A2 * 2 * ) *
LMSE(B) + 218 - 811 < AIB — 81— 1B+ 187 (59.156)

1= 18)se(a0)

Hence, by (S9.186)) and the fact that H(B — B*) se(3)
18%)e(8%)

1+

1 = 0, we have

1 ~ . .
§|lﬂ =B <NB =B )l — 1(B) sl + [1(B)1)l
<2|(B - B*).s

1
which implies ||<B_,3*)JC([-}*) 1< 3||(B_ﬁ*)J(,B*)

and (|S9.186)), we have:

1. Combining this result

L <38 - B e

1 a2 ) *
5 MSE(B) + A8 = B7) s+ -
Note that by Assumptions A, E.2; the restricted eigenvalue condition

holds for ﬁ — B*. Hence, using similar proof techniques as in Bickel et al.

(2009), we can derive (S6.11)). To save space, we omit the details here. [

S9.4 Proof of Lemma [10l

Proof. In this section, we prove Lemma [I0] Similar to Lemma [9| we prove
the results by assuming there is a change point ¢; such that 8 = g0 if

i < |nt;] and B = BP® if i > [nt;|. Recall B = (BT, ()T €

RPHE defined in (S6.10). By the first order condition, for a@ = 0, @* =
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S9.4 Proof of Lemma

(BT, (6*)7)" € RPTK satisfies the following equation:

B[S, L X1 < XT84} - 7)) =0,

E[Z?zl(l{Yi < X3+ b} —Tk)} =0, fork=1,...,K.

(59.187)

By the fact that Y; = ¢ + B8W1{i < |nt1|} + BPD1{i > |nt;]}, for the
above equation, we have:

HE[ S, X(R(XT(8 — BO) + 4) - F(0))]

B[S, X (FXT(B — %) + 1)~ E0))] =0,

and for k=1,... K,

HE[(F(XT (8 =B)+5)— F.0)) | +0E[ (F.(XT (8"=8®)+5) - F.(b"))] =0,

where t, := 1 —t;. Moreover, let @(1) = (BT (BT ¢ RPHK, @Q) =
(BT, (N Te RPHE X = (X T, 1) € RFFE and S, := diag(1,, ),
where e, € RE is a vector with the k-th element being 1 and the others
being zeros, and 1k is a K-dimensional vector with all elements being 1s.

With the above notations, for the above equations, we have:

“E[:l S X (F.((8:X)7 (8~ ) + ") - F.0"))]
> S X (FA(SX)T(8 ~ 87) +4) — FO)] = 0y

R [
k=1 ~
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S9.4 Proof of Lemma

Furthermore, by the Taylor’s expansion, we have:

tl{ZE[ / (S X)(S:X) £ (0 + H(S1.X)T(8" = BY)) | (8" — BY)

~

(1) cR(P+EK) X (p+K)

m{il@[ / (S1X)($:X)" 10 +H(S1.X) (8" — BY))at| }(8 — BP) = 0y

k=1

N

-~

3(2) cR(P+K) X (p+K)

(S9.188)

Hence, for Q*, by defining >® and 2(2), it has the following explicit form:
B = (tli(l) + t2§(2))*1(t1§(1)5(1) + t2§(2),8(2)).

Moreover, using some calculations, we have:

B =Y = (6,30 + 1,50) 15,52 (32 — g0)
N (S9.189)

B — B = (1,20 + 1,5@) "1 BW(30 — g@),

~

0

Remark 5. Note that for any matrix A € RP*? and € RP, we have

|Az||; < ||All11]|z|:. Hence, if we assume that

H (1,50 +t2§;<2>)—1t2§;<2>

< Crand H 120 4 ,33) 1, 50

‘ S 027
1,1

we can prove that [|3" — @(1)!\1 < C1H§(1) - @(2)’\1 =Cy|BY - 8P|, and
18" = 82l < CallB8® — B2, = o] — B for the above postive

constants Cy, Cy > 0.

So far, we have derived the explicit form for 3* and the difference

~

between 3* — BY or B8* — B, which is very important for proving Lemma
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S9.4 Proof of Lemma

[10] Now, we are ready to give the detailed proof. To that end, we define
the following parameter space. Let A = (AT,67)"T € RP*X with A € R?

and & € RX, we define

A = { (AT,(ST)T . ||AJc(,6*)

1 <3 Agn 11 + (18]} (59.190)

For any 3 = ((8)7.(6))T € RFK let A =3 —p and A = 3 — 3",

~ ~

where 3 is the minimizer of the empirical loss defined in (2.10) with o = 0.
Define the empirical loss and its expectation:
1, 1 & T
Ln,K(@) = E Z¢:1 ? Zk:1 Py (Y; - X; B — bk)a

1, 1
ﬁ Zi:l ? Zszl E[ka(Y;- - XZTB - bk)]

and Lk (B) = E[Ln,K(@)] =
Then, we can further define the excess risk as:

H(A) = Lr(B" + A) = Lx(B7).

The proof of Lemma relies on the following three lemmas. Lemma

shows that [:3\ — B belongs to A with a large probability. The proof of Lemma

is given in Section [S10.2]

Lemma 18. Assume Asssumptions A, D, E.2 - E.4 hold. Then, with

probability tending to one, we have

Next, Lemma [19) shows that the excess risk H(A) can be bounded by
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S9.4 Proof of Lemma

the quadratic form of A. To show this, define

K %0 K

k=1 0,diag(ey) h=1
(89.191)

Lemma 19. Assume Assumptions A, D, E.2 - E.4 hold. For any
A € A, with probability tending to one, we have

1AlS 11Alls

)

where ¢, > 0 1s some uniwersal constant not depending on n or p.

