Contents

S1 Extensions to multiple change point detection 2
S2 Numerical experiments 5
S2.1 Single change point testing 5
S2.2 Empirical sizes 7
S2.3 Empirical powers 11
S2.4 The choices of \mathcal{A} and s_{0} 16
S2.5 Multiple change point detection 18
S3 An application to the S\&P 100 dataset 24
S4 Some notations 28
S5 Basic assumptions 29
S6 Useful lemmas 33
S7 Proof of main results 40
S7.1 Proof of Theorem 11 40
S7.1.1 Proof of Theorem|1] with $\alpha=1$ 40
57.1.2 Proof of Theorem|1 with $\alpha=0$ 42
S7.1.3 Proof of Theorem|1 with $\alpha \in(0,1)$ 45
57.2 Proof of Theorem [2] 48
57.2.1 Gaussian approximation for $\alpha=1$ 49
S7.2.2 Gaussian approximation for $\alpha=0$ 54
S7.2.3 Gaussian approximation for $\alpha \in(0,1)$ 56
S7.3 Proof of Theorem 3 59
57.3.1 Change point estimation for $\alpha=1$ 60
S7.3.2 Change point estimation for $\alpha=0$ 69
S7.3.3 Change point estimation for $\alpha \in(0,1)$ 76
S7.4 Proof of Theorem 4 79
57.5 Proof of Theorem 150 80
S7.5.1 Power analysis for $\alpha=1$ 80
S7.5.2 Power analysis for $\alpha=0$ 88
S7.5.3 Power analysis for $\alpha \in(0,1)$ 97
S8 Proofs of lemmas in Section|S7 102
S8.1 Proof of Lemmal 12 102
S8.2 Proof of Lemmal 13 105
S8.3 Proof of Lemmal 14 108
S8.4 Proof of Lemmal 15 114
S8.5 Proof of Lemma|16 116
S9 Proofs of useful lemmas in Section|S6 118
S9.1 Proof of Lemmal6 118
S9.2 Proof of Lemmal7 125
S9.3 Proof of Lemmal 9 126
S9.4 Proof of Lemma 10 129
S9.5 Proof of Lemma 11 135
S10Additional lemmas 139
S10.1Proof of Lemma 17 139
S10.2Proof of Lemma 18 146
S10.3Proof of Lemma|19 149
S10.4Proof of Lemma 20 151
S10.5Proof of Lemma 21 154
S10.6Proof of Lemma 22 156
S10.7Proof of Lemma 23 157

Supplementary Materials to "Change Point Detection for High-dimensional Linear Models: A General Tail-adaptive Approach"

Bin Liu ${ }^{1}$, Zhengling Qi^{2}, Xinsheng Zhang ${ }^{3}$ and Yufeng Liu ${ }^{4}$
${ }^{1,3}$ Department of Statistics and Data Science, School of Management at Fudan University
${ }^{2}$ Department of Decision Sciences, George Washington University
${ }^{4}$ Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Linberger

Comprehensive Cancer Center, University of North Carolina at Chapel Hill, U.S.A

This document provides detailed proofs of the main theoretical results as well as full numerical studies. In Section S1, we demonstrate how to combine our proposed tail-adaptive methods with the wild binary segmentation technique to detect multiple change points. In Section S2, we provide detailed numerical experiments. In Section S3, we apply our proposed new method to the S\&P100 data to detect multiple change points. In Section S4. we introduce some additional notations. In Section S5, we provide the detailed model assumptions for the theory developed in the main paper. In Section S6, some useful lemmas are provided. In Section S7, we give the
detailed proofs of theoretical results in the main paper. In Section S8, we provide the proof of lemmas used in Section S7. In Sections S9 and S10, we prove the useful lemmas in Section S6 as well as some additional lemmas.

S1 Extensions to multiple change point detection

In practical applications, it may exist multiple change points in describing the relationship between \boldsymbol{X} and Y. Therefore, it is essential to perform estimation of multiple change points if \mathbf{H}_{0} is rejected by our powerful tailadaptive test. In this section, we extend our single change point detection method by the idea of WBS proposed in Fryzlewicz (2014) to estimate the locations of all possible multiple change points.

Consider a single change point detection task in any interval $[s, e]$, where $0 \leq q_{0} \leq s<e \leq 1-q_{0}$. Following Section 2.4, we can compute the corresponding adaptive test statistics as $\widehat{P}_{\text {ad }}(s, e)$ using the subset of our data, i.e., $\left\{\boldsymbol{X}_{\lfloor n s\rfloor}, \boldsymbol{X}_{\lfloor n s\rfloor+1}, \cdots, \boldsymbol{X}_{\lfloor n e\rfloor}\right\}$ and $\left\{Y_{\lfloor n s\rfloor}, Y_{\lfloor n s\rfloor+1}, \cdots, Y_{\lfloor n e\rfloor}\right\}$. Following the idea of WBS, we first independently generate a series of random intervals by the uniform distribution. Denote the number of these random intervals as V. For each random interval $\left[s_{\nu}, e_{\nu}\right]$ among $\nu=1,2, \cdots, V$, we compute $\widehat{P}_{\text {ad }}\left(s_{\nu}, e_{\nu}\right)$ as long as $0 \leq q_{0} \leq s_{\nu}<e_{\nu} \leq 1-q_{0}$ and $e_{\nu}-s_{\nu} \geq v_{0}$, where v_{0} is the minimum length for implementing Section 2.4. The threshold v_{0}

```
Algorithm S1.1 : A WBS-typed tail-adaptive test for multiple change point detection
Input: Given the data \((\mathcal{X}, \mathcal{Y})=\left\{\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right)\right\}\), set the values for \(\widetilde{\boldsymbol{\tau}}\), the significance level \(\gamma, s_{0}, q_{0}\), the bootstrap replication number \(B\), the candidate subset \(\mathcal{A} \subset[0,1]\), and a set of random intervals \(\left\{\left(s_{\nu}, e_{\nu}\right\}_{\nu=1}^{V}\right.\) with thresholds \(v_{0}\) and \(v_{1}\). Initialize an empty set \(\mathcal{C}\).
```

Step 1: For each $\nu=1, \cdots, V$, compute $\widehat{P}_{\mathrm{ad}}\left(s_{\nu}, e_{\nu}\right)$ following Section 2.4

Step 2: Perform the following function with $S=q_{0}$ and $E=1-q_{0}$.

Function(S, E): S and E are the starting and ending points for the change point detection.
(a) RETURN if $E-S \leq v_{1}$.
(b) Define $\mathcal{M}=\left\{1 \leq \nu \leq V \mid\left[s_{\nu}, e_{\nu}\right] \subset[E, S]\right\}$.
(c) Compute the test statistics as $\bar{P}_{\mathrm{ad}}=\min _{\nu \in \mathcal{M}, v_{0} \leq e_{\nu}-s_{\nu}} \widehat{P}_{\mathrm{ad}}\left(s_{\nu}, e_{\nu}\right)$ and the corresponding optimal solution ν^{*}.
(d) If $\bar{P}_{\text {ad }} \geq \gamma / V$, RETURN. Otherwise, add the corresponding change point estimator $\widehat{t}_{\nu^{*}}$ to \mathcal{C}, and perform Function $\left(\mathrm{S}, \nu^{*}\right)$ and $\operatorname{Function}\left(\nu^{*}, \mathrm{E}\right)$.

Output: The set of multiple change points \mathcal{C}.
is used to reduce the variability of our algorithm for multiple change point detection. Based on the test statistics computed from the random intervals, we consider the final test statistics as $\bar{P}_{\text {ad }}=\min _{1 \leq \nu \leq V, v_{0} \leq e_{\nu}-s_{\nu}} \widehat{P}_{\text {ad }}\left(s_{\nu}, e_{\nu}\right)$, based on which we make decisions if there exists at least one change point among
these intervals. We stop the algorithm if $\bar{P}_{\text {ad }} \geq \bar{c}$, otherwise we report the change point estimation in $\left[s_{\nu^{*}}, e_{\nu^{*}}\right]$, where $\nu^{*} \in \underset{1 \leq \nu \leq V, v_{0} \leq e_{\nu}-s_{\nu}}{\arg \min } \widehat{P}_{\mathrm{ad}}\left(s_{\nu}, e_{\nu}\right)$, and continue our algorithm. Given the first change point estimator denoted by $\widehat{t}_{\nu^{*}}$, we split our data into two folds, i.e., before and after the estimated change point. Then we apply the previous procedure on each fold of the data using the same set of the random intervals as long as it satisfies the constraints. We repeat this step until the algorithm stops returning the change point estimation. For each step, we choose $\bar{c}=\gamma / V$, where γ is the significance level used in each single change point detection algorithm. While we do not have the theoretical guarantee of using \bar{c} in the proposed algorithm for controlling the size, the selection of this constant is based on the idea of Bonferroni correction, which is conservative. The numerical experiments in the appendix demonstrate the superiority of our proposed method in detecting multiple change points. Nevertheless, it is interesting to study the asymptotic property of \bar{P}_{ad}, which we leave for the future work. The full algorithm of the multiple change point detection can be found in Algorithm S1.1.

S2 Numerical experiments

In this section, we investigate the numerical performance of our proposed method and compare with the existing techniques in terms of change point detection and identification. In Sections S2.1-S2.3, we consider single change point testing and estimation. In Section S2.5, we investigate multiple change point detection.

S2.1 Single change point testing

We consider the performance of singe change point testing for the following model:

$$
\begin{equation*}
Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)} \mathbf{1}\left\{i \leq k_{1}\right\}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)} \mathbf{1}\left\{i>k_{1}\right\}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{S2.1}
\end{equation*}
$$

where $k_{1}=\left\lfloor n t_{1}\right\rfloor$. To show the broad applicability of our method, we generate data from various model settings. Specifically, for the design matrix \mathbf{X}, we generate \boldsymbol{X}_{i} (i.i.d) from $N(\mathbf{0}, \boldsymbol{\Sigma})$ under two different models:

- Model 1: We generate \boldsymbol{X}_{i} with banded $\boldsymbol{\Sigma}$. Specifically, we set $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{\prime}$, where $\boldsymbol{\Sigma}^{\prime}=\left(\sigma_{i j}^{\prime}\right) \in \mathbb{R}^{p \times p}$ with $\sigma_{i j}^{\prime}=0.8^{|i-j|}$ for $1 \leq i, j \leq p$.
- Model 2: We generate \boldsymbol{X}_{i} with blocked $\boldsymbol{\Sigma}$. Specifically, we set $\boldsymbol{\Sigma}=$ $\boldsymbol{\Sigma}^{\star}$, where $\boldsymbol{\Sigma}^{\star}=\left(\sigma_{i j}^{*}\right) \in \mathbb{R}^{p \times p}$ with $\sigma_{i i}^{\star} \stackrel{\text { i.i.d. }}{\sim} \mathrm{U}(1,2), \sigma_{i j}^{\star}=0.6$ for $5(k-1)+1 \leq i \neq j \leq 5 k(k=1, \ldots,\lfloor p / 5\rfloor)$, and $\sigma_{i j}^{\star}=0$ otherwise.

Moreover, to show the tail-adaptivity of our new testing method, we generate the error term ϵ_{i} from various types of distributions including both lighted-tailed and heavy-tailed distributions. In particular, we generate ϵ_{i} from the Gaussian distribution $N(0,1)$ and the Student's t_{v} distribution with a degree of freedom $v \in\{1,2,3,4\}$. Note that t_{v} with $v=2$ and $v=1$ correspond to the error without second moments and first moments, respectively. For the regression coefficient $\boldsymbol{\beta}^{(1)}$, for each replication, we generate $\boldsymbol{\beta}^{(1)}=(1,1,1,1,1,0, \cdots, 0)^{\top} \in \mathbb{R}^{p}$. In other words, only the first five elements in $\boldsymbol{\beta}^{(1)}$ are non-zero with magnitudes of ones, which are called the active set. Under \mathbf{H}_{0}, we set $\boldsymbol{\beta}^{(2)}=\boldsymbol{\beta}^{(1)}:=\boldsymbol{\beta}^{(0)}$. Under \mathbf{H}_{1}, we set $\boldsymbol{\beta}^{(2)}=\boldsymbol{\beta}^{(1)}+\boldsymbol{\delta}$, where $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{p}\right)^{\top} \in \mathbb{R}^{p}$ is the signal jump with

$$
\delta_{s}= \begin{cases}c \sqrt{\log (p) / n}, & \text { for } s \in\{1,2,3,4,5\}, \\ 0, & \text { for } s \in\{6, \ldots, p\}\end{cases}
$$

In other words, we add a signal jump with a magnitude of $c \sqrt{\log (p) / n}$ on the first five elements of $\boldsymbol{\beta}^{(1)}$. To avoid the trivial power performance (too low or high powers), we set $c=1$ and $c=1.5$ for the normal and the Student's t distributions, respectively.

Throughout the simulations, we fix the sample size at $n=200$ and the dimension at $p=400$. The number of bootstrap replications is $B=200$. Without additional specifications, all numerical results are based on 1000
replications. In addition, we consider the $L_{1}-L_{2}$ composite loss by setting $\widetilde{\tau}=0.5$ and $K=1$ in (2.6), which is of special interest in high dimensional data analysis. Note that our proposed method involves the optimization problem in (2.10). We use the coordinate descent algorithm for obtaining the corresponding LASSO estimators. As for the tuning parameters λ_{α}, for $\alpha=1$, we use the cross-validation technique to select the "best" λ_{1}; for $\alpha=0$, we adopt the method recommended in Belloni and Chernozhukov (2011) (see Section 2.3 therein) to set λ_{0}; for $\alpha \in(0,1)$, we use an idea of weighted combination and let $\lambda_{\alpha}=(1-\alpha) \lambda_{0}+\alpha \lambda_{1}$.

S2.2 Empirical sizes

We consider the size performance with a significance level $\gamma=5 \%$. Tables S2.1 provides the size results for the individual tests T_{α} with $\alpha \in$ $\mathcal{A}=\{0,0.1,0.5,0.9,1\}$ and the tail-adaptive test $T_{\text {ad }}$ under Models $\mathbf{1}$ and 2 with various error distributions. Note that the construction of our testing statistic involves a selection of $s_{0} \in\{1, \ldots, p\}$. To show the effect of different s_{0}, we consider various $s_{0} \in\{1,3,5,7\}$. Note that $s_{0}=1$ corresponds to the ℓ_{∞}-norm based individual test and $s_{0}=5$ corresponds to the test that aggregates the active set of variables in $\boldsymbol{\beta}^{(0)}$. As shown in Table S2.1, for a given s_{0}, our individual test T_{α} and tail-adaptive test

Table S2.1: Empirical sizes of the individual and tail-adaptive tests for Models 1-2 with banded and blocked covariance matrices for $s_{0} \in\{1,3,5,7\}$. The results are based on 1000 replications with $B=200$ for each replication.

Empirical sizes for Model 1 with $p=400$							
$N(0,1)$	$s_{0}=1$	0.062	0.041	0.036	0.033	0.038	0.040
	$s_{0}=3$	0.052	0.056	0.041	0.032	0.034	0.045
	$s_{0}=5$	0.051	0.053	0.040	0.032	0.027	0.040
	$s_{0}=7$	0.050	0.048	0.041	0.035	0.027	0.046
t_{4}	$s_{0}=1$	0.049	0.056	0.052	0.048	0.040	0.062
	$s_{0}=3$	0.058	0.057	0.052	0.050	0.040	0.051
	$s_{0}=5$	0.049	0.035	0.041	0.038	0.035	0.041
	$s_{0}=7$	0.064	0.043	0.045	0.050	0.048	0.048
t_{3}	$s_{0}=1$	0.058	0.052	0.046	0.038	0.048	0.064
	$s_{0}=3$	0.053	0.053	0.045	0.050	0.052	0.058
	$s_{0}=5$	0.062	0.060	0.055	0.053	0.063	0.074
	$s_{0}=7$	0.051	0.051	0.053	0.053	0.055	0.066
Empirical sizes Model 2 with $p=400$							
Dist	So	$\alpha=0$	$\boldsymbol{\alpha}=0.1$	$\alpha=0.5$	$\alpha=0.9$	$\alpha=1$	Adaptive
$N(0,1)$	$s_{0}=1$	0.052	0.049	0.043	0.030	0.028	0.042
	$s_{0}=3$	0.068	0.062	0.042	0.025	0.025	0.048
	$s_{0}=5$	0.068	0.058	0.028	0.018	0.017	0.043
	$s_{0}=7$	0.043	0.043	0.022	0.015	0.011	0.031
t_{4}	$s_{0}=1$	0.059	0.050	0.047	0.041	0.040	0.053
	$s_{0}=3$	0.048	0.046	0.044	0.041	0.036	0.044
	$s_{0}=5$	0.073	0.059	0.034	0.036	0.042	0.060
	$s_{0}=7$	0.064	0.051	0.030	0.038	0.038	0.055
t_{3}	$s_{0}=1$	0.059	0.063	0.044	0.036	0.041	0.058
	$s_{0}=3$	0.070	0.055	0.042	0.041	0.043	0.057
	$s_{0}=5$	0.052	0.055	0.047	0.042	0.042	0.049
	$s_{0}=7$	0.056	0.048	0.044	0.042	0.035	0.054

Table S2.2: Empirical sizes of the individual and tail-adaptive tests for Models 1-2 for the error term being Student's t_{2} and t_{1} distributed. The results are based on 1000 replications with $B=200$ for each replication.

Empirical sizes for Mode 1 with heavy tails

\mathbf{p}	Dist	so	$\boldsymbol{\alpha}=\mathbf{0}$	$\boldsymbol{\alpha}=\mathbf{0 . 1}$	$\boldsymbol{\alpha}=\mathbf{0 . 5}$	$\boldsymbol{\alpha}=\mathbf{0 . 9}$	$\boldsymbol{\alpha}=\mathbf{1}$	Adaptive
400	t_{2}	$s_{0}=1$	0.041	0.057	0.079	0.087	0.085	0.077
	t_{2}	$s_{0}=3$	0.057	0.060	0.092	0.088	0.090	0.090
	t_{2}	$s_{0}=5$	0.068	0.074	0.110	0.107	0.129	0.128
	t_{2}	$s_{0}=7$	0.062	0.065	0.116	0.115	0.113	0.126
400	t_{1}	$s_{0}=1$	0.057	0.207	0.222	0.217	0.217	0.192
	t_{1}	$s_{0}=3$	0.043	0.228	0.244	0.240	0.232	0.208
	t_{1}	$s_{0}=5$	0.058	0.299	0.315	0.310	0.300	0.266
	t_{1}	$s_{0}=7$	0.057	0.276	0.306	0.308	0.300	0.267

Empirical sizes for Mode 2 with heavy tails

\mathbf{p}	Dist	so	$\boldsymbol{\alpha}=\mathbf{0}$	$\boldsymbol{\alpha}=\mathbf{0 . 1}$	$\boldsymbol{\alpha}=\mathbf{0 . 5}$	$\boldsymbol{\alpha}=\mathbf{0 . 9}$	$\boldsymbol{\alpha}=\mathbf{1}$	Adaptive
400	t_{2}	$s_{0}=1$	0.066	0.082	0.095	0.096	0.094	0.106
	t_{2}	$s_{0}=3$	0.072	0.086	0.115	0.113	0.118	0.127
	t_{2}	$s_{0}=5$	0.058	0.074	0.138	0.151	0.152	0.147
	t_{2}	$s_{0}=7$	0.056	0.085	0.113	0.127	0.118	0.136
400	t_{1}	$s_{0}=1$	0.070	0.220	0.249	0.251	0.247	0.223
	t_{1}	$s_{0}=3$	0.046	0.402	0.440	0.432	0.430	0.406
	t_{1}	$s_{0}=5$	0.055	0.455	0.500	0.487	0.489	0.462
	t_{1}	$s_{0}=7$	0.057	0.479	0.526	0.511	0.501	0.488

S2.2 Empirical sizes
$T_{\text {ad }}$ can have a size that is very close to the nominal level. This strongly suggests that our bootstrap-based procedure in Algorithms 1 and 2 can approximate the theoretical distributions very well. Interestingly, it can be seen that under a specific error distribution, the individual test T_{α} may have different size performance in the sense that the corresponding size can be slightly above or below the nominal level. In contrast, after the combination, the size of the tail-adaptive test $T_{\text {ad }}$ is near the nominal level as compared to its individual test. This indicates that in practice, the tail-adaptive test is more reliable in terms of size control.

Table 52.2 provides additional size performance under Student's t_{2} and t_{1} distributions. Note that these two distributions are known as seriously heavy-tailed. It is also well known that controlling the size for these two distributions is a challenging task, especially for high-dimensional change point analysis. As can be seen from Table S2.2, in these cases, the individual test T_{α} except $\alpha=0$ suffers from serious size distortion. In particular, as α increases from 0.1 to 1 , it is more difficult to control the size. Moreover, when the error is Cauchy distributed, the size is completely out of control for $\alpha \in\{0.1, \ldots, 1\}$. As a result, the corresponding tail-adaptive method becomes oversized. As an exception, we can see that the individual test T_{α} with $\alpha=0$ enjoys satisfactory size performance for both t_{2} and t_{1}
distributions. A reasonable explanation is that for $\alpha=0$, our individual test reduces to the median regression based method which does not require any moment constraints on the error terms. Hence, our proposed individual test with $\alpha=0$ contributes to the literature for handling the extremely heavy-tailed case. In practice, if the practitioners strongly believe that the data are seriously heavy-tailed, we can just set $\mathcal{A}=\{0\}$.

S2.3 Empirical powers

We next consider the power performance, where various error distributions, data dimensions as well as change point locations are investigated. The results are summarized in Tables S2.3 and S2.4. Note that according to our model setups, there are five coordinates in $\boldsymbol{\beta}^{(1)}$ having a change point. It can be seen that for light-tailed error distributions such as $N(0,1)$, the individual tests with $\alpha=0.5,0.9,1$ have the best power performance and those with $\alpha=0$ have the worst performance. This indicates that for a light-tailed error distribution, using median regression can lose power efficiency, and using the moment information with a larger weight α can increase the signal to noise ratio. Interestingly, in this empirical study, the individual test with $\alpha=0.5$ generally has slightly higher powers than that with $\alpha=1$, even though the latter one is expected to have the best power
performance (see Figure 1). As for the tail-adaptive test, in the light-tailed case, it has very close powers to the best individual tests.

We next turn to the heavy-tailed case, where the individual tests have power performance that is very different from the light-tailed case. Specifically, for t_{3} distributions, the individual test with $\alpha=0$ and $\alpha=0.1$ have higher powers than the remaining ones. This indicates that for data with heavy tails, it is beneficial to use more rank information instead of using only moments. More specifically, we see that T_{α} with $\alpha=0.1$ has the highest powers and that with $\alpha=1$ has the lowest powers. This result is consistent with the theoretical SNR in Figure 1. In this case, using a non-trivial weight ($\alpha=0.1$) can significantly enhance the power efficiency via increasing the SNR. As for the tail-adaptive method, it still has very close powers to the best individual test, i.e. $\alpha=0.1$ when the data are heavy-tailed. In addition to $N(0,1)$ and t_{3} distributions, we can observe that for t_{4} distributions, even though the individual tests may present various power performances, the tail-adaptive method consistently has powers close to that of the corresponding best individual test. The above results suggest that our proposed tail-adaptive method can sufficiently account for the unknown tail-structures, and enjoy satisfactory power performance under various data generating mechanisms. Lastly, we remark that when the
change point location gets closer to the boundary of data observations, e.g. from $t_{1}=0.5$ to $t_{1}=0.3$, it becomes more difficult to detect a change point, which is also consistent with our theoretical result.

Next, we consider the effect of different s_{0} on the power performance. We find that for any given s_{0}, the performance of the individual and the tail-adaptive tests are similar to our above findings. This suggests that the tail-adaptivity of our testing method is robust to the choice of s_{0}. Moreover, for each case with a specific error distribution and data dimension, both the individual and tail-adaptive tests with $s_{0}=3,5,7$ have higher powers than those with $s_{0}=1$. More specifically, tests with $s_{0}=5$ generally have the best performance and those with $s_{0}=3$ and $s_{0}=7$ have close powers to $s_{0}=5$. This indicates that for high dimensional sparse linear models, instead of using the ℓ_{∞}-norm, it is more efficient to detect a change point via aggregating the CUSUM statistics using the first $s_{0}>1$ order statistics.

Table S2.3: Empirical powers of the individual and tail-adaptive tests for Model 1 with banded covariance matrix under various distributions with $s_{0} \in\{1,3,5,7\}$ and $t_{1} \in\{0.3,0.5\}$. The dimension is $p=400$. The results are based on 1000 replications with $B=200$ for each replication.

Empirical powers for $\mathbf{N}(\mathbf{0}, \mathbf{1})$								
	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{o}}$	$\boldsymbol{\alpha}=\mathbf{0}$	$\boldsymbol{\alpha}=\mathbf{0 . 1}$	$\boldsymbol{\alpha}=\mathbf{0 . 5}$	$\boldsymbol{\alpha}=\mathbf{0 . 9}$	$\boldsymbol{\alpha}=\mathbf{1}$	Adaptive
	0.5	$s_{0}=3$	0.529	0.655	0.787	0.759	0.739	0.759
		$s_{0}=1$	0.482	0.612	0.768	0.732	0.722	0.733
		$s_{0}=5$	0.546	0.641	0.783	0.759	0.749	0.760
		$s_{0}=7$	0.525	0.634	0.802	0.778	0.773	0.765
		$s_{0}=1$	0.295	0.398	0.546	0.506	0.489	0.495
	0.3	$s_{0}=3$	0.318	0.415	0.573	0.534	0.516	0.518
		$s_{0}=5$	0.286	0.418	0.568	0.543	0.514	0.505
		$s_{0}=7$	0.315	0.418	0.560	0.522	0.505	0.522

Empirical powers for Student's t_{4}

Dist	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{0}}$	$\boldsymbol{\alpha}=\mathbf{0}$	$\boldsymbol{\alpha}=\mathbf{0 . 1}$	$\boldsymbol{\alpha}=\mathbf{0 . 5}$	$\boldsymbol{\alpha}=\mathbf{0 . 9}$	$\boldsymbol{\alpha}=\mathbf{1}$	Adaptive
t_{4}	0.5	$s_{0}=3$	0.836	0.903	0.852	0.795	0.782	0.904
		$s_{0}=1$	0.792	0.880	0.835	0.769	0.756	0.873
		$s_{0}=7$	0.831	0.895	0.861	0.813	0.807	0.896
		$s_{0}=1$	0.595	0.724	0.687	0.588	0.555	0.722
t_{4}	0.3	$s_{0}=3$	0.644	0.762	0.737	0.627	0.591	0.765
		$s_{0}=5$	0.646	0.773	0.745	0.618	0.606	0.765
		$s_{0}=7$	0.603	0.765	0.712	0.582	0.564	0.743

Empirical powers for Student's t_{3}

Dist	t_{1}	so	$\boldsymbol{\alpha}=0$	$\alpha=0.1$	$\alpha=0.5$	$\alpha=0.9$	$\alpha=1$	Adaptive
t_{3}	0.5	$s_{0}=1$	0.773	0.819	0.663	0.580	0.572	0.802
		$s_{0}=3$	0.777	0.826	0.693	0.612	0.583	0.827
		$s_{0}=5$	0.791	0.840	0.685	0.604	0.594	0.822
t_{3}		$s_{0}=7$	0.789	0.847	0.713	0.623	0.602	0.829
	0.3	$s_{0}=1$	0.554	0.629	0.475	0.380	0.362	0.599
		$s_{0}=3$	0.599	0.692	0.527	0.422	0.403	0.656
		$s_{0}=5$	0.587	0.697	0.525	0.404	0.390	0.640
		$s_{0}=7$	0.549	0.65014	0.487	0.362	0.348	0.613

Table S2.4: Empirical powers of the individual and data-adaptive tests for Model 2 with blocked covariance matrix under various distributions with $s_{0} \in\{1,3,5,7\}$ and $t_{1} \in\{0.3,0.5\}$. The dimension p is 400 . The results are based on 1000 replications with $B=200$ for each replication.

Dist	t_{1}	so	Empirical powers for $\mathrm{N}(0,1)$				$\alpha=1$	Adaptive
			$\alpha=0$	$\alpha=0.1$	$\alpha=0.5$	$\alpha=0.9$		
$N(0,1)$	0.5	$s_{0}=1$	0.328	0.441	0.651	0.626	0.626	0.594
		$s_{0}=3$	0.428	0.547	0.733	0.714	0.704	0.695
		$s_{0}=5$	0.462	0.585	0.761	0.712	0.702	0.714
$N(0,1)$	0.3	$s_{0}=7$	0.476	0.591	0.760	0.718	0.703	0.712
		$s_{0}=1$	0.175	0.232	0.361	0.326	0.321	0.301
		$s_{0}=3$	0.245	0.334	0.486	0.453	0.437	0.458
		$s_{0}=5$	0.244	0.356	0.483	0.428	0.412	0.428
		$s_{0}=7$	0.246	0.338	0.470	0.409	0.389	0.419
Dist	t_{1}	Empirical powers for Student's t_{4}						
		so	$\boldsymbol{\alpha}=0$	$\alpha=0.1$	$\alpha=0.5$	$\alpha=0.9$	$\alpha=1$	Adaptive
t_{4}	0.5	$s_{0}=1$	0.618	0.722	0.749	0.654	0.659	0.742
		$s_{0}=3$	0.791	0.862	0.849	0.784	0.763	0.873
		$s_{0}=5$	0.780	0.866	0.855	0.778	0.769	0.874
t_{4}	0.3	$s_{0}=7$	0.802	0.879	0.868	0.806	0.782	0.889
		$s_{0}=1$	0.398	0.518	0.547	0.427	0.404	0.511
		$s_{0}=3$	0.511	0.661	0.645	0.535	0.514	0.665
		$s_{0}=5$	0.522	0.663	0.631	0.505	0.483	0.651
		$s_{0}=7$	0.531	0.661	0.637	0.509	0.482	0.655
Dist	t_{1}	Empirical powers for Student's t_{3}						
							$\alpha=1$	Adaptive
t_{3}	0.5	$s_{0}=1$	0.571	0.640	0.571	0.460	0.455	0.621
		$s_{0}=3$	0.726	0.790	0.683	0.588	0.579	0.782
		$s_{0}=5$	0.761	0.794	0.674	0.583	0.576	0.808
		$s_{0}=7$	0.753	0.803	0.717	0.619	0.600	0.807
t_{3}	0.3	$s_{0}=1$	0.359	0.455	0.360	0.293	0.261	0.422
		$s_{0}=3$	0.470	0.574	0.485	0.370	0.349	0.560
		$s_{0}=5$	0.490	0.581	0.451	0.339	0.328	0.567
		$s_{0}=7$	0.498	0.60115	0.440	0.330	0.308	0.581

S2.4 The choices of \mathcal{A} and s_{0}

Table S2.5: Empirical powers of the tail-adaptive tests for Model 1 with banded covariance matrix under various choices of s_{0} and \mathcal{A}. The dimension is $p=400$. The results are based on 1000 replications with $B=200$ for each replication.

$N(0,1)$																	t_{3}
s_{0}	\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}	\mathcal{A}_{5}	\mathcal{A}_{6}	\mathcal{A}_{7}	\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}	\mathcal{A}_{5}	\mathcal{A}_{6}	\mathcal{A}_{7}			
1	0.456	0.746	0.725	0.546	0.682	0.698	0.700	0.760	0.634	0.524	0.804	0.486	0.786	0.748			
2	0.479	0.800	0.748	0.584	0.718	0.706	0.708	0.792	0.666	0.544	0.828	0.520	0.786	0.778			
4	0.521	0.773	0.752	0.608	0.738	0.704	0.662	0.766	0.728	0.584	0.840	0.534	0.812	0.788			
$[\log (p)]$	0.498	0.780	0.746	0.586	0.682	0.742	0.682	0.822	0.676	0.560	0.820	0.538	0.814	0.758			
8	0.488	0.798	0.724	0.586	0.650	0.710	0.678	0.788	0.688	0.592	0.860	0.536	0.826	0.762			
16	0.442	0.738	0.716	0.554	0.680	0.714	0.626	0.722	0.616	0.480	0.806	0.516	0.750	0.676			
32	0.426	0.692	0.644	0.470	0.590	0.586	0.526	0.646	0.616	0.416	0.720	0.448	0.736	0.608			
64	0.346	0.586	0.512	0.398	0.476	0.524	0.508	0.584	0.516	0.350	0.630	0.384	0.574	0.508			
128	0.264	0.556	0.436	0.320	0.426	0.396	0.354	0.468	0.476	0.322	0.550	0.336	0.540	0.396			

Note that our approach involves the selection of the candidate set \mathcal{A} and the parameter s_{0}, both of which can be regarded as tuning parameters. Intuitively, \mathcal{A} determines the weight between the quantile loss and the least squared losses, whereas s_{0} indicates how much information on change points among regression coefficient components should be integrated into the CUSUM statistic. Therefore, we conducted numerical simula-
tions to investigate how different choices of \mathcal{A} and s_{0} affect the efficacy of change point detection. We selected seven different subsets for \mathcal{A} including $\mathcal{A}_{1}=\{0\}, \mathcal{A}_{2}=\{0.5\}, \mathcal{A}_{3}=\{1\}, \mathcal{A}_{4}=\{0,0.1\}, \mathcal{A}_{5}=\{0.9,1\}, \mathcal{A}_{6}=$ $\{0,0.1,0.5,0.9,1\}$ and $\mathcal{A}_{7}=\{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1\}$. Additionally, we selected different values for s_{0}, including $s_{0}=2^{0}, 2^{1}, \ldots, 2^{\left.\log _{2}(p)+1\right\rfloor}$. Table S2.5 displays the performance of the adaptive change point detection method under $N(0,1)$ and t_{3} distributions for these selections of \mathcal{A} and s_{0}. The model settings are the same as in Section S4.3. We observed that for any given \mathcal{A}, when s_{0} increases from small to large, the efficacy of the adaptive detection method initially increases and then decreases, indicating that as s_{0} increases, the statistic extracts more change point information from the regression components, enhancing the efficacy of change point detection. However, once s_{0} becomes larger, additional noise accumulates, leading to a decrease in the detection efficacy. Considering the sparsity assumptions for regression coefficients and the requirements of Gaussian approximation theory, which requires $s_{0}^{3} \log (p n)=O\left(n^{\xi_{1}}\right)$ for some $0<\xi_{1}<1 / 7$ and $s_{0}^{4} \log (p n)=O\left(n^{\xi_{2}}\right)$ for some $0<\xi_{2}<\frac{1}{6}$, we recommend the use of $s_{0}=\lfloor\log (p)\rfloor$ in practice.

Regarding the selection of \mathcal{A}, we note that for data with light-tailed distributions, sets with larger values such as $\mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{5}, \mathcal{A}_{6}, \mathcal{A}_{7}$ exhibit higher

S2.5 Multiple change point detection efficacy. Conversely, for data with heavy-tailed distributions, sets with smaller values such as $\mathcal{A}_{1}, \mathcal{A}_{4}, \mathcal{A}_{6}, \mathcal{A}_{7}$ perform satisfactorily. Therefore, if the tail structure of the data is unknown in practical applications, we might consider a candidate set that includes both larger and smaller values. Interestingly, we find that adding too many weights, such as in \mathcal{A}_{7} does not yield much additional benefit. Considering the balance between detection efficacy and computational efficiency, we recommend $\mathcal{A}=\{0,0.1,0.5,0.9,1\}$ for practical use.

S2.5 Multiple change point detection

In this section, we consider the performance of multiple change point detection and compare our method with the existing techniques. In this numerical study, we set $n=1000$ and $p=100$ with three change points $(m=3)$ at $k_{1}=300, k_{2}=500$, and $k_{3}=700$, respectively. The above three change points divide the data into four segments with piecewise constant regression coefficients $\boldsymbol{\beta}^{(1)}$, $\boldsymbol{\beta}^{(2)}$, $\boldsymbol{\beta}^{(3)}$ and $\boldsymbol{\beta}^{(4)}$ as follows:

$$
\begin{cases}Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)}+\epsilon_{i}, & \text { for } i=1, \ldots, k_{1}, \\ Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)}+\epsilon_{i}, & \text { for } i=k_{1}+1, \ldots, k_{2}, \\ Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(3)}+\epsilon_{i}, & \text { for } i=k_{2}+1, \ldots, k_{3}, \\ Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(4)}+\epsilon_{i}, & \text { for } i=k_{3}+1, \ldots, n\end{cases}
$$

Table S2.6: Multiple change point estimation results with $(n, p)=(1000,100)$. The results are based on 100 replications with $B=100$ for each replication.

Methods	$\mathrm{N}(0,1)(c=3)$		$\mathrm{N}(0,1)(c=6)$		$\mathrm{t} 3(c=4)$		$\mathrm{t} 3(c=6)$	
	Haus	(Sd)	Haus	(Sd)	Haus	(Sd)	Haus	(Sd)
$\alpha=0(\mathrm{BS})$	0.186	(0.1310)	0.028	(0.0374)	0.144	(0.1300)	0.040	(0.0603)
$\alpha=0.1(\mathrm{BS})$	0.138	(0.1286)	0.033	(0.0442)	0.111	(0.1229)	0.032	(0.0580)
$\alpha=0.5(\mathrm{BS})$	0.072	(0.1018)	0.028	(0.0432)	0.145	(0.1353)	0.051	(0.0740)
$\alpha=0.9$ (BS)	0.088	(0.1092)	0.030	(0.0443)	0.180	(0.1371)	0.063	(0.0877)
$\alpha=1(\mathrm{BS})$	0.095	(0.1146)	0.024	(0.0394)	0.187	(0.1405)	0.065	(0.0963)
Adaptive (BS)	0.092	(0.1085)	0.032	(0.0428)	0.113	(0.1260)	0.039	(0.0638)
$\alpha=0(\mathrm{WBS})$	0.087	(0.0926)	0.018	(0.0381)	0.046	(0.0690)	0.018	(0.0381)
$\alpha=0.1$ (WBS)	0.060	(0.0846)	0.012	(0.0277)	0.049	(0.0710)	0.012	(0.0277)
$\alpha=0.5$ (WBS)	0.036	(0.0599)	0.012	(0.0279)	0.077	(0.0908)	0.012	(0.0279)
$\alpha=0.9$ (WBS)	0.041	(0.0662)	0.011	(0.0216)	0.095	(0.0999)	0.011	(0.0216)
$\alpha=1(\mathrm{WBS})$	0.043	(0.0659)	0.012	(0.0216)	0.101	(0.1014)	0.012	(0.0216)
Adaptive (WBS)	0.031	(0.0478)	0.014	(0.0292)	0.033	(0.0511)	0.014	(0.0292)
VPWBS	0.135	(0.1004)	0.038	(0.0474)	0.138	(0.0782)	0.085	(0.0636)
DPDU	0.082	(0.1097)	0.009	(0.0087)	0.118	(0.0830)	0.045	(0.0598)

The covariates \boldsymbol{X}_{i} are generated from $N(\mathbf{0}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ being banded which is introduced in Model 1. For each replication, we first randomly select five covariates (denoted by \mathcal{S}_{1}) from $\{1, \ldots, 10\}$. For generating $\boldsymbol{\beta}^{(1)}$, we set $\beta_{s}^{(1)}=1$ if $s \in \mathcal{S}_{1}$ and $\beta_{s}^{(1)}=0$ if $s \notin \mathcal{S}_{1}$. For $\boldsymbol{\beta}^{(2)}$, we set $\beta_{s}^{(2)}=\beta_{s}^{(1)}+c \sqrt{\log (p) / n}$ if $s \in \mathcal{S}_{1}$ and $\beta_{s}^{(2)}=0$ if $s \notin \mathcal{S}_{1}$. Then, we set $\boldsymbol{\beta}^{(3)}=\boldsymbol{\beta}^{(1)}$ and $\boldsymbol{\beta}^{(4)}=\boldsymbol{\beta}^{(2)}$. We compare our proposed method with the Variance-Projected Wild Binary Segmentation (VPWBS) method in Wang et al. (2021) and the dynamic programming with dynamic update method in Xu et al. (2022). As compared in Wang et al. (2021), VPWBS has better performance than the binary segmentation based technique in Leonardi and Bühlmann (2016) and the sparse graphical LASSO based method in Zhang et al. (2015). Hence, we do not compare with Leonardi and Bühlmann (2016) and Zhang et al. (2015). For VPWBS, we use the R codes published by the authors on GitHub (https://github.com/darenwang/VPBS) and employ a cross-validation method to select tuning parameters for estimating change points. For DPDU, we utilize the DPDU.regression.R function from the R package named "changepoints" to estimate multiple change points. As for our methods, we combine the individual and tail-adaptive procedures with the Binary Segmentation and Wild Binary Segmentation techniques. For WBS, we use Algorithm S1.1 with parameters as $\gamma=0.05, s_{0}=5$, $q_{0}=0.1, B=100, V=150$, and $v_{0}=0.1$. In this numerical study, we set the replication number as 100 .

To evaluate the performance in identifying the change point, we use the scaled Hausdorff distance to evaluate the performance in change point estimation, which is defined as:

$$
d\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\frac{\max \left(\max _{s_{1} \in \mathcal{S}_{1}} \min _{s_{2} \in \mathcal{S}_{2}}\left|s_{1}-s_{2}\right|, \max _{s_{2} \in \mathcal{S}_{2}} \min _{s_{1} \in \mathcal{S}_{1}}\left|s_{1}-s_{2}\right|\right)}{1000}
$$

where $\mathcal{S}_{1}=\{300,500,7000,1000\}$ are the true change points and \mathcal{S}_{2} are the estimated change points. Note that scaled Hausdorff distance is a number between 0 and 1, and a smaller one indicates better change point estimation. Table S2.6 provides the results for $N(0,1)$ and t_{3} distributions with various signal strength $c \in\{3,4,6\}$. For light-tailed error distributions, the individual methods with a larger α generally have better performance than those with a smaller one for identifying the change point number and locations. This can be seen by smaller Hausdorff. On the contrary, in the heavy-tailed case, the individual methods with a smaller α are more preferred. As for the tail-adaptive method, it has comparable performance to the best individual one under both light and heavy-tailed errors.

Additionally, we note that for both individual and tail-adaptive testing methods, those based on Wild Binary Segmentation (WBS) generally outperform those based on Binary Segmentation (BS). Therefore, we recom- mend combining our proposed method with the WBS algorithm for multiple change point estimation in practical applications. For VPWBS and DPDU, these methods show satisfactory performance under light-tailed distributions such as the normal distribution. Particularly, DPDU, which employs a dynamic programming algorithm for multiple change point estimation, achieves the lowest estimation errors when data follow a normal distribution with strong signals. Our adaptive method performs comparably to these two methods under light-tailed distributions. However, their detection capabilities decrease when the data follow heavy-tailed distributions, such as the Student's t_{3} distribution. This indicates that methods based on the least squared loss are not robust for heavy-tailed data.

Lastly, we report the computational complexity of the algorithm. For our individual and tail-adaptive testing methods, when combined with the WBS algorithm, the complexities are $O(M \operatorname{Lasso}(n, p))$ and $O(M|\mathcal{A}| \operatorname{Lasso}(n, p))$, respectively, where M represents the number of small intervals in WBS, and Lasso (n, p) denotes the computational cost for calculating lasso with sample size n and data dimension p. For the DPDU algorithm, it uses a backward iterative dynamic programming approach, and its complexity is $O\left(n^{2} p^{2}+n^{2}\right.$ Lasso(p)). Figure S 2.1 shows the computational time of our method and the DPDU algorithm under various $n \in\{200,300,400,500\}$
and $p \in\{200,300,400,500\}$, where the model setup is the same as in Section S2.3. We set the number of intervals in WBS to $\log ^{2}(n)$. We can observe that the computational costs of both our method and the DPDU method increase with n and p. Our individual testing method has comparable computational time to that of the DPDU. The computational cost for the tail-adaptive testing method is the highest. This is not surprising, as we aim to construct a testing method that is adaptive to the tail structure of the error terms. To that end, we need to calculate lasso estimates with different weights α to obtain the best individual testing method.

Figure S2.1: Computational time for our proposed method and the DPDU algorithm with $n \in\{200,300,400,500\}$ and $p \in\{200,300,400,500\}$.

S3 An application to the S\&P 100 dataset

Figure S3.1: Plots of the Ted spread (left) and the S\&P 100 index (right) with the estimated change points (vertical lines) marked by \# in Table S3.1.