H(A) > ¢, min <

Lastly, Lemma [20[ shows that we can uniformly control the difference

between the excess risk and its empirical version.

Lemma 20. Assume Asssumptions A, D, E.2 - E.4 hold. With proba-

bility tending to one, we have:

cup (Lo A) Lok (8) (L (8" +8)~Li(8)] < 0" ey /5152

I1Alls<¢

where C* > 0 is some universal constant not depending on n or p and

5= 7(8")]-

With the above lemmas, we are ready to prove Lemma[I0. Define two
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S9.4 Proof of Lemma

events & and &y as:

& = { sup  |(Ln,x (8" + A) = Lox(87)) — (Lx (8" + A) — Lx(8")))|

AcA
IAlls<¢

1
n
By Lemmas[1§ and[20, we have P(E&;NE;) — 1. Hence, in what follows, we
give the proof under the event E4NEy. Let ||,(:3\—,§*||5 = £. By the optimality

of B, we have:

Ly ic(B) = Lo (87) + A(UIBIL — 1187[1) < 0.
Moreover, using the above inequality, under £, we have:
A(IB =B

>1) Lok (B) — Lok (8°)

Tog (pn) (59.192)
=~ . . og(pn
> Lie(B) — Li(8") — " Mey /55
w (€€ [ Jog(pn)
> > >\ _
_(3)c*mln<4,4> C*M¢Ey /s ma—
Note that under &£, we have:
18— 8°Ix
<4/|(8 = Bl + b= b7
< 4\/§||(B — Bl + \/KHB —b*|, (59.193)

<458 = B)ls + VE|b — b5
< Cpy5)18 - B°s,
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S9.5 Proof of Lemma

where Cg > 0 is some universal constant. Note that we can choose X =

Cxv/log(p)/n for some big enough constant C > 0. Combining (S9.194

and (59.195), we have:

2
C, Min <§—, §> — C*M¢ Slog(—pn) N Slog(pn) <0,
474 V n \ n
which implies
o & oy s8N o f losln)
4 n n

or
2 1 1
o5 gy 5B e [l
4 n n
1
Note that SM = o(1). Hence, only the second case applies. As a
n

result, we have:

E=B-Bs<CM slogflp"). (89.194)

Lastly, by (S9.194) and some trivial calculations, we can directly derive

)

S9.5 Proof of Lemma [11

Proof. In this section, we prove Lemmall1] Similar to Lemmas[0and [I0] we

give the results by assuming there is a change point t; such that 8 = g0 if
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S9.5 Proof of Lemma

i < |nt;| and B = B? ifi > |nt,]. Note that the results are still applicable
even if there is no change point.

Before the proof, we need some discussion about 8 = (CRINCOBE
RPHE which is defined in . By the first order condition, for o €

(0,1), we can see that 8* = ((8%)", (b*)")" € RPTX satisfies the following

equation:
(1-a)E {éé (1Y, € XT84 b} = )] - o« D E[X,(v, - X[ )] =0,
(1—a)E [i(1{y<xw Fhb )] =0, for k=1, K

1

(2

(89.195)
Note that Y; = ¢ 4+ BV1{i < |nt1]} + BP1{i > |nt;|}. Similar to the
analysis in Section [§9:4] for the above equation, we have:
{0 - a)]E[éX(Fe(XT(Ig* —B9) +40) — E00))] + aE[X X7 (8" — p0)]}
+6{(1- a)E[éX(Fe(XT(,@* —82) + ) — E0)] + aE[x X7 (8"~ p)] )

and for k=1,... K,
WE[ T, (FXT(8" = 89) +5) — FO))]
HHE| S (FU(XT (8 = B2) + ) - F0)] =0,
where £ := 1 — t;. Moreover, let

5~

3,0
) € RPHX0+E), (S9.196)

0,0
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S9.5 Proof of Lemma

Then, using similar analysis as in Section [59.4] we have:

b [(1= ) B0 + 0S| (8'-BY) 41 (1 - )@ +aZ|(8'-8Y) = 0,

(.

~~ -~~~

) 32

where (1) and £ are defined in ($9.188). Hence, for B°, it has the

following explicit form:
B = (tlj](l) + t2§](2))—1(t1§](1)5(1) + t2§)(2)5(2))_

Moreover, using some calculations, we have:

,8 ,3(1 = (t,2 S0 44,300 )~ 11,3 (13 @(1)),

(S9.197)
13 ,8(2 (1,2 S 44,300 )~ > (,3 @(2))‘
Remark 6. If we assume that
H(tli(”+t2i<2>)*1t2iz(2> < ¢ and H 120 4+ 6,3 1m0l < @y,
1,1 1,1
we can prove that [|3" — 8V, < ¢1[|Y — 8P|, = C1|| B — B?||; and

18" — @(2)||1 < C’2||[j(1) - @(2)||1 = O5||BM — B@)||; for the above positive
constants Cy, Cy > 0.

For o € (0,1), we have derived the explicit form for 3 and the differ-
ence between 8* — 8% or B* — 8%, which is very important for proving

Lemma [T} Now, we are ready to give the proof.