In this section, we apply our proposed method to the S\&P 100 dataset to find multiple change points. We obtain the S\&P 100 index as well as the associated stocks from Yahoo! Finance (https://finance.yahoo.com/) including the largest and most established 100 companies in the $\mathrm{S} \& \mathrm{P} 100$. For this dataset, we collect the daily prices of 76 stocks that have remained in the S\&P 100 index consistently from January 3, 2007 to December 30, 2011. This covers the recent financial crisis beginning in 2008 and some other important events, resulting in a sample size $n=1259$.

In financial marketing, it is of great interest to predict the S\&P 100
index since it reveals the direction of the entire financial system. To this end, we use the daily prices of the 76 stocks to predict the S\&P 100 index. Specifically, let $Y_{t} \in \mathbb{R}^{1}$ be the S\&P 100 index for the t-th day and $\boldsymbol{X}_{t} \in$ $\mathbb{R}^{76 \times 2}$ be the stock prices with lag-1 and lag-3 for the t-th day. Our goal is to predict Y_{t} using \boldsymbol{X}_{t} under the high dimensional linear regression models and detect multiple change points for the linear relationships between the S\&P 100 index and the 76 stocks' prices. Note that we have calculated differences of the data to remove the temporal trend. It is well known that the financial data are typically heavy-tailed and we have no prior-knowledge about the tail structure of the data. Hence, for this real data analysis, it seems very suitable to use our proposed tail-adaptive method. We combine our proposed tail-adaptive test with the WBS method (Fryzlewicz $(\overline{2014})$) to detect multiple change points, which is demonstrated in Algorithm S1.1. To implement this algorithm, we set $\mathcal{A}=\{0,0.1,0.5,0.9,1\}, s_{0}=5, B=$ 100, and $V=500$ (number of random intervals). Moreover, we consider the $L_{1}-L_{2}$ weighted loss by setting $\widetilde{\boldsymbol{\tau}}=0.5$ in (2.6). The data are scaled to have mean zeros and variance ones before the change point detection. There are 14 change points detected which are reported in Table S3.1.

To further justify the meaningful findings of our proposed new methods, we refer to the T-bills and ED (TED) spread, which is short for the differ-
ence between the 3-month of London Inter-Bank Offer Rate (LIBOR), and the 3 -month short-term U.S. government debt (T-bills). It is well-known that TED spread is an indicator of perceived risk in the general economy and an increased TED spread during the financial crisis reflects an increase in credit risk. Figure S3.1 shows the plot of TED where the red dotted lines correspond to the estimated change points. We can see that during the financial crisis from 2007 to 2009, the TED spread has experienced very dramatic fluctuations and the estimated change points can capture some big changes in the TED spread. In addition, the S\&P 100 index obtains its highest level during the financial crisis in October 2007 and then has a huge drop. Our method identifies October 29, 2007 as a change point. Moreover, the third detected change point is January 10th, 2008. The National Bureau of Economic Research (NBER) identifies December of 2007 as the beginning of the great recession which is captured by our method. In addition, it is well known that affected by the 2008 financial crisis, Europe experienced a debt crisis from 2009 to 2012, with the Greek government debt crisis in October 2009 serving as the starting point. Our method identifies October 5, 2009 as a change point after which S\&P 100 index began to experience a significant decline. Moreover, it is known that countries such as Italy and Spain were facing severe debt issues in July 2011, rais-
ing fears about the stability of the Eurozone and the potential impact on global financial markets. As a result, there exists another huge drop for the S\&P 100 index in July 26, 2011, which can be successfully detected by our method.

Table S3.1: Multiple change point detection for the S\&P 100 dataset.

Change points	Date	Events
117	2007/06/21	TED Spread\#
207	2007/10/29	TED Spread\#
257	2008/01/10	Global Financial Crisis (TED Spread)\#
360	2008/06/09	TED Spread\#
439	2008/09/30	TED Spread\#
535	2009/02/18	Nadir of the crisis\#
632	2009/07/08	
694	2009/10/05	Greek debt crisis\#
840	2010/05/05	Global stock markets fell due to fears of contagion of the European sovereign debt crisis\#
890	2010/07/16	
992	2010/12/09	
1074	2011/04/07	
1149	2011/07/26	Spread of the European debt crisis to Spain and Italy\#
1199	2011/10/05	

S4 Some notations

Before the proofs, we give some notations. Under \mathbf{H}_{0}, we set $\boldsymbol{\beta}^{(0)}$:= $\boldsymbol{\beta}^{(1)}=\boldsymbol{\beta}^{(2)}$ and $s^{(0)}:=s^{(1)}=s^{(2)}$. Under \mathbf{H}_{1}, For the regression vectors $\boldsymbol{\beta}^{(1)}$ and $\boldsymbol{\beta}^{(2)}$, define $\mathcal{S}^{(1)}=\left\{1 \leq j \leq p: \beta_{j}^{(1)} \neq 0\right\}$ and $\mathcal{S}^{(2)}=\{1 \leq$ $\left.j \leq p: \beta_{j}^{(2)} \neq 0\right\}$ as the active sets of variables. Denote $s^{(1)}=\left|\mathcal{S}^{(1)}\right|$ and $s^{(2)}=\left|\mathcal{S}^{(2)}\right|$ as the cardinalities of $\mathcal{S}^{(1)}$ and $\mathcal{S}^{(2)}$, respectively. We set $\mathcal{S}=\mathcal{S}^{(1)} \cup \mathcal{S}^{(2)}$ and $s=|\mathcal{S}|$. For a vector $\boldsymbol{v} \in \mathbb{R}^{p}$, we denote $J(\boldsymbol{v})=\{1 \leq$ $\left.j \leq p: v_{j} \neq 0\right\}$ as the set of non-zero elements of \boldsymbol{v} and set $\mathcal{M}(\boldsymbol{v}):=|J(\boldsymbol{v})|$ as the number of non-zero elements of \boldsymbol{v}. For a set J and $\boldsymbol{v} \in \mathbb{R}^{p}$, denote \boldsymbol{v}_{J} as the vector in \mathbb{R}^{p} that has the same coordinates as \boldsymbol{v} on J and zero coordinates on the complement J^{c} of J. For any vector $\boldsymbol{x} \in \mathbb{R}^{p}$ and a matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, define $\|\boldsymbol{x}\|_{\mathbf{A}}^{2}=\boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x}$. Denote $\mathcal{X}=\{\mathbf{X}, \boldsymbol{Y}\}$. We use C_{1}, C_{2}, \ldots to denote constants that may vary from line to line. We use w.p.a. 1 for the abbreviation of with probability approaching to one. For $\beta>0$, we define the function $\psi_{\beta}:[0, \infty) \rightarrow[0, \infty)$ as $\psi_{\beta}(x):=\exp \left(x^{\beta}\right)-1$. Then, for any random variable X, we define

$$
\left.\|X\|_{\psi_{\beta}}:=\inf \left\{C>0: \mathbb{E} \psi_{\beta}(|X| / C) \mid\right) \leq 1\right\} .
$$

For any $0 \leq s<t \leq 1$, we denote

$$
\begin{equation*}
\widehat{\boldsymbol{\Sigma}}(s: t)=\frac{1}{\lfloor n t\rfloor-\lfloor n s\rfloor+1} \sum_{i=\lfloor n s\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \tag{S4.2}
\end{equation*}
$$

S5 Basic assumptions

We introduce some basic assumptions for deriving our main theorems. Before that, we introduce some notations. Let $e_{i}(\widetilde{\boldsymbol{\tau}}):=K^{-1} \sum_{k=1}^{K}\left(\mathbf{1}\left\{\epsilon_{i} \leq\right.\right.$ $\left.\left.b_{k}^{(0)}\right\}-\tau_{k}\right):=K^{-1} \sum_{k=1}^{K} e_{i}\left(\tau_{k}\right)$. We set $\mathcal{V}_{s_{0}}:=\left\{\boldsymbol{v} \in \mathbb{S}^{p}:\|\boldsymbol{v}\|_{0} \leq s_{0}\right\}$, where $\mathbb{S}^{p}:=\left\{\boldsymbol{v} \in \mathbb{R}^{p}:\|\boldsymbol{v}\|=1\right\}$. For each $\alpha \in[0,1]$, we introduce ${\underset{\sim}{\boldsymbol{\beta}}}^{*}=$ $\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ with $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p}, \boldsymbol{b}^{*}=\left(b_{1}^{*}, \ldots, b_{K}^{*}\right)^{\top} \in \mathbb{R}^{K}$, where

$$
\begin{equation*}
{\underset{\sim}{\boldsymbol{\beta}}}^{*}:=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}, b \in \mathbb{R}^{K}}{\arg \min } \mathbb{E}\left[(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau_{k}}\left(Y_{i}-b_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)+\frac{\alpha}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right] . \tag{S5.3}
\end{equation*}
$$

Note that by definition, we can regard ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$ as the true parameters under the population level with pooled samples. We can prove that under \mathbf{H}_{0}, $\underset{\sim}{\boldsymbol{\beta}^{*}}=\left(\left(\boldsymbol{\beta}^{(0)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top}$ with $\boldsymbol{b}^{(0)}=\left(b_{1}^{(0)}, \ldots, b_{K}^{(0)}\right)^{\top}$. Under $\mathbf{H}_{1},{\underset{\sim}{\boldsymbol{\beta}}}^{*}$ is generally a weighted combination of the parameters before the change point and those after the change point. For example, when $\alpha=1$, it has the explicit form of $\boldsymbol{\beta}_{\sim}^{*}=\left(\left(t_{1} \boldsymbol{\beta}^{(1)}+t_{2} \boldsymbol{\beta}^{(2)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top}$. With the above notations, we are ready to introduce our assumptions as follows:

Assumption A (Design matrix): The design matrix \mathbf{X} has i.i.d rows $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$. (A.1) Assume that there are positive constants κ_{1} and κ_{2} such that $\lambda_{\min }(\boldsymbol{\Sigma}) \geq \kappa_{1}>0$ and $\lambda_{\max }(\boldsymbol{\Sigma}) \leq \kappa_{2}<\infty$ hold. (A.2) There exists some constant $M \geq 1$ such that $\max _{1 \leq i \leq n} \max _{1 \leq j \leq p}\left|X_{i j}\right| \leq M$ almost surely for every n and p.

Assumption B (Error distribution): The error terms $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ are i.i.d. with mean zero and finite variance σ_{ϵ}^{2}. There exist positive constants c_{ϵ} and C_{ϵ} such that $c_{\epsilon}^{2} \leq \operatorname{Var}\left(\epsilon_{i}\right) \leq C_{\epsilon}^{2}$ hold. In addition, ϵ_{i} is independent with \boldsymbol{X}_{i} for $i=1, \ldots, n$.

Assumption C (Moment constraints): (C.1) There exists some constant $b>0$ such that $\mathbb{E}\left(\boldsymbol{v}^{\top} \boldsymbol{X}_{i} \epsilon_{i}\right)^{2} \geq b$ and $\mathbb{E}\left(\boldsymbol{v}^{\top} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})\right)^{2} \geq b$, for $\boldsymbol{v} \in \mathcal{V}_{s_{0}}$ and all $i=1, \ldots, n$. Moreover, assume that $\inf _{i, j} \mathbb{E}\left[X_{i j}^{2}\right] \geq b$ holds. (C.2) There exists a constant $K>0$ such that $\mathbb{E}\left|\epsilon_{i}\right|^{2+\ell} \leq K^{\ell}$, for $\ell=1,2$.

Assumption D (Underlying distribution): The distribution function ϵ has a continuously differentiable density function $f_{\epsilon}(t)$ whose derivative is denoted by $f_{\epsilon}^{\prime}(t)$. Furthermore, suppose there exist some constants C_{+}, C_{-}and C_{+}^{\prime} such that

$$
\begin{aligned}
& \text { (D.1) } \sup _{t \in \mathbb{R}} f_{\epsilon}(t) \leq C_{+} ;(\text {D.2 }) \inf _{j=1,2} \inf _{1 \leq k \leq K} f_{\epsilon}\left(\boldsymbol{x}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(j)}\right)+b_{k}^{*}\right) \geq C_{-} ; \\
& \text {(D.3) } \sup _{t \in \mathbb{R}}\left|f_{\epsilon}^{\prime}(t)\right| \leq C_{+}^{\prime} .
\end{aligned}
$$

Assumption E (Parameter space):

(E.1) We require $s_{0}^{3} \log (p n)=O\left(n^{\xi_{1}}\right)$ for some $0<\xi_{1}<1 / 7$ and $s_{0}^{4} \log (p n)=$ $O\left(n^{\xi_{2}}\right)$ for some $0<\xi_{2}<\frac{1}{6}$.
(E.2) Assume that $\frac{s_{0}^{2} s^{3} \log ^{3}(p n)}{n} \rightarrow 0$ as $(n, p) \rightarrow \infty$, where s is the overall sparsity of $\boldsymbol{\beta}^{(1)}$ and $\boldsymbol{\beta}^{(2)}$.
(E.3) We require $\max \left(\left\|\boldsymbol{\beta}^{(1)}\right\|_{\infty},\left\|\boldsymbol{\beta}^{(2)}\right\|_{\infty}\right)<C_{\boldsymbol{\beta}}$ for some $C_{\boldsymbol{\beta}}>0$. Moreover,
we require $\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{1} \leq C_{\boldsymbol{\Delta}}$ for some constant $C_{\boldsymbol{\Delta}}>0$.
(E.4) For the tuning parameters λ_{α} in 2.10, we require $\lambda_{\alpha}=C_{\lambda} \sqrt{\log (p n) / n}$ for some $C_{\lambda}>0$.

Assumption A gives some conditions for the design matrix, requiring \boldsymbol{X} has a non-degenerate covariance matrix $\boldsymbol{\Sigma}$ in terms of its eigenvalues. This is important for deriving the high-dimensional LASSO property with $\alpha \in[0,1]$ under both \mathbf{H}_{0} and \mathbf{H}_{1}. Assumption B mainly requires the underlying error term ϵ_{i} has non-degenerate variance. Assumption C imposes some restrictions on the moments of the error terms as well as the design matrix. In particular, Assumption C. 1 requires that $\boldsymbol{v}^{\top} \boldsymbol{X} \epsilon, \boldsymbol{v}^{\top} \boldsymbol{X} e(\widetilde{\boldsymbol{\tau}})$, as well as $X_{i j}$ have non-degenerate variances. Moreover, Assumption C. 2 requires that the errors have at most fourth moments, which is much weaker than the commonly used Gaussian or sub-Gaussian assumptions. Both Assumptions C. 1 and C. 2 are basic moment conditions for bootstrap approximations for the individual-based tests. See Lemma C. 6 in the proof. Assumptions D. 1 - D. 3 are some regular conditions for the underlying distribution of the errors, requiring ϵ has a bounded density function as well as bounded derivatives. Assumption D. 2 also requires the density function at $\boldsymbol{x}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(j)}\right)+b_{k}^{*}$ to be strictly bounded away from zero. Lastly, Assumption E imposes some conditions for the parameter spaces in terms of
$\left(s_{0}, n, p, s, \boldsymbol{\beta}^{(1)}, \boldsymbol{\beta}^{(2)}\right)$. Specifically, Assumption E. 1 scales the relationship between s_{0}, n, and p, which allows s_{0} can grow with the sample size n. This condition is mainly used to establish the high-dimensional Gaussian approximation for our individual tests. Assumption E. 2 also gives some restrictions on $\left(s_{0}, s, n, p\right)$. Note that both Assumptions E. 1 and E. 2 allow the data dimension p to be much larger than the sample size n as long as the required conditions hold. Assumption E. 3 requires that the regression coefficients as well as signal jump in terms of its ℓ_{1}-norm are bounded. Assumption E. 4 imposes the regularization parameter $\lambda_{\alpha}=O(\sqrt{\log (p n) / n})$, which is important for deriving the desired error bound for the LASSO estimators under both \mathbf{H}_{0} and \mathbf{H}_{1} using our weighted composite loss function. See Lemmas C. 9 - C. 11 in the proof.

Remark 1. Assumption C. 2 with the finite fourth moment is mainly for the individual test with $\alpha=1$, while Assumption D is for that with $\alpha=$ 0. Note that Assumption D only imposes some conditions on the density functions of the errors instead of the moments, which can be statisfied for the errors with heavy tails. Hence, in both cases, our proposed individualbased change point method extends the high-dimensional linear models with sub-Gaussian distributed errors to those with only finite moments or without any moments, covering a wide range of errors with different tails.

S6 Useful lemmas

Lemma 1 (Lemma E. 1 in Chernozhukov et al. (2017)). Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \in$ \mathbb{R}^{p} with $\boldsymbol{X}_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)^{\top}$ be independet and centered random vectors. Define $Z=\max _{1 \leq j \leq p}\left|\sum_{i=1}^{n} X_{i j}\right|, M=\max _{1 \leq i \leq n} \max _{1 \leq j \leq p}\left|X_{i j}\right|$ and $\sigma^{2}=$ $\max _{j} \sum_{i} \mathbb{E}\left[X_{i j}^{2}\right]$. Then,

$$
\mathbb{E}[Z] \leq C\left(\sigma \sqrt{\log p}+\sqrt{\mathbb{E}\left[M^{2}\right]} \log p\right)
$$

where C is some universal constant.

Lemma 2 (Lemma E. 2 in Chernozhukov et al. (2017)). (a) Assume the setting of Lemma 1 holds. For every $\eta>0, \beta \in(0,1]$ and $t>0$, we have

$$
\mathbb{P}(Z \geq(1+\eta) \mathbb{E}[Z]+t) \leq \exp \left(-\frac{t^{2}}{3 \sigma^{2}}\right)+3 \exp \left(-\left(\frac{t}{K\|M\|_{\psi_{\beta}}}\right)^{\beta}\right)
$$

where $K=K(\eta, \beta)$ is a constant only depending on η and β.
(b) Assume the setting of Lemma 1 holds. For every $\eta>0, s \geq 1$ and $t>0$, we have

$$
\mathbb{P}(Z \geq(1+\eta) \mathbb{E}[Z]+t) \leq \exp \left(-\frac{t^{2}}{3 \sigma^{2}}\right)+K^{\prime} \frac{\mathbb{E}\left[M^{s}\right]}{t^{s}}
$$

where $K^{\prime}=K(\eta, s)$ is a constant only depending on η and s.

Lemma 3 (Hoeffding's inequality). Suppose $X_{1}, \ldots, X_{n} \in \mathbb{R}^{1}$ be independent random variables with $\left|X_{i}\right| \leq K$ for some $K>0$. Let \bar{X} be the sample
mean. Then, for any $x>0$, we have

$$
\begin{equation*}
\mathbb{P}(|\bar{X}-\mathbb{E} \bar{X}| \geq x) \leq 2 \exp \left(-\frac{n x^{2}}{2 K^{2}}\right) \tag{S6.4}
\end{equation*}
$$

Lemma 4 (Nazarovs inequality in Nazarov (2003)). Let $\boldsymbol{W}=\left(W_{1}, W_{2}, \cdots, W_{d}\right)^{\top} \in$ \mathbb{R}^{p} be centered Gaussian random vector with $\inf _{1 \leq k \leq p} \mathbb{E}\left(W_{k}\right)^{2} \geq b>0$. Then for any $\boldsymbol{x} \in \mathbb{R}^{p}$ and $a>0$, we have

$$
\mathbb{P}(\boldsymbol{W} \leq \boldsymbol{x}+a)-\mathbb{P}(\boldsymbol{W} \leq \boldsymbol{x}) \leq C a \sqrt{\log p}
$$

where C is a constant only depending on b.

Before introducing Lemma 5, we need some definitions for an m-generated convex set A^{m}. We say a set A^{m} is m-generated if it is generated by intersecting m half spaces. In other words, the set A^{m} is a convex polytope with at most m facets. Moreover, for any $\epsilon>0$ and an m-generated convex set A^{m}, we define

$$
\begin{equation*}
A^{m, \epsilon}=\bigcap_{\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}\left\{\boldsymbol{w} \in \mathbb{R}^{d}: \boldsymbol{w}^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})+\epsilon\right\} \tag{S6.5}
\end{equation*}
$$

where $\mathcal{V}\left(A^{m}\right)$ consists m unit vectors that are outward normal to the facets of A^{m}, and $S_{A^{m}}(\boldsymbol{v})$ is the support function for A^{m} (see Chernozhukov et al. (2017)).

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$. For any $1 \leq s_{0} \leq p$, define $\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)}=$ $\left(\sum_{j=1}^{s_{0}}\left|x_{(j)}\right|^{2}\right)^{1 / 2}$, where $\left|x_{(1)} \geq\left|x_{(2)}\right| \cdots \geq\left|x_{(p)}\right|\right.$ be the order statistics of \boldsymbol{x}.

The following lemma shows that the set $V_{\left(s_{0}, 2\right)}^{z, p}:=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)} \leq z\right\}$ can be approximated by m-generated convex set.

Lemma 5 (Zhou et al. (2018)). Let $\mathcal{E}^{R, p}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\| \leq R\right\}$ and $V_{\left(s_{0}, 2\right)}^{z, p}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)} \leq z\right\}$. For any $\gamma>e / 4 \sqrt{2}$, there is a m generated convex set $A^{m} \in \mathbb{R}^{p}$ and a constant ϵ_{γ} such that for any $0<\epsilon<$ ϵ_{γ}, we have

$$
A^{m} \subset \mathcal{E}^{R, p} \cap V_{\left(s_{0}, 2\right)}^{z, p} \subset A^{m, R \epsilon} \quad \text { and } \quad m \leq p^{s_{0}}\left(\frac{\gamma}{\sqrt{\epsilon}} \ln \left(\frac{1}{\epsilon}\right)\right)^{s_{0}^{2}}
$$

The following Lemma 6 shows the Gaussian approximation theory for the testing statistic, which is very important for the size control. To show that, we need some notations and assumptions. In particular, let $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n} \sim(\mathbf{0}, \boldsymbol{\Sigma})$ be independent and centered random vectors in \mathbb{R}^{p} with $\boldsymbol{Z}_{i}=\left(Z_{i 1}, \ldots, Z_{i p}\right)^{\top}$ for $i=1, \ldots, n$. Let $\boldsymbol{G}_{1}, \ldots, \boldsymbol{G}_{n}$ be independent centered Gaussian random vectors in \mathbb{R}^{p} such that each \boldsymbol{G}_{i} has the same covariance matrix as \boldsymbol{Z}_{i}. Let $\mathcal{V}_{s_{0}}:=\left\{\boldsymbol{v} \in \mathbb{S}^{q-1}:\|\boldsymbol{v}\|_{0} \leq s_{0}\right\}$, where $\mathbb{S}^{q-1}:=\left\{\boldsymbol{v} \in \mathbb{R}^{p}:\|\boldsymbol{v}\|=1\right\}$. We require the following conditions:
(M1) There is a constant $b>0$ such that $\inf _{\boldsymbol{v} \in \mathcal{V}_{s_{0}}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\boldsymbol{v}^{\top} \boldsymbol{Z}_{i}\right)^{2} \geq b$ for $i=1, \ldots, n$.
(M2) There exists some constant $K>0$ such that $\max _{1 \leq j \leq p} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|Z_{i j}\right|^{2+\ell} \leq$ K^{ℓ} for $\ell=1,2$.
(M3) There exists a constant $K>0$ and $q>0$ such that $\mathbb{E}\left(\left(\max _{1 \leq j \leq p}\left|Z_{i j}\right| / K\right)^{q}\right) \leq$ 2 holds for all $i=1, \ldots, n$.

Lemma 6. Assume that that $s_{0}^{3} K^{2 / 7} \log (p n)=O\left(n^{\xi_{1}}\right)$ for some $0<\xi_{1}<$ $1 / 7$ and $s_{0}^{4} K^{2 / 3} \log (p n)=O\left(n^{\xi_{2}}\right)$ for some $0<\xi_{2}<\frac{1}{3}(1-2 / q)$. Let

$$
\begin{equation*}
\boldsymbol{S}^{\boldsymbol{Z}}(k)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{k} \boldsymbol{Z}_{i}-\frac{k}{n} \sum_{i=1}^{n} \boldsymbol{Z}_{i}\right), \quad \boldsymbol{S}^{\boldsymbol{G}}(k)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{k} \boldsymbol{G}_{i}-\frac{k}{n} \sum_{i=1}^{n} \boldsymbol{G}_{i}\right), \tag{S6.6}
\end{equation*}
$$

be the partial sum processes for $\left(\boldsymbol{Z}_{i}\right)_{i \geq 1}$ and $\left(\boldsymbol{G}_{i}\right)_{i \geq 1}$, respectively. If $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ satisfy (M1), (M2) and (M3), then there is a constant $\zeta_{0}>0$ such that

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(\max _{k_{0} \leq k \leq n-k_{0}}\left\|\boldsymbol{S}^{\boldsymbol{Z}}(k)\right\|_{\left(s_{0}, 2\right)} \leq z\right)-\mathbb{P}\left(\sup _{k_{0} \leq k \leq n-k_{0}}\left\|\boldsymbol{S}^{\boldsymbol{G}}(k)\right\|_{\left(s_{0}, 2\right)} \leq z\right)\right| \leq C n^{-\zeta_{0}}, \tag{S6.7}
\end{equation*}
$$

where C is a constant only depending on b, q, K and $k_{0}:=\left\lfloor n q_{0}\right\rfloor$ for some $0<q_{0}<0.5$.

The following Lemmas 7 and 8 present the orders for the partial sum process of $\{\boldsymbol{X} \epsilon\}_{i=1}^{n}$ as well as the ℓ_{∞}-norm based uniform large deviation bound for $\widehat{\boldsymbol{\Sigma}}(0: t)$ and $\widehat{\boldsymbol{\Sigma}}(t: 1)$, which will be frequently used throughout the proofs.

Lemma 7. Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ be independent centered random vectors in \mathbb{R}^{p} and $\epsilon_{1}, \ldots, \epsilon_{n}$ be independent centered random vectors in \mathbb{R}^{1}. Suppose further that $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$ and $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ satisfy Assumptions $\mathbf{A}-\mathbf{C}$ in the
main paper. Then, for any sequence $a_{n} \in(0,1)$ and $b_{n} \in(0,1)$ satisfying $\left\lfloor n a_{n}\right\rfloor \rightarrow \infty$ and $\left\lfloor n b_{n}\right\rfloor \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\begin{align*}
& \max _{t \in\left[a_{n}, 1-b_{n}\right]} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} X_{i j} \epsilon_{i}\right)\right| \\
& \quad=\max _{t \in\left[a_{n}, 1-b_{n}\right]}\left\|\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right)\right\|_{\infty} \tag{S6.8}\\
& \quad=O_{p}\left(M \sqrt{\log \left(p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)\right)}\right),
\end{align*}
$$

where $\underline{k}_{n}:=\left\lfloor n a_{n}\right\rfloor$ and $\bar{k}_{n}:=\left\lfloor n b_{n}\right\rfloor$. Moreover, we can also have the following results:

$$
\begin{align*}
& \max _{t \in\left[a_{n}, 1-b_{n}\right]} \max _{1 \leq j \leq p}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \epsilon_{i}\right|=\max _{t \in\left[a_{n}, 1-b_{n}\right]}\left\|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty} \\
& =O_{p}\left(M \sqrt{\frac{\log (p n)}{\underline{k}_{n}}} \max \left\{1, n^{1 / 4} \sqrt{\frac{\log (p n)}{\underline{k}_{n}}}\right\}\right) . \tag{S6.9}
\end{align*}
$$

Lemma 8. Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ be independent centered random vectors in \mathbb{R}^{p} satisfying Assumption A. Let $\boldsymbol{\Sigma}=\operatorname{Cov}\left(\boldsymbol{X}_{1}\right)$. Recall $\widehat{\boldsymbol{\Sigma}}(s: t)$ defined in S4.2). Then, for any sequence $a_{n} \in(0,1)$ and $b_{n} \in(0,1)$ satisfying $\left\lfloor n a_{n}\right\rfloor \rightarrow \infty$ and $\left\lfloor n b_{n}\right\rfloor \rightarrow \infty$ as $n \rightarrow \infty$, with probability at least $1-(n p)^{-C_{1}}$, we have:

$$
\begin{aligned}
& \max _{a_{n} \leq t \leq 1-b_{n}}\|\widehat{\boldsymbol{\Sigma}}(0: t)-\boldsymbol{\Sigma}\|_{\infty} \leq C_{2} M^{2} \sqrt{\frac{\log (p n)}{\left\lfloor n a_{n}\right\rfloor}}, \\
& \max _{a_{n} \leq t \leq 1-b_{n}}\|\widehat{\boldsymbol{\Sigma}}(t: 1)-\boldsymbol{\Sigma}\|_{\infty} \leq C_{3} M^{2} \sqrt{\frac{\log (p n)}{\left\lfloor n b_{n}\right\rfloor}}
\end{aligned}
$$

Moreover, if we take $a_{n}=b_{n}=q_{0} \in(0,0.5)$, we have

$$
\begin{aligned}
& \max _{q_{0} \leq t \leq 1-q_{0}}\|\widehat{\Sigma}(0: t)-\boldsymbol{\Sigma}\|_{\infty} \leq C_{4} M^{2} \sqrt{\frac{\log (p n)}{n}} \\
& \max _{q_{0} \leq t \leq 1-q_{0}}\|\widehat{\Sigma}(t: 1)-\Sigma\|_{\infty} \leq C_{5} M^{2} \sqrt{\frac{\log (p n)}{n}}
\end{aligned}
$$

where C_{1}, \ldots, C_{5} are some universal constants. Note that Lemma 8 is a direct consequence of Lemma 3. The proof is ommitted.

Note that for proving our results, we need some theoretical analysis for the lasso estimator defined in (2.10). The following Lemmas 9 - 11 show the lasso property for $\alpha \in[0,1]$ under both \mathbf{H}_{0} and \mathbf{H}_{1}, which is very important for deriving the theoretical results for the individual test. Before presenting the details, for each $\alpha \in[0,1]$, we introduce $\underset{\sim}{\boldsymbol{\beta}^{*}}=\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ with $\boldsymbol{b}^{*}=\left(b_{1}^{*}, \ldots, b_{K}^{*}\right)^{\top} \in \mathbb{R}^{K}$, where
$\underset{\sim}{\boldsymbol{\beta}^{*}}:=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}, \boldsymbol{b} \in \mathbb{R}^{K}}{\arg \min } \mathbb{E}\left[(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau_{k}}\left(Y_{i}-b_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)+\frac{\alpha}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right]$.

Note that by definition, we can regard ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$ as the true parameters under the population level. In this paper, we assume $\boldsymbol{\beta}^{*}$ enjoys some sparsity property in the sense that $\mathcal{M}\left(\boldsymbol{\beta}^{*}\right)=O(s)$. Moreover, the properties of $\boldsymbol{\beta}^{*}$ are discussed in Sections S9.3-S9.5, respectively.

The following Lemma 9 shows the lasso property with $\alpha=1$. The proof of Lemma 9 is given in Section S9.3.

Lemma 9 (Lasso property with $\alpha=1$). Let $\widehat{\boldsymbol{\beta}}$ be the lasso estimator with $\alpha=1$ defined in 2.10). Let $\lambda_{\alpha}=C_{\lambda} M^{2} \sqrt{\log (p n) / n}$ for some big enough constant $C_{\lambda}>0$. Assume Assumptions A, B, C.2, E. 2 - E. 3 hold.

Then, with probability tending to one, we have

$$
\begin{equation*}
\frac{1}{2 n}\left\|\mathbf{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)\right\|^{2} \leq C_{2} \lambda^{2} s, \quad\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{q} \leq C_{3} \lambda s^{1 / q}, \text { and } \mathcal{M}(\widehat{\boldsymbol{\beta}}) \leq C_{4} s, \quad \text { for } q=1,2 \tag{S6.11}
\end{equation*}
$$

The following Lemma 10 shows the lasso property with $\alpha=0$ under both \mathbf{H}_{0} and \mathbf{H}_{1}. The proof of Lemma 10 is given in Section S9.4.

Lemma 10 (Lasso property with $\alpha=0$). Let $\widehat{\boldsymbol{\beta}}$ be the lasso estimator with $\alpha=0$ defined in 2.10. Let $\lambda=C_{\lambda} M \sqrt{\log (p n) / n}$ for some big enough constant $C_{\lambda}>0$. Assume Assumptions A, D, E. 2 - E. 3 hold. Then, with probability tending to one, we have

$$
\begin{equation*}
\frac{1}{n}\left\|\mathbf{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)\right\|^{2} \leq C_{2} \lambda^{2} s, \quad\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}^{*}}\right\|_{q} \leq C_{3} \lambda s^{1 / q}, \text { and } \mathcal{M}(\widehat{\boldsymbol{\beta}}) \leq C_{4} s, \quad \text { for } q=1,2 \tag{S6.12}
\end{equation*}
$$

The following Lemma 11 shows the lasso property with $\alpha \in(0,1)$ under both \mathbf{H}_{0} and \mathbf{H}_{1}. The proof of Lemma 11 is given in Section S9.5.

Lemma 11 (Lasso property with $\alpha \in(0,1)$). Let $\widehat{\boldsymbol{\beta}}$ be the lasso estimator with $\alpha \in(0,1)$ defined in 2.10). Let $\lambda=C_{\lambda} M^{2} \sqrt{\log (p n) / n}$ for some big enough constant $C_{\lambda}>0$. Assume Assumptions A, B, C.2, D, E. 2 -
E. 3 hold. Then, with probability tending to one, we have

$$
\begin{equation*}
\frac{1}{n}\left\|\mathbf{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)\right\|^{2} \leq C_{2} \lambda^{2} s, \quad\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}\right\|_{q} \leq C_{3} \lambda s^{1 / q}, \text { and } \mathcal{M}(\widehat{\boldsymbol{\beta}}) \leq C_{4} s, \quad \text { for } q=1,2 \tag{S6.13}
\end{equation*}
$$

S7 Proof of main results

S7.1 Proof of Theorem 1

In this section, we prove the variance estimation results under \mathbf{H}_{0}, which are given in Sections S7.1.1-S7.1.2, respectively. For simplicity, we omit the subscript α whenever needed.

S7.1. \quad Proof of Theorem 1 with $\alpha=1$

Note that for $\alpha=1$, the variance estimators $\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}})$ and $\widehat{\sigma}_{+}^{2}(1, \widetilde{\boldsymbol{\tau}})$ reduce to

$$
\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[\widehat{\epsilon}_{i}\right]^{2}, \quad \widehat{\sigma}_{+}^{2}(1, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{+}\right|} \sum_{i \in n_{+}}\left[\widehat{\epsilon}_{i}\right]^{2},
$$

where $\widehat{\epsilon}_{i}$ is defined in 2.20 . Moreover, under \mathbf{H}_{0}, the change point estimator \widehat{t}_{1} can be an arbitrary number which satisfies $\widehat{t}_{1} \in\left[q_{0}, 1-q_{0}\right]$. We aim to prove both $\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}})$ and $\widehat{\sigma}_{+}^{2}(1, \widetilde{\boldsymbol{\tau}})$ are consistent. We first consider
$\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}})$. In fact, by the definition of $Y_{i}=\epsilon_{i}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(0)}$, we have:

$$
\begin{aligned}
& \widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}}) \\
& =\underbrace{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \epsilon_{i}^{2}}_{I}+\underbrace{\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)^{\top} \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)}_{I I} \\
& \quad+\underbrace{\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}} \epsilon_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}^{(1)}\right)}_{I I I} .
\end{aligned}
$$

For I, by Assumption C. 2 and according to the law of large numbers, we have $I-\sigma^{2}=O_{p}\left(\frac{1}{\sqrt{n}}\right)$. For $I I$, similar to the proof of Lemma 9 , under \mathbf{H}_{0} and Assumptions A, B, C.2, E. 2 - E.4, one can prove $I I=O_{p}\left(s \frac{\log (p n)}{n}\right)$. For $I I I$, using the Cauchy-Swartz inequality, we have: $I I I \leq 2 \sqrt{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \epsilon_{i}^{2}} \times \sqrt{\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)^{\top} \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)}=O_{p}\left(\sqrt{s \frac{\log (p n)}{n}}\right)$.

Combining the above results, by Assumption E.2, we have:

$$
\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}})-\sigma^{2}=O_{p}\left(\sqrt{s \frac{\log (p n)}{n}}\right)
$$

With a similar analysis, we can prove that the same bound applies to $\widehat{\sigma}_{+}^{2}(1, \widetilde{\boldsymbol{\tau}})-\sigma^{2}$, which yields:

$$
\left|\widehat{\sigma}^{2}(1, \widetilde{\boldsymbol{\tau}})-\sigma^{2}\right|=\left|\widehat{t}_{1} \times\left(\widehat{\sigma}_{-}^{2}(1, \widetilde{\boldsymbol{\tau}})-\sigma^{2}\right)+\left(1-\widehat{t}_{1}\right) \times\left(\widehat{\sigma}_{+}^{2}(1, \widetilde{\boldsymbol{\tau}})-\sigma^{2}\right)\right|=O_{p}\left(\sqrt{s \frac{\log (p n)}{n}}\right)
$$

S7.1.2 Proof of Theorem 1 with $\alpha=0$

Note that for $\alpha=0$, the true variance has the following explicit form:
$\sigma^{2}(0, \widetilde{\boldsymbol{\tau}}):=\operatorname{Var}\left[e_{i}(\widetilde{\boldsymbol{\tau}})\right]=\frac{1}{K^{2}} \sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} \gamma_{k_{1} k_{2}}$, with $\gamma_{k_{1} k_{2}}:=\min \left(\tau_{k_{1}}, \tau_{k_{2}}\right)-\tau_{k_{1}} \tau_{k_{2}}$.
In this case, the variance estimators $\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})$ and $\widehat{\sigma}_{+}^{2}(0, \widetilde{\boldsymbol{\tau}})$ reduce to

$$
\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2}, \quad \widehat{\sigma}_{+}^{2}(0, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{+}\right|} \sum_{i \in n_{+}}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2}
$$

where $\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})=K^{-1} \sum_{k=1}^{K} \widehat{e}_{i}\left(\tau_{k}\right)$ with $\widehat{e}_{i}\left(\tau_{k}\right)$ being defined in 2.21. Let $\underset{\sim}{\boldsymbol{\beta}^{(0)}}:=\left(\left(\boldsymbol{\beta}^{(0)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top}$ be the true parameters under \mathbf{H}_{0} and $\underset{\sim}{\widehat{\boldsymbol{\beta}}}{ }^{(1)}:=$ $\left.\left.\left(\widehat{\boldsymbol{\beta}}^{(1)}\right)^{\top}, \widehat{\boldsymbol{b}}^{(1)}\right)^{\top}\right)^{\top}$ and $\left.\left.\underset{\sim}{\widehat{\boldsymbol{\beta}}^{(2)}}:=\left(\widehat{\boldsymbol{\beta}}^{(2)}\right)^{\top}, \widehat{\boldsymbol{b}}^{(1)}\right)^{\top}\right)^{\top}$ be the estimators using samples in n_{-}and n_{+}, respectively. Similar to the proof of Lemma 10, under \mathbf{H}_{0} and Assumptions A, D, E. 2 - E.4, we can prove that:

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\beta}}^{(1)}-\underset{\sim}{\boldsymbol{\beta}^{(0)}}\right\|_{1}=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right), \quad\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}^{(2)}}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right) . \tag{S7.14}
\end{equation*}
$$

We first prove the consistency of $\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})$. For $\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})$ with $i \in n_{-}$, it has the following decomposition:

$$
\begin{equation*}
\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})=e_{i}(\widetilde{\boldsymbol{\tau}})+\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]+\underbrace{\left\{\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})-\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]\right\}}_{V_{i}(\widetilde{\boldsymbol{\tau}})}, \tag{S7.15}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K} e_{i}\left(\tau_{k}\right), \text { with } e_{i}\left(\tau_{k}\right)=\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}-\tau_{k}, \\
& \mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]:=\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\widehat{e}_{i}\left(\tau_{k}\right)-e_{i}\left(\tau_{k}\right)\right], \tag{S7.16}\\
& V_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K} V_{i}\left(\tau_{k}\right),
\end{align*}
$$

and

$$
\begin{aligned}
V_{i}\left(\tau_{k}\right)= & {\left[\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}^{(1)}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}^{(1)} \leq 0\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right] } \\
& -\mathbb{E}\left[\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}^{(1)}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}^{(1)} \leq 0\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right] .
\end{aligned}
$$

By the Taylor's expansion, for $\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]$, we can further decompose it into two terms:

$$
\begin{equation*}
\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]=\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\widehat{e}_{i}\left(\tau_{k}\right)-e_{i}\left(\tau_{k}\right)\right]=\underbrace{\frac{1}{K} \sum_{k=1}^{K} M_{i}^{(1)}\left(\tau_{k}\right)}_{M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})}+\underbrace{\frac{1}{K} \sum_{k=1}^{K} M_{i}^{(2)}\left(\tau_{k}\right)}_{M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})}, \tag{S7.17}
\end{equation*}
$$

where

$$
\begin{align*}
M_{i}^{(1)}\left(\tau_{k}\right) & :=f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{b}_{k}^{(1)}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)\right), \\
M_{i}^{(2)}\left(\tau_{k}\right) & :=\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}^{(1)}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)\right)^{2} \tag{S7.18}
\end{align*}
$$

with $\xi_{i k}$ being some constant that between $b_{k}^{(0)}$ and $\widehat{b}_{k}^{(1)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)$. Hence, based on the above decomposition, for $\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})$, it can be decomposed into ten terms:

$$
\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})=A_{1}+\cdots+A_{10}
$$

where A_{1}, \cdots, A_{10} are defined as:

$$
\begin{aligned}
& A_{1}:=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[e_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2}-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}}), \quad A_{2}:=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\right]^{2} \\
& A_{3}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right]^{2}, \quad A_{4}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[V_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2} \\
& A_{5}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\right], \quad A_{6}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right] \\
& A_{7}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) V_{i}(\widetilde{\boldsymbol{\tau}})\right], \quad A_{8}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}}) M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right] \\
& A_{9}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}}) V_{i}(\widetilde{\boldsymbol{\tau}})\right], \quad A_{10}:=\frac{2}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}}) V_{i}(\widetilde{\boldsymbol{\tau}})\right] .
\end{aligned}
$$

Next, we consider the above ten terms, respectively. For A_{1}, by the law of large numbers, we have $A_{1}=O_{p}\left(n^{-1 / 2}\right)$. For A_{2} and A_{3}, by Assumption A. 2 and the bounds in $\overline{\mathrm{S} 7.14}$, we can prove that

$$
\left|A_{2}\right|=O_{p}\left(\left\|{\underset{\sim}{\widehat{\boldsymbol{\beta}}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{2}\right), \quad\left|A_{3}\right|=O_{p}\left(\left\|\widehat{\sim}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{4}\right) .
$$

For A_{4}, similar to the proof in Lemma 17 but using very tedious modifications, we can prove

$$
\left|A_{4}\right|=O_{p}\left(\left\|{\underset{\sim}{\widehat{\boldsymbol{\beta}}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{1 / 2} \sqrt{s \frac{\log (p n)}{n}}\right)=O_{p}\left(s\left(\frac{\log (p n)}{n}\right)^{\frac{3}{4}}\right) .
$$

For $A_{5}-A_{10}$, using the obtained bounds and the Cauchy-Swartz inequality, we have:

$$
\begin{aligned}
& \left|A_{5}\right|=O_{p}\left(\left\|\widehat{\sim}^{(1)}-\underset{\sim}{\boldsymbol{\beta}^{(0)}}\right\|_{1}\right), \quad\left|A_{6}\right|=O_{p}\left(\left\|{\underset{\sim}{\widehat{\boldsymbol{\beta}}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{2}\right), \\
& \left|A_{7}\right|=O_{p}\left(\left\|{\underset{\sim}{\widehat{\boldsymbol{\beta}}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{1 / 4}\left(s \frac{\log (p n)}{n}\right)^{1 / 4}\right)=O_{p}\left(s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right), \\
& \left|A_{8}\right|=O_{p}\left(\left\|\widehat{\sim}_{\sim}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{3}\right), \quad\left|A_{9}\right|=O_{p}\left(\left\|\widehat{\sim}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{5 / 4}\left(\frac{\log (p n)}{n}\right)^{1 / 4}\right), \\
& \left|A_{10}\right|=O_{p}\left(\left\|\widehat{\sim}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{9 / 4}\left(s \frac{\log (p n)}{n}\right)^{1 / 4}\right) .
\end{aligned}
$$