Recall the parameter space A defined in (S9.190). For any 8 = (B, BT e

RPHE Jet A = B — B and é = B — 3%, where B is the minimizer of the

~
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59.5 Proof of Lemma
empirical loss defined in (2.10) with « € (0,1). Define the empirical loss

and its expectation:
n

1 X «
— > (Yi—bi— X 8)+ — > (Yi - X, B)*
1K i 2n ;3

and L5 (8) := E[L] (8)]-

-

S|

Ly x(B) = (1 - )

)

(S9.198)

Then, for each a € (0, 1), we can further define the excess risk as:
H*(A) = Lg (8" + A) — Lk(8").

Similar to Section [S9.4] the proof of Lemma [I1] relies on the following three
lemmas. Specifically, Lemma shows that ,@\ — B belongs to A with a large
probability. Lemma [22 shows that the excess risk H*(A) can be bounded
by the quadratic form of A. Lastly, Lemma shows that we can uniformly

control the difference between the excess risk and its empirical version. The

proofs of those lemmas are given in Sections - [510.7

Lemma 21. Assume Assumptions A, B, C.2, D, E.2 - E.4 hold. Then,

with probability tending to one, we have

B-p €A

Lemma 22. Assume Assumptions A, B, C.2, D, E.2 - E.4 hold. For

any A € A, with probability tending to one,

1A% Alls
H“(A)Zc*min< R )
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where ¢, > 0 is some universal constant not depending on n or p.

Lemma 23. Assume Assumptions A, B, C.2, D, E.2 - E.4 hold. With

probability tending to one, we have:

sup  [(L8 (B4 A) L (8)~ (L3 (B'+A)~Lin(8Y)] < C"hey [s 82,

acd = 2 2 n
lA&llsg<¢

where C* > 0 1s some universal constant not depending on n or p and
= |J(8")]-

With the above three lemmas, using similar proof procedures as in Sec-

tion we can directly prove Lemma [11. To save space, we omit the

details here.

S10 Additional lemmas

S10.1 Proof of Lemma [I7]

Proof. Recall
112 1 il 1 K TA
( ) \/ﬁff\( a, )( Z Z Xz(gzk()}:z év@) - gz’k(o))
nt] i ! i X (gi(X; Ak — ik (0)),

) %

n 1K

o
—
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S10.1 Proof of Lemma

where g;x(t) :== 1{¢; < b,(f) +t} —P{e; < b,(co) + t}. Note that under &, we

have:

max {|Cy"(t)llso,2)

t€[g0,1—qo] ]
1/2 LR & X TR - o
= C\/ﬁso te[l;lalquo] H(LntJ -1 K ;XZ(QM(‘XJ é,’i) g,k(O))HOO
1 K ~
+C\/_31/2|| Z: e > Xi(gik(ggi—rék) - gik(o)) Hoo

k=

rf>—t

1/2 LRI L (X TA) — g
< Ovmsy maxmax | (7or 35 7 0 Xy 9 (X5 Ar) — 9 (0) |
1 1 X ~
+C/nsy” max (=3 = > Xij(9ae(Xi T Ag) — ga(0)) .
J ni-1 K i3

Define
Uilen X Ay) = Xy(1{e < XA, + 00} — 1{e; < b))
= X;;(1{e < XiTA + 6 + 00} — 1{e; < b)),
where A := B8—8© and ¢, := bk—bg)) for 1 < k < K. Hence, by definition,
conditional on X := (X7,...,X,,), we have:

11,2
max ||Co (t)||(5072)|‘)(

t€[qo,1—qo
Lnt)
1 1 N
< Cy/nsy maxmax! [_Z > (Wy(es, Xii Ag) — B[y (e, X1 Ap)) |
p

=1

N

(.

»Z
~~
1

S
—_
N

)

—l—C'\/_sO maX| %Z Z ¥j(es, 7m)_E[¢j(€i=X%’?§v@)]))}‘

=1 k=1

(. J/
-~

(S10.199)

Hence, to bound [max |lC2(t t)|l(s0,2)|X, we need to consider I and
t€[q0,1—qo]

11, respectively. We first consider I. To that end, conditional on X :=
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S10.1 Proof of Lemma

(X1,...,X,), define the function:

1 et K
Gii(A) = W Z K kﬂ(%‘(% Xi; NAV@) — E[th; (e, Xii; NAV@)])
121 K

(v (e, Xis Ag) — E[th (e, Xis Ay)])

:\
i

=
bl

=1

where n' := |nt]. Moreover, for the sparsity parameter s of (), and some

big enough real numbers &7, &, &3 > 0, define the parameter space:

R(£17 527 £3)

log(pn log(vn
= {a =T8N Al < s AT < /s 2P ), < gy 5B

9
n

By Lemma , with probability tending to 1, we have A € R(&1,&9,&3) for

some large enough constants &1, &>, &3 > 0. Hence, to bound I, it is sufficient

to bound:
max —max sup |G ;i(A)]|X = max max sup |G i(Q)]]|X.
1<5=P1€l90,1-00] AeR(€1,62,63) 1sjspn'€llngo)in—1ngl] AR (&1 62.6)

Throughout the following proofs, we assume K is fixed which does not grow

with n. To obtain the desired bound, we define the functional class:
| K
F={fale.X) = 2D (e X: AVIA € R(§1,6.6) }.  (510.200)
k=1
Firstly, we obtain the upper bound for each fixed n’ € [|ngo ], n—[nqo|] and
1 < j < p. The main idea is to use Theorem 3.11 in Koltchinskii (2011)
(Lemma A.1 in |[Zhao et al| (2014)) and the Bousquet inequality (Corollary