By Assumption E.2, we can see that $\left|A_{5}\right|$ and $\left|A_{7}\right|$ dominate the other terms.
Hence, we have:

$$
\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right) .
$$

With a similar analysis, we can prove that the same bound applies to $\widehat{\sigma}_{+}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})$, which yields:

$$
\begin{aligned}
& \left|\widehat{\sigma}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})\right| \\
& =\left|\widehat{t}_{0} \times\left(\widehat{\sigma}_{-}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})\right)+\left(1-\widehat{t}_{0}\right) \times\left(\widehat{\sigma}_{+}^{2}(0, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})\right)\right| \\
& =O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right) .
\end{aligned}
$$

S7.1.3 Proof of Theorem 1 with $\alpha \in(0,1)$

Note that for $\alpha \in(0,1)$, the true variance has the following explicit form:

$$
\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})=(1-\alpha)^{2} \mathbb{E}\left[e_{i}^{2}(\widetilde{\boldsymbol{\tau}})\right]+\alpha^{2} \sigma^{2}-2 \alpha(1-\alpha) \mathbb{E}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}\right] .
$$

In this case, the variance estimators $\widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ and $\widehat{\sigma}_{+}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ reduce to
$\widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[(1-\alpha) \widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \widehat{\epsilon}_{i}\right]^{2}, \widehat{\sigma}_{+}^{2}(\alpha, \widetilde{\boldsymbol{\tau}}):=\frac{1}{\left|n_{+}\right|} \sum_{i \in n_{+}}\left[(1-\alpha) \widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \widehat{\epsilon}_{i}\right]^{2}$,
where $\widehat{\epsilon}_{i}$ is defined in 2.20 and $\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})=K^{-1} \sum_{k=1}^{K} \widehat{e}_{i}\left(\tau_{k}\right)$ with $\widehat{e}_{i}\left(\tau_{k}\right)$ being defined in 2.21. Recall ${\underset{\sim}{\boldsymbol{\beta}}}^{(0)}:=\left(\left(\boldsymbol{\beta}^{(0)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top}$ are the true parameters under \mathbf{H}_{0}, and $\left.\left.\widehat{\boldsymbol{\beta}}_{\sim}^{(1)}:=\left(\widehat{\boldsymbol{\beta}}^{(1)}\right)^{\top}, \widehat{\boldsymbol{b}}^{(1)}\right)^{\top}\right)^{\top}$ as well as $\left.\left.\widehat{\sim}^{(2)}:=\left(\widehat{\boldsymbol{\beta}}^{(2)}\right)^{\top}, \widehat{\boldsymbol{b}}^{(1)}\right)^{\top}\right)^{\top}$ are the estimators using samples in n_{-}and n_{+}, respectively. Similar to the proof of Lemma 11, under \mathbf{H}_{0} and Assumptions A, B, C.2, D, E. 2 E. 4 , one can prove that:

$$
\begin{align*}
& \left\|\widehat{\boldsymbol{\beta}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right), \quad\left\|\widehat{\boldsymbol{\beta}}^{(2)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right), \\
& \left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)^{\top} \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(1)}-\boldsymbol{\beta}^{(0)}\right)=O_{p}\left(s \frac{\log (p n)}{n}\right), \\
& \left(\widehat{\boldsymbol{\beta}}^{(2)}-\boldsymbol{\beta}^{(0)}\right)^{\top} \frac{1}{\left|n_{+}\right|} \sum_{i \in n_{+}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}^{(2)}-\boldsymbol{\beta}^{(0)}\right)=O_{p}\left(s \frac{\log (p n)}{n}\right) . \tag{S7.19}
\end{align*}
$$

We first prove the consistency of $\widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$. For $\widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$, it can be decomposed into three terms:

$$
\begin{align*}
& \widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}}) \\
& =(1-\alpha)^{2} \underbrace{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left(\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})^{2}-\mathbb{E}\left[e_{i}^{2}(\widetilde{\boldsymbol{\tau}})\right]\right)}_{A}+\alpha^{2} \frac{1}{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left(\hat{\epsilon}_{i}^{2}-\sigma^{2}\right)} \tag{S7.20}\\
& -2 \alpha(1-\alpha) \underbrace{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left(\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}}) \widehat{\epsilon}_{i}-\mathbb{E}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}\right]\right) .}_{B}
\end{align*}
$$

Next, we consider the three terms A, B, and C, respectively. For B, using the bounds obtained in Section S7.1.1. we have: $B=O_{p}\left(\sqrt{s \frac{\log (p n)}{n}}\right)$. For A, using the bounds in Section S7.1.2, we have:

$$
A=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right)
$$

Next, we consider C. By the decomposition of $e_{i}(\widetilde{\boldsymbol{\tau}})$ in (S7.16) and the fact that $\widehat{\epsilon}_{i}=\epsilon_{i}+\widehat{\epsilon}_{i}-\epsilon_{i}$, we can decompose C into eight terms:

$$
\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left(\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}}) \widehat{\epsilon}_{i}-\mathbb{E}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}\right]\right)=C_{1}+\cdots+C_{8}
$$

where

$$
\begin{aligned}
C_{1} & =\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left(e_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}-\mathbb{E}\left[e_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}\right]\right) \quad C_{2}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}, \\
C_{3} & =\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}, \quad C_{4}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} V_{i}(\widetilde{\boldsymbol{\tau}}) \epsilon_{i}, \\
C_{5} & =\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} e_{i}(\widetilde{\boldsymbol{\tau}})\left(\widehat{\epsilon_{i}}-\epsilon_{i}\right), \quad C_{6}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\left(\widehat{\epsilon}_{i}-\epsilon_{i}\right), \\
C_{7} & =\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\left(\widehat{\epsilon_{i}}-\epsilon_{i}\right), \quad C_{8}=\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} V_{i}(\widetilde{\boldsymbol{\tau}})\left(\widehat{\epsilon_{i}}-\epsilon_{i}\right) .
\end{aligned}
$$

For C_{1}, by the law of large numbers, we have $C_{1}=O_{p}\left(n^{-1 / 2}\right)$. Note that using the bounds in (S7.19), with similar proof techniques as in Sections S7.1.1 and S7.1.2, we can prove:

$$
\begin{aligned}
& \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\right]^{2}=O_{p}\left(\left\|\widehat{\sim}_{\sim}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{2}\right), \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right]^{2}=O_{p}\left(\left\|\widehat{\boldsymbol{\beta}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{4}\right), \\
& \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[V_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2}= O_{p}\left(\left\|\widehat{\boldsymbol{\beta}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(0)}\right\|_{1}^{1 / 2} \sqrt{s \frac{\log (p n)}{n}}\right)=O_{p}\left(s\left(\frac{\log (p n)}{n}\right)^{\frac{3}{4}}\right) \\
& \frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[\widehat{\epsilon}_{i}-\epsilon_{i}\right]^{2}=O_{p}\left(s \frac{\log (p n)}{n}\right) .
\end{aligned}
$$

Hence, for $C_{2}-C_{8}$ using the above bounds and the Cauchy-Swartz inequality, one can see that C_{2} and C_{4} dominate the other terms. Specifically, we have:

$$
\left|C_{2}\right| \leq \sqrt{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \epsilon_{i}^{2}} \times \sqrt{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\right]^{2}}=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right),
$$

and

$$
\left|C_{4}\right| \leq \sqrt{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}} \epsilon_{i}^{2}} \times \sqrt{\frac{1}{\left|n_{-}\right|} \sum_{i \in n_{-}}\left[V_{i}(\widetilde{\boldsymbol{\tau}})\right]^{2}}=O_{p}\left(s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right)
$$

which implies

$$
C=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right) .
$$

Lastly, combining $(\mathrm{S7.20}$) and the obtained upper bounds for A, B and C, we have

$$
\widehat{\sigma}_{-}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right) .
$$

With a similar analysis, we can prove the same bound applies to $\widehat{\sigma}_{+}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-$ $\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$, which yields:

$$
\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})\right|=O_{p}\left(s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}\right) .
$$

S7.2 Proof of Theorem 2

In this section, we prove the Gaussian approximation results under \mathbf{H}_{0}, which are given in Sections S7.2.1-S7.2.3, respectively. For simplicity, we omit the subscript α whenever needed.

S7.2.1 Gaussian approximation for $\alpha=1$

Proof. In this section, we give the size results for $\alpha=1$. Note that in this case, our individual based test statistic T_{1} reduces to the least squared based score type test statistic. Let $\boldsymbol{z}(\boldsymbol{x}, y ; \boldsymbol{\beta})=\boldsymbol{x}\left(y-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right):=-S_{1}(y, \boldsymbol{x} ; \widetilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{\beta})$ be the negative score for the ℓ_{2}-loss. Let $\boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \boldsymbol{\beta}\right)=\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)$ be the sample version. In this section, we aim to prove:

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(T_{1} \leq z\right)-\mathbb{P}\left(T_{1}^{b} \leq z \mid \mathcal{X}\right)\right|=o_{p}(1), \text { as } n, p \rightarrow \infty \tag{S7.21}
\end{equation*}
$$

The proof proceeds into three steps.
Step 1: Decomposition of T_{1}. Note that for $\alpha=1$, the score based CUSUM process reduces to:

$$
\begin{equation*}
\boldsymbol{C}_{1}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(1, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \widehat{\boldsymbol{\beta}}\right)\right), \tag{S7.22}
\end{equation*}
$$

where $\widehat{\boldsymbol{\beta}}$ is the lasso estimator defined in 2.10 and $\widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})$ is the variance estimator defined in 2.22 . By definition, we have $T_{1}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)\right\|_{\left(s_{0}, 2\right)}$.
Replacing $\widehat{\boldsymbol{\beta}}$ by $\boldsymbol{\beta}^{(0)}$ in $\boldsymbol{C}_{1}(t)$, we have:

$$
\boldsymbol{C}_{1}(t)=\boldsymbol{C}_{1}^{I}(t)+\boldsymbol{C}_{1}^{I I}(t)
$$

where $\boldsymbol{C}_{1}^{I}(t)$ and $\boldsymbol{C}_{I 1}^{I}(t)$ are defined as

$$
\begin{gather*}
\boldsymbol{C}_{1}^{I}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(1, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right), \\
\boldsymbol{C}_{1}^{I I}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(1, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)\right) . \tag{S7.23}
\end{gather*}
$$

Note that we can regard $\boldsymbol{C}_{1}^{I}(t)$ as the leading term of $\boldsymbol{C}_{1}(t)$ and $\boldsymbol{C}_{1}^{I I}(t)$ as the residual term. Moreover, replacing $\widehat{\sigma}(1, \widetilde{\boldsymbol{\tau}})$ by $\sigma^{2}:=\operatorname{Var}(\epsilon)$ in $\boldsymbol{C}_{1}^{I}(t)$, we can define the oracle leading term as:

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{1}^{I}(t)=\frac{1}{\sqrt{n} \sigma}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right) \tag{S7.24}
\end{equation*}
$$

The following Lemma 12 shows that we can approximate T_{1} by $\widetilde{\boldsymbol{C}}_{1}^{I}(t)$ in terms of the $\left(s_{0}, 2\right)$-norm. The proof of Lemma 12 is provided in Section S8.1.

Lemma 12. Assume Asssumptions A, B, C.2, E.2-E. 4 hold. Under \mathbf{H}_{0}, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S7.25}
\end{equation*}
$$

where $\epsilon:=C s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n}$ for some big enough universal constant $C>$ 0.

Step 2: Gaussian approximation for the oracle leading term. By Lemma 12, we only need to consider Gaussian approximation for the process $\left\{\widetilde{\boldsymbol{C}}_{1}^{I}(t), q_{0} \leq t \leq 1-q_{0}\right\}$. Recall the bootstrap based CUSUM process for $\alpha=1$ as:

$$
\begin{equation*}
\boldsymbol{C}_{1}^{b}(t)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} e_{i}^{b}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}^{b}\right) \tag{S7.26}
\end{equation*}
$$

where $e_{i}^{b} \sim N(0,1)$. By definition, the bootstrap based testing statistic is

$$
T_{1}^{b}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)}
$$

Let $\boldsymbol{Z}_{i}=\left(Z_{i 1}, \ldots, Z_{i p}\right)^{\top}$ with $Z_{i j}:=X_{i j} \epsilon_{i} / \sigma$ and $\boldsymbol{G}_{i}=\left(G_{i 1}, \ldots, G_{i p}\right)^{\top}$ with $\boldsymbol{G}_{i} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}=\operatorname{Cov}\left(\boldsymbol{X}_{1}\right)$. One can see that \boldsymbol{G}_{i} has the same covariance matrix as \boldsymbol{Z}_{i}. Define

$$
\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{G}_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{G}_{i}\right), \quad \text { and } \quad T_{1}^{\boldsymbol{G}}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)} .
$$

By Assumptions A, C, E.1, we can verify that the Conditions (M1) -
(M3) in Lemma 6 hold. Hence, by Lemma 6, we can prove

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}\right\|_{\left(s_{0}, 2\right)} \leq z\right)-\mathbb{P}\left(T_{1}^{\boldsymbol{G}} \leq z\right)\right| \leq n^{-\xi_{0}}, \text { for some } \xi_{0}>0 \tag{S7.27}
\end{equation*}
$$

Next, we aim to approximate $T_{1}^{b} \mid \mathcal{X}$ by T_{1}^{G}. The result is based on the following Lemma 13 .

Lemma 13. Suppose Assumptions A, E. 1 are satisfied. Then, under \mathbf{H}_{0}, we have

$$
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)}>z\right)-\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)}>z \mid \mathcal{X}\right)\right|=o_{p}(1) .
$$

Hence, based on Lemma 13, we show that the two Gaussian processes $\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)$ and $\boldsymbol{C}^{b}(t) \mid \mathcal{X}$ with $q_{0} \leq t \leq 1-q_{0}$ can be uniformly close to each other with the $\left(s_{0}, 2\right)$-norm. The proof of Lemma 13 is provided in Section

S8.2.
Step 3: Combining the previous results. In this step, we aim to combine the previous two steps for proving:

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(T_{1} \leq z\right)-\mathbb{P}\left(T_{1}^{b} \leq z \mid \mathcal{X}\right)\right|=o_{p}(1), \text { as } n, p \rightarrow \infty \tag{S7.28}
\end{equation*}
$$

In particular, we need to obtain the upper and lower bounds of ρ_{0}, where

$$
\begin{equation*}
\rho_{0}:=\mathbb{P}\left(T_{1}>z\right)-\mathbb{P}\left(T_{1}^{b}>z \mid \mathcal{X}\right) . \tag{S7.29}
\end{equation*}
$$

We first consider the upper bound. Note that $T_{1}=\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{1}(t)\right\|_{\left(s_{0}, 2\right)}$. By plugging $\widetilde{\boldsymbol{C}}_{1}^{I}(t)$ in T_{1} and using the triangle inequality of $\|\cdot\|_{\left(s_{0}, 2\right)}$, we have

$$
\begin{equation*}
\mathbb{P}\left(T_{1}>z\right) \leq \mathbb{P}\left(\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)}>z-\epsilon\right)+\rho_{1} \tag{S7.30}
\end{equation*}
$$

where $\rho_{1}:=\mathbb{P}\left(\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{1}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)}>\epsilon\right)$. By Lemma 12 , we have $\rho_{1}=o(1)$. For $\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}_{1}^{\mathrm{I}}(t)\right\|_{\left(s_{0}, 2\right)} \geq z-\epsilon\right)$, by the triangle inequality, we have
$\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}_{1}^{\mathrm{I}}(t)\right\|_{\left(s_{0}, 2\right)} \geq z-\epsilon\right) \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|C_{1}^{G}(t)\right\|_{\left(s_{0}, 2\right)} \geq z-\epsilon\right)+\rho_{2}$,
where

$$
\rho_{2}=\max _{x>0}\left|\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)}>x\right)-\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}^{\mathrm{I}}(t)\right\|_{\left(s_{0}, 2\right)}>x\right)\right| .
$$

By Lemma 6, we have $\rho_{2} \leq C n^{-\zeta_{0}}$. Therefore, by S7.30 and S7.31, we have proved that

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)\right\|_{\left(s_{0}, 2\right)} \geq z\right) \leq \underbrace{\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)} \geq z-\epsilon\right)}_{\rho_{3}}+o(1) . \tag{S7.32}
\end{equation*}
$$

We next consider ρ_{3}. We decompose ρ_{3} as $\rho_{3}=\rho_{4}+\rho_{5}$, where ρ_{4} and ρ_{5} are defined as
$\rho_{4}=\mathbb{P}\left(z-\epsilon \leq \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)} \leq z\right), \quad \rho_{5}=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)} \geq z\right)$.
By Lemmas 4 and 5 , we can show that $\rho_{4}=o(1)$. For ρ_{5}, we have

$$
\begin{equation*}
\left.\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)} \geq z\right) \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)} \geq z \mid \mathcal{X}\right)\right)+\rho_{6} \tag{S7.33}
\end{equation*}
$$

where
$\rho_{6}=\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)}>z\right)-\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)}>z \mid \mathcal{X}\right)\right|$.
By Lemma 13, we have $\rho_{6}=o_{p}(1)$. Therefore, by (S7.30) - S7.33), we have proved

$$
\mathbb{P}\left(T_{1} \geq z\right)-\mathbb{P}\left(T_{1}^{b} \geq z \mid \mathcal{X}\right)=o_{p}(1)
$$

uniformly for $z>0$. Similarly, we can obtain the lower bound and prove that

$$
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(T_{1} \geq z\right)-\mathbb{P}\left(T_{1}^{b} \geq z \mid \mathcal{X}\right)\right|=o_{p}(1)
$$

which finishes the proof of Theorem 2 for the individual test with $\alpha=1$.

S7.2.2 Gaussian approximation for $\alpha=0$

Proof. In this section, we give the size results for $\alpha=0$. Recall $0<\tau_{1}<$ $\cdots<\tau_{K}<1$ are user-specified K quantile levels. Let $\widetilde{\boldsymbol{\tau}}:=\left(\tau_{1}, \ldots, \tau_{K}\right)^{\top}$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{K}\right)^{\top}$. Note that in this case, our individual based test statistic T_{0} reduces to composite quantile loss based score type test statistic. Define the score function as:

$$
\begin{equation*}
z(\boldsymbol{x}, y ; \widetilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{\beta}):=\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{x}\left(\mathbf{1}\left\{y-b_{k}-\boldsymbol{x}^{\top} \boldsymbol{\beta} \leq 0\right\}-\tau_{k}\right), \tag{S7.34}
\end{equation*}
$$

and $Z\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{\beta}\right)$ as its sample version. For $\alpha=0$, we aim to prove:

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(T_{0} \leq z\right)-\mathbb{P}\left(T_{0}^{b} \leq z \mid \mathcal{X}\right)\right|=o_{p}(1), \text { as } n, p \rightarrow \infty \tag{S7.35}
\end{equation*}
$$

The proof proceeds into three steps.
Note that for $\alpha=0$, the score based CUSUM process reduces to:

$$
\begin{equation*}
\boldsymbol{C}_{0}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right) \tag{S7.36}
\end{equation*}
$$

where $\widehat{\boldsymbol{b}}$ and $\widehat{\boldsymbol{\beta}}$ are the lasso estimators defined in 2.10, and $\widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})$ is the variance estimator defined in 2.22 . By definition of T_{0}, we have $T_{0}=$ $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)\right\|_{\left(s_{0}, 2\right)}$. Before the proof, we need some notations. Let $\boldsymbol{\Delta}=$ $\boldsymbol{\beta}-\boldsymbol{\beta}^{(0)} \in \mathbb{R}^{p}, \boldsymbol{\delta}=\boldsymbol{b}-\boldsymbol{b}^{(0)} \in \mathbb{R}^{K}, \delta_{k}=b_{k}-b_{k}^{(0)} \in \mathbb{R}^{1}, \stackrel{\Delta}{\sim}{\underset{\sim}{k}}=\left(\boldsymbol{\Delta}^{\top}, \delta_{k}\right)^{\top} \in$
\mathbb{R}^{p+1}, and $\underset{\sim}{\boldsymbol{\Delta}}=\left(\boldsymbol{\Delta}^{\top}, \boldsymbol{\delta}^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$. Accordingly, we define $\widehat{\boldsymbol{\Delta}}, \widehat{\boldsymbol{\delta}}, \widehat{\delta}_{k}$, $\widehat{\boldsymbol{\Delta}}_{k}, \widehat{\boldsymbol{\Delta}}$ by using the corresponding estimators. Moreover, we define ${\underset{\sim}{\boldsymbol{X}}}_{i}=$ $\left(\boldsymbol{X}_{i}^{\top}, 1\right)^{\top} \in \mathbb{R}^{p+1}$ or $\boldsymbol{X}_{i}=\left(\boldsymbol{X}_{i}^{\top}, \mathbf{1}_{K}\right)^{\top} \in \mathbb{R}^{p+K}$ whenever it is used, where $\mathbf{1}_{K}$ is an \mathbb{R}^{K} dimensional vector with elements being 1 s . By the definition of $Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(0)}+\epsilon_{i}$, we have $Y_{i} \leq b_{k}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ which is equal to $\epsilon_{i} \leq$ $\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}_{k}+b_{k}^{(0)}$. Hence, by replacing $\widehat{\boldsymbol{\beta}}$ by $\boldsymbol{\beta}^{(0)}$ and $\widehat{\boldsymbol{b}}$ by $\boldsymbol{b}^{(0)}$ in $\boldsymbol{C}_{0}(t)$, we have the following decomposition:

$$
\begin{equation*}
\boldsymbol{C}_{0}(t)=\boldsymbol{C}_{0}^{I}(t)+\boldsymbol{C}_{0}^{I I}(t), \tag{S7.37}
\end{equation*}
$$

where $\boldsymbol{C}_{0}^{I}(t)$ and $\boldsymbol{C}_{0}^{I I}(t)$ are defined as

$$
\begin{gather*}
\boldsymbol{C}_{0}^{I}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})\right), \\
\boldsymbol{C}_{0}^{I I}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{\epsilon_{i} \leq{\underset{\sim}{X}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right)\right. \\
\left.\quad-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{\epsilon_{i} \leq{\underset{\sim}{X}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right)\right), \tag{S7.38}
\end{gather*}
$$

where $e_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K}\left(\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}-\tau_{k}\right):=\frac{1}{K} \sum_{k=1}^{K} e_{i}\left(\tau_{k}\right)$ be a random sample satisfying

$$
\begin{equation*}
\mathbb{E}\left[e_{i}(\widetilde{\boldsymbol{\tau}})\right]=0 \text { and } \operatorname{Var}\left[e_{i}(\widetilde{\boldsymbol{\tau}})\right]=\frac{1}{K^{2}} \sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} \gamma_{k_{1} k_{2}} \tag{S7.39}
\end{equation*}
$$

with $\gamma_{k_{1} k_{2}}:=\min \left(\tau_{k_{1}}, \tau_{k_{2}}\right)-\tau_{k_{1}} \tau_{k_{2}}$ for $\tau_{k_{1}}, \tau_{k_{2}} \in(0,1)$. Under this decomposition, we can regard $\boldsymbol{C}_{0}^{I}(t)$ as the leading term of $\boldsymbol{C}_{0}(t)$ and $\boldsymbol{C}_{0}^{I I}(t)$ as the residual term. Moreover, replacing $\widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})$ by $\sigma^{2}:=\operatorname{Var}\left(e_{i}(\widetilde{\boldsymbol{\tau}})\right)$ in $\boldsymbol{C}_{0}^{I}(t)$,
we can define the oracle leading term as:

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{0}^{I}(t)=\frac{1}{\sqrt{n} \sigma}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})\right) \tag{S7.40}
\end{equation*}
$$

The following Lemma 14 shows that we can approximate T_{0} by $\widetilde{\boldsymbol{C}}_{1}^{0}(t)$ in terms of $\left(s_{0}, 2\right)$-norm. The proof of Lemma 14 is provided in Section S8.3. Lemma 14. Assume Assumptions A, D, E.2-E. 4 hold. Under \mathbf{H}_{0}, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S7.41}
\end{equation*}
$$

where $\epsilon:=C M^{2} s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}$ for some big enough universal constant $C>0$.

Note that for the case of $\alpha=0$, the error term $\epsilon_{i}(\widetilde{\boldsymbol{\tau}})$ is a bounded random variable, which satisfies the assumptions in Lemma 6 trivially. Hence, by Lemma 14, Lemma 6, and using similar arguments of Steps 2 and 3 in Section S7.2.1, we can finish the proof of Theorem 2.

S7.2.3 Gaussian approximation for $\alpha \in(0,1)$

Proof. In this section, we give the size results for $\alpha \in(0,1)$. Recall $0<\tau_{1}<$ $\cdots<\tau_{K}<1$ are user-specified K quantile levels. Let $\widetilde{\boldsymbol{\tau}}:=\left(\tau_{1}, \ldots, \tau_{K}\right)^{\top}$
and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{K}\right)^{\top}$. For $\alpha \in(0,1)$, define the score function as:
$z(\boldsymbol{x}, y ; \widetilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{\beta}):=(1-\alpha) \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{x}\left(\mathbf{1}\left\{y-b_{k}-\boldsymbol{x}^{\top} \boldsymbol{\beta} \leq 0\right\}-\tau_{k}\right)-\alpha \boldsymbol{x}\left(y-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)$,
and $Z\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \boldsymbol{b}, \boldsymbol{\beta}\right)$ as its sample version. For $\alpha \in(0,1)$, we aim to prove:

$$
\begin{equation*}
\sup _{z \in(0, \infty)}\left|\mathbb{P}\left(T_{\alpha} \leq z\right)-\mathbb{P}\left(T_{\alpha}^{b} \leq z \mid \mathcal{X}\right)\right|=o_{p}(1), \text { as } n, p \rightarrow \infty \tag{S7.43}
\end{equation*}
$$

Note that for $\alpha \in(0,1)$, the score based CUSUM process reduces to:

$$
\begin{equation*}
\boldsymbol{C}_{\alpha}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right) \tag{S7.44}
\end{equation*}
$$

where $\widehat{\boldsymbol{b}}$ and $\widehat{\boldsymbol{\beta}}$ are the lasso estimators defined in 2.10, and $\widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})$ is the variance estimator defined in 2.22 . By definition of T_{α}, we have $T_{\alpha}=$ $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}$. Recall $\boldsymbol{\Delta}=\boldsymbol{\beta}-\boldsymbol{\beta}^{(0)} \in \mathbb{R}^{p}, \boldsymbol{\delta}=\boldsymbol{b}-\boldsymbol{b}^{(0)} \in \mathbb{R}^{K}$, $\delta_{k}=b_{k}-b_{k}^{(0)} \in \mathbb{R}^{1},{\underset{\Delta}{k}}^{\boldsymbol{\Delta}^{\prime}}=\left(\boldsymbol{\Delta}^{\top}, \delta_{k}\right)^{\top} \in \mathbb{R}^{p+1}$, and $\underset{\sim}{\boldsymbol{\Delta}}=\left(\boldsymbol{\Delta}^{\top}, \boldsymbol{\delta}^{\top}\right)^{\top} \in$ \mathbb{R}^{p+K}. Accordingly, recall $\widehat{\boldsymbol{\Delta}}, \widehat{\boldsymbol{\delta}}, \widehat{\delta}_{k}, \widehat{\boldsymbol{\Delta}}_{k}, \widehat{\boldsymbol{\Delta}}$ by using the corresponding lasso estimators. Moreover, we define $\underset{\sim}{\boldsymbol{X}}=\left(\boldsymbol{X}_{i}^{\top}, 1\right)^{\top} \in \mathbb{R}^{p+1}$ or $\underset{\sim}{\boldsymbol{X}}{ }_{i}=$ $\left(\boldsymbol{X}_{i}^{\top}, \mathbf{1}_{K}\right)^{\top} \in \mathbb{R}^{p+K}$ whenever it is used, where $\mathbf{1}_{K}$ is an \mathbb{R}^{K} dimensional vector with elements being 1s. Under \mathbf{H}_{0}, by the definition of $Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(0)}+$ ϵ_{i}, we have $Y_{i} \leq b_{k}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ which is equal to $\epsilon_{i} \leq{\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\boldsymbol{\Delta}}}_{k}+b_{k}^{(0)}$. Hence, by replacing $\widehat{\boldsymbol{\beta}}$ by $\boldsymbol{\beta}^{(0)}$ and $\widehat{\boldsymbol{b}}$ by $\boldsymbol{b}^{(0)}$ in $\boldsymbol{C}_{\alpha}(t)$, under \mathbf{H}_{0}, we have the following
decomposition:

$$
\begin{equation*}
\boldsymbol{C}_{\alpha}(t)=\boldsymbol{C}_{\alpha}^{I}(t)+\boldsymbol{C}_{\alpha}^{I I}(t) \tag{S7.45}
\end{equation*}
$$

where $\boldsymbol{C}_{\alpha}^{I}(t)$ and $\boldsymbol{C}_{\alpha}^{I I}(t)$ are defined as

$$
\begin{gather*}
\boldsymbol{C}_{\alpha}^{I}(t)=\frac{1}{\sqrt{n} \hat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right)\right) \\
\text { and } \boldsymbol{C}_{\alpha}^{I I}(t)=(1-\alpha) \boldsymbol{C}_{0}^{I I}(t)+\alpha \boldsymbol{C}_{1}^{I I}(t) \tag{S7.46}
\end{gather*}
$$

where $e_{i}(\widetilde{\boldsymbol{\tau}}):=K^{-1} \sum_{k=1}^{K}\left(\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}-\tau_{k}\right):=K^{-1} \sum_{k=1}^{K} e_{i}\left(\tau_{k}\right), \boldsymbol{C}_{1}^{I I}(t)$ is defined in S7.23), and $\boldsymbol{C}_{0}^{I I}(t)$ is defined in S7.38). Under this decomposition, we can regard $\boldsymbol{C}_{\alpha}^{I}(t)$ as the leading term of $\boldsymbol{C}_{\alpha}(t)$ and $\boldsymbol{C}_{\alpha}^{I I}(t)$ as the residual term. Moreover, replacing $\widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})$ by $\sigma^{2}:=\operatorname{Var}\left[(1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right]$ in $\boldsymbol{C}_{\alpha}^{I}(t)$, we can define the oracle leading term as:

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)=\frac{1}{\sqrt{n} \sigma}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right)\right) . \tag{S7.47}
\end{equation*}
$$

The following Lemma 15 shows that we can approximate T_{α} by $\widetilde{\boldsymbol{C}}_{1}^{\alpha}(t)$ in terms of the $\left(s_{0}, 2\right)$-norm. The proof of Lemma 15 is provided in Section S8.4.

Lemma 15. Assume Assumptions A, B, C.2, D, E. 2 - E. 4 hold. Under \mathbf{H}_{0}, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S7.48}
\end{equation*}
$$

where $\epsilon:=C M^{2} s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}$ for some big enough constant $C>0$ and C is a universal constant not depending on n or p.

Note that for the case of $\alpha \in(0,1)$, the error term $(1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}$ is a combination of a bounded random variable $e_{i}(\widetilde{\boldsymbol{\tau}})$ and ϵ_{i}, which can be proved to satisfy the assumptions in Lemma 6. Hence, by Lemma 14 , Lemma 6, and using similar arguments of Steps 2 and 3 as in Section S7.2.1, we finish the proof of Theorem 2 with $\alpha \in(0,1)$.

S7.3 Proof of Theorem 3

In this section, we give the change point estimation results for $\alpha=$ $1, \alpha=0$ and $\alpha \in(0,1)$, respectively. Before the proof, we need some notations. Note that by Assumption A, we have $\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)} \approx\|\boldsymbol{\Sigma} \boldsymbol{x}\|_{\left(s_{0}, 2\right)}$ for any $\boldsymbol{x} \in \mathbb{R}^{p}$. Hence, for simplicity, we assume $\boldsymbol{\Sigma}=\mathbf{I}$. Moreover, to make a clear result, we assume s_{0} is fixed with $s_{0} \leq s:=\left|\mathcal{S}^{(1)}\right| \vee\left|\mathcal{S}^{(2)}\right|$. Recall $\mathcal{M}=\left\{j: \beta_{j}^{(1)} \neq \beta_{j}^{(2)}\right\} \subset\{1, \ldots, p\}$ as the set of coordinates having a change point. For any $\boldsymbol{x} \in \mathbb{R}^{p}$ and the subset $J \subset\{1, \ldots, p\}$, define the projection operator $\Pi_{J} \boldsymbol{x} \in \mathbb{R}^{|J|}$ being the sub-vector of \boldsymbol{x} with the same coordinates of \boldsymbol{x} on J, e.g., $\Pi_{J} \boldsymbol{x}:=\left(x_{1}^{\prime}, \ldots, x_{|J|}^{\prime}\right)$ with $x_{j}^{\prime}=x_{j}$ for $j \in J$. Based on the definition of $\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)}$, we have $\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)}=\max _{J \subset\{1, \ldots, p\},|J|=s_{0}}\left\|\Pi_{J} \boldsymbol{x}\right\|_{2}$. In addition, for notational simplicity, we also assume $\lfloor n t\rfloor=n t$ for any
$t \in(0,1)$.
Throughout the following Sections S7.3.1-S7.3.3, we assume

$$
\begin{equation*}
\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} \gg C^{*} s_{0}^{1 / 2} M^{2} \sqrt{\frac{\log (p n)}{n}} \text { and } s_{0}^{1 / 2} M^{2} \sqrt{\frac{\log (p n)}{n}}=o(1) \tag{S7.49}
\end{equation*}
$$

for some big enough constant $C^{*}>0$.

S7.3.1 Change point estimation for $\alpha=1$

Proof. Recall $\boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \boldsymbol{\beta}\right)=\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)$ is the negative score for $\alpha=1$. For each $t \in\left[q_{0}, 1-q_{0}\right]$, define $\widetilde{\boldsymbol{C}}_{1}(t)=\left(\widetilde{C}_{11}(t), \ldots, \widetilde{C}_{1 p}(t)\right)^{\top}$ with

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{1}(t)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}_{i}\left(\boldsymbol{X}_{i}, Y_{i} ; \widehat{\boldsymbol{\beta}}\right)\right) . \tag{S7.50}
\end{equation*}
$$

Note that there is no variance estimator in $\widetilde{\boldsymbol{C}}_{1}(t)$. By definition, we have

$$
\widehat{t}_{1}:=\underset{t \in\left[q_{0}, 1-q_{0}\right]}{\arg \max }\left\|\widetilde{\boldsymbol{C}}_{1}(t)\right\|_{\left(s_{0}, 2\right)} .
$$

Let $\boldsymbol{\Delta}=\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}$ be the signal difference. Moreover, define the estimation error ϵ_{n} as:

$$
\begin{equation*}
\epsilon_{n}=C\left(s_{0}, M, q_{0}\right) \frac{\log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} . \tag{S7.51}
\end{equation*}
$$

To prove Theorem 3 with $\alpha=1$, we need to prove that as $n, p \rightarrow \infty$, by choosing a large enough constant $C\left(s_{0}, M, q_{0}\right)$ in ϵ_{n}, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{t_{1}}-t_{1}\right| \geq \epsilon_{n}\right) \rightarrow 0 \tag{S7.52}
\end{equation*}
$$

To that end, we have to prove

$$
\begin{align*}
& \mathbb{P}\left(\left|\widehat{t}_{1}-t_{1}\right| \geq \epsilon_{n}\right) \\
& \leq \mathbb{P}\left(\widehat{t_{1}} \geq t_{1}+\epsilon_{n}\right)+\mathbb{P}\left(\widehat{t_{1}} \leq t_{1}-\epsilon_{n}\right) \\
& \leq \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{1}(t)\right\|_{\left(s_{0}, 2\right)} \geq\left\|\widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)}\right)+\mathbb{P}\left(\max _{t \leq t_{1}-\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{1}(t)\right\|_{\left(s_{0}, 2\right)} \geq\left\|\widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)}\right) . \tag{S7.53}
\end{align*}
$$

Hence, to prove $\mathbb{P}\left(\left|\widehat{t_{1}}-t_{1}\right| \geq \epsilon_{n}\right) \rightarrow 0$, it is equivalent to prove

Next, we prove $\mathbb{P}\left(A_{1}\right) \rightarrow 1$ and $\mathbb{P}\left(A_{2}\right) \rightarrow 1$. By the symmetry, we only consider $\mathbb{P}\left(A_{1}\right) \rightarrow 1$. Define the two events \mathcal{H}_{1} and \mathcal{H}_{2} :

$$
\begin{align*}
& \mathcal{H}_{1}=\left\{\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{1}(t)\right\|_{\left(s_{0}, 2\right)}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}\right\}, \\
& \mathcal{H}_{2}=\left\{\left\|\widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)}:=\max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{2}=\max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{2}\right\} . \tag{S7.55}
\end{align*}
$$

The following Lemma 16 shows that \mathcal{H}_{1} and \mathcal{H}_{2} occur with high probability. The proof of Lemma 16 is provided in Section S8.5.

Lemma 16. Under Assumptions A, B, C.2, E.2-E.4, we have

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{H}_{1}\right) \rightarrow 1 \text { and } \mathbb{P}\left(\mathcal{H}_{2}\right) \rightarrow 1 \tag{S7.56}
\end{equation*}
$$

Now, under $\mathcal{H}_{1} \cap \mathcal{H}_{2}$, we have:

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right) & =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{1}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|_{2} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|^{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|^{2} \leq 0\right) .
\end{aligned}
$$

Note that under \mathbf{H}_{1}, we have the following decomposition

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{1}(t)=\boldsymbol{C}_{1}^{I}(t)+\boldsymbol{\delta}(t)+\boldsymbol{R}(t), \tag{S7.57}
\end{equation*}
$$

where $\boldsymbol{C}_{1}^{I}(t), \boldsymbol{\delta}(t)$ and $\boldsymbol{R}(t)$ are defined in (S7.99) and S7.100), respectively.
Similarly, we have

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)=\boldsymbol{C}_{1}^{I}\left(t_{1}\right)+\boldsymbol{\delta}\left(t_{1}\right)+\boldsymbol{R}\left(t_{1}\right) \tag{S7.58}
\end{equation*}
$$

by replacing t by t_{1}. To prove $\mathbb{P}\left(A_{1}\right) \rightarrow 1$, we consider $\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|^{2}-$ $\max _{\substack{J \subset \mathcal{M} \\|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|^{2} \leq 0$. By the fact that $\max a_{i}-\max b_{i} \leq \max \left(a_{i}-b_{i}\right)$ for any $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$, we have:

$$
\begin{aligned}
& \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|^{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}\left(t_{1}\right)\right\|^{2} \\
& \leq \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J=\mathcal{M}_{0} \\
|J|}}\left(\left\|\Pi_{J}\left(\boldsymbol{C}_{1}^{I}(t)+\boldsymbol{\delta}(t)+\boldsymbol{R}(t)\right)\right\|^{2}-\left\|\Pi_{J}\left(\boldsymbol{C}_{1}^{I}\left(t_{1}\right)+\boldsymbol{\delta}\left(t_{1}\right)+\boldsymbol{R}\left(t_{1}\right)\right)\right\|^{2}\right) \\
& \leq A_{1.1}+A_{1.2}+A_{1.3}+A_{1.4}+A_{1.5}+A_{1.6},
\end{aligned}
$$

where

$$
\begin{align*}
& A_{1.1}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.2}:=\frac{1}{3} \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J, \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.3}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{R}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{R}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.4}:=2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\Pi_{J} \boldsymbol{C}_{1}^{I}(t)^{\top} \Pi_{J} \boldsymbol{R}(t)-\Pi_{J} \boldsymbol{C}_{1}^{I}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{R}\left(t_{1}\right)\right\}, \\
& A_{1.5} \\
& :=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \\
|J| \mathcal{M} \\
\mid J s_{0}}}\left\{2\left(\Pi_{J} \boldsymbol{C}_{1}^{I}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)-\Pi_{J} \boldsymbol{C}_{1}^{I}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right)+\frac{1}{3}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\}, \\
& A_{1.6} \\
& :=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{2\left(\Pi_{J} \boldsymbol{\delta}(t)^{\top} \Pi_{J} \boldsymbol{R}(t)-\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{R}\left(t_{1}\right)\right)+\frac{1}{3}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\} . \tag{S7.59}
\end{align*}
$$

Our goal is to prove that $\mathbb{P}\left(A_{1.1}+A_{1.2}+A_{1.3}+A_{1.4}+A_{1.5}+A_{1.6} \leq 0\right) \rightarrow 1$. Next, we consider $A_{1.1}, \ldots, A_{1.6}$, respectively. For $A_{1.1}$, we have:

$$
\begin{align*}
A_{1.1} & \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}} \max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}(t)\right\|^{2} \\
& \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}} \max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}(t)\right\|^{2} \\
& \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}}\left(\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)}^{2}\right) \tag{S7.60}\\
& \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}}\left(s_{0}^{1 / 2}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\infty}\right)^{2} \\
& \leq C s_{0} M^{2} \log (p n):=C_{1}\left(s_{0}, M\right) \log (p n)
\end{align*}
$$

where the last inequality comes from Lemma 7. Next, we consider $A_{1.2}$. By the definition of $\boldsymbol{\delta}(t)$ and $\boldsymbol{\delta}\left(t_{1}\right)$ as defined in (S7.99), for $t \geq t_{1}+\epsilon_{n}$ and
$J \subset \mathcal{M}$ ，we have：

$$
\begin{align*}
A_{1.2} & ={ }_{(1)} \frac{1}{3} \max _{t \geq t_{1}+\epsilon_{n}} \max _{J \subset \mathcal{M}}\left\{\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right\} \\
& ={ }_{(2)} \frac{1}{3} \max _{t \geq t_{1}+\epsilon_{n}}\left(n t_{1}^{2}\left(t_{1}-t\right)\left(2-t-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right) \tag{S7.61}\\
& ={ }_{(3)}-\frac{1}{3} n \epsilon_{n} t_{1}^{2}\left(2-2 t_{1}-\epsilon_{n}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} \\
& \leq{ }_{(4)}-\frac{1}{6} q_{0} n \epsilon_{n}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2},
\end{align*}
$$

where the last inequality comes from $t_{1} \in\left[q_{0}, 1-q_{0}\right]$ ，and $\epsilon_{n}=o(1)$ ．For $A_{1.3}$ ，by the definition of $\boldsymbol{R}(t)$ and $\boldsymbol{R}\left(t_{1}\right)$ ，and using Lemmas 7 and 9 ，we have：

$$
\begin{equation*}
A_{1.3} \leq C s_{0} s^{2} M^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}:=C_{3}\left(s_{0}, M\right) s^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} \tag{S7.62}
\end{equation*}
$$

Next，we consider $A .14$ ．By the Cauchy－Swartz inequality，we have：

$$
\begin{align*}
& A_{1.4}=2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\Pi_{J} \widetilde{\boldsymbol{C}}_{1}^{I}(t)^{\top} \Pi_{J} \boldsymbol{R}_{1}(t)-\Pi_{J} \widetilde{\boldsymbol{C}}_{1}^{I}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{R}_{1}\left(t_{1}\right)\right\} \\
& \leq{ }_{(1)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]} \max _{\mid J \subset \mathcal{M}}^{|J|=s_{0}} \mid\left\{\Pi_{J} \widetilde{\boldsymbol{C}}_{1}^{I}(t)^{\top} \Pi_{J} \boldsymbol{R}_{1}(t) \mid\right. \\
& \leq{ }_{(2)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]} \max _{J \subset \mathcal{M}}^{|J|=s_{0}} ⿻ 上 丨\left\{\Pi_{J} \widetilde{\boldsymbol{C}}_{1}^{I}(t)\left\|_{2}\right\| \Pi_{J} \boldsymbol{R}_{1}(t) \|_{2}\right. \\
& \leq{ }_{(3)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \times \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{R}_{1}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \leq{ }_{(4)} C s_{0}^{1 / 2} M \sqrt{\log (p n)} \times s_{0}^{1 / 2} \sqrt{n} M^{2} \sqrt{\frac{\log (p n)}{n}} s\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} \\
& \leq_{(5)} C s_{0} s M^{3} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}:=C_{4}\left(s_{0}, M\right) s \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}, \tag{S7.63}
\end{align*}
$$

where（4）comes from Lemma 7 and Lemma 8．Hence，combining（S7．61）－
(S7.62), if ϵ_{n} satisfies

$$
\begin{equation*}
\epsilon_{n}=C \max \{\underbrace{C_{1}\left(s_{0}, M\right) \frac{\log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}}}_{\text {by } \mathrm{A}_{1.1}}, \underbrace{C_{3}\left(s_{0}, M\right) \frac{s^{2} \log (p n)}{n}}_{\text {by } \mathrm{A}_{1.3}}, \underbrace{\frac{C_{4}\left(s_{0}, M\right) s \log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}}}_{\text {by } \mathrm{A}_{1.4}}\} \tag{S7.64}
\end{equation*}
$$

for some big enough constant $C>0$, with probability tending to one, we have $A_{1.1}+A_{1.2}+A_{1.3}+A_{1.4} \leq 0$.

Next, we prove $A_{1.5}+A_{1.6} \leq 0$. For $A_{1.5}$, using the triangle inequality, we have:

$$
\begin{align*}
A_{1.5} & =\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{2\left(\Pi_{J} \boldsymbol{C}_{1}^{I}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)-\Pi_{J} \boldsymbol{C}_{1}^{I}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right)\right. \\
& \left.\left.-\frac{1}{3}\left(\| \Pi_{J} \boldsymbol{\delta}_{(} t_{1}\right)\left\|^{2}-\right\| \Pi_{J} \boldsymbol{\delta}(t) \|^{2}\right)\right\} \tag{S7.65}\\
& =A_{1.5 .1}+A_{1.5 .2},
\end{align*}
$$

where

$$
\begin{align*}
& A_{1.5 .1} \\
& \left.=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{2 \Pi_{J} \boldsymbol{C}_{1}^{I}(t)^{\top}\left(\Pi_{J} \boldsymbol{\delta}(t)-\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right)\right\}-\frac{1}{6}\left(\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}\right)\right\}, \\
& A_{1.5 .2} \\
& =\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{2 \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)^{\top}\left(\Pi_{J} \boldsymbol{C}_{1}^{I}(t)-\Pi_{J} \boldsymbol{C}_{1}^{I}\left(t_{1}\right)\right)-\frac{1}{6}\left(\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}\right)\right\} . \tag{S7.66}
\end{align*}
$$

To bound $A_{1.5}$, we prove $\mathbb{P}\left(A_{1.5 .1} \leq 0\right) \rightarrow 1$ and $\mathbb{P}\left(A_{1.5 .2} \leq 0\right) \rightarrow 1$, respectively. To bound $A_{1.5 .1}$, note that for any fixed $t \geq t_{1}+\epsilon_{n}$ and $J \subset \mathcal{M}$ with
$|J|=s_{0}$, we have:

$$
\begin{align*}
& 2 \Pi_{J} \boldsymbol{C}_{1}^{I}(t)^{\top} \Pi_{J}\left(\boldsymbol{\delta}(t)-\boldsymbol{\delta}_{1}\left(t_{1}\right)\right)-\frac{1}{6}\left(\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}\right) \\
& \leq_{(1)} 2\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}(t)\right\|_{2}\left\|\Pi_{J}\left(\boldsymbol{\delta}(t)-\boldsymbol{\delta}\left(t_{1}\right)\right)\right\|_{2}-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(2-t-t_{1}\right)\left\|\Pi_{J} \boldsymbol{\Delta}\right\|^{2}\right) \\
& \left.\leq_{(2)} 2 s_{0}^{1 / 2}\left\|\Pi_{J} \boldsymbol{C}_{1}^{I}(t)\right\|_{\infty} \sqrt{n} t_{1}\left(t-t_{1}\right)\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right) \\
& \left.\leq_{(3)} 2 s_{0}^{1 / 2}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\infty} \sqrt{n} t_{1}\left(t-t_{1}\right)\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right) . \tag{S7.67}
\end{align*}
$$

Hence, by $\mathrm{S7.67}$), to prove $\mathbb{P}\left(A_{1.5 .1} \leq 0\right) \rightarrow 1$, it is sufficient to prove that

$$
\begin{aligned}
\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \mathcal{M} \\
|J|=s_{0}}}\left\{2 s_{0}^{1 / 2}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\infty} \sqrt{n} t_{1}\left(t-t_{1}\right)\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right. \\
\left.\left.\quad-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right)\right\} \leq 0\right) \rightarrow 1 .
\end{aligned}
$$

Equivalently, it is sufficient to prove that

$$
\begin{aligned}
& \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{J J|J|=s_{0}}\left\{2 s_{0}^{1 / 2}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\infty} \sqrt{n} t_{1}\left(t-t_{1}\right)\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right. \\
& \left.\left.\quad-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right)\right\} \leq 0\right) \\
& \geq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}} 2 s_{0}^{1 / 2}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\infty} t_{1}-\frac{1}{6}\left(\sqrt{n} t_{1}^{2}\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right) \leq 0\right) \rightarrow 1 .
\end{aligned}
$$

Note that by Lemma 7 , we have $\max _{q_{0} \leq t \leq 1-q_{0}}\left\{2 s_{0}^{1 / 2}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\infty}=O_{p}\left(s_{0}^{1 / 2} M \sqrt{\log (p n)}\right)\right.$.
Moreover, if we choose a big enough constant C^{*} in (S7.49), we have

$$
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}} 2 s_{0}^{1 / 2}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\infty} t_{1}-\frac{1}{6}\left(\sqrt{n} t_{1}^{2}\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right) \leq 0\right) \rightarrow 1
$$

which yields $\mathbb{P}\left(A_{1.5 .1}\right) \rightarrow 1$. After bounding $A_{1.5 .1}$, we next consider $A_{1.5 .2}$.

Note that for any fixed $t \geq t_{1}+\epsilon_{n}$ and $J \subset \mathcal{M}$ with $|J|=s_{0}$, we have:

$$
\begin{align*}
& 2 \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)^{\top} \Pi_{J}\left(\boldsymbol{C}_{1}^{I}(t)-\boldsymbol{C}_{1}^{I}\left(t_{1}\right)\right)-\frac{1}{6}\left(\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}\right) \\
& \leq_{(1)} 2\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|_{2}\left\|\Pi_{J}\left(\boldsymbol{C}_{1}^{I}(t)-\boldsymbol{C}_{1}^{I}\left(t_{1}\right)\right)\right\|_{2}-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(2-t-t_{1}\right)\left\|\Pi_{J} \boldsymbol{\Delta}\right\|^{2}\right. \\
& \leq 2 \sqrt{n} t_{1}\left(1-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} s_{0}^{1 / 2}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}\left(t_{1}\right)\right\|_{\infty}-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} .\right. \tag{S7.68}
\end{align*}
$$

Note that by the definition of $\boldsymbol{C}_{1}^{I}(t)$ and $\boldsymbol{C}_{1}^{I}\left(t_{1}\right)$, we have:

$$
\begin{equation*}
\boldsymbol{C}_{1}^{I}(t)-\boldsymbol{C}_{1}^{I}\left(t_{1}\right)=\frac{1}{\sqrt{n}}\left(\sum_{i=\left\lfloor n t_{1}\right\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor-\left\lfloor n t_{1}\right\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right) \tag{S7.69}
\end{equation*}
$$

Hence, combining (S7.68) and S7.69), we have:

$$
2 \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)^{\top} \Pi_{J}\left(\boldsymbol{C}_{1}^{I}(t)-\boldsymbol{C}_{1}^{I}\left(t_{1}\right)\right)-\frac{1}{6}\left(\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}\right) \leq A_{1.5 .2}^{I}+A_{1.5 .2}^{I I}
$$

where

$$
\begin{align*}
& A_{1.5 .2}^{I}= 2 t_{1}(1- \\
&\left.t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} s_{0}^{1 / 2}\left\|\sum_{i=\left\lfloor n t_{1}\right\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty} \tag{S7.70}\\
& \quad-\frac{1}{12}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2},\right. \\
& A_{1.5 .2}^{I I}= 2 t_{1}(1- \\
& \quad\left.t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} s_{0}^{1 / 2}\left\|\frac{\lfloor n t\rfloor-\left\lfloor n t_{1}\right\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty} \\
&-\frac{1}{12}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} .\right.
\end{align*}
$$

Considering (S7.66), S7.68), S7.69), and (S7.70), to prove $\mathbb{P}\left(A_{1.5 .2}\right) \rightarrow 1$, it is sufficient to prove $\mathbb{P}\left(\max _{t} \max _{J} A_{1.5 .2}^{I} \leq 0\right) \rightarrow 1$ and $\mathbb{P}\left(\max _{t} \max _{J} A_{1.5 .2}^{I I} \leq\right.$
$0) \rightarrow 1$. For $A_{1.5 .2}^{I}$, we have to prove

$$
\begin{align*}
& \mathbb{P}\left(\operatorname { m a x } _ { t \geq t _ { 1 } + \epsilon _ { n } } \operatorname { m a x } _ { \substack { | \supset \mathcal { M } \\
| J | = s _ { 0 } } } \left\{2 t_{1}\left(1-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} s_{0}^{1 / 2}\left\|\sum_{i=\left\lfloor n t_{1}\right\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty}\right.\right. \\
& \left.\quad-\frac{1}{6}\left(n t_{1}^{2}\left(t-t_{1}\right)\left(1+q_{0}-t_{1}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}\right\} \leq 0\right) \\
& = \tag{S7.71}\\
& \\
& \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}}\left\|\frac{1}{\lfloor n t\rfloor-\left\lfloor n t_{1}\right\rfloor} \sum_{i=\left\lfloor n t_{1}\right\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty} \leq C\left(t_{1}, q_{0}\right) s_{0}^{-1 / 2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right) \rightarrow 1 .
\end{align*}
$$

Note that by Lemma 7, we have

$$
\max _{t \geq t_{1}+\epsilon_{n}}\left\|\frac{1}{\lfloor n t\rfloor-\left\lfloor n t_{1}\right\rfloor} \sum_{i=\left\lfloor n t_{1}\right\rfloor+1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty}=O_{p}\left(M n^{1 / 4} \frac{\log (p n)}{n \epsilon_{n}}\right) .
$$

Hence, if we choose

$$
\epsilon_{n}=C_{5}\left(s_{0}, M\right) \frac{\log (p n)}{n^{3 / 4}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}}
$$

for some big enough constant $C_{5}\left(s_{0}, M\right)>0$, we have S7.71) holds, which yields $\mathbb{P}\left(\max _{t} \max _{J} A_{1.5 .2}^{I} \leq 0\right) \rightarrow 1$. Similarly, we can prove $\mathbb{P}\left(\max _{t} \max _{J} A_{1.5 .2}^{I I} \leq\right.$ $0) \rightarrow 1$, which yields $\mathbb{P}\left(A_{1.5 .2} \leq 0\right) \rightarrow 1$.

With a very similar proof technique, if we choose $\epsilon_{n}=C_{6}\left(s_{0}, M\right) \frac{s^{2} \log (p n)}{n}$ for some big enough constant $C_{6}>0$, we can prove

$$
\mathbb{P}\left(A_{1.6} \leq 0\right) \rightarrow 1
$$

Combining the previous results, if ϵ_{n} satisfies

$$
\begin{align*}
& \epsilon_{n}=C \max \{\underbrace{C_{1}\left(s_{0}, M\right) \frac{\log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}},}_{\text {by } \mathrm{A}_{1.1}} \underbrace{\frac{C_{3}\left(s_{0}, M\right) s^{2} \log (p n)}{n}}_{\text {by } \mathrm{A}_{1.3}}, \underbrace{\frac{C_{4}\left(s_{0}, M\right) s \log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}}}_{\text {by } \mathrm{A}_{1.4}}, \\
& \underbrace{\frac{C_{5}\left(s_{0}, M\right) \log (p n)}{n^{3 / 4}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}}}_{\text {by } \mathrm{A}_{1.5}}, \underbrace{C_{6}\left(s_{0}, M\right) \frac{s^{2} \log (p n)}{n}}_{\text {by } \mathrm{A}_{1.6}}\} \\
& =C\left(s_{0}, M\right) \frac{\log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} \times \max \left\{1, s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}, s\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}, n^{1 / 4}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right\} . \tag{S7.72}
\end{align*}
$$

we can prove $\mathbb{P}\left(A_{1}\right) \rightarrow 1$. By symmetry, we can prove $\mathbb{P}\left(A_{2}\right) \rightarrow 1$, which finishes the proof.

Lastly, we need to discuss the five terms in S7.72). Note that by Assumption F and the assumption that $\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1} \leq C_{\boldsymbol{\Delta}}$, we have $s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}=O(1)$ and $s\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}=O(1)$. Moreover, by the assumption that $n^{1 / 4}=o(s)$, we have $n^{1 / 4}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}=o(1)$, which finishes the proof.

S7.3.2 Change point estimation for $\alpha=0$

Proof. For $\alpha=0$, recall $\boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right):=\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq\right.\right.$ $\left.0\}-\tau_{k}\right)$ as the score function. For each $t \in\left[q_{0}, 1-q_{0}\right]$, define $\widetilde{\boldsymbol{C}}_{0}(t)=$ $\left(\widetilde{C}_{01}(t), \ldots, \widetilde{C}_{0 p}(t)\right)^{\top}$ with

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{0}(t)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right) \tag{S7.73}
\end{equation*}
$$

Note that there is no variance estimator in $\widetilde{\boldsymbol{C}}_{0}(t)$. Recall $\widehat{t_{0}}:=\underset{t \in\left[q_{0}, 1-q_{0}\right]}{\arg \max }\left\|\widetilde{\boldsymbol{C}}_{0}(t)\right\|_{\left(s_{0}, 2\right)}$.
To prove Theorem 3 with $\alpha=0$, we need to prove that as $n, p \rightarrow \infty$, by choosing a large enough constant $C\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right)$ in ϵ_{n} (which will be given in (S7.84)), we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{t_{0}}-t_{1}\right| \geq \epsilon_{n}\right) \rightarrow 0 \tag{S7.74}
\end{equation*}
$$

Similar to Section S7.3.1, we have to prove $\mathbb{P}\left(A_{1}\right) \rightarrow 1$ and $\mathbb{P}\left(A_{2}\right) \rightarrow 1$, where

$$
\begin{align*}
& A_{1}=\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{0}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0 \tag{S7.75}\\
& A_{2}=\max _{t \leq t_{1}-\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{0}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0 .
\end{align*}
$$

By the symmetry, we only consider $\mathbb{P}\left(A_{1}\right) \rightarrow 1$. Define the two events \mathcal{H}_{1} and \mathcal{H}_{2} :

$$
\begin{align*}
& \mathcal{H}_{1}=\left\{\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{0}(t)\right\|_{\left(s_{0}, 2\right)}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{(\mathcal{C 1}, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}(t)\right\|_{2}=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}(t)\right\|_{2}\right\}, \tag{S7.76}\\
& \mathcal{H}_{2}=\left\{\left\|\widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)}:=\max _{\substack{\left.J \subset\{1, \ldots, p\} \\
|J|=s_{0}\right\}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{2}=\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{2}\right\} .
\end{align*}
$$

Similar to the proof of Lemma 16, we can prove $\mathbb{P}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \rightarrow 1$. Now, under $\mathcal{H}_{1} \cap \mathcal{H}_{2}$, we have:

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right) & =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{0}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}(t)\right\|_{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|_{2} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}(t)\right\|^{2}-\max _{\substack{J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|^{2} \leq 0\right) .
\end{aligned}
$$

Recall $\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})=\sqrt{K^{-2} \sum_{k_{1}, k_{2}} \gamma_{k_{1} k_{2}}}$, with $\gamma_{k_{1} k_{2}}:=\min \left(\tau_{k_{1}}, \tau_{k_{2}}\right)-\tau_{k_{1}} \tau_{k_{2}}$ and $\boldsymbol{C}_{0}(t)$ defined in S7.106). Then, under \mathbf{H}_{1}, we have the following decomposition

$$
\begin{align*}
\widetilde{\boldsymbol{C}}_{0}(t) & =\sigma(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{C}_{0}(t) \\
& =\sigma(0, \widetilde{\boldsymbol{\tau}}) \times\left(-\operatorname{SNR}(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)+\boldsymbol{C}_{0}^{(1)}(t)-\operatorname{SNR}(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)+\boldsymbol{C}_{0}^{(3)}(t)+\boldsymbol{C}_{0}^{(4)}(t)\right), \tag{S7.77}
\end{align*}
$$

where the second equation comes from the decomposition in (S7.116). By the fact that $\max a_{i}-\max b_{i} \leq \max \left(a_{i}-b_{i}\right)$ and $\max \left(a_{i}+b_{i}\right) \leq \max a_{i}+$ $\max b_{i}$ for any $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$, we have:

$$
\begin{aligned}
& \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}(t)\right\|^{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{0}\left(t_{1}\right)\right\|^{2} \\
& \leq \sigma^{2}(0, \widetilde{\boldsymbol{\tau}}) \times \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \mathcal{M} \\
|J|=s_{0}}}\left(\| \Pi_{J}\left(-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)+\boldsymbol{C}_{0}^{(1)}(t)\right.\right. \\
& \left.\quad-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)+\boldsymbol{C}_{0}^{(3)}(t)+\boldsymbol{C}_{0}^{(4)}(t)\right) \|^{2} \\
& \left.\quad-\left\|\Pi_{J}\left(-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}\left(t_{1}\right)+\boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}\left(t_{1}\right)+\boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)+\boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right)\right\|^{2}\right) \\
& \leq \sigma^{2}(0, \widetilde{\boldsymbol{\tau}}) \times\left(A_{1.1}+\cdots+A_{1.15}\right),
\end{aligned}
$$

where the fifteen parts $A_{1.1} \cdots A_{1.15}$ are defined as:

$$
\begin{aligned}
& A_{1.1}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
\mid J J=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.2}:=\frac{S N R^{2}(0, \widetilde{\boldsymbol{\tau}})}{5} \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.3}:=S N R^{2}(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{R}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{R}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.4}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{-\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{R}(t)+\Pi_{J} \boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{R}\left(t_{1}\right)\right\}, \\
& A_{1.5}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subseteq \mathcal{M} \\
|J|=s_{0}}}\left\{-\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)+\Pi_{J} \boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right. \\
& \left.+\frac{S N R^{2}(0, \tilde{\boldsymbol{\tau}})}{5}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\}, \\
& A_{1.6}:=2 S N R^{2}(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J \mid=s_{0}}}\left\{\Pi_{J} \boldsymbol{R}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)-\Pi_{J} \boldsymbol{R}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right. \\
& \left.+\frac{S N R^{2}(0, \tilde{\boldsymbol{\tau}})}{5}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\}, \\
& A_{1.7}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} C_{0}^{(3)}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.8}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right\|^{2}\right\}, \\
& A_{1.9}:=2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\{\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)-\Pi_{J} \boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)\right\}, \\
& A_{1.10}:=2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)-\Pi_{J} \boldsymbol{C}_{0}^{(1)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right\}, \\
& A_{1.11}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J \mathcal{M} \\
|J|=s_{0}}}\left\{-\Pi_{J} \boldsymbol{R}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)+\Pi_{J} \boldsymbol{R}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)\right\}, \\
& A_{1.12}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J J|\mathcal{M}\\
| J \mid=s_{0}}}\left\{-\Pi_{J} \boldsymbol{R}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)+\Pi_{J} \boldsymbol{R}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right\}, \\
& A_{1.13}:=2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)-\Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right\}, \\
& A_{1.14}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{J \subset \mathcal{M}}^{|J|=s_{0}} \mid ~\left\{-\Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)+\Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right. \\
& \left.72+\frac{S N R^{2}(0, \tilde{\boldsymbol{\tau}})}{5}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\} \\
& A_{1.15}:=2 S N R(0, \widetilde{\boldsymbol{\tau}}) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset=\mathcal{M} \\
|J|=s_{0}}}\left\{-\Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)^{\top} \Pi_{J} \boldsymbol{\delta}(t)+\Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right. \\
& \left.+\frac{S N R^{2}(0, \tilde{\boldsymbol{\tau}})}{5}\left(\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|^{2}-\left\|\Pi_{J} \boldsymbol{\delta}\left(t_{1}\right)\right\|^{2}\right)\right\} .
\end{aligned}
$$

Next, we aim to prove that $\mathbb{P}\left(A_{1.1}+\cdots+A_{1.15} \leq 0\right) \rightarrow 1$. The proof proceeds into five steps: Step 1: We aim to prove that, with probability tending to 1 ,
$A_{1.1}+A_{1.2}+A_{1.3}+A_{1.4}+A_{1.7}+A_{1.8}+A_{1.9}+A_{1.10}+A_{1.11}+A_{1.12}+A_{1.13} \leq 0$.

The main idea of step 1 is to obtain the upper bound for each item. Note that similar to the proofs in Section S7.3.1, we can directly prove that:

$$
\begin{aligned}
& A_{1.1} \leq C_{1}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \log (p n), \\
& A_{1.2} \leq-\frac{S N R^{2}(0, \widetilde{\boldsymbol{\tau}})}{10} q_{0} n \epsilon_{n}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}, \\
& A_{1.3} \leq C_{3}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) S N R^{2}(0, \widetilde{\boldsymbol{\tau}}) s^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}, \\
& A_{1.4} \leq C_{4}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) S N R(0, \widetilde{\boldsymbol{\tau}}) s \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} .
\end{aligned}
$$

For $A_{1.7}$, by (S7.121), we have:

$$
\begin{aligned}
A_{1.7} & :=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \supset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)\right\|^{2}\right\} \\
& \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}^{2} \\
& \leq C_{7}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) s^{4} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{4} .
\end{aligned}
$$

For $A_{1.8}$, by (S7.122), we have:

$$
\begin{aligned}
A_{1.8} & :=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\{\left\|\Pi_{J} \boldsymbol{C}_{0}^{(4)}(t)\right\|^{2}+\left\|\Pi_{J} \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right\|^{2}\right\} \\
& \leq 2 \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(4)}(t)\right\|_{\left(s_{0}, 2\right)}^{2} \\
& \leq C_{8}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) s^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} .
\end{aligned}
$$

For $A_{1.9}$, by the Cauchy-Swartz inequality, Lemma 7 , and S7.121, we have:

$$
\begin{align*}
A_{1.9} & =2 \max _{t \geq t_{1}+\epsilon_{n}} \max _{J \subset \mathcal{M}}\left\{\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}(t)-\Pi_{J} \widetilde{\boldsymbol{C}}_{0}^{(1)}\left(t_{1}\right)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)\right\} \\
& \leq{ }_{(1)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]} \max _{J \backslash \mathcal{M}} \mid\left\{\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)^{\top} \Pi_{J} \boldsymbol{C}_{0}^{(3)}(t) \mid\right. \\
& \leq{ }_{(2)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]} \max _{\substack{J \mathcal{M} \\
|J|=s_{0}}} \|\left\{\Pi_{J} \boldsymbol{C}_{0}^{(1)}(t)\left\|_{2}\right\| \Pi_{J} \boldsymbol{C}_{0}^{(3)}(t) \|_{2}\right. \\
& \leq{ }_{(3)} 4 \max _{t \in\left[q_{0}, 1-q_{0}\right]}^{\left\|\boldsymbol{C}_{0}^{(1)}(t)\right\|_{\left(s_{0}, 2\right)} \times \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}} \\
& \leq{ }_{(4)} C s_{0}^{1 / 2} M \sqrt{\log (p n)} \times s_{0}^{1 / 2} \sqrt{\log (p n)} s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} \\
& \leq{ }_{(5)} C_{9}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) s^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} . \tag{S7.78}
\end{align*}
$$

Similarly, for $A_{1.10}-A_{1.13}$, by S7.117), S7.121), S7.122), and the CauchySwartz inequality, we can prove that:

$$
\begin{aligned}
& A_{1.10} \leq C_{10}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) s \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}, \\
& A_{1.11} \leq C_{11}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) S N R(0, \widetilde{\boldsymbol{\tau}}) s^{3} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{3}, \\
& A_{1.12} \leq C_{12}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) S N R(0, \widetilde{\boldsymbol{\tau}}) s^{2} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}, \\
& A_{1.13} \leq C_{13}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) s^{3} \log (p n)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{3} .
\end{aligned}
$$

Note that by Assumption F and the assumption that $\|\boldsymbol{\Delta}\|_{1} \leq C_{\boldsymbol{\Delta}}$, we have $s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}=O(1), s^{3}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{3}=O(1)$, and $s\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}=O(1)$. Hence, for the above results, by Assumption E.2, up to some constants, the upper bounds of $A_{1.1}$ dominates the others. Hence, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n S N R^{2}(0, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} \tag{S7.79}
\end{equation*}
$$

for some big enough $C>0$, w.p.a.1, we have
$A_{1.1}+A_{1.2}+A_{1.3}+A_{1.4}+A_{1.7}+A_{1.8}+A_{1.9}+A_{1.10}+A_{1.11}+A_{1.12}+A_{1.13} \leq 0$.

Step 2: We aim to prove that $\mathbb{P}\left(A_{1.5} \leq 0\right) \rightarrow 1$. With a very similar proof procedure as S7.65 - S7.71) in Section S7.3.1, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C_{5}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n S N R^{2}(0, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} \tag{S7.80}
\end{equation*}
$$

for some big enough $C_{5}>0$, then, w.p.a.1, we have $A_{1.5} \leq 0$.
Step 3: We aim to prove that $\mathbb{P}\left(A_{1.6} \leq 0\right) \rightarrow 1$. Note that with a very similar proof procedure as S7.65 - S7.71) in Section S7.3.1, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n}=C_{6}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{s^{2} \log (p n)}{n}:=C_{6}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}, \tag{S7.81}
\end{equation*}
$$

for some big enough $C_{6}>0$, then, w.p.a.1, we have $A_{1.6} \leq 0$.
Step 4: We aim to prove that $\mathbb{P}\left(A_{1.14} \leq 0\right) \rightarrow 1$. Using similar analysis as in S7.119) - (S7.120) and with a very similar proof procedure but some tedious modifications of S7.65-(57.71) in Section S7.3.1, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C_{14}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n S N R^{2}(0, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} s^{4}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{4} \tag{S7.82}
\end{equation*}
$$

for some big enough $C_{14}>0$, then, w.p.a.1, we have $A_{1.14} \leq 0$.
Step 5: We aim to prove $\mathbb{P}\left(A_{1.15} \leq 0\right) \rightarrow 1$. Using some tedious modifications of Lemma 17, with a very similar proof procedure as (S7.65) - (S7.71)
in Section S7.3.1, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C_{15}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n S N R^{2}(0, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} s^{2}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2} \tag{S7.83}
\end{equation*}
$$

for some big enough $C_{15}>0$, then w.p.a.1, we have $A_{1.15} \leq 0$.
Lastly, considering (S7.79) - S7.83), if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C^{*}\left(s_{0}, M, \widetilde{\boldsymbol{\tau}}\right) \frac{\log (p n)}{n S N R^{2}(0, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}} \tag{S7.84}
\end{equation*}
$$

for some big enough $C^{*}>0$, we have $\mathbb{P}\left(A_{1.1}+\cdots+A_{1.15} \leq 0\right) \rightarrow 1$, which yields $\mathbb{P}\left(A_{1}\right) \rightarrow 1$. Similarly, we can prove $\mathbb{P}\left(A_{2}\right) \rightarrow 1$, which finishes the proof of Theorem 3 with $\alpha=0$.

S7.3.3 Change point estimation for $\alpha \in(0,1)$
Proof. For $\alpha \in(0,1)$, recall $\boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right):=(1-\alpha) \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i}-\right.\right.$ $\left.\left.\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\tau_{k}\right)-\alpha \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)$ as the weighted score function. For $\alpha \in(0,1)$ and each $t \in\left[q_{0}, 1-q_{0}\right]$, define $\widetilde{\boldsymbol{C}}_{\alpha}(t)=\left(\widetilde{C}_{\alpha 1}(t), \ldots, \widetilde{C}_{\alpha p}(t)\right)^{\top}$ with

$$
\begin{equation*}
\widetilde{\boldsymbol{C}}_{\alpha}(t)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right) . \tag{S7.85}
\end{equation*}
$$

Note that there is no variance estimator in $\widetilde{\boldsymbol{C}}_{\alpha}(t)$. Recall $\widehat{t}_{\alpha}:=\underset{t \in\left[q_{0}, 1-q_{0}\right]}{\arg \max }\left\|\widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}$. To prove Theorem 3 with $\alpha \in(0,1)$, we need to prove that as $n, p \rightarrow \infty$, by choosing a large enough constant $C\left(s_{0}, M, q_{0}, \alpha\right)$ in ϵ_{n} (which will be given
in (S7.90), we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{t}_{\alpha}-t_{1}\right| \geq \epsilon_{n}\right) \rightarrow 0 \tag{S7.86}
\end{equation*}
$$

Similar to Sections S7.3.1 and S7.3.2, we have to prove $\mathbb{P}\left(A_{1}\right) \rightarrow 1$ and $\mathbb{P}\left(A_{2}\right) \rightarrow 1$, where

$$
\begin{align*}
& A_{1}=\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0 \tag{S7.87}\\
& A_{2}=\max _{t \leq t_{1}-\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0
\end{align*}
$$

By the symmetry, we only consider $\mathbb{P}\left(A_{1}\right) \rightarrow 1$. Similar to the previous two sections, define the two events \mathcal{H}_{1} and \mathcal{H}_{2} :

$$
\begin{align*}
& \mathcal{H}_{1}=\left\{\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}:=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{2}=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{2}\right\}, \\
& \mathcal{H}_{2}=\left\{\left\|\widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)}:=\max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{2}=\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{2}\right\} . \tag{S7.88}
\end{align*}
$$

Similar to the proof of Lemma 16, we can prove $\mathbb{P}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \rightarrow 1$. Now, under $\mathcal{H}_{1} \cap \mathcal{H}_{2}$, we have:

$$
\begin{aligned}
\mathbb{P}\left(A_{1}\right) & =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)}-\left\|\widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{\left(s_{0}, 2\right)} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|_{2}-\max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|_{2} \leq 0\right) \\
& =\mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}(t)\right\|^{2}-\max _{\substack{J \subset \mathcal{M} \\
\mid J J=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right)\right\|^{2} \leq 0\right) .
\end{aligned}
$$

Recall $\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}}):=\operatorname{Var}\left[(1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right]$ and $\boldsymbol{C}_{\alpha}(t)$ defined in S7.128).
Then, under \mathbf{H}_{1}, we have the following decomposition

$$
\begin{align*}
\widetilde{\boldsymbol{C}}_{\alpha}(t) & =\sigma(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{C}_{\alpha}(t) \\
& =\sigma(\alpha, \widetilde{\boldsymbol{\tau}}) \times\left(\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)-\operatorname{SNR}(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)-\operatorname{SNR}(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)\right. \\
& \left.+(1-\alpha) \boldsymbol{C}_{0}^{(3)}(t)+(1-\alpha) \boldsymbol{C}_{0}^{(4)}(t)\right), \tag{S7.89}
\end{align*}
$$

where the second equation comes from the decomposition in (S7.129). By the fact that $\max a_{i}-\max b_{i} \leq \max \left(a_{i}-b_{i}\right)$ and $\max \left(a_{i}+b_{i}\right) \leq \max a_{i}+$ $\max b_{i}$ for any $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$, we have:

$$
\begin{aligned}
& \left\{\max _{t \geq t_{1}+\epsilon_{n}} \max _{J \subset \mathcal{M}}^{|J|=s_{0}} \mid\right. \\
& \left.\subset \Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}(t)\left\|^{2}-\max _{\substack{\mid\left\ulcorner\mathcal{M} \\
|J|=s_{0}\right.}}\right\| \Pi_{J} \widetilde{\boldsymbol{C}}_{\alpha}\left(t_{1}\right) \|^{2} \leq 0\right\} \\
& \subset\left\{\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}}) \times \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left(\| \Pi_{J}\left(\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)\right.\right.\right. \\
& \left.+(1-\alpha) \boldsymbol{C}_{0}^{(3)}(t)+(1-\alpha) \boldsymbol{C}_{0}^{(4)}(t)\right) \|^{2} \\
& \quad-\| \Pi_{J}\left(\widetilde{\boldsymbol{C}}_{\alpha}^{I}\left(t_{1}\right)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}\left(t_{1}\right)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}\left(t_{1}\right)\right. \\
& \left.\left.\left.+(1-\alpha) \boldsymbol{C}_{0}^{(3)}\left(t_{1}\right)+(1-\alpha) \boldsymbol{C}_{0}^{(4)}\left(t_{1}\right)\right) \|^{2}\right) \leq 0\right\} .
\end{aligned}
$$

Note that similar to Section S7.3.2, for the above inequality, we can decompose it into fifteen parts. Moreover, using the obtained bounds in Sections S7.3.1 and S7.3.2, if ϵ_{n} satisfies:

$$
\begin{equation*}
\epsilon_{n} \geq C^{*}\left(s_{0}, M, \tilde{\boldsymbol{\tau}}, \alpha\right) \frac{\log (p n)}{n S N R^{2}(\alpha, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}^{2}}, \tag{S7.90}
\end{equation*}
$$

for some big enough $C^{*}>0$, it is not hard to prove that $\mathbb{P}\left(A_{1}\right) \rightarrow 1$ and $\mathbb{P}\left(A_{2}\right) \rightarrow 1$, which finishes the proof of Theorem 3 with $\alpha \in(0,1)$.

S7.4 Proof of Theorem 4

$$
\text { Let } r_{\alpha}(n)=\sqrt{s \log (p n) / n} \text { if } \alpha=1 \text { and } r_{\alpha}(n)=s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}
$$ if $\alpha \in[0,1)$. In this section, we aim to prove the consistency of $\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ in the sense that

$$
\begin{equation*}
\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})\right|=O_{p}\left(r_{\alpha}(n)\right) . \tag{S7.91}
\end{equation*}
$$

We consider the proof in two cases:
Case 1: the signal jump satisfies $S N R(\alpha, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)} \gg \sqrt{\log (p n) / n}$.
In this case, by Theorem 3, w.p.a.1, we have:

$$
\left|n \widehat{t}_{\alpha}-n t_{1}\right|=o(n)
$$

Recall $n_{-}:=\left\{i: i \leq n h \widehat{t}_{\alpha}\right\}$ and $n_{+}:=\left\{i: \widehat{t}_{\alpha} n+(1-h)\left(1-\widehat{t}_{\alpha}\right) n \leq i \leq n\right\}$ for some $0<h<1$. Hence, by Theorem 3, w.p.a.1, the samples in n_{-}are before the true change point t_{1} and those in n_{+}are after t_{1}. Hence, we can use a very similar proof technique as in Section S7.1 to yield S7.91).

Case 2: the signal jump satisfies $S N R(\alpha, \widetilde{\boldsymbol{\tau}})\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}=O(\sqrt{\log (p n) / n})$.
In this case, the change point estimator \widehat{t}_{α} can be an arbitrary number which satisfies $\widehat{t}_{\alpha} \in\left[q_{0}, 1-q_{0}\right]$. Note that in this case, the signal jump $\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}$
is very small in the sense that:

$$
\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}=O\left(s \sqrt{\frac{\log (p n)}{n}}\right), \quad\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{2}=O\left(\sqrt{s \frac{\log (p n)}{n}}\right)
$$

In this case, using some modifications of Theorem 1 in Section S7.1, we can still prove

$$
\begin{equation*}
\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})\right|=O_{p}\left(r_{\alpha}(n)\right) . \tag{S7.92}
\end{equation*}
$$

Since the modifications are lengthy, to save space, we omit the details.

S7.5 Proof of Theorem 5

Throughout the following proofs, we assume $\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\infty} \geq \sqrt{\log (p) / n}$ and $\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{2} \geq \sqrt{s \log (p) / n}$, as well as $\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{1} \geq s \sqrt{\log (p) / n}$. Next, we give the power results for $\alpha=1, \alpha=0$ and $\alpha \in(0,1)$, respectively. For simplicity, we will omit the subscript α whenever needed.

S7.5.1 Power analysis for $\alpha=1$

Firstly, we consider the oracle case that assumes the variance is known by letting $\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})=\sigma^{2}$, where $\sigma^{2}:=\operatorname{Var}[\epsilon]$. In addition, for the case of $\alpha=1$, we have $\operatorname{SNR}(\alpha, \widetilde{\boldsymbol{\tau}}):=\operatorname{SNR}(1, \widetilde{\boldsymbol{\tau}})=1 / \sigma$, where $\sigma^{2}=\operatorname{Var}(\epsilon)$. Without loss of generality, we assume $\sigma^{2}=1$. The proof of Theorem 5 proceeds in two steps. In Step 1, we obtain the upper bound of $c_{T_{1}^{b}}(1-\gamma)$,
where $c_{T_{1}^{b}}(1-\gamma)$ is the $1-\gamma$ th quantile of T_{1}^{b}, which is defined as

$$
\begin{equation*}
c_{T_{1}^{b}}(1-\gamma):=\inf \left\{t: \mathbb{P}\left(T_{1}^{b} \leq t\right) \geq 1-\gamma\right\} . \tag{S7.93}
\end{equation*}
$$

In Step 2, using the obtained upper bound, we get the lower bound of $\mathbb{P}\left(T_{1} \geq c_{T_{1}^{b}}(1-\gamma)\right)$ and prove

$$
\begin{equation*}
\mathbb{P}\left(T_{1} \geq c_{T_{1}^{b}}(1-\gamma)\right) \rightarrow 1, \text { as } n, p \rightarrow \infty \tag{S7.94}
\end{equation*}
$$

Note that $\left\{\Psi_{\gamma, 1}=1\right\} \Leftrightarrow\left\{T_{1} \geq \widehat{c}_{T_{\alpha}^{b}}(1-\gamma)\right\}$, where

$$
\begin{equation*}
\widehat{c}_{T_{1}^{b}}(1-\gamma):=\inf \left\{t:(B+1)^{-1} \sum_{b=1}^{B} \mathbf{1}\left\{T_{1}^{b} \leq t\right\} \geq 1-\gamma\right\} . \tag{S7.95}
\end{equation*}
$$

Finally, using the fact that $\widehat{c}_{T_{1}^{b}}(1-\gamma)$ is the estimation for $c_{T_{1}^{b}}(1-\gamma)$ based on the bootstrap samples, we complete the proof. Now, we consider the two steps in detail.