14.2 in Bithlmann and Van de Geer| (2011))) to obtain the tail probability
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S10.1 Proof of Lemma

of SUPAcr (e £0.65) |G i (A)||X. The proofs proceed into five steps.
Step 1: Obtain the envelope for fa(e, X). In fact, by Assumption

A, we have:

SUPAER(€1,62,63) |fA(€7 X)‘
1 K
= SUPAER(e 60.60) To | 2o (Vile X5 Al

k=
1 & T ) 0)
= SUPAcR(E 606s) ) 2o (G H{E S XA+ 0 +0, F — He < b, })|

—_

bl
—

< M,
where the last inequality comes from the assumption that |X;| < M for
1<j<p
Step 2: Obtain the upper bound for o2, := SUpA — ! Z Var(fa (e, X;)|X],

where X := {X3,..., X, }. In fact, similar to the proof of Lemma 6.1 in
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Zhao et al.| (2014), we have:

12
ﬁ z Var[fA(ei, XZ)|X]
1 2 6C.M? K~

> + ZIXIMAJ@I

EZ: =
6

1 i T
(S KIxTal+ 161,

<o) 60+M2 \/ 1,ZXXT)A+\/_”5H >

n ;=1

6C. M? n’
<@) hs ( \/ (/ZXXT E)A+AT2A+\/E||6||2>

<(s) CM*(|| All2+ [16]]2)
<(6) C’Mﬂ/s@ =02,

where (3) comes from the Cauchy-Swartz inequality, (5) comes from Lemma

(S10.201)

Sk
Step 3: Obtain the covering number of the functional class F
as defined in (S10.200). Let 7 C {1,...,p} with |T| = &s. Moreover,

define the following functional classes:

Fior= { e X) = 1{e < XTA+ 6+ 57} — 1{e < bV HA € R(61,&,6), 5upp(A) C T},

Fi = {fK(e,X) - éjl (e < XTA+ 6 + b7} — 1{e <b})|A € R(&1,62,3), supp(A) C T}
Fo = {fole, X) = 125,

Fr = FiFo = {fr(e, X) = fre(e. X)fole, X)|A € R(1,&2. &), supp(A) C T |,

where supp(A) denotes the support set for A. Note that Fy is a VC-class

with VC index smaller than & s + 2, and |fi(e, X)| < 1, |fx(e, X)| < K,
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S10.1 Proof of Lemma

and |fo(e, X)| < M/K. Let N(e,F,L2(Q)) be the covering number for
some functional class F under the Lo(Q) distance. Then, by Lemma 24 (ii)

in Belloni et al.| (2016)) and the definition of F7, we have:

N(Ke, Fie, La(Q)) < [N (= Fi, La(@Q))]*

N(EK%7~FT7 LZ(Q)) = N<€M’ fT? LQ(Q)) S N(%PFI()L?(Q)%
N(EMa 5, L2(Q)) < CglsN(EMa Fr, LQ(Q))
(510.202)
Hence, by , we have:
N(eM, F, Ly(Q)) < C5*[N (5. Fi L(Q)]. (810.203)

Furthermore, by Lemma 2.6.7 in [Van and Wellner| (1996), we have

= F Ls(Q))] < Clérs + 2)(166)613+2(%)2(615+1), (S10.204)

N
(QK’ €

where C' is some universal constant. Combining (S10.203]) and (S10.204)),

for any probability measure (), we have:

N(eM, F, Ly(Q)) SCgls[N(%7fk,L2(Q))]K

18
< C(E)" (s + 2R oo 2R Py
1
< C<E>£13(326K>0§137
T \Gs €

where ¢ and C' are some big enough positive constants.
Step 4: Obtain the upper bound of E[SUPAGR(@,&@) |Gn/7j(é)||é’(} .

Recall 0, defined in (S10.201)). By Lemma A.1 in [Zhao et al.| (2014), and
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S10.1 Proof of Lemma

using some basic calculations, we have:

E [ supacrie, ee [Gra(A)]| ]
C 20,
< —]E[
= i

< ¢ [/20/\/suplogN(e}"Lg(Q))de]

< \/_ ,/slog )de

< Con M e

/n//
Step 5: Obtain the tail bound of supacr(, ¢, 6,) |G (A)|X.  In fact,

JIog N(e, F, L2(PR|X))de}

by the Bousquet inequality (Corollary 14.2 in Buhlmann and Van de Geer

(2011)), we have:

22 M
P((Subacries o) [Gra(B)] = o+ 13/2(0% + 2Mr) + | X)

<(1y exp(—n't?) <(2) exp(—gont?),

where (2) comes from n' = |nt| with t € [go, 1 — go]. It is straightforward to
see that if we take t = C*/log(pn)/n for some big enough constant C* > 0,

we have:

(s (G ()] = G ) < ny

AER(E1,62,63) n

The above result yieds that:

1
Pmax  sip (G, (A)] = B 2) < (pn),
" AER(€1£2.63) n

1
which proves that [ = Op((M)%), where [ is defined in (S10.199).
n
1
With a similar proof technique, we can also prove I] = Op((M)%),
n
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S10.2 Proof of Lemma