Step 1: By the definition of T_{1}^{b}, we have: $T_{1}^{b}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)}$, where

$$
\boldsymbol{C}_{1}^{b}(t):=\frac{1}{\sqrt{n} v(1, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}^{b}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}^{b}\right),
$$

with ϵ_{i}^{b} being i.i.d $N(0,1), v(1, \widetilde{\boldsymbol{\tau}}):=\operatorname{Var}\left[e_{i}^{b}\right]=1$. Our next goal is to obtain an upper bound of $c_{T_{1}^{b}}(1-\gamma)$. To this end, for any $1 \leq i \leq n$, $1 \leq j \leq p$, and $\left\lfloor n q_{0}\right\rfloor \leq k \leq n-\left\lfloor n q_{0}\right\rfloor$, we define $W_{i j k}^{b}=X_{i j} \epsilon_{i}^{b} a_{i k}$, where
$a_{i k}:=\mathbf{1}\{i \leq k\}-k / n$. Using the above notations, for T_{1}, we have:

$$
\begin{aligned}
& T_{1}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)} \leq s_{0}^{1 / 2} \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\infty} \\
& =s_{0}^{1 / 2} \frac{1}{\sqrt{n}} \underbrace{\max _{\substack{1 \leq j \leq p,\left\lfloor n q_{0} \leq \leq \leq \leq n-\left\lfloor n q_{0}\right\rfloor\right.}}\left|\sum_{i=1}^{n} W_{i j k}^{b}\right|}_{Z} .
\end{aligned}
$$

Hence, according to the above inequality, let $c_{Z}(1-\gamma)$ be the $1-\gamma$-th quantile of Z, then we have:

$$
\begin{equation*}
c_{T_{1}^{b}}(1-\gamma) \leq s_{0}^{1 / 2} \frac{1}{\sqrt{n}} c_{Z}(1-\gamma) \tag{S7.96}
\end{equation*}
$$

Next, we obtain an upper bound of $c_{Z}(1-\gamma)$. The main technique is to use Lemma 1 and Lemma2. Let $M=\max _{i, j, k}\left|W_{i j k}\right|$ and $\sigma_{*}^{2}=\max _{j k} \sum_{i} \mathbb{E}\left[W_{i j k}^{2}\right]$. Then, we have

$$
\sigma_{*}^{2}=\max _{j k} \sum_{i} \mathbb{E}\left[W_{i j k}^{2}\right]=\max _{j k} \mathbb{E}\left[X_{i j} \epsilon_{i}^{b} a_{i k}\right]^{2} \leq n M^{2}\left(1-q_{0}\right)^{2} \leq C_{1}\left(M, q_{0}\right) n
$$

where the last inequality uses the fact that $\left|X_{i j}\right| \leq M$ and $\left|a_{i k}\right| \leq 1-q_{0}$. For $\mathbb{E}\left[M^{2}\right]$, we have:
$\mathbb{E}\left[M^{2}\right]=\mathbb{E}\left[\max _{i j k}\left|X_{i j} \epsilon_{i}^{b} a_{i k}\right|^{2}\right] \leq M^{2}\left(1-q_{0}\right)^{2} \mathbb{E}\left[\max _{i}\left|\epsilon_{i}^{b}\right|^{2}\right] \leq C_{2}\left(M, q_{0}\right) \log (n)$,
where the last inequality comes from Example 3.5.6 in Embrechts et al. (2013). Let $n^{\prime}=n-2\left\lfloor n q_{0}\right\rfloor$. Using the above results, by Lemma 1, we have:

$$
\mathbb{E}[Z] \leq C\left(\sigma_{*} \sqrt{\log \left(p n^{\prime}\right)}+\sqrt{\mathbb{E}\left[M^{2}\right]} \log p n^{\prime}\right) \leq C_{3}\left(M, q_{0}\right) \sqrt{n \log (p n)}
$$

Note that $X_{i j}$ and e_{i}^{b} are all sub-Gaussian random variables, which implies $\left\|X_{i j} \epsilon_{i}^{b}\right\|_{\psi_{1}}$ exists. Hence, we have:
$\|M\|_{\psi_{1}}:=\left\|\max _{i, j, k}\left|X_{i j} \epsilon_{i}^{b} a_{i k}\right|\right\|_{\psi_{1}} \leq C \log \left(p n n^{\prime}+1\right) \max _{i, j, k}\left\|X_{i j} \epsilon_{i}^{b} a_{i k}\right\|_{\psi_{1}} \leq C_{4}\left(M, q_{0}\right) \log (p n)$.
By Lemma 2, taking $\eta=1$ and $\beta=1$, we have:

$$
\mathbb{P}(Z \geq 2 \mathbb{E}[Z]+t) \leq \exp \left(-\frac{t^{2}}{3 C_{1}\left(M, q_{0}\right) n}\right)+3 \exp \left(-\frac{t}{C_{4}\left(M, q_{0}\right) \log (p n)}\right) .
$$

Taking $t=2\left(t_{1} \vee t_{2}\right)$, where t_{1} and t_{2} satisfy

$$
-\frac{t_{1}^{2}}{3 C_{1}\left(M, q_{0}\right) n}=\log (\gamma / 2) \text { and }-\frac{t_{2}}{C_{4}\left(M, q_{0}\right) \log (p n)}=\log (\gamma / 6)
$$

we have

$$
\mathbb{P}(Z \geq 2 \mathbb{E}[Z]+t) \leq \gamma
$$

By noting that $t:=2\left(t_{1} \vee t_{2}\right) \leq C_{5}\left(M, q_{0}\right) \sqrt{n \log (1 / \gamma)}$ and $\mathbb{E}[Z] \leq C_{3}\left(M, q_{0}\right) \sqrt{n \log (p n)}$, we have:

$$
\begin{aligned}
& c_{Z}(1-\gamma)=2 \mathbb{E}[Z]+t \\
& \leq 2 C_{3}\left(M, q_{0}\right) \sqrt{n \log (p n)}+C_{5}\left(M, q_{0}\right) \sqrt{n \log (1 / \gamma)} \leq C_{6}(\sqrt{n \log (p n)}+\sqrt{n \log (1 / \gamma)})
\end{aligned}
$$

Lastly, considering (S7.96, we have:

$$
\begin{equation*}
c_{T_{1}^{b}}(1-\gamma) \leq C_{6}\left(M, q_{0}\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)}) \tag{S7.97}
\end{equation*}
$$

where $C_{6}\left(M, q_{0}\right)$ is some universal constant not depending on n or p.
Step 2: In this step, we aim to prove that $\mathbb{P}\left(T_{1} \geq c_{T_{1}^{b}}(1-\gamma)\right) \rightarrow 1$ as
$n, p \rightarrow \infty$. Note that in Step 1, we have obtained the upper bound of $c_{T_{1}^{b}}(1-\gamma)$. Hence, it is sufficient to prove that $H_{1} \rightarrow 1$ as $n, p \rightarrow \infty$, where

$$
\begin{equation*}
H_{1}:=\mathbb{P}\left(T_{1} \geq C_{6}\left(M, q_{0}\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})\right) \tag{S7.98}
\end{equation*}
$$

To prove $H_{1} \rightarrow 1$, we need the decomposition of T_{1} under \mathbf{H}_{1}. Recall the decomposition of $\boldsymbol{C}_{1}(t)$ defined in S7.22). Let the signal jump be

$$
\boldsymbol{\delta}(t):= \begin{cases}\sqrt{n} \frac{\lfloor n t\rfloor}{n} \frac{n-\left\lfloor n t_{1}\right\rfloor}{n} \boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right), & \text { if } t \leq t_{1}, \tag{S7.99}\\ \sqrt{n} \frac{\left\lfloor n t_{1}\right\rfloor}{n} \frac{n-\lfloor n t\rfloor}{n} \boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right), & \text { if } t>t_{1}\end{cases}
$$

Then, under \mathbf{H}_{1}, for $\alpha=1$, we have the following decomposition:

$$
\boldsymbol{C}_{1}(t)=\boldsymbol{C}_{1}^{I}(t)+S N R(1, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)+S N R(1, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t),
$$

where $\boldsymbol{C}_{1}(t)$ and $\boldsymbol{R}(t)$ are defined as

$$
\begin{equation*}
\boldsymbol{C}_{1}^{I}(t):=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \tilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right), \boldsymbol{R}(t):=\boldsymbol{R}^{I}(t) \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\}+\boldsymbol{R}^{I I}(t) \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\}, \tag{S7.100}
\end{equation*}
$$

with $\boldsymbol{R}^{I}(t)$ and $\boldsymbol{R}^{I I}(t)$ being defined as

$$
\begin{aligned}
& \boldsymbol{R}^{I}(t):=\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n^{3 / 2}}(\widehat{\boldsymbol{\Sigma}}(0: t)-\boldsymbol{\Sigma})\left(\boldsymbol{\beta}^{(1)}-\widehat{\boldsymbol{\beta}}\right) \\
& -\frac{\lfloor n t\rfloor\left(\left\lfloor n t_{1}\right\rfloor-\lfloor n t\rfloor\right)}{n^{3 / 2}}\left(\widehat{\boldsymbol{\Sigma}}\left(t: t_{1}\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(1)}-\widehat{\boldsymbol{\beta}}\right) \\
& \quad \quad-\frac{\lfloor n t\rfloor\left(n-\left\lfloor n t_{1}\right\rfloor\right)}{n^{3 / 2}}\left(\widehat{\boldsymbol{\Sigma}}\left(t_{1}: 1\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(2)}-\widehat{\boldsymbol{\beta}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \boldsymbol{R}^{I I}(t):=\frac{\left\lfloor n t_{1}\right\rfloor(n-\lfloor n t\rfloor)}{n^{3 / 2}}\left(\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(1)}-\widehat{\boldsymbol{\beta}}\right) \\
& -\frac{(n-\lfloor n t\rfloor)\left(\lfloor n t\rfloor-\left\lfloor n t_{1}\right\rfloor\right)}{n^{3 / 2}}\left(\widehat{\boldsymbol{\Sigma}}\left(t_{1}: t\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(2)}-\widehat{\boldsymbol{\beta}}\right) \\
& \quad-\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n^{3 / 2}}(\widehat{\boldsymbol{\Sigma}}(t: 1)-\boldsymbol{\Sigma})\left(\boldsymbol{\beta}^{(2)}-\widehat{\boldsymbol{\beta}}\right) .
\end{aligned}
$$

To prove $H_{1} \rightarrow 1$, we need the analysis of $\boldsymbol{C}_{1}^{I}(t), \boldsymbol{\delta}(t)$, and $\boldsymbol{R}(t)$, respectively. By definition, for $\boldsymbol{\delta}(t)$, we have: $t_{1}=\arg \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{\delta}(t)\|_{\left(s_{0}, 2\right)}$. In other words, $\|\boldsymbol{\delta}(t)\|_{\left(s_{0}, 2\right)}$ obtains its maximum value at the true change point location. For $\boldsymbol{C}_{1}^{I}(t)$, by Lemma 7 and the fact that $\|\boldsymbol{v}\|_{\left(s_{0}, 2\right)} \leq s_{0}^{1 / 2}\|\boldsymbol{v}\|_{\infty}$ for any $\boldsymbol{v} \in \mathbb{R}^{p}$, we have $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \leq C s_{0}^{1 / 2} M \sqrt{\log (p n)}$ for some constant $C>0$. As for $\boldsymbol{R}(t)$, using the triangle inequality, we have:

$$
\max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)} \leq \max _{q_{0} \leq t \leq t_{1}}\left\|\boldsymbol{R}^{I}(t)\right\|_{\left(s_{0}, 2\right)}+\max _{t_{1} \leq t \leq 1-q_{0}}\left\|\boldsymbol{R}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} .
$$

For $\max _{q_{0} \leq t \leq t_{1}}\left\|\boldsymbol{R}^{I}(t)\right\|_{\left(s_{0}, 2\right)}$, using Lemma 8, with probability at least $1-$ $(p n)^{-C}$, we have

$$
\max _{q_{0} \leq t \leq t_{1}}\left\|\boldsymbol{R}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \leq C_{1} s_{0}^{1 / 2} \sqrt{\log p}\left(\left\|\boldsymbol{\beta}^{(1)}-\widehat{\boldsymbol{\beta}}\right\|_{1}+\left\|\boldsymbol{\beta}^{(2)}-\widehat{\boldsymbol{\beta}}\right\|_{1}\right)
$$

Note that by Lemma 10 and the fact that $\boldsymbol{\beta}^{*}=t_{1} \boldsymbol{\beta}^{(1)}+\left(1-t_{1}\right) \boldsymbol{\beta}^{(2)}$, we have:

$$
\begin{aligned}
& \left\|\boldsymbol{\beta}^{(1)}-\widehat{\boldsymbol{\beta}}\right\|_{1} \\
& \quad \leq_{(1)}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{*}\right\|_{1}+\left\|\boldsymbol{\beta}^{*}-\widehat{\boldsymbol{\beta}}\right\|_{1} \\
& \quad \leq_{(2)}\left(1-t_{1}\right)\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}+C_{1} s M \sqrt{\frac{\log (p n)}{n}}\left(1+M\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{1}\right) \\
& \leq_{(3)} C_{1}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1} \\
& \quad \leq_{(4)} C_{1} s\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{\infty} \\
& \quad \leq_{(5)} C_{1} s\left\|\boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)} \\
& \quad \leq_{(6)} C_{2} s\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}
\end{aligned}
$$

where (2) comes from Lemma 10, (3) comes from the assumption that $s M^{2} \sqrt{\log (p n) / n}=o(1),(6)$ comes from Assumption A. Similarly, we can prove $\left\|\boldsymbol{\beta}^{(2)}-\widehat{\boldsymbol{\beta}}\right\|_{1}=O_{p}\left(s\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right)$. Combining this result, we can prove that

$$
\begin{aligned}
\max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)} & \leq 2 \max \left(\max _{q_{0} \leq t \leq t_{1}}\left\|\boldsymbol{R}^{I}(t)\right\|_{\left(s_{0}, 2\right)}, \max _{t_{1} \leq t \leq 1-q_{0}}\left\|\boldsymbol{R}^{I I}(t)\right\|_{\left(s_{0}, 2\right)}\right) \\
& \leq C s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)} .
\end{aligned}
$$

Using the above bounds of $\boldsymbol{C}_{1}^{I}(t), \boldsymbol{\delta}(t)$, and $\boldsymbol{R}(t)$, and by the triangle inequality, we have:

$$
\begin{align*}
T_{1}= & \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)\right\|_{\left(s_{0}, 2\right)} \\
\geq & S N R(1, \widetilde{\boldsymbol{\tau}}) \times \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{\delta}(t)\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)} \\
\geq & \sqrt{n} \times S N R(1, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)} \\
& \quad-C_{2} s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)} \\
\geq & \sqrt{n} \times S N R(1, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\left(1-\epsilon_{n}\right)-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)} \tag{S7.101}
\end{align*}
$$

where $\epsilon_{n}:=\left(S N R(1, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right)\right)^{-1} s_{0}^{1 / 2} s \sqrt{\log (p) / n}=O\left(s_{0}^{1 / 2} s \sqrt{\log (p) / n}\right)$. Recall H_{1} as defined in (S7.98). Hence, to prove $H_{1} \rightarrow 1$, it is sufficient to prove $H_{1}^{\prime} \rightarrow 1$, where

$$
\begin{aligned}
& H_{1}^{\prime}=\mathbb{P}\left(\sqrt{n} \times S N R(1, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right. \\
& \left.\geq \frac{C s_{0}^{1 / 2} M(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})}{1-\epsilon_{n}}\right) .
\end{aligned}
$$

By (3.37), one can see that $H_{1}^{\prime} \rightarrow 1$ as $n, p \rightarrow \infty$, which finishes the proof.

Remark 2. Note that for $\alpha=1$, if we replace $\sigma^{2}(1, \widetilde{\boldsymbol{\tau}})$ by an estimator $\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ which satisfies: $\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(1, \widetilde{\boldsymbol{\tau}})\right|=o_{p}(1)$, then under condition (3.37), the power still converges to 1 .

S7.5.2 Power analysis for $\alpha=0$

Proof. Firstly, we assume $\widehat{\sigma}^{2}(0, \widetilde{\boldsymbol{\tau}})=\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})$ by considering the variance as unknown, where $\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})=\sqrt{K^{-2} \sum_{k_{1}, k_{2}} \gamma_{k_{1} k_{2}}}$, with $\gamma_{k_{1} k_{2}}:=\min \left(\tau_{k_{1}}, \tau_{k_{2}}\right)-$ $\tau_{k_{1}} \tau_{k_{2}}$. In addition, for the case of $\alpha=0$, we have

$$
S N R(0, \widetilde{\boldsymbol{\tau}})=\frac{\sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)}{\sqrt{\sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} \gamma_{k_{1} k_{2}}}}
$$

Similar to Section S7.5.1, the proof of Theorem 5 proceeds in four steps. In Step 1, we obtain the upper bound of $c_{T_{0}^{b}}(1-\gamma)$, where $c_{T_{0}^{b}}(1-\gamma)$ is the $(1-\gamma)$-th quantile of T_{0}^{b}, which is defined as

$$
\begin{equation*}
c_{T_{0}^{b}}(1-\gamma):=\inf \left\{t: \mathbb{P}\left(T_{0}^{b} \leq t\right) \geq 1-\gamma\right\} \tag{S7.102}
\end{equation*}
$$

In Steps 2-4, using the upper bound, we get the lower bound of $\mathbb{P}\left(T_{0} \geq\right.$ $\left.c_{T_{0}^{b}}(1-\gamma)\right)$ and prove

$$
\begin{equation*}
\mathbb{P}\left(T_{0} \geq c_{T_{0}^{b}}(1-\gamma)\right) \rightarrow 1, \text { as } n, p \rightarrow \infty \tag{S7.103}
\end{equation*}
$$

Step 1: By the definition of T_{0}^{b}, we have: $T_{0}^{b}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{b}(t)\right\|_{\left(s_{0}, 2\right)}$, with

$$
\boldsymbol{C}_{0}^{b}(t):=\frac{1}{\sqrt{n} v(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} e_{i}^{b}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}^{b}(\widetilde{\boldsymbol{\tau}})\right)
$$

where $e_{i}^{b}(\widetilde{\boldsymbol{\tau}})=K^{-1} \sum_{k=1}^{K} e_{i}^{b}\left(\tau_{k}\right)$ with $e_{i}^{b}\left(\tau_{k}\right):=\mathbf{1}\left\{\epsilon_{i}^{b} \leq \Phi^{-1}\left(\tau_{k}\right)\right\}-\tau_{k}, \epsilon_{i}^{b}$ is i.i.d $N(0,1)$, $v(0, \widetilde{\boldsymbol{\tau}}):=\operatorname{Var}\left[e^{b}(\widetilde{\boldsymbol{\tau}})\right]$, and $\Phi(x)$ is the CDF for the standard normal distribution. Note that $\left|e_{i}^{b}(\widetilde{\boldsymbol{\tau}})\right| \leq 1$ by definition. Hence, we can use a very
similar proof procedure as in Step 1 in Section S7.5.1 to obtain

$$
\begin{equation*}
c_{T_{0}^{b}}(1-\gamma) \leq C\left(M, q_{0}, \tilde{\boldsymbol{\tau}}\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)}) \tag{S7.104}
\end{equation*}
$$

where $C\left(M, q_{0}, \widetilde{\boldsymbol{\tau}}\right)$ is some universal constant only depending on M, q_{0} and

$\widetilde{\boldsymbol{\tau}}$.

Step 2 Decomposition of $C_{0}(t)$. In this step, we aim to prove that $\mathbb{P}\left(T_{0} \geq c_{T_{0}^{b}}(1-\gamma)\right) \rightarrow 1$ as $n, p \rightarrow \infty$. Note that in Step 1 , we have obtained the upper bound of $c_{T_{\alpha}^{b}}(1-\gamma)$. Hence, it is sufficient to prove that $H_{1} \rightarrow 1$ as $n, p \rightarrow \infty$, where

$$
\begin{equation*}
H_{1}:=\mathbb{P}\left(T_{0} \geq C\left(M, q_{0}, \widetilde{\boldsymbol{\tau}}\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})\right) \tag{S7.105}
\end{equation*}
$$

To prove $H_{1} \rightarrow 1$, we need the decomposition of T_{0} under \mathbf{H}_{1}. Note that for $\alpha=0$, with known variance, the score based CUSUM process reduces to:

$$
\begin{equation*}
\boldsymbol{C}_{0}(t)=\frac{1}{\sqrt{n} \sigma(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right) \tag{S7.106}
\end{equation*}
$$

where $\boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right):=\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\tau_{k}\right)$. Define

$$
\begin{equation*}
\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K}\left(\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\tau_{k}\right):=\frac{1}{K} \sum_{k=1}^{K} \widehat{e}_{i}\left(\tau_{k}\right), \tag{S7.107}
\end{equation*}
$$

where $\widehat{e}_{i}\left(\tau_{k}\right):=\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\tau_{k}$. For $\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})$, we have the following decomposition:

$$
\begin{equation*}
\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})=e_{i}(\widetilde{\boldsymbol{\tau}})+\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]+\underbrace{\left\{\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})-\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]\right\}}_{V_{i}(\widetilde{\boldsymbol{\tau}})}, \tag{S7.108}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K} e_{i}\left(\tau_{k}\right), \text { with } e_{i}\left(\tau_{k}\right)=\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}-\tau_{k} \\
& \mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]:=\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\widehat{e}_{i}\left(\tau_{k}\right)-e_{i}\left(\tau_{k}\right)\right] \tag{S7.109}\\
& V_{i}(\widetilde{\boldsymbol{\tau}}):=\frac{1}{K} \sum_{k=1}^{K} V_{i}\left(\tau_{k}\right),
\end{align*}
$$

and
$V_{i}\left(\tau_{k}\right)=\left[\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right]-\mathbb{E}\left[\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right]$.

Next, we analyze the three parts in (S7.108). Note that the first term $e_{i}(\widetilde{\boldsymbol{\tau}})$ is a sum for simple Bernoulli random variables. For the second term, by the Taylor's expansion, we have

$$
\begin{equation*}
\mathbb{E}\left[\widehat{e}_{i}(\widetilde{\boldsymbol{\tau}})-e_{i}(\widetilde{\boldsymbol{\tau}})\right]=\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\widehat{e}_{i}\left(\tau_{k}\right)-e_{i}\left(\tau_{k}\right)\right]=\underbrace{\frac{1}{K} \sum_{k=1}^{K} M_{i}^{(1)}\left(\tau_{k}\right)}_{M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})}+\underbrace{\frac{1}{K} \sum_{k=1}^{K} M_{i}^{(2)}\left(\tau_{k}\right)}_{M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})}, \tag{S7.110}
\end{equation*}
$$

where

$$
\begin{align*}
M_{i}^{(1)}\left(\tau_{k}\right):=f_{\epsilon}\left(b_{k}^{(0)}\right) & \left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right) \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\} \\
& +f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(2)}\right)\right) \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\} \tag{S7.111}
\end{align*}
$$

and

$$
\begin{align*}
& M_{i}^{(2)}\left(\tau_{k}\right):=\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2} \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\} \\
&+\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(2)}\right)\right)^{2} \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\} \tag{S7.112}
\end{align*}
$$

with $\xi_{i k}$ being some constant that between $b_{k}^{(0)}$ and $\widehat{b}_{k}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)$ (or $\left.b_{k}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(2)}\right)\right)$.

Hence, based on the above decomposition, for the composite quantile based score function, its CUSUM process can be decomposed into four parts:

$$
\begin{equation*}
\boldsymbol{C}_{0}(t)=\boldsymbol{C}_{0}^{(1)}(t)+\boldsymbol{C}_{0}^{(2)}(t)+\boldsymbol{C}_{0}^{(3)}(t)+\boldsymbol{C}_{0}^{(4)}(t) \tag{S7.113}
\end{equation*}
$$

where $\boldsymbol{C}_{0}^{(1)}(t), \ldots, \boldsymbol{C}_{0}^{(4)}(t)$ are defined as:

$$
\begin{align*}
\boldsymbol{C}_{0}^{(1)}(t) & =\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})\right), \\
\boldsymbol{C}_{0}^{(2)}(t) & =\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})\right), \tag{S7.114}\\
\boldsymbol{C}_{0}^{(3)}(t) & =\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right), \\
\boldsymbol{C}_{0}^{(4)}(t) & =\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} V_{i}(\widetilde{\boldsymbol{\tau}})-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} V_{i}(\widetilde{\boldsymbol{\tau}})\right) .
\end{align*}
$$

Note that $\boldsymbol{C}_{0}^{(2)}(t)$ consists of the signal jump and is very important for detecting a change point. To see this, recall $M_{i}^{(1)}(\widetilde{\boldsymbol{\tau}})=\frac{1}{K} \sum_{k=1}^{K} M_{i}^{(1)}\left(\tau_{k}\right)$
defined in (S7.110). Then, we have

$$
\begin{align*}
\boldsymbol{C}_{0}^{(2)}(t) & ={ }_{(1)} \frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} M_{i}^{(1)}\left(\tau_{k}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} M_{i}^{(1)}\left(\tau_{k}\right)\right) \\
& ={ }_{(2)} \frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} M_{i}^{(1)}\left(\tau_{k}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} M_{i}^{(1)}\left(\tau_{k}\right)\right)\right] \\
& ={ }_{(3)} \frac{1}{K} \sum_{k=1}^{K}\left[\frac{-f_{\epsilon}\left(b_{k}^{(0)}\right)}{\sigma(0, \widetilde{\boldsymbol{\tau}})}(\boldsymbol{\delta}(t)+\boldsymbol{R}(t))\right] \tag{S7.115}
\end{align*}
$$

where $\boldsymbol{\delta}(t)$ is defined in S7.99), and $\boldsymbol{R}(t)$ is defined in (S7.100). Hence, combining (S7.113) - S7.115), under \mathbf{H}_{1}, the score based CUSUM for the quantile loss can be decomposed into four terms:

$$
\begin{equation*}
\boldsymbol{C}_{0}(t)=-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)+\boldsymbol{C}_{0}^{(1)}(t)-S N R(0, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)+\boldsymbol{C}_{0}^{(3)}(t)+\boldsymbol{C}_{0}^{(4)}(t) \tag{S7.116}
\end{equation*}
$$

Step 3: Obtain the upper bounds for the residuals and random

 noises in $\boldsymbol{C}_{0}(t)$.We first consider $\max _{t}\left\|\boldsymbol{C}_{0}^{(1)}\right\|_{\left(s_{0}, 2\right)}$. By definition, $\boldsymbol{C}_{0}^{(1)}$ is a partial sum process based on $\boldsymbol{X}_{i} e_{i}(\widetilde{\boldsymbol{\tau}})$. Hence, by Lemmal7, we can prove that $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(1)}(t)\right\|_{\left(s_{0}, 2\right)}=$ $O_{p}\left(s_{0}^{1 / 2} M \sqrt{\log (p n)}\right)$. For $\max _{t}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}$, using Lemma 10, Remark 5 , and using a similar proof procedure as in Step 2 of Section S7.5.1, we can prove that

$$
\begin{equation*}
\max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}=O_{p}\left(s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right) \tag{S7.117}
\end{equation*}
$$

Next, we consider $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}$. To that end, we need some

S7.5 Proof of Theorem 5

notations. Let $\underset{\sim}{\boldsymbol{\beta}^{(1)}}:=\left(\left(\boldsymbol{\beta}^{(1)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K},{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}:=\left(\left(\boldsymbol{\beta}^{(2)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top} \in$ $\mathbb{R}^{p+K}, \underset{\sim}{\boldsymbol{X}}:=\left(\boldsymbol{X}^{\top}, \mathbf{1}_{K}\right) \in \mathbb{R}^{p+K}$, and $\boldsymbol{S}_{k}:=\operatorname{diag}\left(\mathbf{1}_{p}, \boldsymbol{e}_{k}\right)$, where $\boldsymbol{e}_{k} \in \mathbb{R}^{K}$ is a vector with the k-th element being 1 and the others being zeros, and $\mathbf{1}_{K}$ is a K-dimensional vector with all elements being 1 s. Moreover, recall \boldsymbol{S} as defined in S9.191). Then, by the definition of $\boldsymbol{C}_{0}^{(3)}(t)$, we have:

$$
\begin{aligned}
& \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \leq_{(1)} s_{0}^{1 / 2} \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\infty} \\
& \leq_{(2)} s_{0}^{1 / 2} \max _{t} \frac{\lfloor n t\rfloor}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left\|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right\|_{\infty} \\
& \quad+s_{0}^{1 / 2} \max _{t} \frac{\lfloor n t\rfloor}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right\|_{\infty} \\
& \leq{ }_{(3)} C_{1} \sqrt{n} s_{0}^{1 / 2} \max _{j} \max _{t}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n\rfloor} X_{i j} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right|+C_{1} \sqrt{n} s_{0}^{1 / 2} \max _{j}\left|\frac{1}{n} \sum_{i=1}^{n} X_{i j} M_{i}^{(2)}(\widetilde{\boldsymbol{\tau}})\right| \\
& \leq_{(4)} C_{1} \sqrt{n} s_{0}^{1 / 2}(I \vee I I)+C_{1} M \sqrt{n} s_{0}^{1 / 2}(I I I \vee I V),
\end{aligned}
$$

where $I, \ldots, I V$ are defined as

$$
\begin{gather*}
I:=\max _{1 \leq j \leq p} \max _{q_{0} \leq t \leq 1-q_{0}}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}\right|, \\
I I:=\max _{1 \leq j \leq p} \max _{q_{0} \leq t \leq 1-q_{0}}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(2)}\right)\right)^{2}\right|, \\
I I I:=\max _{j}\left|\frac{1}{n} \sum_{i=1}^{n} X_{i j} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}\right|, \\
I V:=\max _{j}\left|\frac{1}{n} \sum_{i=1}^{n} X_{i j} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}\right| . \tag{S7.118}
\end{gather*}
$$

Next, we consider $I-I V$, respectively. To that end, define

$$
\begin{aligned}
& M_{i}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)=\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}, \text { for } i=1, \ldots, n, \\
& M_{i}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(2)}\right)=\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(2)}\right)\right)^{2}, \text { for } i=1, \ldots, n, \\
& M^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right):=\left(M_{1}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right), \ldots, M_{n}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right)^{\top}, \\
& \boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(2)}\right):=\left(M_{1}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(2)}\right), \ldots, M_{n}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(2)}\right)\right)^{\top}
\end{aligned}
$$

For I, we then have:

$$
\begin{align*}
I & ={ }_{(1)} \max _{1 \leq j \leq p} \max _{q_{0} \leq t \leq 1-q_{0}}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \frac{M_{i}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)}{\left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\|}\right|\left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\| \\
& \leq{ }_{(2)} \max _{\substack{w=\left(w_{1}, \ldots, w_{n}\right)^{\top} \\
\|\boldsymbol{w}\|=1}}^{\max _{1 \leq j \leq p} \max _{q_{0} \leq t \leq 1-q_{0}}\left|\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} X_{i j} w_{i}\right|\left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\|} \\
& \leq{ }_{(3)} O_{p}\left(\frac{\sqrt{\log (p n)}}{n}\right)\left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\|, \tag{S7.119}
\end{align*}
$$

where (3) comes from Assumption (A.2) and the Hoeffding's inequality.

Hence, to bound I, we need to consider $\left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\|$. In fact, we have:

$$
\begin{align*}
& \left\|\boldsymbol{M}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right\|^{2} \\
& ={ }_{(1)} \sum_{i=1}^{n}\left[M_{i}^{(2)}\left(\widetilde{\boldsymbol{\tau}} ; \boldsymbol{\beta}^{(1)}\right)\right]^{2} \\
& ={ }_{(2)} \sum_{i=1}^{n}\left[\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}\right]^{2} \\
& \leq_{(3)} \frac{C_{+}^{\prime 2} n}{4 K^{2}} \max _{1 \leq i \leq n}\left[\sum_{k=1}^{K}\left(\widehat{b}_{k}-b_{k}^{(0)}+\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right)\right)^{2}\right]^{2} \\
& \leq_{(4)} \frac{C_{+}^{\prime 2} n}{4 K^{2}}\left[\sum_{k=1}^{K}\left(\left|\widehat{b}_{k}-b_{k}^{(0)}\right|+M\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(1)}\right\|_{1}\right)^{2}\right]^{2} \tag{S7.120}\\
& \leq{ }_{(5)} \frac{C_{+}^{\prime 2} n}{4 K^{2}}\left[K M^{2}\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\underset{\sim}{\beta}}{ }^{(1)}\right\|_{1}^{2}\right]^{2} \\
& \leq_{(6)} \frac{M^{4} C_{+}^{\prime 2} n}{4}\left[\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}{ }^{*}\right\|_{1}+\left\|\underset{\sim}{\boldsymbol{\beta}}{ }^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right\|_{1}\right]^{4} \\
& \leq_{(7)} \frac{M^{4} C_{+}^{\prime 2} n}{4}\left[O_{p}\left(s \sqrt{\frac{\log (p n)}{n}}\right)+C_{1}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{1}\right]^{4} \\
& \leq{ }_{(8)} O_{p}\left(n s^{4}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\left(s_{0}, 2\right)}^{4}\right),
\end{align*}
$$

where (3) comes from Assumption D, (4) comes from Assumption A, (7) comes from Lemma 10, (8) comes from $\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{1} \leq s\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\left(s_{0}, 2\right)}$.

Combining (S7.119) and S7.120, we have

$$
I=O_{p}\left(s^{2} \sqrt{\frac{\log (p n)}{n}}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\left(s_{0}, 2\right)}^{2}\right) .
$$

With a similar proof procedure, we can prove $I I, I I I, I V=O_{p}\left(s^{2} \sqrt{\log (p n) / n} \| \boldsymbol{\beta}^{(2)}-\right.$ $\boldsymbol{\beta}^{(1)} \|_{\left(s_{0}, 2\right)}^{2}$, which yields:

$$
\begin{equation*}
\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(s_{0}^{1 / 2} s^{2} \sqrt{\log (p n)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}^{2}\right) \tag{S7.121}
\end{equation*}
$$

Lastly, we consider the control of $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(4)}(t)\right\|_{\left(s_{0}, 2\right)}$. Similar
to the proof of Lemma 17, using some tedious modifications, we can prove
that:

$$
\begin{equation*}
\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(4)}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(M s_{0}^{1 / 2} s \sqrt{\log (p n)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}\right) \tag{S7.122}
\end{equation*}
$$

Step 4: Combining the previous results. Recall (S7.104, (S7.105), S7.116. Using the above bounds of $\boldsymbol{C}_{(0)}^{(1)}(t), \boldsymbol{R}(t), \boldsymbol{C}_{(0)}^{(3)}(t), \boldsymbol{C}_{(0)}^{(4)}(t)$, and by the triangle inequality, w.p.a.1, we have:

$$
\begin{align*}
& T_{0}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \geq S N R(0, \widetilde{\boldsymbol{\tau}}) \times \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{\delta}(t)\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq \leq \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(1)}(t)\right\|_{\left(s_{0}, 2\right)} \\
&- S N R(0, \widetilde{\boldsymbol{\tau}}) \times \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(4)}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \geq \sqrt{n} \times S N R(0, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)} \\
& \quad-C_{2} s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}-C_{3} s_{0}^{1 / 2} s^{2} \sqrt{\log (p n)\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}^{2}} \\
& \quad \quad-C_{4} M s_{0}^{1 / 2} s \sqrt{\log (p)\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}} \\
& \quad \geq \sqrt{n} \times S N R(0, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\left(1-\epsilon_{n}\right)-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)}, \tag{S7.123}
\end{align*}
$$

where

$$
\epsilon_{n}:=O\left(s_{0}^{1 / 2} s \sqrt{\frac{\log p}{n}}\right) \vee O\left(s_{0}^{1 / 2} s^{2} \sqrt{\frac{\log p}{n}}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\left(s_{0}, 2\right)}\right)
$$

Hence, considering (S7.123), to prove S7.105), it is sufficient to prove $H_{1}^{\prime} \rightarrow$ 1, where

$$
\begin{aligned}
& H_{1}^{\prime}=\mathbb{P}\left(\sqrt{n} \times S N R(0, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right. \\
& \left.\geq \frac{C s_{0}^{1 / 2} M(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})}{1-\epsilon_{n}}\right) .
\end{aligned}
$$

By (3.37), it is straightforward to see that $H_{1}^{\prime} \rightarrow 1$ as $n, p \rightarrow \infty$, which finishes the proof.

Remark 3. Note that for $\alpha=0$, if we replace $\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})$ by an estimator $\widehat{\sigma}^{2}(0, \widetilde{\boldsymbol{\tau}})$ which satisfies: $\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(0, \widetilde{\boldsymbol{\tau}})\right|=o_{p}(1)$, then under condition (3.37), the change point test is still consistent.

S7.5.3 Power analysis for $\alpha \in(0,1)$

Proof. In what follows, we assume $\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})=\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ by considering the variance as unknown, where $\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}}):=\operatorname{Var}\left[(1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})-\alpha \epsilon_{i}\right]$. In addition, for the case of $\alpha \in(0,1)$, we define

$$
\operatorname{SNR}(\alpha, \widetilde{\boldsymbol{\tau}}):=\frac{(1-\alpha)\left(\frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\right)+\alpha}{\sigma(\alpha, \widetilde{\boldsymbol{\tau}})}
$$

Similar to Sections S7.5.1 and S7.5.2, the proof of Theorem 5 proceeds in four steps. In Step 1, we obtain the upper bound of $c_{T_{\alpha}^{b}}(1-\gamma)$, where $c_{T_{\alpha}^{b}}(1-\gamma)$ is the $(1-\gamma)$-th quantile of T_{α}^{b}, which is defined as

$$
\begin{equation*}
c_{T_{\alpha}^{b}}(1-\gamma):=\inf \left\{t: \mathbb{P}\left(T_{\alpha}^{b} \leq t\right) \geq 1-\gamma\right\} . \tag{S7.124}
\end{equation*}
$$

In Steps 2-4, using the upper bound, we get the lower bound of $\mathbb{P}\left(T_{\alpha} \geq\right.$ $\left.c_{T_{\alpha}^{b}}(1-\gamma)\right)$ and prove

$$
\begin{equation*}
\mathbb{P}\left(T_{\alpha} \geq c_{T_{\alpha}^{b}}(1-\gamma)\right) \rightarrow 1, \text { as } n, p \rightarrow \infty . \tag{S7.125}
\end{equation*}
$$

Step 1: By the definition of T_{α}^{b}, we have: $T_{\alpha}^{b}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}^{b}(t)\right\|_{\left(s_{0}, 2\right)}$, with
$\boldsymbol{C}_{\alpha}^{b}(t):=\frac{1}{\sqrt{n} v(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}^{b}(\widetilde{\boldsymbol{\tau}})-\alpha e_{i}^{b}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left((1-\alpha) e_{i}^{b}(\widetilde{\boldsymbol{\tau}})-\alpha e_{i}^{b}\right)\right)$,
where $e_{i}^{b}(\widetilde{\boldsymbol{\tau}})=K^{-1} \sum_{k=1}^{K} e_{i}^{b}\left(\tau_{k}\right)$ with $e_{i}^{b}\left(\tau_{k}\right):=\mathbf{1}\left\{\epsilon_{i}^{b} \leq \Phi^{-1}\left(\tau_{k}\right)\right\}-\tau_{k}, e_{i}^{b}$ is i.i.d $N(0,1)$, and $\Phi(x)$ is the CDF for the standard normal distribution, and $v^{2}(\alpha, \widetilde{\boldsymbol{\tau}}):=$ $\operatorname{Var}\left[(1-\alpha) e_{i}^{b}(\widetilde{\boldsymbol{\tau}})-\alpha e_{i}^{b}\right]$.

Note that $(1-\alpha) e_{i}^{b}(\widetilde{\boldsymbol{\tau}})-\alpha e_{i}^{b}$ is just a linear combination of a bounded random variable $e_{i}^{b}(\widetilde{\boldsymbol{\tau}})$ and a standard normal distribution. Hence, using a very similar proof procedure as in Step 1 in Section S7.5.1, one can prove

$$
\begin{equation*}
c_{T_{\alpha}^{b}}(1-\gamma) \leq C\left(M, q_{0}, \tilde{\boldsymbol{\tau}}, \alpha\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)}) \tag{S7.126}
\end{equation*}
$$

where $C\left(M, q_{0}, \widetilde{\boldsymbol{\tau}}, \alpha\right)$ is some universal constant only depending on M, q_{0}, $\widetilde{\boldsymbol{\tau}}$ and α.

Step 2 Decomposition of $\boldsymbol{C}_{\alpha}(t)$. In this step, we aim to prove that $\mathbb{P}\left(T_{\alpha} \geq c_{T_{\alpha}^{b}}(1-\gamma)\right) \rightarrow 1$ as $n, p \rightarrow \infty$. Note that in Step 1, we have obtained the upper bound of $c_{T_{\alpha}^{b}}(1-\gamma)$. Hence, it is sufficient to prove that $H_{1} \rightarrow 1$ as $n, p \rightarrow \infty$, where

$$
\begin{equation*}
H_{1}:=\mathbb{P}\left(T_{\alpha} \geq C\left(M, q_{0}, \widetilde{\boldsymbol{\tau}}, \alpha\right) s_{0}^{1 / 2}(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})\right) \tag{S7.127}
\end{equation*}
$$

To prove $H_{1} \rightarrow 1$, we need the decomposition of T_{α} under \mathbf{H}_{1}. Note that for $\alpha \in(0,1)$, with known variance, the score based CUSUM process reduces
to:
$\boldsymbol{C}_{\alpha}(t)=\frac{1}{\sqrt{n} \sigma(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right)\right)$,
where $\boldsymbol{Z}\left(\boldsymbol{X}_{i}, Y_{i} ; \widetilde{\boldsymbol{\tau}}, \widehat{\boldsymbol{b}}, \widehat{\boldsymbol{\beta}}\right):=(1-\alpha) \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i}-\widehat{b}_{k}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \leq 0\right\}-\tau_{k}\right)-$ $\alpha \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)$.

Using the results obtained in Sections S7.5.1 and S7.5.2, we have the following decomposition:
$\boldsymbol{C}_{\alpha}(t)=\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{\delta}(t)-S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \boldsymbol{R}(t)+(1-\alpha) \boldsymbol{C}_{0}^{(3)}(t)+(1-\alpha) \boldsymbol{C}_{0}^{(4)}(t)$,
where $\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)$ is the random noise based partial sum process defined in (S7.47), $\boldsymbol{\delta}(t)$ is the signal jump defined in (S7.99), $\boldsymbol{R}(t)$ is defined in S7.100), and $\boldsymbol{C}_{0}^{(3)}(t)$ and $\boldsymbol{C}_{0}^{(4)}(t)$ are defined in S7.114.

Step 3: Obtain the upper bounds for the residuals and random noises in $\boldsymbol{C}_{\alpha}(t)$. We first bound $\max _{t}\left\|\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)}$. Note that by its defi-
nition in (S7.47), we have:

$$
\begin{aligned}
& \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \quad=\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|(1-\alpha) \widetilde{\boldsymbol{C}}_{0}^{I}(t)-\alpha \widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \quad \leq(1-\alpha) \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)}+\alpha \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \quad \leq(1-\alpha) s_{0}^{1 / 2} \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\infty}+\alpha s_{0}^{1 / 2} \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\infty} \\
& =O_{p}\left(s_{0}^{1 / 2} M \sqrt{\log (p n)}\right),
\end{aligned}
$$

where the last equation comes from Lemma 7 . Next, we consider $\max _{t}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}$. Using Lemma 11, Remark 6, and using a similar proof procedure as Step 2 in Section S7.5.1, we have

$$
\max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}=O_{p}\left(s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right) .
$$

For $\boldsymbol{C}_{0}^{(3)}(t)$ and $\boldsymbol{C}_{0}^{(4)}(t)$, using the obtained upper bounds in S7.121 and (S7.122), we have:

$$
\begin{aligned}
& \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(s_{0}^{1 / 2} s^{2} \sqrt{\log (p n)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}^{2}\right), \quad \text { and } \\
& \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(4)}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(M s_{0}^{1 / 2} s \sqrt{\log (p n)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}\right)
\end{aligned}
$$

Step 4: Combining the previous results. Recall (S7.126), (S7.127), S7.116. Using the above bounds of $\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t), \boldsymbol{R}(t), \boldsymbol{C}_{(0)}^{(3)}(t), \boldsymbol{C}_{(0)}^{(4)}(t)$, and by
the triangle inequality, w.p.a.1, we have:

$$
\begin{align*}
& T_{\alpha}=\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \geq \\
& \geq \\
& -S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{\delta}(t)\|_{\left(s_{0}, 2\right)}-\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \\
& - \\
& \begin{aligned}
&\left(1-\alpha R(\alpha, \widetilde{\boldsymbol{\tau}}) \times \max _{q_{0} \leq t \leq 1-q_{0}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)}-(1-\alpha) \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{(3)}(t)\right\|_{\left(s_{0}, 2\right)}\right. \\
& \geq \sqrt{n} \times \boldsymbol{C}_{0}^{(4)}(t) \|_{\left(s_{0}, 2\right)} \\
& \geq S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)} \\
& \quad-C_{2} s_{0}^{1 / 2} s \sqrt{\log p}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}-C_{3}(1-\alpha) s_{0}^{1 / 2} s^{2} \sqrt{\log (p n)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)}^{2} \\
& \quad \quad-C_{4}(1-\alpha) M s_{0}^{1 / 2} s \sqrt{\log (p)}\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right)\right\|_{\left(s_{0}, 2\right)} \\
& \geq \sqrt{n} \times S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\left(1-\epsilon_{n}\right)-C_{1} s_{0}^{1 / 2} M \sqrt{\log (p n)}
\end{aligned}
\end{align*}
$$

where

$$
\epsilon_{n}:=O\left(s_{0}^{1 / 2} s \sqrt{\frac{\log p}{n}}\right) \vee O\left(s_{0}^{1 / 2} s^{2} \sqrt{\frac{\log p}{n}}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right\|_{\left(s_{0}, 2\right)}\right)
$$

Hence, considering (S7.123), to prove S7.105, it is sufficient to prove $H_{1}^{\prime} \rightarrow$ 1, where

$$
\begin{aligned}
& H_{1}^{\prime}=\mathbb{P}\left(\sqrt{n} \times S N R(\alpha, \widetilde{\boldsymbol{\tau}}) \times t_{1}\left(1-t_{1}\right) \times\left\|\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right)\right\|_{\left(s_{0}, 2\right)}\right. \\
& \left.\geq \frac{C s_{0}^{1 / 2} M(\sqrt{\log (p n)}+\sqrt{\log (1 / \gamma)})}{1-\epsilon_{n}}\right) .
\end{aligned}
$$

By (3.37), it is straightforward to see that $H_{1}^{\prime} \rightarrow 1$ as $n, p \rightarrow \infty$, which finishes the proof.

Remark 4. Note that for $\alpha \in(0,1)$, if we replace $\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ by an estimator
$\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})$ which satisfies: $\left|\widehat{\sigma}^{2}(\alpha, \widetilde{\boldsymbol{\tau}})-\sigma^{2}(\alpha, \widetilde{\boldsymbol{\tau}})\right|=o_{p}(1)$, then under condition (3.37), the power still converges to 1 .

S8 Proofs of lemmas in Section S7

S8.1 Proof of Lemma 12

Proof. In this section, we prove Lemma 12. In other words, we will prove

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S8.131}
\end{equation*}
$$

Using the triangle inequality, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right) \leq D_{1}+D_{2}, \tag{S8.132}
\end{equation*}
$$

where D_{1} and D_{2} are defined as

$$
\begin{align*}
& D_{1}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right), \tag{S8.133}\\
& D_{2}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right) .
\end{align*}
$$

By S8.132), to prove S8.131), we need to bound D_{1} and D_{2}, respectively.
Step 1: Obtain the upper bound for D_{1}. We first consider D_{1}. To this end, we define

$$
\begin{equation*}
\mathcal{E}=\left\{c_{\epsilon}^{2} / 4 \leq \widehat{\sigma}^{2} \leq 4 C_{\epsilon}^{2}\right\}, \tag{S8.134}
\end{equation*}
$$

where c_{ϵ} and C_{ϵ} are in Assumption B. By introducing \mathcal{E}, we have

$$
\begin{equation*}
D_{1} \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)+\mathbb{P}\left(\mathcal{E}^{c}\right) \tag{S8.135}
\end{equation*}
$$

By Theorem 1, we have $\mathbb{P}\left(\mathcal{E}^{c}\right)=o(1)$ as $n, p \rightarrow \infty$. Under the event \mathcal{E}, we have

$$
\begin{align*}
& \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}(t)-\boldsymbol{C}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right) \tag{S8.136}\\
& =\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)
\end{align*}
$$

where $\boldsymbol{C}_{1}^{I I}(t)$ is defined in 57.23 . Hence, under the event \mathcal{E}, we have

$$
\begin{align*}
& \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \frac{\epsilon}{2} \cap \mathcal{E}\right) \\
& ={ }_{(1)} \mathbb{P}\left(\max _{t} \| \frac{1}{\sqrt{n}}\left(\sum_{i=1}^{n t\rfloor} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right) \|_{\left(s_{0}, 2\right)} \geq \frac{c_{\epsilon} \epsilon}{4} \cap \mathcal{E}\right)\right. \\
& \leq_{(2)} \mathbb{P}\left(\max _{t}\left\|\frac{\lfloor n t\rfloor}{\sqrt{n}}(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)\right\|_{\left(s_{0}, 2\right)} \geq \frac{c_{\epsilon} \epsilon}{4} \cap \mathcal{E}\right) \\
& \leq_{(3)} \mathbb{P}\left(\max _{t}\left\|\frac{\lfloor n t\rfloor}{\sqrt{n}}(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)\right\|_{\infty} \geq s_{0}^{-1 / 2} \frac{c_{\epsilon} \epsilon}{4} \cap \mathcal{E}\right) \\
& \leq_{(4)} \mathbb{P}\left(\max _{t}\left\|\frac{\lfloor n t}{\sqrt{n}}(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\right\|_{\infty}\left\|\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)\right\|_{1} \geq s_{0}^{-1 / 2} \frac{c_{\epsilon} \epsilon}{4}\right) \\
& \leq_{(5)} \mathbb{P}\left(\max _{t}\|(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\|_{\infty}\left\|\left(\boldsymbol{\beta}^{(0)}-\widehat{\boldsymbol{\beta}}\right)\right\|_{1} \geq n^{-1 / 2} s_{0}^{-1 / 2} \frac{c_{\epsilon} \epsilon}{4}\right), \tag{S8.137}
\end{align*}
$$

where (3) comes from the fact that $\|\boldsymbol{v}\|_{\left(s_{0}, 2\right)} \leq s_{0}^{1 / 2}\|\boldsymbol{v}\|_{\infty}$ for any $\boldsymbol{v} \in \mathbb{R}^{p}$, (4) comes from the fact that $\|\mathbf{A} \boldsymbol{v}\|_{\infty} \leq\|\mathbf{A}\|_{\infty}\|\boldsymbol{v}\|_{1}$ for any matrix \mathbf{A} and vector \boldsymbol{v}. By Lemma 8 , we have $\max _{t}\|(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\|_{\infty}=$ $O_{p}\left(M^{2} \sqrt{\log (p) / n}\right)$. Moreover, under \mathbf{H}_{0}, for the lasso estimator $\widehat{\boldsymbol{\beta}}$, using Lemma 10, we have $\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right\|_{1}=O_{p}(s \sqrt{\log (p / n)})$. Hence, combining S8.137 and letting $\epsilon:=C s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n}$ for some big enough constant
$C>0$, we have:

$$
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \frac{\epsilon}{2} \cap \mathcal{E}\right)=o(1)
$$

Step 2: Obtain the upper bound for D_{2}. By definition, we have

$$
\begin{aligned}
D_{2} & :=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I}(t)-\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right) \\
& =\mathbb{P}\left(\left|\frac{1}{\widehat{\sigma}}-\frac{1}{\sigma}\right| \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right) \\
& =\mathbb{P}(\underbrace{\left|\frac{\sigma}{\widehat{\sigma}}-1\right|}_{I_{1}} \underbrace{\max _{0} \leq t \leq 1-q_{0}}_{I_{2}}\left\|\frac{1}{\sqrt{n} \sigma}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2) .
\end{aligned}
$$

Hence, to bound D_{2}, we need to bound I_{1} and I_{2}, respectively. To bound I_{1}, define $\widetilde{I}_{1}=\left|1-\frac{\widehat{\sigma}}{\sigma}\right|$. Using the fact that $a^{2}-b^{2}=(a-b)(a+b)$, we have:

$$
\widetilde{I}_{1}=\left|\frac{\widehat{\sigma}^{2}-\sigma^{2}}{\sigma(\sigma+\widehat{\sigma})}\right| \leq_{(1)}\left|\frac{\widehat{\sigma}^{2}-\sigma^{2}}{\sigma^{2}}\right| \leq_{(2)} C_{1}\left|\widehat{\sigma}^{2}-\sigma^{2}\right| \leq_{(3)} \leq C_{2} \sqrt{s \frac{\log (p n)}{n}}
$$

where (2) comes from Assumption B, (3) comes from Theorem 1. By Lemma C. 1 in Zhou et al. (2018), we have: $I_{1} \leq C \widetilde{I}_{1}$. Next, we consider I_{2}. Using Lemma 7, and the fact that $\|\boldsymbol{v}\|_{\left(s_{0}, 2\right)} \leq s_{0}^{1 / 2}\|\boldsymbol{v}\|_{\infty}$ for any $\boldsymbol{v} \in \mathbb{R}^{p}$, we have:

$$
I_{2}=O_{p}\left(M s_{0}^{1 / 2} \sqrt{\log (p n)}\right)
$$

Hence, we have $I_{1} I_{2}=O_{p}\left(s_{0}^{1 / 2} s^{1 / 2} M \frac{\log (p n)}{\sqrt{n}}\right)$.
Lastly, combining Steps 1 and 2, if we choose $\epsilon:=C s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n}$ for some big constant $C>0$, we have $D_{1}+D_{2}=o(1)$, which finishes the proof.

S8.2 Proof of Lemma 13

Proof. In this section, we aim to prove $\sup _{z>0} I_{z}=o_{p}(1)$, where

$$
I_{z}:=\left|\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\left(s_{0}, 2\right)}>z\right)-\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\left(s_{0}, 2\right)}>z \mid \mathcal{X}\right)\right| .
$$

To that end, let $R=C s_{0} n$ and $L=\sup _{z \in(0,+\infty)} I_{z}$. Then, we can write L as

$$
L=\max \left(L_{1}, L_{2}\right)
$$

where $L_{1}=\sup _{z \in(0, R]} I_{z}$ and $L_{2}=\sup _{z \in(R, \infty)} I_{z}$. Therefore, to prove $L=$ $o_{p}(1)$, we need to bound L_{1} and L_{2}, respectively. We first bound $L_{2}=$ $\sup _{z \in(R, \infty)} I_{z}$. Considering that for any $\boldsymbol{v} \in \mathbb{R}^{p},\|\boldsymbol{v}\|_{\left(s_{0}, 2\right)} \leq s_{0}^{1 / 2}\|\boldsymbol{v}\|_{\infty} \leq$ $s_{0}\|\boldsymbol{v}\|_{\infty}$ holds, we have
$L_{2}=\sup _{z \in(R, \infty)} I_{z} \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\infty}>C n\right)+\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\infty}>C n \mid \mathcal{X}\right)$.
By the exponential inequality and similar to the proof of Lemma 7, we can prove that
$\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{\boldsymbol{G}}(t)\right\|_{\infty}=O_{p}(M \sqrt{\log (p n)})$, and $\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{b}(t)\right\|_{\infty} \mid \mathcal{X}=O_{p}(M \sqrt{\log (p n)})$,
which yields

$$
\begin{equation*}
L_{2}=\sup _{z \in(R, \infty)} I_{z}=o_{p}(1) \tag{S8.138}
\end{equation*}
$$

After bounding L_{2} in S8.138), we now bound $L_{1}:=\sup _{z \in(0, R]} I_{z}$. Let $\mathcal{E}^{R, p}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\| \leq R\right\}$ and $V_{\left(s_{0}, 2\right)}^{z, p}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)} \leq z\right\}$.

Considering $\|\boldsymbol{x}\| \leq p^{1 / 2}\|\boldsymbol{x}\|_{\infty} \leq p^{1 / 2}\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)}$ for any $\boldsymbol{x} \in \mathbb{R}^{p}$, we have $V_{\left(s_{0}, 2\right)}^{z, p} \subset \mathcal{E}^{R p^{1 / 2}, p}$ for $z \leq R$. Therefore, considering Lemma 5, there is a m-generated convex set A^{m} and a $\epsilon>0$ such that
$A^{m} \subset V_{\left(s_{0}, 2\right)}^{z, p} \subset A^{m, R p^{1 / 2} \epsilon}$ and $m \leq p^{s_{0}}\left(\frac{\gamma}{\sqrt{\epsilon}} \ln \left(\frac{1}{\epsilon}\right)\right)^{s_{0}^{2}}\left(\right.$ by $V_{\left(s_{0}, 2\right)}^{z, p} \subset \mathcal{E}^{R p^{1 / 2}, p}$ for $\left.z \leq R\right)$.

By setting $\epsilon=(p n)^{-3 / 2}$, we have $\epsilon^{\prime}=R p^{1 / 2} \epsilon=C s_{0} p^{-1} n^{-1 / 2}$. By S8.139,
for $z \in(0, R]$, we have

$$
I_{z} \leq I_{z, 1}+I_{z, 2}
$$

where

$$
\begin{aligned}
I_{z, 1}= & \max \left(\mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{G}(t) \in A^{m, \epsilon^{\prime}} \backslash A^{m}\right), \mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{b}(t) \in A^{m, \epsilon^{\prime}} \backslash A^{m} \mid \mathcal{X}\right)\right), \\
I_{z, 2}= & \max \left(\left|\mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{G}(t) \in A^{m, \epsilon^{\prime}}\right)-\mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{b}(t) \in A^{m, \epsilon^{\prime}} \mid \mathcal{X}\right)\right|,\right. \\
& \left.\left|\mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{G}(t) \in A^{m}\right)-\mathbb{P}\left(\bigcap_{q_{0} \leq t \leq 1-q_{0}} C_{1}^{b}(t) \in A^{m} \mid \mathcal{X}\right)\right|\right) .
\end{aligned}
$$

Next, we consider $I_{z, 1}$ and $I_{z, 2}$, respectively. Recall $\epsilon^{\prime}=C s_{0} p^{-1} n^{-1 / 2}$.
For $I_{z, 1}$, by Lemma 4 and the definitions of A^{m} and $A^{m, \epsilon^{\prime}}$ in S6.5 and S8.139), for all $z \in(0, R]$, we have

$$
\begin{equation*}
I_{z, 1} \leq C s_{0} p^{-1} n^{-1 / 2} \sqrt{\log \left(m\left(n-2\left\lfloor n q_{0}\right\rfloor\right)\right)} \leq C s_{0}^{2} p^{-1} n^{-1 / 2} \sqrt{\log (p n)}=o_{p}(1) . \tag{S8.140}
\end{equation*}
$$

Recall $\mathcal{V}_{s_{0}}:=\left\{\boldsymbol{v} \in \mathbb{S}^{q-1}:\|\boldsymbol{v}\|=1,\|\boldsymbol{v}\|_{0} \leq s_{0}\right\}$ and $\widehat{\boldsymbol{\Sigma}}(0: t)$ defined in
(S4.2). We then have

$$
\begin{align*}
& \sup _{q_{0} \leq t_{1}, t_{2} \leq 1-q_{0}} \sup _{\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}_{s_{0}}}\left|\boldsymbol{v}_{1}^{\top}\left(\mathbb{E}\left[\boldsymbol{C}_{1}^{\boldsymbol{G}}\left(t_{1}\right) \boldsymbol{C}_{1}^{\boldsymbol{G}}\left(t_{2}\right)^{\top}\right]-\mathbb{E}\left[\boldsymbol{C}_{1}^{b}\left(t_{1}\right) \boldsymbol{C}^{b}\left(t_{2}\right)^{\top} \mid \mathcal{X}\right]\right) \boldsymbol{v}_{2}\right| \\
& \leq_{(1)} \sup _{q_{0} \leq t_{1}, t_{2} \leq 1-q_{0}} \mid \mathbb{E}\left[\boldsymbol{C}_{1}^{\boldsymbol{G}}\left(t_{1}\right) \boldsymbol{C}_{1}^{\boldsymbol{G}}\left(t_{2}\right)^{\top}\right]-\mathbb{E}\left[\boldsymbol{C}_{1}^{b}\left(t_{1}\right) \boldsymbol{C}^{b}\left(t_{2}\right)^{\top} \mid \mathcal{X}\right]\left\|_{\infty}\right\| \boldsymbol{v}_{1}\left\|_{1}\right\| \boldsymbol{v}_{2} \|_{1} \\
& \leq_{(2)} s_{0} \sup _{q_{0} \leq t_{1}, t_{2} \leq 1-q_{0}} \| \min \left(t_{1}, t_{2}\right)\left(\widehat{\boldsymbol{\Sigma}}\left(0: \min \left(t_{1}, t_{2}\right)\right)-\boldsymbol{\Sigma}\right) \\
& \quad-t_{1} t_{2}\left(\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right)-t_{1} t_{2}\left(\widehat{\boldsymbol{\Sigma}}\left(0: t_{2}\right)-\boldsymbol{\Sigma}\right)+t_{1} t_{2}(\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}) \|_{\infty}, \tag{S8.141}
\end{align*}
$$

the last inequality in (S8.141) comes from the Cauchy-Schwartz inequality, and the fact $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}_{s_{0}}$. Therefore, based on (S8.141), using Theorem 4.1 and Remark 4.1 in Chernozhukov et al. (2017) and Lemma 8, with probability tending to one, we have
$I_{z, 2} \leq C\left(s_{0} M^{2} \sqrt{\frac{\log (p n)}{n}}\right)^{1 / 3} \log ^{2 / 3}\left(m\left(n-2\left\lfloor n q_{0}\right\rfloor\right)\right) \leq C\left(\frac{s_{0}^{10} \log ^{7}(p n)}{n}\right)^{1 / 6}$.

Considering S8.142, by Assumptions A, E.1, we have $I_{z, 2}=o_{p}(1)$ for all $z \in(0, R]$.

Finally, combining S8.138), S8.140, and S8.142), we have $I_{z}=o_{p}(1)$ uniformly holds for $z \geq 0$, which finishes the proof for Lemma 13 .

S8.3 Proof of Lemma 14

Proof. In this section, we prove Lemma 14. In other words, we aim to prove

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S8.143}
\end{equation*}
$$

where $\boldsymbol{C}_{0}(t)$ is defined in S7.37), and $\widetilde{\boldsymbol{C}}_{0}^{I}(t)$ is defined in S7.40. Using the triangle inequality, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right) \leq D_{1}+D_{2} \tag{S8.144}
\end{equation*}
$$

where D_{1} and D_{2} are defined as

$$
\begin{align*}
& D_{1}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\boldsymbol{C}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right), \tag{S8.145}\\
& D_{2}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{I}(t)-\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right) .
\end{align*}
$$

By $\left(\overline{\mathrm{S} 8.144}\right.$, to prove $\mathrm{S8.143}$, we need to bound D_{1} and D_{2}, respectively.
Step 1: Obtain the upper bound for D_{1}. We first consider D_{1}. To this end, we define

$$
\begin{equation*}
\mathcal{E}=\left\{\sigma^{2} / 2 \leq \widehat{\sigma}^{2} \leq 2 \sigma^{2}\right\}, \tag{S8.146}
\end{equation*}
$$

where $\sigma^{2}:=\operatorname{Var}\left[e_{i}(\widetilde{\boldsymbol{\tau}})\right]$ is the true variance. By introducing \mathcal{E}, we have

$$
\begin{equation*}
D_{1} \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\boldsymbol{C}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)+\mathbb{P}\left(\mathcal{E}^{c}\right) \tag{S8.147}
\end{equation*}
$$

By Theorem 1, we have $\mathbb{P}\left(\mathcal{E}^{c}\right)=o(1)$ as $n, p \rightarrow \infty$. Under the event \mathcal{E}, we have

$$
\begin{align*}
& \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}(t)-\boldsymbol{C}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right) \tag{S8.148}\\
& \quad=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)
\end{align*}
$$

where $\boldsymbol{C}_{0}^{I I}(t)$ is defined in 57.38 . Before controlling $\boldsymbol{C}_{0}^{I I}(t)$, given $\mathcal{X}=$ $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$, we need to decompose $\boldsymbol{C}_{0}^{I I}(t) \mid \mathcal{X}$ into two terms:

$$
\begin{equation*}
\boldsymbol{C}_{0}^{I I}(t)=\boldsymbol{C}_{0}^{I I, 1}(t)+\boldsymbol{C}_{0}^{I I, 2}(t) \tag{S8.149}
\end{equation*}
$$

where $\boldsymbol{C}_{0}^{I I, 1}(t)$ and $\boldsymbol{C}_{0}^{I I, 2}(t)$ are defined as

$$
\begin{align*}
& \boldsymbol{C}_{0}^{I I, 1}(t)= \frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbb{E}\left[\mathbf{1}\left\{\epsilon_{i} \leq{\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\widehat{\boldsymbol{\Delta}}}}_{k}+b_{k}^{(0)}\right\}\right]-\mathbb{E}\left[\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right]\right)\right. \\
&\left.\quad-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbb{E}\left[\mathbf{1}\left\{\epsilon_{i} \leq{\underset{\sim}{\boldsymbol{X}}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}+b_{k}^{(0)}\right\}\right]-\mathbb{E}\left[\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right]\right)\right), \\
& \boldsymbol{C}_{0}^{I I, 2}(t)= \frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\widehat{\boldsymbol{\Delta}}}}_{k}\right)-g_{i k}(0)\right)\right. \\
&\left.\quad-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\widehat{\boldsymbol{\Delta}}}}_{k}\right)-g_{i k}(0)\right)\right), \tag{S8.150}
\end{align*}
$$

where $g_{i k}(t):=\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}+t\right\}-\mathbb{P}\left\{\epsilon_{i} \leq b_{k}^{(0)}+t\right\}$. Next, we control $\boldsymbol{C}_{0}^{I I, 1}(t)$ and $\boldsymbol{C}_{0}^{I I, 2}(t)$, respectively.

Let $F_{\epsilon}(t):=\mathbb{P}(\epsilon \leq t)$ be the CDF for ϵ and f_{ϵ} be its density function.
For $\boldsymbol{C}_{0}^{I I, 1}(t)$, by its definition, we have:

$$
\begin{align*}
\boldsymbol{C}_{0}^{I I, 1}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})} & \left(\sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(F_{\epsilon}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\widehat{\boldsymbol{\Delta}}}}_{k}+b_{k}^{(0)}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right. \\
& \left.-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(F_{\epsilon}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}+b_{k}^{(0)}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right) . \tag{S8.151}
\end{align*}
$$

Using the Taylor's expansion, we have:

$$
\begin{aligned}
F_{\epsilon} & \left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\boldsymbol{\Delta}}}_{k}+b_{k}^{(0)}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right) \\
& =f_{\epsilon}\left(b_{k}^{(0)}\right){\underset{\sim}{\boldsymbol{X}}}_{i}^{\top} \widehat{\sim}_{k}+\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left({\underset{\sim}{\boldsymbol{\Delta}}}_{k}^{\top}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{2} \\
& =f_{\epsilon}\left(b_{k}^{(0)}\right) \boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\Delta}}+f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{b_{k}}-b_{k}^{(0)}\right)+\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{2} \\
& =f_{\epsilon}\left(b_{k}^{(0)}\right) \boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)+f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{b_{k}}-b_{k}^{(0)}\right)+\frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top}{\underset{\sim}{x}}_{i}\right)^{2},
\end{aligned}
$$

where $\xi_{i k}$ is some random variable between $b_{k}^{(0)}$ and $\underset{\sim}{\boldsymbol{X}_{i}^{\top}} \widehat{\boldsymbol{\Delta}}_{k}+b_{k}^{(0)}$. Hence, by the above expansion, $\boldsymbol{C}_{0}^{I I, 1}(t)$ can be decomposed into three terms:

$$
\begin{equation*}
\boldsymbol{C}_{0}^{I I, 1}(t)=\boldsymbol{C}_{0}^{I I, 1,1}(t)+\boldsymbol{C}_{0}^{I I, 1,2}(t)+\boldsymbol{C}_{0}^{I I, 1,3}(t) \tag{S8.152}
\end{equation*}
$$

where $\boldsymbol{C}_{0}^{I I, 1,1}(t)-\boldsymbol{C}_{0}^{I I, 1,3}(t)$ are defined as

$$
\begin{align*}
\boldsymbol{C}_{0}^{I I, 1,1}(t)= & \frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right) \\
& \left.-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right), \\
\boldsymbol{C}_{0}^{I I, 1,2}(t)= & \frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{(b}_{k}-b_{k}^{(0)}\right)\right) \tag{S8.153}\\
& \left.\left.-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{b}_{k}-b_{k}^{(0)}\right)\right)\right), \\
\boldsymbol{C}_{0}^{I I, 1,3}(t)= & \frac{1}{\sqrt{n} \widehat{\sigma}(0, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left({\underset{\sim}{\boldsymbol{\Delta}}}_{k}^{\top} \boldsymbol{X}_{i}\right)^{2}\right) \\
& \left.\left.-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left({\underset{\sim}{\boldsymbol{\Delta}}}_{k}^{\top}{\underset{\sim}{X}}_{i}\right)^{2}\right)\right) .
\end{align*}
$$

Hence, to bound $\boldsymbol{C}_{0}^{I I, 1}(t)$, we need to bound $\boldsymbol{C}_{0}^{I I, 1,1}(t)-\boldsymbol{C}_{0}^{I I, 1,3}(t)$ respectively. For $\boldsymbol{C}_{0}^{I I, 1,1}(t)$, under the event \mathcal{E}, with probability tending to 1 , we
have:

$$
\begin{align*}
& \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 1,1}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \quad \leq_{(1)} C s_{0}^{1 / 2} \max _{t}\left\|\frac{\lfloor n t\rfloor}{\sqrt{n}}(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n)) \frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right\|_{\infty} \\
& \quad \leq_{(2)} C s_{0}^{1 / 2} \max _{t}\left\|\frac{\lfloor n t\rfloor}{\sqrt{n}}(\widehat{\boldsymbol{\Sigma}}(1: t)-\widehat{\boldsymbol{\Sigma}}(1: n))\right\|_{\infty} \times\left\|\frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right\|_{1} \\
& \quad \leq_{(3)} C s_{0}^{1 / 2} M^{2} \sqrt{\log (p)}\left\|\frac{1}{K} \sum_{k=1}^{K} f_{\epsilon}\left(b_{k}^{(0)}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right\|_{1} \\
& \quad \leq_{(4)} C s_{0}^{1 / 2} M^{2} \sqrt{\log (p)}\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}\right)\right\|_{1} \\
& \leq_{(5)} C s_{0}^{1 / 2} M^{2} \sqrt{\log (p)} s \sqrt{\log (p) / n} \tag{S8.154}
\end{align*}
$$

where (1) comes from S8.146), (3) comes from Lemma 8, (4) comes from Assumption D.2, and (5) comes from Lemma 10. With a similar procedure, we can prove that

$$
\begin{equation*}
\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 1,2}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n}\right) \tag{S8.155}
\end{equation*}
$$

Next, we consider $\boldsymbol{C}_{0}^{I I, 1,3}(t)$. Using $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we have
$\left|\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top} \underset{\sim}{\boldsymbol{X}_{i}}\right)^{2}\right| \leq \frac{C_{+}^{\prime}}{2 K} \sum_{k=1}^{K}\left(\widehat{\delta}_{k}+\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\Delta}}\right)^{2} \leq C_{+}^{\prime}\left(\frac{1}{K} \sum_{k=1}^{K} \widehat{\delta}_{k}^{2}+\widehat{\boldsymbol{\Delta}}^{\top} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\Delta}}\right)$,
where $\widehat{\delta}_{k}=\widehat{b}_{k}-b^{(0)}, \widehat{\boldsymbol{\Delta}}=\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{(0)}$. Hence, using the above result, under
\mathcal{E}, we have

$$
\begin{align*}
& \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 1,3}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \leq_{(1)} C s_{0}^{1 / 2}\left\|\max _{t} \frac{\lfloor n t\rfloor}{\sqrt{n}}\left(\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left({\underset{\sim}{\boldsymbol{\Delta}}}_{k}^{\top}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{2}\right)\right\|_{\infty} \\
& +C s_{0}^{1 / 2}\left\|\max _{t} \frac{\lfloor n t\rfloor}{\sqrt{n}}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top} \underset{\sim}{\boldsymbol{X}}\right)^{2}\right)\right\|_{\infty} \\
& \leq_{(2)} C \sqrt{n} s_{0}^{1 / 2} \max _{t}\left(\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor}\left\|\boldsymbol{X}_{i}\right\|_{\infty}\left|\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{2}\right|\right) \\
& +C \sqrt{n} s_{0}^{1 / 2}\left(\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{X}_{i}\right\|_{\infty}\left|\frac{1}{K} \sum_{k=1}^{K} \frac{1}{2} f_{\epsilon}^{\prime}\left(\xi_{i k}\right)\left(\widehat{\boldsymbol{\Delta}}_{k}^{\top}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{2}\right|\right) \\
& \leq_{(3)} C C_{+}^{\prime} \sqrt{n} M s_{0}^{1 / 2}\left(\frac{1}{K}\|\widehat{\boldsymbol{\delta}}\|^{2}+\max _{t} \widehat{\boldsymbol{\Delta}}^{\top} \widehat{\boldsymbol{\Sigma}}(0: t) \widehat{\boldsymbol{\Delta}}\right) \\
& +C C_{+}^{\prime} \sqrt{n} M s_{0}^{1 / 2}\left(\frac{1}{K}\|\widehat{\boldsymbol{\delta}}\|^{2}+\widehat{\boldsymbol{\Delta}}^{\top} \widehat{\boldsymbol{\Sigma}}(0: 1) \widehat{\boldsymbol{\Delta}}\right) \\
& \leq{ }_{(4)} C C_{+}^{\prime} \sqrt{n} M s_{0}^{1 / 2}\left(\frac{1}{K}\|\widehat{\boldsymbol{\delta}}\|^{2}+\max _{t}\left|\widehat{\boldsymbol{\Delta}}^{\top}(\widehat{\boldsymbol{\Sigma}}(0: t)-\boldsymbol{\Sigma}) \widehat{\boldsymbol{\Delta}}\right|+\widehat{\boldsymbol{\Delta}}^{\top} \boldsymbol{\Sigma} \widehat{\boldsymbol{\Delta}}\right. \\
& \left.+C C_{+}^{\prime} \sqrt{n} M s_{0}^{1 / 2}\left(\frac{1}{K}\|\widehat{\boldsymbol{\delta}}\|^{2}+\mid \widehat{\boldsymbol{\Delta}}^{\top}(\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}) \widehat{\boldsymbol{\Delta}}\right) \right\rvert\,+\widehat{\boldsymbol{\Delta}}^{\top} \boldsymbol{\Sigma} \widehat{\boldsymbol{\Delta}} \\
& \leq_{(5)} C C_{+}^{\prime} \sqrt{n} M s_{0}^{1 / 2}\left(\frac{1}{K}\|\widehat{\boldsymbol{\delta}}\|^{2}+\lambda_{\max }(\boldsymbol{\Sigma})\|\widehat{\boldsymbol{\Delta}}\|^{2}+M^{2} s \sqrt{\frac{\log (p n)}{n}}\|\widehat{\boldsymbol{\Delta}}\|^{2}\right) \\
& \leq_{(6)} C s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n}, \tag{S8.157}
\end{align*}
$$

where (1) comes from S8.146) and the triangle inequality, (2) comes from $\max _{t}\lfloor n t\rfloor / \sqrt{n} \leq \sqrt{n},(3)$ comes from Assumption \mathbf{D} and S8.156), and (5) comes from the fact that $\left.\mid \widehat{\boldsymbol{\Delta}}^{\top}(\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}) \widehat{\boldsymbol{\Delta}}\right) \mid \leq\|\widehat{\boldsymbol{\Delta}}\|_{1}^{2}\|\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}\|_{\infty} \leq$ $s\|\widehat{\boldsymbol{\Delta}}\|_{2}^{2}\|\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}\|_{\infty}$ and Lemmas 8, (6) comes from Lemma 10 and the fact that $s M^{2} \log (p) / \sqrt{n}=o(1)$.

Hence, combining (S8.153), S8.154 , S8.155, S8.157), we obtain that

$$
\begin{equation*}
\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 1}(t)\right\|_{\left(s_{0}, 2\right)} \leq C s_{0}^{1 / 2} s M^{2} \log (p) / \sqrt{n} \tag{S8.158}
\end{equation*}
$$

After bounding $\boldsymbol{C}_{0}^{I I, 1,3}(t)$, we next consider $\boldsymbol{C}_{0}^{I I, 2}(t)$. The following lemma provides the desired bound. The proof of Lemma 17 is given in Section S10.1.

Lemma 17. Suppose Assumptions A, D, E. 2 - E. 4 hold. Then, with probability tending to 1 , we have:

$$
\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \leq C s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}
$$

for some big enough constant $C>0$.

Hence, combining S8.158 and Lemma 17, we have:

$$
\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \leq C s_{0}^{1 / 2} M^{2} \frac{(s \log (p n))^{3 / 4}}{n^{1 / 4}}
$$

Step 2: Obtain the upper bound for D_{2}. By Theorem 1, and similar to the proof of Step 2 in Section S8.1, we can prove that

$$
\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{I}(t)-\widetilde{\boldsymbol{C}}_{0}^{I}(t)\right\|_{\left(s_{0}, 2\right)}=r_{0}(n) \times O_{p}\left(M s_{0}^{1 / 2} \sqrt{\log (p n)}\right)
$$

where $r_{0}(n)=s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}$.
Lastly, combining Steps 1 and 2, if we choose $\epsilon:=C s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}$ for some big constant $C>0$, we have $D_{1}+D_{2}=o(1)$, which finishes the proof.

S8.4 Proof of Lemma 15

Proof. In this section, we prove Lemma 15. In other words, we aim to prove

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right)=o(1) \tag{S8.159}
\end{equation*}
$$

where $\boldsymbol{C}_{\alpha}(t)$ and $\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)$ are defined in S7.44) and S7.47. By the triangle inequality, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon\right) \leq D_{1}+D_{2} \tag{S8.160}
\end{equation*}
$$

where D_{1} and D_{2} are defined as

$$
\begin{align*}
& D_{1}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\boldsymbol{C}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right), \tag{S8.161}\\
& D_{2}:=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}^{I}(t)-\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2\right) .
\end{align*}
$$

By S8.160), to prove S8.159), we need to bound D_{1} and D_{2}, respectively.
Step 1: Obtain the upper bound for D_{1}. We first consider D_{1}. To this end, we define

$$
\begin{equation*}
\mathcal{E}=\left\{\sigma^{2} / 2 \leq \widehat{\sigma}^{2} \leq 2 \sigma^{2}\right\} \tag{S8.162}
\end{equation*}
$$

where $\sigma^{2}:=\operatorname{Var}\left[(1-\alpha) e_{i}(\widetilde{\boldsymbol{\tau}})+\alpha \epsilon_{i}\right]$ is the true variance. By introducing \mathcal{E}, we have

$$
\begin{equation*}
D_{1} \leq \mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\boldsymbol{C}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)+\mathbb{P}\left(\mathcal{E}^{c}\right) \tag{S8.163}
\end{equation*}
$$

By Theorem 1, we have $\mathbb{P}\left(\mathcal{E}^{c}\right)=o(1)$ as $n, p \rightarrow \infty$. Under the event \mathcal{E}, we have

$$
\begin{equation*}
\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}(t)-\boldsymbol{C}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right)=\mathbb{P}\left(\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}^{I I}(t)\right\|_{\left(s_{0}, 2\right)} \geq \epsilon / 2 \cap \mathcal{E}\right) \tag{S8.164}
\end{equation*}
$$

where $\boldsymbol{C}_{\alpha}^{I I}(t)$ is defined in S7.46), which is decomposed into two parts:

$$
\begin{equation*}
\boldsymbol{C}_{\alpha}^{I I}(t)=(1-\alpha) \boldsymbol{C}_{0}^{I I}(t)+\alpha \boldsymbol{C}_{1}^{I I}(t) \tag{S8.165}
\end{equation*}
$$

where $\boldsymbol{C}_{1}^{I I}(t)$ is defined in S7.23), and $\boldsymbol{C}_{0}^{I I}(t)$ is defined in S7.38). Note that by the proofs of Lemmas S8.1 and S8.3, we have proved that:

$$
\begin{aligned}
& \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{1}^{I I}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(M^{2} s_{0}^{1 / 2} s \frac{\log (p n)}{\sqrt{n}}\right) \\
& \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{0}^{I I}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(M^{2} s_{0}^{1 / 2} \frac{(s \log (p n))^{3 / 4}}{n^{1 / 4}}\right) .
\end{aligned}
$$

Moreover, by Assumption E.2, we have $s \frac{\log (p n)}{\sqrt{n}} \ll \frac{(s \log (p n))^{3 / 4}}{n^{1 / 4}}$, which implies that:

$$
\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}^{I I}(t)\right\|_{\left(s_{0}, 2\right)}=O_{p}\left(M^{2} s_{0}^{1 / 2} \frac{(s \log (p n))^{3 / 4}}{n^{1 / 4}}\right)
$$

Step 2: Obtain the upper bound for D_{2}. By Theorem 1, and similar to the proof of Step 2 in Sections S8.1 and S8.3, we can prove that

$$
\max _{q_{0} \leq t \leq 1-q_{0}}\left\|\boldsymbol{C}_{\alpha}^{I}(t)-\widetilde{\boldsymbol{C}}_{\alpha}^{I}(t)\right\|_{\left(s_{0}, 2\right)}=r_{\alpha}(n) \times O_{p}\left(M s_{0}^{1 / 2} \sqrt{\log (p n)}\right)
$$

where $r_{\alpha}(n)=s \sqrt{\frac{\log (p n)}{n}} \vee s^{\frac{1}{2}}\left(\frac{\log (p n)}{n}\right)^{\frac{3}{8}}$. Note that by Assumption E.2, we have

$$
r_{\alpha}(n) \times M s_{0}^{1 / 2} \sqrt{\log (p n)} \ll M^{2} s_{0}^{1 / 2} \frac{(s \log (p n))^{3 / 4}}{n^{1 / 4}}
$$

Hence, combining Steps 1 and 2, if we choose $\epsilon:=C s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}$ for some big constant $C>0$, we have $D_{1}+D_{2}=o(1)$, which finishes the proof.

S8.5 Proof of Lemma 16

Proof. Note that the proof for \mathcal{H}_{1} and \mathcal{H}_{2} is similar. We only give the proof of \mathcal{H}_{1}. The proof proceeds in two steps: In Step 1, we obtain the upper bounds of $\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{C\{1, \ldots, p\} \\|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)-\Pi_{J} \boldsymbol{\delta}_{1}(t)\right\|_{2}$. In Step 2, using the upper bound and some regular inequalities, we finish the proof.

Step 1: By the decomposition of $\widetilde{\boldsymbol{C}}_{1}(t)$ as in S7.57, with probability
tending to one, we have:

$$
\begin{aligned}
& \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J\{1, \ldots,,, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)-\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq(2) \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset\{1, \ldots, p, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{2}+\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J\left\{1, \ldots, p_{p},|J|=s_{0}\right.}}\left\|\Pi_{J} \boldsymbol{R}(t)\right\|_{2} \\
& =(3) \max _{t \geq t_{1}+\epsilon_{n}}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\left(s_{0}, 2\right)}+\max _{t \geq t_{1}+\epsilon_{n}}\|\boldsymbol{R}(t)\|_{\left(s_{0}, 2\right)} \\
& \leq(4) s_{0}^{1 / 2} \max _{q_{0} \leq t \leq 1-q_{0}}\left\|\widetilde{\boldsymbol{C}}_{1}^{I}(t)\right\|_{\infty}+s_{0}^{1 / 2} \max _{t \geq t_{1}+\epsilon_{n}}\|\boldsymbol{R}(t)\|_{\infty} \\
& \leq{ }_{(5)} \underbrace{C^{*}\left(s_{0}^{1 / 2} M \sqrt{\log (p n)}+s_{0}^{1 / 2} s \sqrt{\log (p n)}\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}\right)}_{t^{*}} .
\end{aligned}
$$

Recall $\mathcal{M}=\left\{j: \beta_{j}^{(1)} \neq \beta_{j}^{(2)}\right\}$. Note that

$$
\begin{aligned}
& \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset\{1, \ldots, p\} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)-\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2} \\
& \quad=\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)-\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2}+\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M}^{c} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)-\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2} .
\end{aligned}
$$

Using the fact that $\left|\max _{i}\left\|\boldsymbol{a}_{i}\right\|_{2}-\max _{i}\left\|\boldsymbol{b}_{i}\right\|_{2}\right| \leq \max _{i}\left|\left\|\boldsymbol{a}_{i}\right\|_{2}-\left\|\boldsymbol{b}_{i}\right\|_{2}\right| \leq$ $\max _{i}\left|\left\|\boldsymbol{a}_{i}-\boldsymbol{b}_{i}\right\|_{2}\right|$ for any vectors \boldsymbol{a}_{i} and \boldsymbol{b}_{i}, we have:

$$
\begin{align*}
& \mathbb{P}\left(\left|\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}-\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2}\right| \leq t^{*}\right) \rightarrow 1 \\
& \text { and } \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M}^{c} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2} \leq t^{*}\right) \rightarrow 1 . \tag{S8.166}
\end{align*}
$$

Step 2: Note that $\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subseteq \mathcal{M} \\ \mid J=s_{0}}}\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2} \mid=\sqrt{n} t_{1}\left(1-t_{1}-\epsilon_{n}\right)\|\boldsymbol{\Delta}\|_{\left(s_{0}, 2\right)}$. By chooing a big enough constant in S7.49, we have $\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \mathcal{M} \\|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2} \mid \geq$
$2 t^{*}$. Moreover, by (S8.166), we see that:

$$
\begin{aligned}
& \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}-\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} c \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2} \leq 0\right) \\
& \leq{ }_{(1)} \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}-\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2}\right. \\
& \left.\leq \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2}-t^{*}-t^{*}\right) \\
& \leq{ }_{(2)} \mathbb{P}\left(\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2} \leq \max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \supset \mathcal{M} \\
|J|=s_{0}}}\left\|\Pi_{J} \boldsymbol{\delta}(t)\right\|_{2}-t^{*}\right) \\
& +\mathbb{P}\left(-\max _{t \geq t_{1}+\epsilon_{n}} \max _{\substack{J \subset \mathcal{M}^{c} \\
|J|=s_{0}}}\left\|\Pi_{J} \widetilde{\boldsymbol{C}}_{1}(t)\right\|_{2} \leq-t^{*}\right) \rightarrow 0, \quad \text { as } \quad(n, p) \rightarrow \infty,
\end{aligned}
$$

which finishes the proof.

S9 Proofs of useful lemmas in Section S6

S9.1 Proof of Lemma 6

Proof. In this section, we aim to prove S6.7). Firstly, we define $\mathcal{E}^{R}=\{\boldsymbol{x} \in$ $\left.\mathbb{R}^{p}:\|\boldsymbol{x}\| \leq R\right\}$ and $V_{\left(s_{0}, 2\right)}^{z}=\left\{\boldsymbol{x} \in \mathbb{R}^{p}:\|\boldsymbol{x}\|_{\left(s_{0}, 2\right)} \leq z\right\}$. Then, by the definition of $V_{\left(s_{0}, 2\right)}^{z}$, we have

$$
\begin{align*}
& \sup _{z \in(0, \infty)}\left|\mathbb{P}\left(\max _{k_{0} \leq k \leq n-k_{0}}\left\|\boldsymbol{S}^{\boldsymbol{Z}}(k)\right\|_{\left(s_{0}, 2\right)} \leq z\right)-\mathbb{P}\left(\max _{k_{0} \leq k \leq n-k_{0}}\left\|\boldsymbol{S}^{\boldsymbol{G}}(k)\right\|_{\left(s_{0}, 2\right)} \leq z\right)\right| \\
= & \sup _{z \in(0, \infty)} \underbrace{\left|\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{Z}}(k) \in V_{\left(s_{0}, 2\right)}^{z}\right)\right\}-\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{G}}(k) \in V_{\left(s_{0}, 2\right)}^{z}\right)\right\}\right|}_{A_{z}} . \tag{S9.167}
\end{align*}
$$

By interting \mathcal{E}^{R} and $\left(\mathcal{E}^{R}\right)^{c}$ in A_{z}, we have $A_{z} \leq A_{z}^{(1)}+A_{z}^{(2)}$, where

$$
\begin{align*}
& A_{z}^{(1)}:=\left|\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{Z}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right)-\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{G}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right)\right|, \\
& A_{z}^{(2)}:=\left|\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{Z}(k) \in V_{\left(s_{0}, 2\right)}^{z} \cap \mathcal{E}^{R}\right\}\right)-\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{G}(k) \in V_{\left(s_{0}, 2\right)}^{z} \cap \mathcal{E}^{R}\right\}\right)\right| . \tag{S9.168}
\end{align*}
$$

Next, we bound $A_{z}^{(1)}$ and $A_{z}^{(2)}$ respectively. For $A_{z}^{(1)}$, using the triangle inequality, we have

$$
A_{z}^{(1)} \leq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{Z}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right)+\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{S^{G}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right) .
$$

Recall $\boldsymbol{S}^{\boldsymbol{Z}}$ and $\boldsymbol{S}^{\boldsymbol{G}}$ in S6.6). Let $a_{i k}=\mathbf{1}\{i \leq k\}-k / n$ for $i=1 \ldots, n$ and $k_{0} \leq k \leq n-k_{0}$. We then have $\boldsymbol{S}^{\boldsymbol{Z}}(k)=n^{-1 / 2} \sum_{i=1}^{n} \boldsymbol{Z}_{i} a_{i k}$ and $\boldsymbol{S}^{\boldsymbol{G}}(k)=$ $n^{-1 / 2} \sum_{i=1}^{n} \boldsymbol{G}_{i} a_{i k}$. Moreover, by the definition of $k_{0}=\left\lfloor n q_{0}\right\rfloor$, we have $q_{0} \leq$ $\left|a_{i k}\right| \leq 1-q_{0}$ for $i=1, \ldots, n$ and $k_{0} \leq k \leq n-k_{0}$. Hence, we have

$$
\begin{align*}
& \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{Z}}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right) \\
& \quad \leq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{Z}}(k) \in\left(\mathcal{E}^{R}\right)^{c}\right\}\right) \\
& \quad \leq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\|n^{-1 / 2} \sum_{i=1}^{n} \boldsymbol{Z}_{i} a_{i k}\right\|_{2} \geq R\right) \tag{S9.169}\\
& \quad \leq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}} n^{-1 / 2} \sum_{i=1}^{n}\left\|\boldsymbol{Z}_{i}\right\|_{2} \geq R\right) \\
& \quad \leq \sum_{i=1}^{n} \mathbb{P}\left(\sum_{j=1}^{p} Z_{i j}^{2} \geq \frac{R^{2}}{n}\right) .
\end{align*}
$$

By Assumption (M2) and Markov's inequality, we further have:

$$
\begin{equation*}
\sum_{i=1}^{n} \mathbb{P}\left(\sum_{j=1}^{p} Z_{i j}^{2} \geq \frac{R^{2}}{n}\right) \leq \frac{n \sum_{i=1}^{n} \sum_{j=1}^{p} \mathbb{E} Z_{i j}^{2}}{R^{2}} \leq \frac{n p \max _{1 \leq j \leq p} \sum_{i=1}^{n} \mathbb{E} Z_{i j}^{2}}{R^{2}} \leq \frac{n^{2} p K^{2}}{R^{2}} \tag{S9.170}
\end{equation*}
$$

Hence, taking $R^{2}=n^{5 / 2} p$ and combining S9.169) and S9.170, we have

$$
\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{Z}}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right) \leq C \frac{1}{\sqrt{n}}
$$

Similarly, for $\boldsymbol{S}^{\boldsymbol{G}}(k)$, we have $\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{G}}(k) \in\left(\mathcal{E}^{R}\right)^{c} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right) \leq$ $C \frac{1}{\sqrt{n}}$. The above results yield that $A_{z}^{(1)} \leq C \frac{1}{\sqrt{n}}$.