Combining with (S10.199)), we have proved that:
max [ C5 (1) s0.2)| X = Oyl (slog(pn))*/n'/*),
t€[g0,1—qo]
which finishes the proof of Lemma [I7] O

S10.2 Proof of Lemma [18

Proof. Recall @ = ((8)7,(b)")" € RP*¥ and L, (B) :=

S|+
iM:
=

kS

=

=

X, 3 — by). Define

x(B)
nix(B) 98 € RPtKE
oL, (B)
Vi TLK(Q) 8,6 c Rp7
Lk (B)
v2 n K(ﬂ) 8() € RK

Hence, if we define af, = 1{Y; — X,/ 8" —b;, <0} — 7 fori =1,...,n and

k=1,..., K, we have:

n

1n 1 & oI .
v1 nK _Z sz Q; ks and v2 nK(;B):EZa’m

=1 k=1 i=1

3

where a} = (a;1,...,a;x)" € RE. The proof of Lemma 18| proceeds into

two steps.
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S10.2 Proof of Lemma

Step 1: Obtain the upper bounds of | V1 Ly, k (8")llo and ||V Ly, k(8| o

We first consider |[VaLy, x(8")[|eo- In fact, we have:

V2L (8%l

1 n
= max [ 2, @il
1 n
= — * *
—(2) 1I<r}§?§( }n = (az,k ]E[a'z,k])‘
nty

<(3) max t, LZ(HQgX;(ﬁ*—ﬂ(l)Mk} E(F.(X] (8" — BY) + b))

1<k<K nty,

N

=1

-~

1
n

+ max tz\i Y (e < X (67— BP) + b} — E(E(X] (87— BP) + b)),

1<k<K 2 imntial

(&

-~

11

where (2) comes from the first order condition in (S9.187). Hence, to control
VoL, k(87)|oo, we need to consider I and I1. Let Z;y := 1{¢; < X, (B —

BWY +b:} — E(F(X,(B* — BWY) + b}). Note that E[Z;;] = 0 and —1 <
Z; < 1. Hence, by the Hoeffding’s inequality, we can prove that (I VII) <

Ci1y/log(p)/n w.p.a.1. Hence, we prove ||VaoL nK( Nloo < Cia/log(p)/n

w.p.a.l. for some Cy > 0. Next, we consider ||ViLy x(8%)[[. In fact, we
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S10.2 Proof of Lemma

have:

IViLn k(B |l

~

=(1) max |lzn:i f: X;a;
@ 1<i<p 'n ;=1 K k—1 Crk

12 1 X . .
= max |[= Y — Y (Xja7, — E[Xja7,])|

1<i<p'n ;41 K

Eod

3 |l

1

1
<o ooz 3, |5, 2 (Xi0in — B, ])
nty

1
<(4y max max t —E Xial, —E[X;aF
=(4) 1<sop 1She 1 nt, 4 1( ik [ ij zk])l
1=
N -~ J/
IIT
1 n
4+ max max fo| — E Xi:al, —E[X;.af
1<j<p1<k<K Tth, t+l( 1%k [ ] z,k])lv
i=nty
v

where (2) comes from the first order condition in (59.187). Let W =

IN

Xijai, — E[Xjai,]. Conditional on X, for fixed j,k, we have —M
—| X < Wi < |Xi5] < M and E[W;j,] = 0. Hence, by the Hoeffd-
ing’s inequality, we can see that (11 V IV) < CyM+/log(p)/n w.p.a.l,
which yields ||V Ly 1 (8%) | < C2My/log(p)/n w.p.a.1.

Step 2: Let A > 2M(Cy Vv Cg)\/w, where C; and Cy are defined
in Step 1. Hence, we have ||V1L, k(8| < A/2 and ||VaLy k(87| <

~ ~

A/2 w.p.a.1. By the convexity of L, x(8), we have:

Lk (B)—Lak(B%) > VL) «(B)(B—B") = ViL) (8" )(B—B")+ V2L, 1(87)(b—b").
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S10.3 Proof of Lemma

Combining the above inequality and by the optimality of [/3\, we have:

0 < Lox(B) — Lux(B) + A8 — 1B]1)
< IViLnk (B)cllB = 87111 + V2L i (B8 lsollb — &% [l + A([18*]1 — 1IBI1L)
A~ A o~ ~
< S8 =Bl + 15— [l + A" 11 — [1BI1).

A~
Adding 5”,3 — B*||; on both sides of the above inequality, and using the

same proof as in Section [S9.3] we can derive that:

18 = B%) se(8) 1+ (o =67,

1 < 3[(B - B

which finishes the proof.

S10.3 Proof of Lemma

Proof. By the well-known Knight’s equation that: p.(z —y) — p-(z) =
—y(r—1{x < 0})+ [) 1{z < s} —1{x < 0}ds, and the definition of H(A),

we have:

I
S|
NE
==
M=
=
&
~
=
|
>
—
B
|
=
|
>
_‘
P
+
=
|
>
=
=
|
>
—
@
|
=

Il
~
+
~

~
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S10.3 Proof of Lemma

where
rae 1 K T T % *
I ==% = > E(X; A+b)(1{Y; - X, 8" — b, <0} — 1)
ni—1 Ko
1~ 1 K
= A=Y = Y E[X;(1{Y; - X,/ 8" — by <0} — 73)]
nio1 Ko
1 X 1 & T %
+— > be— Y E[(1{Y; - X' 8" — b <0} — 7)]
K iz "ni3
and
_ 1 - 1 s (XZTA+6’€) T % * T A% *
11 —EZ§ZEf0 (1{}/;_Xi18_kaS}_l{Y;_Xiﬁ_kaO})
i=1 4% =1
=tz Y E (F(XT(B" = BY) + by +s) — F.(XT(B = BY) + b))
k=1 0
11
1 K (XTA+0) T 2 T 2
>R [ R B k)~ EXT(8 - ) 400,
k=1 0
e