After bounding $A_{z}^{(1)}$, we next consider $A_{z}^{(2)}$. By Lemma 5, there exists an m-generated convex set A^{m} such that

$$
A^{m} \subset \mathcal{E}^{R, p} \cap V_{\left(s_{0}, 2\right)}^{z, p} \subset A^{m, R \epsilon} \text { and } m \leq p^{s_{0}}\left(\frac{\gamma}{\sqrt{\epsilon}} \ln \left(\frac{1}{\epsilon}\right)\right)^{s_{0}^{2}}
$$

By letting

$$
\begin{aligned}
& \bar{\rho}_{1}:=\left|\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{Z}}(k) \in A^{m}\right)\right)-\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k) \in A^{m}\right)\right)\right|, \\
& \bar{\rho}_{2}:=\left|\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{Z}}(k) \in A^{m, R \epsilon}\right)\right)-\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k) \in A^{m, R \epsilon}\right)\right)\right|,
\end{aligned}
$$

we have

$$
\begin{align*}
& \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left\{\boldsymbol{S}^{\boldsymbol{Z}}(k) \in \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z}\right\}\right) \\
& \quad \leq \mathbb{P}\left(\bigcap_{k 0} \leq k \leq n-k_{0}\right. \\
& \tag{S9.171}\\
& \left.\left.\leq \boldsymbol{S}^{\boldsymbol{Z}}(k) \in A^{m, R \epsilon}\right)\right)\left(\text { by } \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z} \subset A^{m, R \epsilon}\right) \\
& \quad \underbrace{\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k) \in A^{m, R \epsilon}\right)\right)}_{P_{z}}+\max \left(\bar{\rho}_{1}, \bar{\rho}_{2}\right) .
\end{align*}
$$

Using Assumption (M1), by the definition of $A^{m, R \epsilon}$ in S6.5) and Lemma 4. we have

$$
\begin{align*}
P_{z} & =\mathbb{P}\left(\bigcap_{\substack{k_{0} \leq k \leq n-k_{0} \\
\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k)^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})+R \epsilon\right)\right) \\
& \leq \mathbb{P}\left(\bigcap_{\substack{k_{0} \leq k \leq n-k_{0} \\
\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k)^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})\right)\right) \\
& +\mathbb{P}\left(\bigcap_{\substack{k_{0} \leq k \leq n-k_{0} \\
\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}}\left(S_{A^{m}}(\boldsymbol{v}) \leq \boldsymbol{S}^{\boldsymbol{G}}(k)^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})+R \epsilon\right)\right) \\
& \leq \mathbb{P}\left(\bigcap_{\substack{k_{0} \leq k \leq n-k_{0}}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k) \in \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z}\right)\right)+C R \epsilon \sqrt{\log n m}\left(\text { by } A^{m} \subset \mathcal{E}^{R, d} \cap V_{\left(s_{0}, 2\right)}^{z}\right) . \tag{S9.172}
\end{align*}
$$

Therefore, by (S9.171) and S9.172), we have

$$
\begin{align*}
& \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{Z}}(k) \in \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z}\right)\right) \\
& \quad \leq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{G}}(k) \in \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z}\right)\right)+C R \epsilon \sqrt{\log n m}+\max \left(\bar{\rho}_{1}, \bar{\rho}_{2}\right) . \tag{S9.173}
\end{align*}
$$

Similar to the procedures in (S9.171), (S9.172), and (S9.173), we also have

$$
\begin{align*}
& \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{\boldsymbol{Z}}(k) \in \mathcal{E}^{R} \cap V_{\left(s_{0}, 2\right)}^{z}\right)\right) \\
& \quad \geq \mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}}\left(\boldsymbol{S}^{G}(k) \in \mathcal{E}^{R, d} \cap V_{\left(s_{0}, p\right)}^{z, d}\right)\right)-C R \epsilon \sqrt{\log n m}-\max \left(\bar{\rho}_{1}, \bar{\rho}_{2}\right) . \tag{S9.174}
\end{align*}
$$

Therefore, by (S9.168), (S9.173), and (S9.174), we obtain

$$
\begin{equation*}
A_{z}^{(2)} \leq \max \left(\bar{\rho}_{1}, \bar{\rho}_{2}\right)+C R \epsilon \sqrt{\log n m} \tag{S9.175}
\end{equation*}
$$

Next, we consider $\bar{\rho}_{1}$ and $\bar{\rho}_{2}$. For $\bar{\rho}_{1}$, we have

$$
\begin{aligned}
\bar{\rho}_{1}:=\mid \mathbb{P}(& \left.\bigcap_{k_{0} \leq k \leq n-k_{0}} \bigcap_{\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)} \boldsymbol{S}^{\boldsymbol{Z}}(k)^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})\right) \\
& -\mathbb{P}\left(\bigcap_{k_{0} \leq k \leq n-k_{0}} \bigcap_{\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)} \boldsymbol{S}^{\boldsymbol{G}}(k)^{\top} \boldsymbol{v} \leq S_{A^{m}}(\boldsymbol{v})\right) \mid .
\end{aligned}
$$

Define $\widetilde{Z}_{i}(k, \boldsymbol{v})=\boldsymbol{v}^{\top} \boldsymbol{Z}_{i} a_{i k}$ and $\widetilde{G}_{i}(k, \boldsymbol{v})=\boldsymbol{v}^{\top} \boldsymbol{G}_{i} a_{i k}$ for $i=1, \ldots, n, k=$ $k_{0}, \ldots, n-k_{0}$ and $\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)$. By letting

$$
S^{\widetilde{Z}_{i}(k, v)}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widetilde{Z}_{i}(k, v), \text { and } S^{\widetilde{G}_{i}(k, v)}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widetilde{G}_{i}(k, v)
$$

we have

$$
\begin{aligned}
& \bar{\rho}_{1}:=\mid \mathbb{P}\left(S^{\widetilde{Z}_{i}(k, v)} \leq S_{A^{m}}(\boldsymbol{v}), k_{0} \leq k \leq n-k_{0}, \boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)\right) \\
& \quad-\mathbb{P}\left(S^{\widetilde{G}_{i}(k, v)} \leq S_{A^{m}}(\boldsymbol{v}), k_{0} \leq k \leq n-k_{0}, \boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)\right) \mid,
\end{aligned}
$$

which is a high dimensional Gaussian approximation for hyperrectangle in terms of $\left\{\widetilde{Z}_{i}(k, v)\right\}$. To use Proposition 2.1 in Chernozhukov et al. (2017), we need to verify that under Assumptions (M1)-(M3), $\widetilde{Z}_{i}(k, v)=\boldsymbol{v}^{\top} \boldsymbol{Z}_{i} a_{i k}$ satisfies Conditions (M.1), (M.2) and (E.2) in Chernozhukov et al. (2017). In fact, by Assumption (M1), we have $\inf _{k, \boldsymbol{v}} \mathbb{E} \widetilde{Z}_{i}(k, \boldsymbol{v})^{2} \geq b$ holds for $i=$ $1, \ldots, n$, which implies Condition (M.1). Moreover, for $\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)$, let $J(\boldsymbol{v})$ be the set of non-zero coordinates of \boldsymbol{v} with $|J(\boldsymbol{v})| \leq s_{0}$. Using Hölder's inequality, for any vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{p}\right)^{\top}$, we have $\left(\sum_{j \in J(\boldsymbol{v})}\left|a_{j}\right|\right)^{2+\ell} \leq$
$s_{0}^{1+\ell} \sum_{j \in J(\boldsymbol{v})}\left|a_{j}\right|^{2+\ell}$. This implies that

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|\widetilde{Z}_{i}(k, \boldsymbol{v})\right|^{2+\ell} \\
& \quad \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|\boldsymbol{v}^{\top} \boldsymbol{Z}_{i}\right|^{2+\ell} \quad\left(\text { by } q_{0} \leq\left|a_{i k}\right| \leq 1-q_{0}\right) \\
& \quad=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \sum_{j \in J(\boldsymbol{v})}\left|Z_{i j}\right|^{2+\ell} \quad\left(|J(\boldsymbol{v})| \leq s_{0} \text { and }\|\boldsymbol{v}\|=1\right) \\
& \quad \leq s_{0}^{1+\ell} \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in J(\boldsymbol{v})} \mathbb{E}\left|Z_{i j}\right|^{2+\ell} \\
& \leq s_{0}^{2+\ell} \max _{1 \leq j \leq p} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|Z_{i j}\right|^{2+\ell} \\
& \quad \leq s_{0}^{2+\ell} K^{\ell}:=\left(B_{n}\right)^{\ell}, \quad(\text { by Assumption }(\mathbf{M 2})),
\end{aligned}
$$

where $B_{n}:=K s_{0}^{(2+\ell) / \ell}$. Hence, Condition (M.2) holds by taking $B_{n}:=$ $K s_{0}^{(2+\ell) / \ell}$. Lastly, we verify Condition (E.2). In fact, we have

$$
\begin{aligned}
& \mathbb{E}\left(\left(\max _{\substack{c_{0} \leq k \leq x_{0}-k_{0} \\
\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}}\left|\widetilde{Z}_{i}(k, \boldsymbol{v})\right|\right)^{q}\right) \\
& \quad \leq \mathbb{E}\left(\left(\max _{\substack{k_{0} \leq k \leq n-k_{0} \\
\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}}\left|\widetilde{Z}_{i}(k, \boldsymbol{v})\right|\right)^{q}\right) \\
& \quad \leq \mathbb{E}\left(\left(\max _{\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}\left|\boldsymbol{v}^{\top} \boldsymbol{Z}_{i}\right|\right)^{q}\right) \quad\left(\text { by } q_{0} \leq\left|a_{i k}\right| \leq 1-q_{0}\right) \\
& \quad \leq \mathbb{E}\left(\left(\max _{\boldsymbol{v} \in \mathcal{V}\left(A^{m}\right)}\left|\sum_{j \in J(\boldsymbol{v})} Z_{i j}\right|\right)^{q}\right) \\
& \quad \leq s_{0}^{q} \mathbb{E}\left(\left(\max _{1 \leq j \leq p}\left|Z_{i j}\right|\right)^{q}\right):=\left(B_{n}^{\prime}\right)^{q},
\end{aligned}
$$

where $B_{n}^{\prime}:=s_{0} K$. Hence, Condition (E.2) in Chernozhukov et al. (2017) holds by taking $B_{n}^{\prime}:=s_{0} K$. Lastly, taking $\widetilde{B}_{n}=s_{0}^{3} K$, we have

$$
\begin{aligned}
& \max _{\substack{k_{0} \leq k \leq n-k_{0} \\
v \in \mathcal{V}\left(A^{m}\right)}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|\widetilde{Z}_{i}(k, v)\right|^{2+\ell} \leq\left(\widetilde{B}_{n}\right)^{\ell} \text { for } \ell=1,2 \\
& \text { and } \max _{1 \leq i \leq n} \mathbb{E}\left(\left(\max _{\substack{k_{0} \leq k \leq n-k_{0} \\
v \in \mathcal{V}\left(m^{m}\right)}}\left|\widetilde{Z}_{i}(k, v)\right|\right)^{q}\right) \leq\left(\widetilde{B}_{n}\right)^{q} .
\end{aligned}
$$

Let $D_{n}^{(1)}=\left(\frac{s_{0}^{6} K^{2} \log ^{7}\left(m n^{2}\right)}{n}\right)^{1 / 6}$ and $D_{n}^{(2)}=\left(\frac{s_{0}^{6} K^{2} \log ^{3}\left(m n^{2}\right)}{n^{1-2 / q}}\right)^{1 / 3}$. Using
Proposition 2.1 in Chernozhukov et al. (2017), for $\bar{\rho}_{1}$ and $\bar{\rho}_{2}$, we have

$$
\begin{equation*}
\max \left(\bar{\rho}_{1}, \bar{\rho}_{2}\right) \leq C\left(D_{n}^{(1)}+D_{n}^{(2)}\right) \tag{S9.176}
\end{equation*}
$$

where C is some universal constant not depending on n or p. Combining (S9.167), (S9.168), S9.175), and S9.176), we have

$$
\begin{equation*}
\sup _{z \in(0, \infty)} A_{z} \leq C_{1} \frac{1}{\sqrt{n}}+C_{2} R \epsilon \sqrt{\log n m}+C_{3}\left(D_{n}^{(1)}+D_{n}^{(2)}\right) \tag{S9.177}
\end{equation*}
$$

Recall $R:=n^{5 / 4} p^{1 / 2}$ and $m \leq p^{s_{0}}\left(\frac{\gamma}{\sqrt{\epsilon}} \ln \left(\frac{1}{\epsilon}\right)\right)^{s_{0}^{2}}$. By letting $\epsilon=\left(p n^{2}\right)^{-1}$, we have
$R \epsilon \sqrt{\log m n} \preceq\left(\frac{s_{0}^{6} K^{2} \log ^{7}\left(m n^{2}\right)}{n}\right)^{1 / 6}$, and $R \epsilon \sqrt{\log m n} \preceq\left(\frac{s_{0}^{6} K^{2} \log ^{3}\left(m n^{2}\right)}{n^{1-2 / q}}\right)^{1 / 3}$.

Moreover, using the Assumption that $s_{0}^{3} K^{2 / 7} \log (p n)=O\left(n^{\xi_{1}}\right)$ for some $0<\xi_{1}<1 / 7$ and $s_{0}^{4} K^{2 / 3} \log (p n)=O\left(n^{\xi_{2}}\right)$ for some $0<\xi_{2}<\frac{1}{3}(1-2 / q)$, we have

$$
\begin{equation*}
D_{n}^{(1)}+D_{n}^{(2)} \leq n^{-\xi_{0}}, \text { for some } \xi_{0}>0 . \tag{S9.179}
\end{equation*}
$$

Lastly, combining (S9.177), (S9.178) and (S9.179), we finish the proof of Lemma 6.

S9.2 Proof of Lemma 7

Proof. Let $a_{i k}=\mathbf{1}\{i \leq k\}-k / n$ for $i=1 \ldots, n$ and $\underline{k}_{n} \leq k \leq n-\bar{k}_{n}$ with $\underline{k}_{n}:=\left\lfloor n a_{n}\right\rfloor$ and $\bar{k}_{n}:=\left\lfloor n b_{n}\right\rfloor$. Define $Z_{i j}(k)=X_{i j} \epsilon_{i} a_{i k}$ for $i=1, \ldots, n$, $j=1, \ldots, p$ and $k=\underline{k}_{n}, \ldots, n-\bar{k}_{n}$. By definition, we have:

$$
\begin{align*}
& \max _{t \in\left[a_{n}, 1-b_{n}\right]} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{\lfloor n t\rfloor} X_{i j} \epsilon_{i}-\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} X_{i j} \epsilon_{i}\right)\right| \tag{S9.180}\\
& \quad=\max _{\underline{k}_{n} \leq k \leq n-\bar{k}_{n}} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i j}(k)\right| .
\end{align*}
$$

Note that by Assumption A, C, we have $\mathbb{E}\left|Z_{i j}(k)\right|^{2+\ell} \leq a_{i k}^{2+\ell} M^{2+\ell} K^{\ell}$ for $\ell=1,2$. Let $M=\max _{i, j, k}\left|Z_{i j}(k)\right|$ and $\sigma^{2}=\max _{j, k} \sum_{i} \mathbb{E}\left[Z_{i j}^{2}\right]$. Then, by Lemma 2, we have:

$$
\begin{aligned}
& \mathbb{E}\left[\max _{\underline{k}_{n} \leq k \leq n-\bar{k}_{n}} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i j}(k)\right|\right] \\
& \leq \frac{C}{\sqrt{n}}\left(\sigma \sqrt{\log p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)}+\sqrt{\mathbb{E}\left[M^{2}\right]} \log p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)\right) .
\end{aligned}
$$

For σ^{2}, using Hölder's inequality, we have $\sigma^{2} \leq_{(1)} C \sum_{i=1}^{n} a_{i k}^{2} M_{n}^{2} \leq_{(2)} C n M_{n}^{2}$, where (2) comes from $a_{n} \leq\left|a_{i k}\right| \leq 1-b_{n}$. For $\mathbb{E}\left[M^{2}\right]$, by definition, we have:

$$
\mathbb{E}\left[M^{2}\right]=\mathbb{E}\left[\max _{i, j, k}\left|X_{i j} \epsilon_{i} a_{i k}\right|^{2}\right] \leq_{(1)} M^{2} \mathbb{E}\left[\max _{i}\left|\epsilon_{i}\right|^{2}\right] \leq(2) C M^{2} n^{1 / 2}
$$

where (1) comes from Assumption A, (2) comes from Assumption C and Theorem 3 in Downey (1990). Hence, we have

$$
\begin{equation*}
\mathbb{E}\left[\max _{\underline{k}_{n} \leq k \leq n-\bar{k}_{n}} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i j}(k)\right|\right] \leq C M \sqrt{\log p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)} . \tag{S9.181}
\end{equation*}
$$

Hence, using Lemma 2 , taking $\eta=1, s=2$ and $t=C^{*} M \sqrt{\log \left(p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)\right)}$ for some big enough constant $C^{*}>0$, we have:
$\mathbb{P}\left(\max _{\underline{\underline{k}}_{n} \leq k \leq n-\bar{k}_{n}} \max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i j}(k)\right| \geq C_{1} M \sqrt{\log \left(p\left(n-\underline{k}_{n}-\bar{k}_{n}\right)\right)}\right) \leq C_{2} n^{-1 / 2}$,
which completes the proof.

S9.3 Proof of Lemma 9

Proof. In this section, we prove Lemma 9. Note that Lemma 9 applies to both \mathbf{H}_{0} and \mathbf{H}_{1}. To cover the above two cases in a unified way, we prove the results by assuming there is a change point t_{1} such that $\boldsymbol{\beta}=\boldsymbol{\beta}^{(1)}$ if $i \leq\left\lfloor n t_{1}\right\rfloor$ and $\boldsymbol{\beta}=\boldsymbol{\beta}^{(2)}$ if $i>\left\lfloor n t_{1}\right\rfloor$. Note that under \mathbf{H}_{0}, we can always set $\boldsymbol{\beta}^{(1)}=\boldsymbol{\beta}^{(2)}$ even though t_{1} is not identifiable. Now, we are ready to prove Lemma 9.

Recall $\boldsymbol{\beta}^{*}$ is the minimizer under the population level which is defined as:

$$
\boldsymbol{\beta}^{*}=\underset{\boldsymbol{\beta}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right]
$$

By the first-order condition, we can see that $\boldsymbol{\beta}^{*}$ satisfies:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right]=\mathbf{0}_{p} \tag{S9.182}
\end{equation*}
$$

Moreover, since the model is linear, $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p}$ has the following explicit form,
which is a linear combination of $\boldsymbol{\beta}^{(1)}$ and $\boldsymbol{\beta}^{(2)}$:

$$
\boldsymbol{\beta}^{*}=t_{1} \boldsymbol{\beta}^{(1)}+\left(1-t_{1}\right) \boldsymbol{\beta}^{(2)} .
$$

Note that under \mathbf{H}_{0} with $\boldsymbol{\beta}^{(1)}=\boldsymbol{\beta}^{(2)}$, we have $\boldsymbol{\beta}^{*}=\boldsymbol{\beta}^{(1)}$. In this case, $\boldsymbol{\beta}^{*}$ is the true parameter for the linear model. Recall $\widehat{\boldsymbol{\beta}}$ is the minimizer of the empirical loss defined in (2.10). Hence, we have:

$$
\begin{align*}
& \frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)^{2}-\frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)^{2} \\
& \quad=_{(1)} \frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-\left(\boldsymbol{X}_{i}^{\top}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)\right)^{2}-\frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)^{2}\right. \\
& ={ }_{(2)} \frac{1}{2}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}(0: 1)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)-\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right) \\
& ={ }_{(3)} \frac{1}{2}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}(0: 1)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right) \\
& \quad-\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right), \tag{S9.183}
\end{align*}
$$

where $\widehat{\boldsymbol{\Sigma}}(0: 1):=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$, and (3) comes from the first order condition in S9.182. Hence, by the fact that $\widehat{\boldsymbol{\beta}}$ is the minimizer of 2.10, we have:

$$
\frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)^{2}-\frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)^{2}+\lambda\left(\|\widehat{\boldsymbol{\beta}}\|_{1}-\left\|\boldsymbol{\beta}^{*}\right\|_{1}\right) \leq 0
$$

where $\operatorname{MSE}(\widehat{\boldsymbol{\beta}}):=\left\|\mathbf{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)\right\|^{2}$. Moreover, by S9.183), we have:

$$
\begin{align*}
& \frac{1}{2}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}(0: 1)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right) \\
& -\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)+\lambda\left(\|\widehat{\boldsymbol{\beta}}\|_{1}-\left\|\boldsymbol{\beta}^{*}\right\|_{1}\right) \\
& \quad \leq \frac{1}{2} \operatorname{MSE}(\widehat{\boldsymbol{\beta}})-\left\|\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)\right\|_{\infty}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1} \\
& \quad+\lambda\left(\|\widehat{\boldsymbol{\beta}}\|_{1}-\left\|\boldsymbol{\beta}^{*}\right\|_{1}\right) \leq 0 \tag{S9.184}
\end{align*}
$$

Moreover, by the fact that $Y_{i}=\epsilon_{i}+\boldsymbol{\beta}^{(1)} \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\}+\boldsymbol{\beta}^{(2)} \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\}$, we have:

$$
\begin{align*}
& \begin{array}{l}
\left\|\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)\right\|_{\infty} \\
={ }_{(1)} \| \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}+t_{1}\left(1-t_{1}\right)\left(\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right) \\
\quad+t_{1}\left(1-t_{1}\right)\left(\widehat{\boldsymbol{\Sigma}}\left(t_{1}: 1\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{(1)}\right) \|_{\infty} \\
\leq{ }_{(2)}\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty}+t_{1}\left(1-t_{1}\right)\left\|\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right\|_{\infty}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1} \\
\quad+t_{1}\left(1-t_{1}\right)\left\|\widehat{\boldsymbol{\Sigma}}\left(t_{1}: 1\right)-\boldsymbol{\Sigma}\right\|_{\infty}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}
\end{array} \\
& \leq{ }_{(3)} C_{1} M \sqrt{\frac{\log (p n)}{n}}+C_{2} M^{2} \sqrt{\frac{\log (p n)}{n}}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}+C_{3} M^{2} \sqrt{\frac{\log (p n)}{n}}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1} \\
& \leq{ }_{(4)} C_{4} M^{2} \sqrt{\frac{\log (p n)}{n}}\left(1+\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}\right) \leq{ }_{(5)} C_{5} M^{2} \sqrt{\frac{\log (p n)}{n}},
\end{align*}
$$

where (3) comes from Lemmas 7 and 8, and (5) comes from the assumption that $\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|=O(1)$. Hence, by letting $\lambda \geq 2 C_{5} M^{2} \sqrt{\frac{\log (p n)}{n}}$, and combining (S9.184) and S9.185), we have:

$$
\frac{1}{2} \operatorname{MSE}(\widehat{\boldsymbol{\beta}})-\frac{\lambda}{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}+\lambda\left(\|\widehat{\boldsymbol{\beta}}\|_{1}-\left\|\boldsymbol{\beta}^{*}\right\|_{1}\right) \leq 0
$$

Adding $\lambda\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}$ on both sides of the above inequality, we have:

$$
\begin{equation*}
\frac{1}{2} \operatorname{MSE}(\widehat{\boldsymbol{\beta}})+\frac{\lambda}{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1} \leq \lambda\left(\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}-\|\widehat{\boldsymbol{\beta}}\|_{1}+\left\|\boldsymbol{\beta}^{*}\right\|_{1}\right) . \tag{S9.186}
\end{equation*}
$$

Hence, by S9.186 and the fact that $\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}-\left\|(\widehat{\boldsymbol{\beta}})_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+$ $\left\|\left(\boldsymbol{\beta}^{*}\right)_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}=0$, we have

$$
\begin{aligned}
\frac{1}{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1} & \leq\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}-\left\|(\widehat{\boldsymbol{\beta}})_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\left\|\left(\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1} \\
& \leq 2\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}
\end{aligned}
$$

which implies $\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1} \leq 3\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}$. Combining this result and S9.186, we have:

$$
\frac{1}{2} \operatorname{MSE}(\widehat{\boldsymbol{\beta}})+\lambda\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)^{c}}\right\|_{1} \leq 3 \lambda\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}
$$

Note that by Assumptions A, E.2, the restricted eigenvalue condition holds for $\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}$. Hence, using similar proof techniques as in Bickel et al. (2009), we can derive (S6.11). To save space, we omit the details here.

S9.4 Proof of Lemma 10

Proof. In this section, we prove Lemma 10. Similar to Lemma 9, we prove the results by assuming there is a change point t_{1} such that $\boldsymbol{\beta}=\boldsymbol{\beta}^{(1)}$ if $i \leq\left\lfloor n t_{1}\right\rfloor$ and $\boldsymbol{\beta}=\boldsymbol{\beta}^{(2)}$ if $i>\left\lfloor n t_{1}\right\rfloor$. Recall ${\underset{\sim}{\boldsymbol{\beta}}}^{*}=\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in$ \mathbb{R}^{p+K} defined in S6.10. By the first order condition, for $\alpha=0, \underset{\sim}{\boldsymbol{\beta}}{ }^{*}=$
$\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ satisfies the following equation:

$$
\begin{align*}
& \mathbb{E}\left[\sum_{i=1}^{n} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i} \leq \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}+b_{k}^{*}\right\}-\tau_{k}\right)\right]=\mathbf{0}_{p}, \tag{S9.187}\\
& \mathbb{E}\left[\sum_{i=1}^{n}\left(\mathbf{1}\left\{Y_{i} \leq \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}+b_{k}^{*}\right\}-\tau_{k}\right)\right]=0, \text { for } k=1, \ldots, K
\end{align*}
$$

By the fact that $Y_{i}=\epsilon_{i}+\boldsymbol{\beta}^{(1)} \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\}+\boldsymbol{\beta}^{(2)} \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\}$, for the above equation, we have:

$$
\begin{aligned}
& t_{1} \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{X}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right] \\
& +t_{2} \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{X}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]=\mathbf{0}_{p},
\end{aligned}
$$

and for $k=1, \ldots, K$,
$t_{1} \mathbb{E}\left[\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]+t_{2} \mathbb{E}\left[\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]=0$,
where $t_{2}:=1-t_{1}$. Moreover, let $\underset{\sim}{\boldsymbol{\beta}^{(1)}}:=\left(\left(\boldsymbol{\beta}^{(1)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}, \underset{\sim}{\boldsymbol{\beta}^{(2)}}:=$ $\left(\left(\boldsymbol{\beta}^{(2)}\right)^{\top},\left(\boldsymbol{b}^{(0)}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}, \underset{\sim}{\boldsymbol{X}}:=\left(\boldsymbol{X}^{\top}, \mathbf{1}_{K}\right) \in \mathbb{R}^{p+K}$, and $\boldsymbol{S}_{k}:=\operatorname{diag}\left(\mathbf{1}_{p}, \boldsymbol{e}_{k}\right)$, where $\boldsymbol{e}_{k} \in \mathbb{R}^{K}$ is a vector with the k-th element being 1 and the others being zeros, and $\mathbf{1}_{K}$ is a K-dimensional vector with all elements being 1 s .

With the above notations, for the above equations, we have:

$$
\begin{aligned}
& t_{1} \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{S}_{k} \boldsymbol{X}\left(F_{\epsilon}\left(\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right)+b_{k}^{(0)}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right] \\
& \quad+t_{2} \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\left(F_{\epsilon}\left(\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right)+b_{k}^{(0)}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]=\mathbf{0}_{p+K} .
\end{aligned}
$$

Furthermore, by the Taylor's expansion, we have:

$$
\begin{align*}
& t_{1} \underbrace{\left\{\sum_{k=1}^{K} \mathbb{E}\left[\int_{0}^{1}\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top} f_{\epsilon}\left(b_{k}^{(0)}+t\left(\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right)\right) d t\right]\right\}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right)\right.}_{\widetilde{\boldsymbol{\Sigma}}^{(1)} \in \mathbb{R}^{(p+K) \times(p+K)}} \\
& +t_{2} \underbrace{\left\{\sum_{k=1}^{K} \mathbb{E}\left[\int_{0}^{1}\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top} f_{\epsilon}\left(b_{k}^{(0)}+t\left(\left(\boldsymbol{S}_{k} \boldsymbol{X}\right)^{\top}\left({\underset{\sim}{\boldsymbol{\beta}}}^{\boldsymbol{\beta}}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right)\right) d t\right]\right\}\right.}_{\tilde{\boldsymbol{\Sigma}}^{(2)} \in \mathbb{R}^{(p+K) \times(p+K)}}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right)=\mathbf{0}_{p+K} .
\end{align*}
$$

Hence, for ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$, by defining $\widetilde{\boldsymbol{\Sigma}}^{(1)}$ and $\widetilde{\boldsymbol{\Sigma}}^{(2)}$, it has the following explicit form:

$$
\underset{\sim}{\boldsymbol{\beta}^{*}}=\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right)^{-1}\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)} \boldsymbol{\beta}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)} \boldsymbol{\beta}^{(2)}\right) .
$$

Moreover, using some calculations, we have:

$$
\begin{align*}
& {\underset{\sim}{\boldsymbol{\beta}}}^{*}-\underset{\sim}{\boldsymbol{\beta}^{(1)}}=\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\left(\underset{\sim}{\boldsymbol{\beta}^{(2)}}-\underset{\sim}{\boldsymbol{\beta}^{(1)}}\right) \tag{S9.189}\\
& {\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}=\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}\left({\underset{\sim}{\boldsymbol{\beta}}}^{(1)}-\underset{\boldsymbol{\beta}^{(2)}}{ }{ }^{(2)} .\right.
\end{align*}
$$

Remark 5. Note that for any matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\boldsymbol{x} \in \mathbb{R}^{p}$, we have
$\|\mathbf{A} \boldsymbol{x}\|_{1} \leq\|\mathbf{A}\|_{1,1}\|\boldsymbol{x}\|_{1}$. Hence, if we assume that
$\left\|\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right\|_{1,1} \leq C_{1}$ and $\left\|\left(t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}+t_{2} \widetilde{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{1} \widetilde{\boldsymbol{\Sigma}}^{(1)}\right\|_{1,1} \leq C_{2}$,
we can prove that $\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right\|_{1} \leq C_{1}\left\|{\underset{\sim}{\mid}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1}=C_{1}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}$ and $\left\|\boldsymbol{\beta}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1} \leq C_{2}\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1}=C_{2}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}$ for the above positive constants $C_{1}, C_{2}>0$.

So far, we have derived the explicit form for ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$ and the difference between ${\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}$ or ${\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}$, which is very important for proving Lemma
10. Now, we are ready to give the detailed proof. To that end, we define the following parameter space. Let $\boldsymbol{\Delta}=\left(\boldsymbol{\Delta}^{\top}, \boldsymbol{\delta}^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ with $\boldsymbol{\Delta} \in \mathbb{R}^{p}$ and $\boldsymbol{\delta} \in \mathbb{R}^{K}$, we define

$$
\begin{equation*}
\mathcal{A}=\left\{\left(\boldsymbol{\Delta}^{\top}, \boldsymbol{\delta}^{\top}\right)^{\top}:\left\|\boldsymbol{\Delta}_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1} \leq 3\left\|\boldsymbol{\Delta}_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\|\boldsymbol{\delta}\|_{1}\right\} . \tag{S9.190}
\end{equation*}
$$

For any $\underset{\sim}{\boldsymbol{\beta}}=\left((\boldsymbol{\beta})^{\top},(\boldsymbol{b})^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$, let $\underset{\sim}{\boldsymbol{\Delta}}=\underset{\sim}{\boldsymbol{\beta}}-\underset{\sim}{\boldsymbol{\beta}}{ }^{*}$ and $\underset{\sim}{\widehat{\boldsymbol{\Delta}}}=\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}$, where $\widehat{\boldsymbol{\beta}}$ is the minimizer of the empirical loss defined in 2.10 with $\alpha=0$.

Define the empirical loss and its expectation:

$$
\begin{aligned}
& L_{n, K}(\underset{\sim}{\boldsymbol{\beta}}):=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-b_{k}\right), \\
& \text { and } L_{K}(\underset{\sim}{\boldsymbol{\beta}}):=\mathbb{E}\left[L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})\right]=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-b_{k}\right)\right] .
\end{aligned}
$$

Then, we can further define the excess risk as:

$$
H(\underset{\sim}{\boldsymbol{\Delta}})=L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right) .
$$

The proof of Lemma 10 relies on the following three lemmas. Lemma 18 shows that $\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}$ belongs to \mathcal{A} with a large probability. The proof of Lemma 18 is given in Section S10.2.

Lemma 18. Assume Asssumptions A, D, E. 2 - E. 4 hold. Then, with probability tending to one, we have

$$
\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*} \in \mathcal{A} .
$$

Next, Lemma 19 shows that the excess risk $H(\underset{\sim}{\boldsymbol{\Delta}})$ can be bounded by
the quadratic form of $\boldsymbol{\Delta}$. To show this, define
$\boldsymbol{S}=\sum_{k=1}^{K}\binom{\boldsymbol{\Sigma}, \mathbf{0}}{\mathbf{0}, \operatorname{diag}\left(\boldsymbol{e}_{k}\right)} \in \mathbb{R}^{(p+K) \times(p+K)},\|\underset{\boldsymbol{\Delta}}{ }\|_{\boldsymbol{S}}^{2}={\underset{\sim}{\boldsymbol{\Delta}}}^{\top} \boldsymbol{S} \underset{\sim}{\boldsymbol{\Delta}}=\sum_{k=1}^{K}\left(\boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\Delta}+\delta_{k}^{2}\right)$.

Lemma 19. Assume Assumptions A, D, E. 2 - E. 4 hold. For any
$\Delta \in \mathcal{A}$, with probability tending to one, we have

$$
H(\underset{\boldsymbol{\Delta}}{\boldsymbol{\Delta}}) \geq c_{*} \min \left(\frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}}{4}, \frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}}{4}\right)
$$

where $c_{*}>0$ is some universal constant not depending on n or p.

Lastly, Lemma 20 shows that we can uniformly control the difference between the excess risk and its empirical version.

Lemma 20. Assume Asssumptions A, D, E. 2 - E. 4 hold. With probability tending to one, we have:

$$
\sup _{\substack{\Delta \in \mathcal{A} \\\|\boldsymbol{\Delta}\|_{\boldsymbol{S}} \leq \xi}}\left|\left(L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)-\left(L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)\right| \leq C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}},
$$

where $C^{*}>0$ is some universal constant not depending on n or p and $s:=\left|J\left(\boldsymbol{\beta}^{*}\right)\right|$.

With the above lemmas, we are ready to prove Lemma 10. Define two
events \mathcal{E}_{1} and \mathcal{E}_{2} as:

$$
\begin{gathered}
\mathcal{E}_{1}=\left\{\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*} \in \mathcal{A}\right\}, \\
\mathcal{E}_{2}=\left\{\sup _{\substack{\boldsymbol{\Delta} \in \mathcal{A} \\
\|\boldsymbol{\Delta}\| \leq \leq}}\left|\left(L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)-\left(L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)\right|\right. \\
\left.\leq C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}}\right\} .
\end{gathered}
$$

By Lemmas 18 and 20, we have $\mathbb{P}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right) \rightarrow 1$. Hence, in what follows, we give the proof under the event $\mathcal{E}_{1} \cap \mathcal{E}_{2}$. Let $\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}\right\|_{\boldsymbol{S}}=\xi$. By the optimality of $\underset{\sim}{\widehat{\boldsymbol{\beta}}}$, we have:

$$
L_{n, K}(\underset{\sim}{\widehat{\boldsymbol{\beta}}})-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)+\lambda\left(\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}\|_{1}-\left\|\boldsymbol{\beta}_{\sim}^{*}\right\|_{1}\right) \leq 0 .
$$

Moreover, using the above inequality, under \mathcal{E}_{2}, we have:

$$
\begin{align*}
& \lambda\left(\left\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}\right\|_{1}\right) \\
& \quad \geq_{(1)} L_{n, K}(\underset{\sim}{\widehat{\boldsymbol{\beta}}})-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right) \\
& \quad \geq_{(2)} L_{K}(\underset{\sim}{\widehat{\boldsymbol{\beta}}})-L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)-C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}} \tag{S9.192}\\
& \quad \geq_{(3)} c_{*} \min \left(\frac{\xi^{2}}{4}, \frac{\xi}{4}\right)-C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}} .
\end{align*}
$$

Note that under \mathcal{E}_{1}, we have:

$$
\begin{align*}
\| & \widehat{\boldsymbol{\beta}}
\end{align*}-{\underset{\sim}{\boldsymbol{\beta}}}^{*} \|_{1} .
$$

where $C_{E}>0$ is some universal constant. Note that we can choose $\lambda=$ $C_{\lambda} \sqrt{\log (p) / n}$ for some big enough constant $C_{\lambda}>0$. Combining (S9.192) and (S9.193), we have:

$$
c_{*} \min \left(\frac{\xi^{2}}{4}, \frac{\xi}{4}\right)-C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}}-C_{\lambda} \xi \sqrt{s \frac{\log (p n)}{n}} \leq 0
$$

which implies

$$
c_{*} \frac{\xi}{4}-C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}}-C_{\lambda} \xi \sqrt{s \frac{\log (p n)}{n}} \leq 0
$$

or

$$
c_{*} \frac{\xi^{2}}{4}-C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}}-C_{\lambda} \xi \sqrt{s \frac{\log (p n)}{n}} \leq 0
$$

Note that $\sqrt{s \frac{\log (p n)}{n}}=o(1)$. Hence, only the second case applies. As a result, we have:

$$
\begin{equation*}
\xi=\|\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}\|^{*} \|_{S} \leq C M \sqrt{s \frac{\log (p n)}{n}} . \tag{S9.194}
\end{equation*}
$$

Lastly, by S9.194) and some trivial calculations, we can directly derive (S6.12).

S9.5 Proof of Lemma 11

Proof. In this section, we prove Lemma 11. Similar to Lemmas 9 and 10, we give the results by assuming there is a change point t_{1} such that $\boldsymbol{\beta}=\boldsymbol{\beta}^{(1)}$ if
$i \leq\left\lfloor n t_{1}\right\rfloor$ and $\boldsymbol{\beta}=\boldsymbol{\beta}^{(2)}$ if $i>\left\lfloor n t_{1}\right\rfloor$. Note that the results are still applicable even if there is no change point.

Before the proof, we need some discussion about $\boldsymbol{\beta}_{\sim}^{*}=\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in$ \mathbb{R}^{p+K}, which is defined in S6.10. By the first order condition, for $\alpha \in$ $(0,1)$, we can see that $\boldsymbol{\sim}_{\sim}^{*}=\left(\left(\boldsymbol{\beta}^{*}\right)^{\top},\left(\boldsymbol{b}^{*}\right)^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ satisfies the following equation:

$$
\begin{align*}
& (1-\alpha) \mathbb{E}\left[\sum_{i=1}^{n} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i} \leq \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}+b_{k}^{*}\right\}-\tau_{k}\right)\right]-\alpha \sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right]=\mathbf{0}_{p}, \\
& (1-\alpha) \mathbb{E}\left[\sum_{i=1}^{n}\left(\mathbf{1}\left\{Y_{i} \leq \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}+b_{k}^{*}\right\}-\tau_{k}\right)\right]=0, \text { for } k=1, \ldots, K \tag{S9.195}
\end{align*}
$$

Note that $Y_{i}=\epsilon_{i}+\boldsymbol{\beta}^{(1)} \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\}+\boldsymbol{\beta}^{(2)} \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\}$. Similar to the analysis in Section S9.4, for the above equation, we have:

$$
\begin{aligned}
& t_{1}\left\{(1-\alpha) \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{X}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]+\alpha \mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)\right]\right\} \\
& +t_{2}\left\{(1-\alpha) \mathbb{E}\left[\sum_{k=1}^{K} \boldsymbol{X}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]+\alpha \mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)\right]\right\} \\
& =\mathbf{0}_{p}
\end{aligned}
$$

and for $k=1, \ldots, K$,

$$
\begin{aligned}
& t_{1} \mathbb{E}\left[\sum_{k=1}^{K}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right] \\
& +t_{2} \mathbb{E}\left[\sum_{k=1}^{K}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)-F_{\epsilon}\left(b_{k}^{(0)}\right)\right)\right]=0,
\end{aligned}
$$

where $t_{2}:=1-t_{1}$. Moreover, let

$$
\begin{equation*}
\widetilde{\boldsymbol{\Sigma}}=\binom{\boldsymbol{\Sigma}, \mathbf{0}}{\mathbf{0}, \mathbf{0}} \in \mathbb{R}^{(p+K) \times(p+K)} \tag{S9.196}
\end{equation*}
$$

Then, using similar analysis as in Section S9.4, we have:
$t_{1} \underbrace{\left[(1-\alpha) \widetilde{\boldsymbol{\Sigma}}^{(1)}+\alpha \widetilde{\boldsymbol{\Sigma}}\right]}_{\widetilde{\boldsymbol{\Sigma}}^{(1)}}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}-\underset{\sim}{\boldsymbol{\beta}^{(1)}}\right)+t_{2} \underbrace{\left[(1-\alpha) \widetilde{\boldsymbol{\Sigma}}^{(2)}+\alpha \widetilde{\boldsymbol{\Sigma}}\right]}_{\widetilde{\boldsymbol{\Sigma}}^{(2)}}\left({\underset{\sim}{\boldsymbol{\beta}}}_{\sim}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right)=\mathbf{0}_{p+K}$,
where $\widetilde{\boldsymbol{\Sigma}}^{(1)}$ and $\widetilde{\boldsymbol{\Sigma}}^{(2)}$ are defined in S9.188. Hence, for $\underset{\sim}{\boldsymbol{\beta}^{*}}$, it has the following explicit form:

$$
\underset{\sim}{\boldsymbol{\beta}^{*}}=\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right)^{-1}\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)} \boldsymbol{\beta}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)} \boldsymbol{\beta}^{(2)}\right) .
$$

Moreover, using some calculations, we have:

$$
\begin{align*}
& {\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}=\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\left({\underset{\sim}{\boldsymbol{\beta}}}^{(2)}-\underset{\sim}{\boldsymbol{\beta}}{ }^{(1)}\right), \tag{S9.197}\\
& {\underset{\sim}{\boldsymbol{\beta}}}^{*}-\underset{\sim}{\boldsymbol{\beta}}{ }^{(2)}=\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}\left({\underset{\sim}{\boldsymbol{\beta}}}^{(1)}-\underset{\sim}{\boldsymbol{\beta}}{ }^{(2)}\right) .
\end{align*}
$$

Remark 6. If we assume that
$\left\|\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right\|_{1,1} \leq C_{1}$ and $\left\|\left(t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}+t_{2} \breve{\boldsymbol{\Sigma}}^{(2)}\right)^{-1} t_{1} \breve{\boldsymbol{\Sigma}}^{(1)}\right\|_{1,1} \leq C_{2}$, we can prove that $\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}\right\|_{1} \leq C_{1}\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1}=C_{1}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}$ and $\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1} \leq C_{2}\left\|{\underset{\sim}{\boldsymbol{\beta}}}^{(1)}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}\right\|_{1}=C_{2}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}$ for the above positive constants $C_{1}, C_{2}>0$.

For $\alpha \in(0,1)$, we have derived the explicit form for $\boldsymbol{\beta}_{\sim}^{*}$ and the difference between ${\underset{\sim}{\boldsymbol{\beta}}}^{*}-\boldsymbol{\beta}_{\sim}^{(1)}$ or ${\underset{\sim}{\boldsymbol{\beta}}}^{*}-{\underset{\sim}{\boldsymbol{\beta}}}^{(2)}$, which is very important for proving Lemma 11. Now, we are ready to give the proof.

Recall the parameter space \mathcal{A} defined in S 9.190 . For any $\underset{\sim}{\boldsymbol{\beta}}=\left((\boldsymbol{\beta})^{\top},(\boldsymbol{b})^{\top}\right)^{\top} \in$ \mathbb{R}^{p+K}, let $\underset{\sim}{\Delta}=\underset{\sim}{\boldsymbol{\beta}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}$ and $\underset{\sim}{\widehat{\boldsymbol{\Delta}}}=\underset{\sim}{\widehat{\boldsymbol{\beta}}}-{\underset{\sim}{\boldsymbol{\beta}}}^{*}$, where $\widehat{\boldsymbol{\beta}}$ is the minimizer of the
empirical loss defined in 2.10 with $\alpha \in(0,1)$. Define the empirical loss and its expectation:

$$
\begin{gather*}
L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}}):=(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau_{k}}\left(Y_{i}-b_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)+\frac{\alpha}{2 n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2} \\
\text { and } L_{K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}}):=\mathbb{E}\left[L_{n, K}^{\alpha}(\boldsymbol{\beta})\right] . \tag{S9.198}
\end{gather*}
$$

Then, for each $\alpha \in(0,1)$, we can further define the excess risk as:

$$
H^{\alpha}(\underset{\sim}{\boldsymbol{\Delta}})=L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}^{\alpha}\left(\boldsymbol{\beta}_{\sim}^{*}\right) .
$$

Similar to Section S9.4, the proof of Lemma 11 relies on the following three lemmas. Specifically, Lemma 21 shows that $\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}$ belongs to \mathcal{A} with a large probability. Lemma 22 shows that the excess risk $H^{\alpha}(\underset{\sim}{\boldsymbol{\Delta}})$ can be bounded by the quadratic form of $\underset{\sim}{\Delta}$. Lastly, Lemma 23 shows that we can uniformly control the difference between the excess risk and its empirical version. The proofs of those lemmas are given in Sections S10.5-S10.7.

Lemma 21. Assume Assumptions A, B, C.2, D, E. 2 - E. 4 hold.Then, with probability tending to one, we have

$$
\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}^{*}} \in \mathcal{A}
$$

Lemma 22. Assume Assumptions A, B, C.2, D, E. 2 - E. 4 hold. For any $\underset{\sim}{\boldsymbol{\sim}} \in \mathcal{A}$, with probability tending to one,

$$
H^{\alpha}(\underline{\boldsymbol{\Delta}}) \geq c_{*} \min \left(\frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}}{4}, \frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}}{4}\right)
$$

where $c_{*}>0$ is some universal constant not depending on n or p.

Lemma 23. Assume Assumptions A, B, C.2, D, E. 2 - E. 4 hold. With probability tending to one, we have:

$$
\sup _{\substack{\boldsymbol{\Delta} \in \mathcal{A} \\\|\boldsymbol{\Delta}\| \boldsymbol{S} \leq \xi}}\left|\left(L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}^{\alpha}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)\right)-\left(L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}^{\alpha}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)\right)\right| \leq C^{*} M \xi \sqrt{s \frac{\log (p n)}{n}},
$$

where $C^{*}>0$ is some universal constant not depending on n or p and $s:=\left|J\left(\boldsymbol{\beta}^{*}\right)\right|$.