Note that by the first order condition of [j* in ((59.187)), we have I = 0. Re-

call S}, := diag(1,,e;), X == (X7, 1) € RP* X and S := S E[(S,.X) (S, X)7]

defined in (S9.191)). For I11, by the Taylor’s expansion, we have:

x)TA
[T =t = ZEUO T RXT(B - BW) +bp)s + = f’( )ds
10 K 1 C
= SSE[(SeX)TAP] — = S X)TAPP
1K2k§:31[|( X) AP - K6,§1 (8 X) " A[°]
1C_ 1 Cg_mo
>0y b AL~ b A,

where W in (1) is some random variable between X T(3* —3W)) + b7 + s and
X T(B*—BW)+b;, (2) follows from the assumption that inf,<p<x fo(X T (B —
BW) +b;) > C_ and |fi(t)] < C', (3) follows from the assumption that

K
STE[[(SkX)TAP] < mg||A||% for some mg > 0. Similarly, for IV, we have
k=1
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S10.4 Proof of Lemma

1C_ 1 Clmy
> fg——— _
1A% tzK 5 A% tQK

|A|%, which implies the final result:

H(A) = [+11

=

—o LT+ 1V
1 C_ 1 Cl mo
> =5 1Al - Al
1Alls 11Alls

> * i Y )
e (5555

where (4) is very similar to the proof of Lemma C.1 in [Zhao et al. (2014)),

which is omitted. O

S10.4 Proof of Lemma [20|

Proof. Let r;, =Y; — X' B — by and

K
UA0) = 2 3 [pn (V= XT8" = = (XA +8)) = o (Vi = X8 = 1)
1 K
=% k; [ (ri — (X A+ 04)) = pr (rie)]-

(S10.205)

Hence, using the above notations, we have:

(L8 + &)~ Lux(8Y) — (Li(B + &) — Li(8Y) = — 3 [Ui(A.8) ~ EU(A. 8]

n;=1

By the lipschitz continuity of |p,(¢) — p-(s)| < |s — t|, we have

U:(A,8) —E[U;(A,d)] < f | X" A + ;| == Ci(A,8).  (510.206)

K {

1
n;

||M:

Let Z = supaeaja)s<e [U (A,6) —E[U;(A,d)]]. In what follows, we

will use the Massart’s inequality (Theorem 14.2 in [Bithlmann and Van de
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o
DTUTT T LU0 Or oOrnTd

)
z

E

Geer| (2011)) to obtain the tail bound:

nt?

o

), (510.207)

1 n
where sup  — >, C?(A,d8) < 0% Hence, to use Massart’s inequality,
AcAlAfs<e TV i=1
we need two steps.
Step 1: Obtain the upper bound for o?. Recall S, := diag(1,, ey), X, =
(X", 1x) € R*X and 8 := S0 E[(S,.X)(S:X)T]. With probability

tending to 1, we have:

n n K
LY CHAG) oy S DX A+ 6P
<o 25 LSS (xXTA 45
=@y o K= g
<o o LS xTAr )
=@y =K i3 ‘ F
—o S L S sx)TAY
@) n =1 Kk:l RS
8 1l K .
=0 7AT[; X L(SX)S:X)T|A
8 1 8 (rrlen & .
=(6) ?é Sé‘F?m [E;];((Sk X;)(SrX;) —S}é
n K
<o A+ ZIAR]; 3 S (SX)6X) - 8|
8

s)KIIA\|s+ M\/log (p)/nll A7

<) Ellé\ls + O(Ms/log(p)/n) || Alls
9

<(10) I
(510.208)
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S10.4 Proof of Lemma

where (2) follows from the Cauchy-Swarchz inequality, (3) follows from (a+
ZIkZ((Sk Sk X;) "=
SH , (9) follows from the fact that ||Af; < 4] Aol + [|8]l; and the

oo

b)? < 2a?+20?, (8) follows from the large deviation for

Cauchy-Swarchz inequality, and (10) comes from the assumption that Ms+/log(p)/n =
o(1).

Step 2: Obtain the upper bound for E[Z]. Let ey, ..., e, bei.i.d Rademacher

random variables with P(e; = 1) = P(e; = —1) = 1/2. In fact, by the sym-
metrization procedure (Theorem 14.3 in Bithlmann and Van de Geer|(2011))

and the contraction principle (Theorem 14.4 in Bithlmann and Van de Geer

(2011))), we have:

BlZ) = E[ sw |- SS(0i(A,6) - EU(A, )|

AcAlAlls<g

> (eUi(a,8)]

S(g) 2E|: sup
AcAllAlls<¢

=@) 2JE[ sup 2w i €ilpr, (rig — (X, A+ 61)) = pr (1) H

AcAllAlls<¢

=2 BgE :AeAS,ﬁlApnsq %é el = (X 8 60)) = pr (]|
<) 4 1I§I}€a§)§(E :AEAS,|1|1£||SS§ %lé e[ X, A + 6] H
O 412}%}%{E_A6AS|?APS<5 %é (S X, TAH
<[, 0] < g ol e,
N - ~ .

(S10.209)
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S10.5 Proof of Lemma

Hence, to control E[Z], it is sufficient to consider I and I, respectively.

For I, using the fact that ||Al1 < 4]|A s

1+ ||6]l1 and the Cauchy-
Swarchz inequality, we have I < C4/s€ for some C; > 0. For II, we
can prove that I1 < CyM+/log(p)/n for some Cy > 0. Hence, combining

dSlO.ZO?I), (]SlO.QOSI), and 1) if we take t = C3+/log(p)/n for some

large enough C3 > 0, with w.p.a.1, we have Z < C3M¢&4/slog(p)/n, which

finishes the proof. O

S10.5 Proof of Lemma 211

Proof. Recall B = ((8)7,(b)")" € RP* and L ;(B) defined in (S9.198).

Recall af; := WY, - X, B —b; <0}—mpfori=1,....nandk=1,..., K.

Define
IL; (B)
VL; ((B) = 98 € RPHE,
IL; (B)
ViLy ((B) = 8 e R?,
IL; (B)
VQLTO;,K(@) - T S RK

Then, we have:

. l o 1 . I .
vng,K(@ )= (1~ O‘)E Zi:l K ZkK:1 Xiai,k - O‘ﬁ Zz’:l Xi(Y; — XzTﬂ ),

* 1 n *
and V,Lj (8") = " 2 i1 G5
where a} = (a;1,...,a;x)" € RE. The proof of Lemma [18| proceeds into
two steps.
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S510.5 Proof of Lemmaﬂ
Step 1: Obtain the upper bounds of | V1 Lj; 1 (8%) [l and [[V2L§ 1 (87)]|co-

We first consider [|[VaLyy i (87) - In fact, by Step 1 in Section [S10.2, we

have [[VoL (8%)]l < C1y/log(p)/n w.p.a.l. for some C; > 0. Next, we

consider [|V1Ly x(8")[l. In fact, we have:

IV Ly 1 (Bl

1o 1 K 1o
= 1—a)— ) — X;a =Y XY, - X o
m I )n;Kk; Tk n; ( Bl
=@ [I(1 - 04)5 > e > (Xiar, — E(Xiay,))
=1 k=1
1 n
—an 3 (XY - X8 ~ E(Xi(Yi - X7 8Y))
1 " 1 &
<p (1-a) ||; e Z (Xia7), — E(Xia71)) oo
. =1 k=1
T
]' . * *
+al = (XY= X[ 87) — B(Xi(Yi — X)) [l
=1

(. J

where (1) comes from the first order condition in (S9.195). By Step 2 in
Section , we have I < CyM+/log(p)/n w.p.a.l. Next, we consider 1.
In fact, by noting that Y; = ¢ + 8M1{i < |[nt;|} + BP1{i > |nt,]}, we
have:

1 =0 [ 3 Ko+ (805 0) = B)(BY = B7) + ta(S(tr 1 1) - 2)(82 - ),

J L o * $ *
<@ [l X Xicilloo + 1205 02) = Doc BV = 8711 + 2| B(t1 1) = B [B? — 5s

= O(My EE2) 0, (112 [REE)) 150 — )+ 0 \/W)”B@) Bl

1 1 1
= 0,0y B2 4 0, (a2 [ 500 _ g, =) 0, (a2 [

n n
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S10.6 Proof of Lemma

where (3) comes from Lemmas [7] and [§ (4) and (5) come from Remark [f]
and the assumption that |3 — 3)||; < Ca. Hence, combining the above

bounds, w.p.a.1, we have:

log(pn los(pn
V228 < Oy [P g, 1 (8 < Cor? /B,

n
Step 2: Let A > 2M?(C, Vv Cy)+/log(p)/n, where C; and Cy are defined
in Step 1. Using a similar proof procedure as in Step 2 of Section [S10.2], we

can derive that:

(B = B) el < 3(B = B%) sl + b= b7,

which finishes the proof.

S10.6 Proof of Lemma [22]

Proof. Recall

n 1 K a
> = 2 Elon (Vi = bi = X[ B)] + - S E(Y; - X[ B)*.
i= K i3 2n i=i

SRS

Lg(B) = (1-a)

~

Note that L?((Q) is a combination of the composite quantile loss and the
squared loss. Moreover, the excess risk for the squared loss is lower bounded
by a squared form. Hence, combining the results in Section [510.3 we can

prove that there exists some c, > 0 such that

1A% Alls
H“(A)Zc*min< TR )
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To save space, we omit the details. O

S10.7 Proof of Lemma 23

Define

1
=%,

M=

v (A, 0) [P (Vi = XT 87 = b = (X] A +6)) = pr (i = X[ B° — )]

1

UP(A,8) = (Y= XTB" — b — (XA +8,))* - (Vi - X[ " — bj)*.
(S10.210)

Hence, using the above notations, we have:

(Lo k(B"+A) = L7 «(87) — (L% (8" + A) — L(87))

~ (-0 3 [00(a0) ~EU(A.8)] + 51 3 [U2(a.8) - BU (A 6)]]

ni=iL" 2nio
To prove Lemma [23] it is sufficient to bound I and 11, where:
n

LS ua,8) - B (A, 8)

n =1

1= sup
AcAals<€

?

) (S10.211)
= sup |- 0248 -EU2(A, 5)]).

AcAlAlls<¢

Note that in Section [S10.4] we have proved that I = O,(&+/slog(p)/n).

Hence, it only remains to consider [1. Let 8 = @* + A. Then, it is

(2
=1

equivalent to consider :

1= sup L SV — X[ B) — (Vi — X[ B°)?]
BB eA|B-B*s<¢ ' T i=1
—E[(Y; — X;B)Q —(Y; — XzT/@*>2] (510.212)

<II1+112+11.3,
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S10.7 Proof of Lemma

where
12 -
1= sw |-y aX](8 -8
B—B*cA n,;—
I18-B* | g<¢
1 nty
I1.2:= sup t|— > [(XZTI@ — X B2 — (X8 — XiT/@(l))2]
B-B*cA nt1 i=1
IB-B*llg<¢
_E[(XiTﬁ — X802 — (X8 — X;,@(l))ﬂ :
1 n
I1.3:= sup to|— > [(XZT[;' — X[ B®)2 (X8 — X;ﬂ@))z}
B-B*€A N2 j—nt,+1
I18-B* | g<¢

~E[(X] 8- X8O - (X 8" - X 8] |.

Next, we consider [1.1 — 1.3, respectively. For I1.1, we have

1 n
1 <y =Y &X/ sup 18* — Bl
ni=1 B-B"EAIB—B"|s<E
log(pn *
<o My BT 18— Al
N B-preA|B-B"s<¢
log(pn . .
< BT B = Bl + 1B — b
N B-preA|B-B"s<¢
log(pn . «
< CMy BT I8 — B e + VEIB — ba)
N p-preAlB-8s<¢
log(pn)

<5 OM¢ ST’
where (2) comes from Lemma [7} (3) follows from the definition of A, (5)
follows from the definiteness of S.
Our next goal is to bound I7.2. To that end, we suppose that there

exists some universal constant 77 > 0 such that for all 3 satisfying |8 —
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S10.7 Proof of Lemma

Blls < &, we have:

IX'8-X"BY| <.

Note that this is a very common assumption for proving the concentration
inequality for squared error loss (see |Bithlmann and Van de Geer| (2011)).

Define the functional class:

(XTIB _ XTIB(I))2 _ (XTB* _ XTB(l))2
2n '

V(X 'B) =

By definition, we can see that |[y(X "8)—v(X '8')| < | X "8—X "3, which

is 1-Lipschitz continous. Moreover, by defining (X " 3), I1.2 reduces to:

1 nty
112 =2pt swp |2 b D(X[B) = (X[ 8] = ER(X]8) — (X 87)].
Bl i=1
[1B=B*|lg<¢

N J/
-~
Z

Note that

[V (XB) = (X[ B8) — EN(X) B) — (Xi'B7)]| < 21X (B - BY)| = Ci(B).

In what follows, we will use the Massart’s inequality (Theorem 14.2 in

Biithlmann and Van de Geer| (2011)) to obtain the tail bound:

2

t
]P’(Z ~EZ + t) < exp ( - ”—) (510.213)
Klog
1.
where sup — > C%(B) < % Hence, to use Massart’s inequal-

BB eAB-B|s<¢ TV i=1
ity, we need two steps.
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S10.7 Proof of Lemma

Step 1: Obtain the upper bound for ¢2. In fact, w.p.a.1, we have:

]_ n
sup —> C#(B)
BB cA|B-B"|ls<e TV i=1

=) 4 sup (B—B)TE(0:1)(8 -6
B-B"€A|B-B"|ls<¢

—(2) 4 sup (B-B8)T(2(0:1) - E)(B - B
B-B"€A|B-B"|ls<¢

+4 sup (B—B")"2(8 -3
B-B"€A,|B-B"s<¢

<3 4 sup 12(0:1) = 2) |8 - B3
BB €A|B-B"|ls<¢

+4/\max sup ||ﬂ _/8*H2
B-Bc€A|B-B"Ils<¢

<@ C1M? log(pn) sE2 + 9% <(5) C58? == 0
Step 2: Obtain the upper bound for E[Z]. Let ey, ..., e, bei.i.d Rademacher
random variables with P(e; = 1) = P(e; = —1) = 1/2. In fact, by the sym-
metrization procedure (Theorem 14.3 in Bithlmann and Van de Geer|(2011))
and the contraction principle (Theorem 14.4 in Bithlmann and Van de Geer

(2011))), we have:

nty
E[Z] SQE[ sup
B-BreA|B-B"lls<¢

a((XTB) ~ (X 8)]

]

1 nt log(pn
<iwp (8- BE]| S e X < Ceyaary EP,
B—-B*€A,|B-8"|ls<¢ nty = n

mfu 1

nty

Zez(XTﬁ X' B%)

§4E[ sup e
nty =

B-B €A |B-B"|ls<¢

where the last inequality comes from the Hoeffding’s inequality. Hence,
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combining Steps 1 and 2, taking t = C&+/log(p)/n for some big enough

constant C' > 0, we have, w.p.a.l, Z = O(f\/m), which implies
112 = 0,6 \/sTog(p) /).

Similarly, we can prove 1.3 = O,(£+/slog(p)/n). Considering
and , we have proved

up (587 A)- L2 (8)~ (L +8)-L5(8)] = 0, (M /s

AcA ~
lAllg<¢

which finishes the proof.
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