With the above three lemmas, using similar proof procedures as in Section S9.4, we can directly prove Lemma 11. To save space, we omit the details here.

S10 Additional lemmas

S10.1 Proof of Lemma 17

Proof. Recall

$$
\begin{aligned}
& \boldsymbol{C}_{0}^{I I, 2}(t)=\frac{1}{\sqrt{n} \widehat{\sigma}(\alpha, \widetilde{\boldsymbol{\tau}})}\left(\sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\boldsymbol{\boldsymbol { \Delta }}}}_{k}\right)-g_{i k}(0)\right)\right. \\
& -\frac{\lfloor n t\rfloor}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}\right)-g_{i k}(0)\right),
\end{aligned}
$$

where $g_{i k}(t):=1\left\{\epsilon_{i} \leq b_{k}^{(0)}+t\right\}-\mathbb{P}\left\{\epsilon_{i} \leq b_{k}^{(0)}+t\right\}$. Note that under \mathcal{E}, we have:

$$
\begin{aligned}
& \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \\
& \leq C \sqrt{n} s_{0}^{1 / 2} \max _{t \in\left[q_{0}, 1-q_{0}\right]} \|\left(\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\boldsymbol{\Delta}}}_{k}\right)-g_{i k}(0)\right) \|_{\infty}\right. \\
& +C \sqrt{n} s_{0}^{1 / 2} \|\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}\right)-g_{i k}(0)\right) \|_{\infty}\right. \\
& \leq C \sqrt{n} s_{0}^{1 / 2} \max _{t} \max _{j} \left\lvert\,\left(\left.\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K} X_{i j}\left(g_{i k}\left({\underset{\sim}{\boldsymbol{X}}}^{\top}{ }^{\top} \widehat{\boldsymbol{\Delta}}_{k}\right)-g_{i k}(0)\right) \right\rvert\,\right.\right. \\
& +C \sqrt{n} s_{0}^{1 / 2} \max _{j} \left\lvert\,\left(\left.\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} X_{i j}\left(g_{i k}\left({\underset{\sim}{X}}_{i}^{\top} \widehat{\boldsymbol{\Delta}}_{k}\right)-g_{i k}(0)\right) \right\rvert\, .\right.\right.
\end{aligned}
$$

Define

$$
\begin{aligned}
\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ;{\underset{\sim}{\boldsymbol{\Delta}}}_{k}\right) & :=X_{i j}\left(\mathbf{1}\left\{\epsilon_{i} \leq{\underset{\sim}{\boldsymbol{X}}}_{i}^{\top}{\underset{\sim}{\boldsymbol{\Delta}}}_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right) \\
& =X_{i j}\left(\mathbf{1}\left\{\epsilon_{i} \leq \boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon_{i} \leq b_{k}^{(0)}\right\}\right)
\end{aligned}
$$

where $\boldsymbol{\Delta}:=\boldsymbol{\beta}-\boldsymbol{\beta}^{(0)}$ and $\delta_{k}:=b_{k}-b_{k}^{(0)}$ for $1 \leq k \leq K$. Hence, by definition, conditional on $\mathcal{X}:=\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$, we have:

$$
\begin{align*}
& \max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \mid \mathcal{X} \\
& \leq C \sqrt{n} s_{0}^{1 / 2} \underbrace{\max _{t} \max _{j}\left|\left(\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \widehat{\boldsymbol{\Delta}}_{k}\right)-\mathbb{E}\left[\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \widehat{\boldsymbol{\Delta}}_{k}\right)\right]\right)\right)\right|}_{I} \\
& \quad+C \sqrt{n} s_{0}^{1 / 2} \underbrace{\max _{j}\left|\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \widehat{\boldsymbol{\Delta}}_{k}\right)-\mathbb{E}\left[\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \widehat{\sim}_{k}\right)\right]\right)\right)\right|}_{I I} . \tag{S10.199}
\end{align*}
$$

Hence, to bound $\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \mid \mathcal{X}$, we need to consider I and $I I$, respectively. We first consider I. To that end, conditional on $\mathcal{X}:=$
$\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$, define the function:

$$
\begin{aligned}
G_{t, j}(\underset{\sim}{\boldsymbol{\Delta}}) & =\frac{1}{\lfloor n t\rfloor} \sum_{i=1}^{\lfloor n t\rfloor} \frac{1}{K} \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \boldsymbol{\Delta}_{k}\right)-\mathbb{E}\left[\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \boldsymbol{\Delta}_{k}\right)\right]\right) \\
& :=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \frac{1}{K} \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \boldsymbol{\Delta}_{k}\right)-\mathbb{E}\left[\psi_{j}\left(\epsilon_{i}, \boldsymbol{X}_{i} ; \boldsymbol{\Delta}_{k}\right)\right]\right) \\
& :=G_{n^{\prime}, j}(\underset{\sim}{\boldsymbol{\Delta}}),
\end{aligned}
$$

where $n^{\prime}:=\lfloor n t\rfloor$. Moreover, for the sparsity parameter s of $\boldsymbol{\beta}^{(0)}$, and some big enough real numbers $\xi_{1}, \xi_{2}, \xi_{3}>0$, define the parameter space:

$$
\begin{aligned}
& \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \\
& :=\left\{\underset{\Delta}{\boldsymbol{\Delta}}=\left(\boldsymbol{\Delta}^{\top}, \boldsymbol{\delta}^{\top}\right)^{\top}:\|\boldsymbol{\Delta}\|_{0} \leq \xi_{1} s,\|\boldsymbol{\Delta}\|_{2} \leq \xi_{2} \sqrt{s \frac{\log (p n)}{n}},\|\boldsymbol{\delta}\|_{2} \leq \xi_{3} \sqrt{s \frac{\log (p n)}{n}}\right\} .
\end{aligned}
$$

By Lemma 10, with probability tending to 1 , we have $\underset{\boldsymbol{\Delta}}{\widehat{\boldsymbol{u}}} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ for some large enough constants $\xi_{1}, \xi_{2}, \xi_{3}>0$. Hence, to bound I, it is sufficient to bound:

$$
\max _{1 \leq j \leq p} \max _{t \in\left[q_{0}, 1-q_{0}\right]} \sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|G_{t, j}(\underset{\sim}{\boldsymbol{\Delta}})\left\|\mathcal{X}=\max _{1 \leq j \leq p} \max _{n^{\prime} \in\left[\left\lfloor n q_{0}\right\rfloor, n-\left\lfloor n q_{0}\right\rfloor\right]} \sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \mid G_{n^{\prime}, j}(\boldsymbol{\Delta})\right\| \mathcal{X} .\right.
$$

Throughout the following proofs, we assume K is fixed which does not grow with n. To obtain the desired bound, we define the functional class:

$$
\begin{equation*}
\mathcal{F}=\left\{f_{\boldsymbol{\Delta}}(\epsilon, \boldsymbol{X})=\frac{1}{K} \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon, \boldsymbol{X} ;{\underset{\sim}{\boldsymbol{\Delta}}}_{k}\right) \mid \underset{\boldsymbol{\Delta}}{ } \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right\} .\right. \tag{S10.200}
\end{equation*}
$$

Firstly, we obtain the upper bound for each fixed $n^{\prime} \in\left[\left\lfloor n q_{0}\right\rfloor, n-\left\lfloor n q_{0}\right\rfloor\right]$ and $1 \leq j \leq p$. The main idea is to use Theorem 3.11 in Koltchinskii (2011) (Lemma A. 1 in Zhao et al. (2014)) and the Bousquet inequality (Corollary 14.2 in Bühlmann and Van de Geer (2011)) to obtain the tail probability
of $\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \mid G_{n^{\prime}, j}(\boldsymbol{\Delta}) \| \mathcal{X}$. The proofs proceed into five steps.
Step 1: Obtain the envelope for $f_{\boldsymbol{\Delta}}(\epsilon, \boldsymbol{X})$. In fact, by Assumption
A, we have:

$$
\begin{aligned}
& \sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|f_{\boldsymbol{\Delta}}(\epsilon, \boldsymbol{X})\right| \\
& \left.\quad=\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \frac{1}{K} \right\rvert\, \sum_{k=1}^{K}\left(\psi_{j}\left(\epsilon, \boldsymbol{X} ; \boldsymbol{\Delta}_{k}\right) \mid\right. \\
& \quad=\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \frac{1}{K}\left|\sum_{k=1}^{K}\left(X_{j} \mathbf{1}\left\{\epsilon \leq \boldsymbol{X}^{\top} \boldsymbol{\Delta}+\delta_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon \leq b_{k}^{(0)}\right\}\right)\right| \\
& \quad \leq M,
\end{aligned}
$$

where the last inequality comes from the assumption that $\left|X_{j}\right| \leq M$ for $1 \leq j \leq p$.
Step 2: Obtain the upper bound for $\sigma_{n^{\prime}}^{2}:=\sup _{\boldsymbol{\Delta}} \frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \operatorname{Var}\left[f_{\boldsymbol{\Delta}}\left(\epsilon_{i}, \boldsymbol{X}_{i}\right) \mid \mathcal{X}\right]$, where $\mathcal{X}:=\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$. In fact, similar to the proof of Lemma 6.1 in

Zhao et al. (2014), we have:

$$
\begin{align*}
& \frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \operatorname{Var}\left[f_{\boldsymbol{\Delta}}\left(\epsilon_{i}, \boldsymbol{X}_{i}\right) \mid \mathcal{X}\right] \\
& \quad \leq_{(1)} \frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \frac{6 C_{+} M^{2}}{K} \sum_{k=1}^{K}\left|\widetilde{\boldsymbol{X}}_{i}^{\top} \boldsymbol{\Delta}_{k}\right| \\
& \quad \leq_{(2)} \frac{6 C_{+} M^{2}}{K}\left(\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} K\left|\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}\right|+\|\boldsymbol{\delta}\|_{1}\right) \\
& \quad \leq_{(3)} \frac{6 C_{+} M^{2}}{K}\left(K \sqrt{\boldsymbol{\Delta}^{\top}\left(\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right) \boldsymbol{\Delta}}+\sqrt{K}\|\boldsymbol{\delta}\|_{2}\right) \\
& \quad \leq_{(4)} \frac{6 C_{+} M^{2}}{K}\left(K \sqrt{\boldsymbol{\Delta}^{\top}\left(\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}-\boldsymbol{\Sigma}\right) \boldsymbol{\Delta}+\boldsymbol{\Delta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\Delta}}+\sqrt{K}\|\boldsymbol{\delta}\|_{2}\right) \\
& \quad \leq_{(5)} C M^{2}\left(\|\boldsymbol{\Delta}\|_{2}+\|\boldsymbol{\delta}\|_{2}\right) \\
& \quad \leq_{(6)} C M^{2} \sqrt{s \frac{\log (p n)}{n}}:=\sigma_{n^{\prime}}^{2}, \tag{S10.201}
\end{align*}
$$

where (3) comes from the Cauchy-Swartz inequality, (5) comes from Lemma 8

Step 3: Obtain the covering number of the functional class \mathcal{F} as defined in $(\mathbf{S 1 0 . 2 0 0})$. Let $\mathcal{T} \subset\{1, \ldots, p\}$ with $|\mathcal{T}|=\xi_{1} s$. Moreover, define the following functional classes:

$$
\begin{aligned}
& \mathcal{F}_{k}:=\left\{f_{k}(\epsilon, \boldsymbol{X})=\mathbf{1}\left\{\epsilon \leq \boldsymbol{X}^{\top} \boldsymbol{\Delta}+\delta_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon \leq b_{k}^{(0)}\right\} \mid \boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \operatorname{supp}(\boldsymbol{\Delta}) \subset \mathcal{T}\right\}, \\
& \mathcal{F}_{K}:=\left\{f_{K}(\epsilon, \boldsymbol{X})=\sum_{k=1}^{K}\left(\mathbf{1}\left\{\epsilon \leq \boldsymbol{X}^{\top} \boldsymbol{\Delta}+\delta_{k}+b_{k}^{(0)}\right\}-\mathbf{1}\left\{\epsilon \leq b_{k}^{(0)}\right\}\right) \mid \boldsymbol{\sim} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \operatorname{supp}(\boldsymbol{\Delta}) \subset \mathcal{T}\right\} \\
& \mathcal{F}_{0}:=\left\{f_{0}(\epsilon, \boldsymbol{X})=\frac{1}{K} X_{j}\right\} \\
& \mathcal{F}_{\mathcal{T}}=\mathcal{F}_{K} \mathcal{F}_{0}=\left\{f_{\mathcal{T}}(\epsilon, \boldsymbol{X})=f_{K}(\epsilon, \boldsymbol{X}) f_{0}(\epsilon, \boldsymbol{X}) \mid \boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \operatorname{supp}(\boldsymbol{\Delta}) \subset \mathcal{T}\right\},
\end{aligned}
$$

where $\operatorname{supp}(\boldsymbol{\Delta})$ denotes the support set for $\boldsymbol{\Delta}$. Note that \mathcal{F}_{k} is a VC-class with VC index smaller than $\xi_{1} s+2$, and $\left|f_{k}(\epsilon, \boldsymbol{X})\right| \leq 1,\left|f_{K}(\epsilon, \boldsymbol{X})\right| \leq K$,
and $\left|f_{0}(\epsilon, \boldsymbol{X})\right| \leq M / K$. Let $N\left(\epsilon, \mathcal{F}, L_{2}(Q)\right)$ be the covering number for some functional class \mathcal{F} under the $L_{2}(Q)$ distance. Then, by Lemma 24 (ii) in Belloni et al. (2016) and the definition of $\mathcal{F}_{\mathcal{T}}$, we have:

$$
\begin{align*}
& N\left(K \epsilon, \mathcal{F}_{K}, L_{2}(Q)\right) \leq\left[N\left(\frac{\epsilon}{K}, \mathcal{F}_{k}, L_{2}(Q)\right)\right]^{K} \\
& N\left(\epsilon K \frac{M}{K}, \mathcal{F}_{\mathcal{T}}, L_{2}(Q)\right)=N\left(\epsilon M, \mathcal{F}_{\mathcal{T}}, L_{2}(Q)\right) \leq N\left(\frac{\epsilon K}{2}, \mathcal{F}_{K}, L_{2}(Q)\right) \\
& N\left(\epsilon M, \mathcal{F}, L_{2}(Q)\right) \leq C_{p}^{\xi_{1} s} N\left(\epsilon M, \mathcal{F}_{\mathcal{T}}, L_{2}(Q)\right) \tag{S10.202}
\end{align*}
$$

Hence, by (S10.202), we have:

$$
\begin{equation*}
N\left(\epsilon M, \mathcal{F}, L_{2}(Q)\right) \leq C_{p}^{\xi_{1} s}\left[N\left(\frac{\epsilon}{2 K}, \mathcal{F}_{k}, L_{2}(Q)\right)\right]^{K} . \tag{S10.203}
\end{equation*}
$$

Furthermore, by Lemma 2.6.7 in Van and Wellner (1996), we have

$$
\begin{equation*}
\left.N\left(\frac{\epsilon}{2 K}, \mathcal{F}_{k}, L_{2}(Q)\right)\right] \leq C\left(\xi_{1} s+2\right)(16 e)^{\xi_{1} s+2}\left(\frac{2 K}{\epsilon}\right)^{2\left(\xi_{1} s+1\right)} \tag{S10.204}
\end{equation*}
$$

where C is some universal constant. Combining S10.203 and S10.204, for any probability measure Q, we have:

$$
\begin{aligned}
N\left(\epsilon M, \mathcal{F}, L_{2}(Q)\right) & \leq C_{p}^{\xi_{1} s}\left[N\left(\frac{\epsilon}{2 K}, \mathcal{F}_{k}, L_{2}(Q)\right)\right]^{K} \\
& \leq C\left(\frac{p e}{\xi_{1} s}\right)^{\xi_{1} s}\left(\xi_{1} s+2\right)^{K}(16 e)^{K\left(\xi_{1} s+2\right)}\left(\frac{2 K}{\epsilon}\right)^{2 K\left(\xi_{1} s+1\right)} \\
& \leq C\left(\frac{p e}{\xi_{1} s}\right)^{\xi_{1} s}\left(\frac{32 e K}{\epsilon}\right)^{c \xi_{1} s}
\end{aligned}
$$

where c and C are some big enough positive constants.
Step 4: Obtain the upper bound of $\mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \mid G_{n^{\prime}, j}(\boldsymbol{\Delta}) \| \mathcal{X}\right]$. Recall $\sigma_{n^{\prime}}$ defined in (S10.201). By Lemma A. 1 in Zhao et al. (2014), and
using some basic calculations, we have:

$$
\begin{aligned}
\mathbb{E} & {\left[\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \mid G_{n^{\prime}, j}(\boldsymbol{\Delta}) \| \mathcal{X}\right] } \\
& \leq \frac{C}{\sqrt{n^{\prime}}} \mathbb{E}\left[\int_{0}^{2 \sigma_{n^{\prime}}} \sqrt{\log N\left(\epsilon, \mathcal{F}, L_{2}\left(\mathbb{P}_{n} \mid \mathcal{X}\right)\right)} d \epsilon\right] \\
& \leq \frac{C}{\sqrt{n^{\prime}}} \mathbb{E}\left[\int_{0}^{2 \sigma_{n^{\prime}}} \sqrt{\sup _{Q} \log N\left(\epsilon, \mathcal{F}, L_{2}(Q)\right)} d \epsilon\right] \\
& \leq \frac{C}{\sqrt{n^{\prime}}} \int_{0}^{2 \sigma_{n^{\prime}}} \sqrt{s \log \left(\frac{p}{\epsilon}\right)} d \epsilon \\
& \leq C \sigma_{n^{\prime}} \sqrt{\frac{s \log \left(p \vee n^{\prime}\right)}{n^{\prime}}}:=r_{n^{\prime}} .
\end{aligned}
$$

Step 5: Obtain the tail bound of $\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|G_{n^{\prime}, j}(\underset{\sim}{\boldsymbol{\Delta}})\right| \mathcal{X}$. In fact, by the Bousquet inequality (Corollary 14.2 in Bühlmann and Van de Geer (2011)), we have:

$$
\begin{aligned}
& \mathbb{P}\left(\left.\sup _{\boldsymbol{\Delta} \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|G_{n^{\prime}, j}(\underset{\sim}{\boldsymbol{\Delta}})\right| \geq r_{n^{\prime}}+t \sqrt{2\left(\sigma_{n^{\prime}}^{2}+2 M r_{n^{\prime}}\right)}+\frac{2 t^{2} M}{3} \right\rvert\, \mathcal{X}\right) \\
& \leq_{(1)} \exp \left(-n^{\prime} t^{2}\right) \leq_{(2)} \exp \left(-q_{0} n t^{2}\right)
\end{aligned}
$$

where (2) comes from $n^{\prime}=\lfloor n t\rfloor$ with $t \in\left[q_{0}, 1-q_{0}\right]$. It is straightforward to see that if we take $t=C^{*} \sqrt{\log (p n) / n}$ for some big enough constant $C^{*}>0$, we have:

$$
\mathbb{P}\left(\left.\sup _{\Delta \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|G_{n^{\prime}, j}(\underset{\Delta}{\boldsymbol{\Delta}})\right| \geq C_{1}\left(\frac{s \log (p n)}{n}\right)^{\frac{3}{4}} \right\rvert\, \mathcal{X}\right) \leq(p n)^{-C_{2}} .
$$

The above result yieds that:

$$
\mathbb{P}\left(\left.\max _{n^{\prime}, j} \sup _{\Delta \in \mathcal{R}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left|G_{n^{\prime}, j}(\underset{\Delta}{\boldsymbol{\Delta}})\right| \geq C_{1}\left(\frac{s \log (p n)}{n}\right)^{\frac{3}{4}} \right\rvert\, \mathcal{X}\right) \leq(p n)^{-C_{3}}
$$

which proves that $I=O_{p}\left(\left(\frac{s \log (p n)}{n}\right)^{\frac{3}{4}}\right)$, where I is defined in S10.199.
With a similar proof technique, we can also prove $I I=O_{p}\left(\left(\frac{s \log (p n)}{n}\right)^{\frac{3}{4}}\right)$.

Combining with S10.199, we have proved that:

$$
\max _{t \in\left[q_{0}, 1-q_{0}\right]}\left\|\boldsymbol{C}_{0}^{I I, 2}(t)\right\|_{\left(s_{0}, 2\right)} \mid \mathcal{X}=O_{p}\left(s_{0}^{1 / 2}(s \log (p n))^{3 / 4} / n^{1 / 4}\right),
$$

which finishes the proof of Lemma 17 .

S10.2 Proof of Lemma 18

Proof. Recall $\underset{\sim}{\boldsymbol{\beta}}=\left((\boldsymbol{\beta})^{\top},(\boldsymbol{b})^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ and $L_{n, K}(\underset{\sim}{\boldsymbol{\beta}}):=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau_{k}}\left(Y_{i}-\right.$ $\left.\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-b_{k}\right)$. Define

$$
\begin{gathered}
\nabla L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})=\frac{\partial L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \underset{\sim}{\boldsymbol{\beta}}} \in \mathbb{R}^{p+K}, \\
\nabla_{1} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})=\frac{\partial L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \boldsymbol{\beta}} \in \mathbb{R}^{p}, \\
\nabla_{2} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})=\frac{\partial L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \boldsymbol{b}} \in \mathbb{R}^{K} .
\end{gathered}
$$

Hence, if we define $a_{i, k}^{*}=\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}-\tau_{k}$ for $i=1, \ldots, n$ and $k=1, \ldots, K$, we have:

$$
\nabla_{1} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i} a_{i, k}^{*}, \quad \text { and } \quad \nabla_{2} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{i}^{*},
$$

where $\boldsymbol{a}_{i}^{*}=\left(a_{i, 1}, \ldots, a_{i, K}\right)^{\top} \in \mathbb{R}^{K}$. The proof of Lemma 18 proceeds into two steps.

Step 1: Obtain the upper bounds of $\left\|\nabla_{1} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right\|_{\infty}$ and $\left\|\nabla_{2} L_{n, K}\left(\boldsymbol{\sim}_{\sim}^{*}\right)\right\|_{\infty}$.
We first consider $\left\|\nabla_{2} L_{n, K}\left(\boldsymbol{\beta}^{*}\right)\right\|_{\infty}$. In fact, we have:

$$
\begin{aligned}
& \left\|\nabla_{2} L_{n, K}\left(\boldsymbol{\beta}_{\sim}^{*}\right)\right\|_{\infty} \\
& \quad={ }_{(1)} \max _{1 \leq k \leq K}\left|\frac{1}{n} \sum_{i=1}^{n} a_{i, k}^{*}\right| \\
& \quad={ }_{(2)} \max _{1 \leq k \leq K}\left|\frac{1}{n} \sum_{i=1}^{n}\left(a_{i, k}^{*}-\mathbb{E}\left[a_{i, k}^{*}\right]\right)\right| \\
& \quad \leq{ }_{(3)} \max _{1 \leq k \leq K} t_{1} \underbrace{\frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}}\left(\mathbf{1}\left\{\epsilon_{i} \leq \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right\}-\mathbb{E}\left(F_{\epsilon}\left(\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)\right) \mid\right.}_{I I} \\
& \quad+\max _{1 \leq k \leq K} t_{2} \underbrace{\frac{1}{n t_{2}} \sum_{i=n t_{1}+1}^{n}\left(\mathbf{1}\left\{\epsilon_{i} \leq \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right\}-\mathbb{E}\left(F_{\epsilon}\left(\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)\right) \mid\right.}_{I},
\end{aligned}
$$

where (2) comes from the first order condition in S9.187). Hence, to control $\left\|\nabla_{2} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})\right\|_{\infty}$, we need to consider I and $I I$. Let $Z_{i, k}:=\mathbf{1}\left\{\epsilon_{i} \leq \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\right.\right.$ $\left.\left.\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right\}-\mathbb{E}\left(F_{\epsilon}\left(\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)\right.$. Note that $\mathbb{E}\left[Z_{i, k}\right]=0$ and $-1 \leq$ $Z_{i, k} \leq 1$. Hence, by the Hoeffding's inequality, we can prove that $(I \vee I I) \leq$ $C_{1} \sqrt{\log (p) / n}$ w.p.a.1. Hence, we prove $\left.\| \nabla_{2} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})^{*}\right) \|_{\infty} \leq C_{1} \sqrt{\log (p) / n}$ w.p.a.1. for some $C_{1}>0$. Next, we consider $\left\|\nabla_{1} L_{n, K}\left(\underset{\sim}{\boldsymbol{\beta}}{ }^{*}\right)\right\|_{\infty}$. In fact, we
have:

$$
\begin{aligned}
& \left\|\nabla_{1} L_{n, K}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)\right\|_{\infty} \\
& \quad=_{(1)} \max _{1 \leq j \leq p}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i} a_{i, k}^{*}\right| \\
& \quad={ }_{(2)} \max _{1 \leq j \leq p}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(X_{i j} a_{i, k}^{*}-\mathbb{E}\left[X_{i j} a_{i, k}^{*}\right]\right)\right| \\
& \quad \leq{ }_{(3)} \max _{1 \leq j \leq p} \max _{1 \leq k \leq K}\left|\frac{1}{n} \sum_{i=1}^{n}\left(X_{i j} a_{i, k}^{*}-\mathbb{E}\left[X_{i j} a_{i, k}^{*}\right]\right)\right| \\
& \leq{ }_{(4)}^{\max _{1 \leq j \leq p} \max _{1 \leq k \leq K} t_{1}\left|\frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}}\left(X_{i j} a_{i, k}^{*}-\mathbb{E}\left[X_{i j} a_{i, k}^{*}\right]\right)\right|} \\
& \underbrace{}_{I I I} \\
& \quad+\underbrace{\max _{1 \leq j \leq p} \max _{1 \leq k \leq K} t_{2}\left|\frac{1}{n t_{2}} \sum_{i=n t_{1}+1}^{n}\left(X_{i j} a_{i, k}^{*}-\mathbb{E}\left[X_{i j} a_{i, k}^{*}\right]\right)\right|}_{I V},
\end{aligned}
$$

where (2) comes from the first order condition in S9.187). Let $W_{i j k}=$ $X_{i j} a_{i, k}^{*}-\mathbb{E}\left[X_{i j} a_{i, k}^{*}\right]$. Conditional on \mathbf{X}, for fixed j, k, we have $-M \leq$ $-\left|X_{i j}\right| \leq W_{i j k} \leq\left|X_{i j}\right| \leq M$ and $\mathbb{E}\left[W_{i j k}\right]=0$. Hence, by the Hoeffding's inequality, we can see that $(I I I \vee I V) \leq C_{2} M \sqrt{\log (p) / n}$ w.p.a.1, which yields $\left\|\nabla_{1} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})\right\|_{\infty} \leq C_{2} M \sqrt{\log (p) / n}$ w.p.a.1.

Step 2: Let $\lambda \geq 2 M\left(C_{1} \vee C_{2}\right) \sqrt{\log (p) / n}$, where C_{1} and C_{2} are defined in Step 1. Hence, we have $\left\|\nabla_{1} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right\|_{\infty} \leq \lambda / 2$ and $\left\|\nabla_{2} L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})\right\|_{\infty} \leq$ $\lambda / 2$ w.p.a.1. By the convexity of $L_{n, K}(\underset{\sim}{\boldsymbol{\beta}})$, we have:
$L_{n, K}(\underset{\sim}{\widehat{\boldsymbol{\beta}}})-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right) \geq \nabla L_{n, K}^{\top}\left(\boldsymbol{\beta}^{*}\right)\left(\underset{\sim}{\widehat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}^{*}}\right)=\nabla_{1} L_{n, K}^{\top}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)+\nabla_{2} L_{n, K}^{\top}\left(\sim_{\sim}^{\boldsymbol{\beta}^{*}}\right)\left(\widehat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)$.

Combining the above inequality and by the optimality of $\underset{\sim}{\widehat{\boldsymbol{\beta}}}$, we have:

$$
\begin{aligned}
0 & \leq L_{n, K}\left({\left.\underset{\sim}{\boldsymbol{\beta}^{*}}\right)-L_{n, K}(\underset{\sim}{\widehat{\boldsymbol{\beta}}})+\lambda\left(\left\|\boldsymbol{\beta}^{*}\right\|_{1}-\|\widehat{\boldsymbol{\beta}}\|_{1}\right)} \leq\left\|\nabla_{1} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right\|_{\infty}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}+\left\|\nabla_{2} L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right\|_{\infty}\left\|\widehat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|_{1}+\lambda\left(\left\|\boldsymbol{\beta}^{*}\right\|_{1}-\|\widehat{\boldsymbol{\beta}}\|_{1}\right)\right. \\
& \leq \frac{\lambda}{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}+\frac{\lambda}{2}\left\|\widehat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|_{1}+\lambda\left(\left\|\boldsymbol{\beta}^{*}\right\|_{1}-\|\widehat{\boldsymbol{\beta}}\|_{1}\right) .
\end{aligned}
$$

Adding $\frac{\lambda}{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{1}$ on both sides of the above inequality, and using the same proof as in Section S9.3, we can derive that:

$$
\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1} \leq 3\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\left\|\widehat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|
$$

which finishes the proof.

S10.3 Proof of Lemma 19

Proof. By the well-known Knight's equation that: $\rho_{\tau}(x-y)-\rho_{\tau}(x)=$ $-y(\tau-\mathbf{1}\{x \leq 0\})+\int_{0}^{y} \mathbf{1}\{x \leq s\}-\mathbf{1}\{x \leq 0\} d s$, and the definition of $H(\underset{\Delta}{\boldsymbol{\Delta}})$,
we have:

$$
\begin{aligned}
H(\underset{\sim}{\boldsymbol{\Delta}}) & =L_{K}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}\right)\right] \\
& =I+I I,
\end{aligned}
$$

where

$$
\begin{aligned}
& I= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+b_{k}\right)\left(\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}-\tau_{k}\right)\right] \\
&=\boldsymbol{\Delta}^{\top} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\boldsymbol{X}_{i}\left(\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}-\tau_{k}\right)\right] \\
&+\frac{1}{K} \sum_{k=1}^{K} b_{k} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}-\tau_{k}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
I I= & \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \int_{0}^{\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)}\left(\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq s\right\}-\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}\right) \\
= & \underbrace{}_{1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \int_{0}^{\left(\boldsymbol{X}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}+s\right)-F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right)\right) \\
& +\underbrace{t_{2} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \int_{0}^{\left(\boldsymbol{X}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)}\left(F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}+s\right)-F_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(2)}\right)+b_{k}^{*}\right)\right)}_{I V} .
\end{aligned}
$$

Note that by the first order condition of ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$ in S9.187, we have $I=0$. Recall $\boldsymbol{S}_{k}:=\operatorname{diag}\left(\mathbf{1}_{p}, \boldsymbol{e}_{k}\right), \underset{\sim}{\boldsymbol{X}}:=\left(\boldsymbol{X}^{\top}, \mathbf{1}_{K}\right) \in \mathbb{R}^{p+K}$, and $\boldsymbol{S}:=\sum_{k=1}^{K} \mathbb{E}\left[\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top}\right]$
defined in (S9.191). For III, by the Taylor's expansion, we have:

$$
\begin{aligned}
I I I & =_{(1)} t_{1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\int_{0}^{\left(\boldsymbol{S}_{k} \boldsymbol{X}\right)^{\top} \boldsymbol{\Delta}} f_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right) s+\frac{s^{2}}{2} f_{\epsilon}^{\prime}(W) d s\right] \\
& \geq_{(2)} t_{1} \frac{1}{K} \frac{C_{-}}{2} \sum_{k=1}^{K} \mathbb{E}\left[\mid\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top} \boldsymbol{\Delta}^{2}\right]-t_{1} \frac{1}{K} \frac{C_{+}^{\prime}}{6} \sum_{k=1}^{K} \mathbb{E}\left[\mid\left(\boldsymbol{S}_{k} \boldsymbol{X}\right)^{\top} \boldsymbol{\Delta}^{3}\right] \\
& \geq_{(3)} t_{1} \frac{1}{K} \frac{C_{-}}{2}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}-t_{1} \frac{1}{K} \frac{C_{+}^{\prime} m_{0}}{6}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{3},
\end{aligned}
$$

where W in (1) is some random variable between $\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}+s$ and $\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*},(2)$ follows from the assumption that $\inf _{1 \leq k \leq K} f_{\epsilon}\left(\boldsymbol{X}^{\top}\left(\boldsymbol{\beta}^{*}-\right.\right.$ $\left.\left.\boldsymbol{\beta}^{(1)}\right)+b_{k}^{*}\right) \geq C_{-}$and $\left|f_{\epsilon}^{\prime}(t)\right| \leq C_{+}^{\prime}$, (3) follows from the assumption that $\sum_{k=1}^{K} \mathbb{E}\left[\left|\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top} \underset{\Delta}{\boldsymbol{\Delta}}\right|^{3}\right] \leq m_{0}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{3}$ for some $m_{0}>0$. Similarly, for $I V$, we have
$I V \geq t_{2} \frac{1}{K} \frac{C_{-}}{2}\|\boldsymbol{\Delta}\|_{S}^{2}-t_{2} \frac{1}{K} \frac{C_{+}^{\prime} m_{0}}{6}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{3}$, which implies the final result:

$$
\begin{aligned}
H(\underline{\boldsymbol{\Delta}}) & ={ }_{(1)} I+I I \\
& ={ }_{(2)} I I I+I V \\
& \geq_{(3)} \frac{1}{K} \frac{C_{-}}{2}\|\boldsymbol{\Delta}\|_{S}^{2}-\frac{1}{K} \frac{C_{+}^{\prime} m_{0}}{6}\|\boldsymbol{\Delta}\|_{S}^{3} \\
& \geq_{(4)} c_{*} \min \left(\frac{\|\boldsymbol{\Delta}\|_{S}^{2}}{4}, \frac{\|\boldsymbol{\Delta}\|_{S}}{4}\right),
\end{aligned}
$$

where (4) is very similar to the proof of Lemma C. 1 in Zhao et al. (2014), which is omitted.

S10.4 Proof of Lemma 20

Proof. Let $r_{i, k}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}$ and

$$
\begin{align*}
U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta}) & =\frac{1}{K} \sum_{k=1}^{K}\left[\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}\right)\right] \\
& =\frac{1}{K} \sum_{k=1}^{K}\left[\rho_{\tau_{k}}\left(r_{i, k}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(r_{i, k}\right)\right] \tag{S10.205}
\end{align*}
$$

Hence, using the above notations, we have:

$$
\left(L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)-\left(L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)=\frac{1}{n} \sum_{i=1}^{n}\left[U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right]\right] .
$$

By the lipschitz continuity of $\left|\rho_{\tau}(t)-\rho_{\tau}(s)\right| \leq|s-t|$, we have

$$
\begin{equation*}
U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right] \leq \frac{2}{K} \sum_{k=1}^{K}\left|\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right|:=C_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta}) \tag{S10.206}
\end{equation*}
$$

Let $Z=\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\| \boldsymbol{s} \leq \xi} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n}\left[U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right] \mid\right.$. In what follows, we \right. will use the Massart's inequality (Theorem 14.2 in Bühlmann and Van de
$\operatorname{Geer}(2011))$ to obtain the tail bound:

$$
\begin{equation*}
\mathbb{P}(Z>\mathbb{E} Z+t) \leq \exp \left(-\frac{n t^{2}}{8 \sigma^{2}}\right) \tag{S10.207}
\end{equation*}
$$

where $\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\| \boldsymbol{\|} \leq \xi} \frac{1}{n} \sum_{i=1}^{n} C_{i}^{2}(\boldsymbol{\Delta}, \boldsymbol{\delta}) \leq \sigma^{2}$. Hence, to use Massart's inequality, we need two steps.

Step 1: Obtain the upper bound for σ^{2}. Recall $\boldsymbol{S}_{k}:=\operatorname{diag}\left(\mathbf{1}_{p}, \boldsymbol{e}_{k}\right), \underset{\sim}{\boldsymbol{X}}:=$ $\left(\boldsymbol{X}_{i}^{\top}, \mathbf{1}_{K}\right) \in \mathbb{R}^{p+K}$, and $\boldsymbol{S}:=\sum_{k=1}^{K} \mathbb{E}\left[\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}}\right)^{\top}\right]$. With probability tending to 1 , we have:

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} C_{i}^{2}(\boldsymbol{\Delta}, \boldsymbol{\delta})={ }_{(1)} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{2}{K} \sum_{k=1}^{K}\left|\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right|\right)^{2} \\
& \leq_{(2)} \frac{4}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)^{2} \\
& \leq_{(3)} \frac{8}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}\right)^{2}+\delta_{k}^{2}\right) \\
& ={ }_{(4)} \frac{8}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)^{\top} \boldsymbol{\Delta}\right)^{2} \\
& ={ }_{(5)} \frac{8}{K} \boldsymbol{\Delta}^{\top}\left[\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)^{\top}\right] \stackrel{\Delta}{\approx}\right. \\
& { }_{=(6)} \frac{8}{K} \boldsymbol{\Delta}^{\top} \boldsymbol{S} \underset{\sim}{\boldsymbol{\Delta}}+\frac{8}{K} \boldsymbol{\Delta}^{\top}\left[\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)\left(\boldsymbol{S}_{k} \boldsymbol{X}_{\sim}\right)^{\top}-\boldsymbol{S}\right] \underset{\sim}{\boldsymbol{\Delta}}\right. \\
& \leq_{(7)} \frac{8}{K}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}+\frac{8}{K}\|\boldsymbol{\Delta}\|_{1}^{2} \| \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(\left(\boldsymbol{S}_{k} \underset{\sim}{\boldsymbol{X}_{i}}\right)\left(\boldsymbol{S}_{k}{\underset{\sim}{\boldsymbol{X}}}_{i}\right)^{\top}-\boldsymbol{S} \|_{\infty}\right. \\
& \leq_{(8)} \frac{8}{K}\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}+\frac{8}{K} M \sqrt{\log (p) / n}\|\boldsymbol{\Delta}\|_{1}^{2} \\
& \leq_{(9)} \frac{8}{K}\|\boldsymbol{\Delta}\|_{S}^{2}+O(M s \sqrt{\log (p) / n})\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2} \\
& \leq_{(10)} \frac{9}{K} \xi^{2}, \tag{S10.208}
\end{align*}
$$

where (2) follows from the Cauchy-Swarchz inequality, (3) follows from ($a+$ $b)^{2} \leq 2 a^{2}+2 b^{2},(8)$ follows from the large deviation for $\| \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)^{\top}-\right.$ $\boldsymbol{S} \|_{\infty},(9)$ follows from the fact that $\|\underset{\boldsymbol{\Delta}}{ }\|_{1} \leq 4\left\|\boldsymbol{\Delta}_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\|\boldsymbol{\delta}\|_{1}$ and the Cauchy-Swarchz inequality, and (10) comes from the assumption that $M s \sqrt{\log (p) / n}=$ $o(1)$.

Step 2: Obtain the upper bound for $\mathbb{E}[Z]$. Let e_{1}, \ldots, e_{n} be i.i.d Rademacher random variables with $\mathbb{P}\left(e_{i}=1\right)=\mathbb{P}\left(e_{i}=-1\right)=1 / 2$. In fact, by the symmetrization procedure (Theorem 14.3 in Bühlmann and Van de Geer (2011)) and the contraction principle (Theorem 14.4 in Bühlmann and Van de Geer (2011)), we have:

$$
\begin{align*}
\mathbb{E}[Z] & ={ }_{(1)} \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{s}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n}\left(U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E} U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right)\right|\right] \\
& \leq{ }_{(2)} 2 \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{S}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n}\left(e_{i} U_{i}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right)\right|\right] \\
& ={ }_{(3)} 2 \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{S}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} e_{i}\left[\rho_{\tau_{k}}\left(r_{i, k}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(r_{i, k}\right)\right]\right|\right] \\
& \leq{ }_{(4)} 2 \max _{1 \leq k \leq K} \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{s}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} e_{i}\left[\rho_{\tau_{k}}\left(r_{i, k}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(r_{i, k}\right)\right]\right|\right] \\
& \leq{ }_{(5)} 4 \max _{1 \leq k \leq K} \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{S}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} e_{i}\left[\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right]\right|\right] \\
& ={ }_{(6)} 4 \max _{1 \leq k \leq K} \mathbb{E}\left[\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\| \boldsymbol{s} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} e_{i}\left(\boldsymbol{S}_{k} \boldsymbol{X}_{i}\right)^{\top} \boldsymbol{\Delta}\right|\right] \\
& \leq{ }_{(7)} 4[\underbrace{}_{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\| \boldsymbol{S} \leq \xi}\|\boldsymbol{\Delta}\|_{1}] \tag{S10.209}
\end{align*} \times \underbrace{\sup _{1 \leq k \leq K} \mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^{n} e_{i}\left(\boldsymbol{S}_{k} \boldsymbol{X}_{\sim}\right)\right\|_{\infty}}_{I I} .
$$

Hence, to control $\mathbb{E}[Z]$, it is sufficient to consider I and $I I$, respectively.
For I, using the fact that $\|\boldsymbol{\Delta}\|_{1} \leq 4\left\|\boldsymbol{\Delta}_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\|\boldsymbol{\delta}\|_{1}$ and the CauchySwarchz inequality, we have $I \leq C_{1} \sqrt{s} \xi$ for some $C_{1}>0$. For $I I$, we can prove that $I I \leq C_{2} M \sqrt{\log (p) / n}$ for some $C_{2}>0$. Hence, combining S10.207), S10.208, and S10.209, if we take $t=C_{3} \xi \sqrt{\log (p) / n}$ for some large enough $C_{3}>0$, with w.p.a.1, we have $Z \leq C_{3} M \xi \sqrt{s \log (p) / n}$, which finishes the proof.

S10.5 Proof of Lemma 21

Proof. Recall $\underset{\sim}{\boldsymbol{\beta}}=\left((\boldsymbol{\beta})^{\top},(\boldsymbol{b})^{\top}\right)^{\top} \in \mathbb{R}^{p+K}$ and $L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})$ defined in S9.198).
Recall $a_{i, k}^{*}:=\mathbf{1}\left\{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*} \leq 0\right\}-\tau_{k}$ for $i=1, \ldots, n$ and $k=1, \ldots, K$. Define

$$
\begin{aligned}
& \nabla L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})= \frac{\partial L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \underset{\sim}{\boldsymbol{\beta}}} \in \mathbb{R}^{p+K} \\
& \nabla_{1} L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})=\frac{\partial L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \boldsymbol{\beta}} \in \mathbb{R}^{p} \\
& \nabla_{2} L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})=\frac{\partial L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})}{\partial \boldsymbol{b}} \in \mathbb{R}^{K}
\end{aligned}
$$

Then, we have:

$$
\begin{aligned}
& \nabla_{1} L_{n, K}^{\alpha}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)=(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i} a_{i, k}^{*}-\alpha \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right) \\
& \text { and } \nabla_{2} L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{i}^{*}
\end{aligned}
$$

where $\boldsymbol{a}_{i}^{*}=\left(a_{i, 1}, \ldots, a_{i, K}\right)^{\top} \in \mathbb{R}^{K}$. The proof of Lemma 18 proceeds into two steps.

Step 1: Obtain the upper bounds of $\left\|\nabla_{1} L_{n, K}^{\alpha}\left(\boldsymbol{\beta}_{\sim}^{*}\right)\right\|_{\infty}$ and $\left\|\nabla_{2} L_{n, K}^{\alpha}\left(\boldsymbol{\beta}^{*}\right)\right\|_{\infty}$. We first consider $\left\|\nabla_{2} L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})\right\|_{\infty}$. In fact, by Step 1 in Section $S 10.2$, we have $\left.\| \nabla_{2} L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})^{*}\right) \|_{\infty} \leq C_{1} \sqrt{\log (p) / n}$ w.p.a.1. for some $C_{1}>0$. Next, we consider $\left\|\nabla_{1} L_{n, K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})\right\|_{\infty}$. In fact, we have:

$$
\begin{aligned}
& \left\|\nabla_{1} L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right\|_{\infty} \\
& =_{(1)}\left\|(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}_{i} a_{i, k}^{*}-\alpha \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right\|_{\infty} \\
& =_{{ }_{(2)}} \|(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\boldsymbol{X}_{i} a_{i, k}^{*}-\mathbb{E}\left(\boldsymbol{X}_{i} a_{i, k}^{*}\right)\right) \\
& \quad-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)\right) \|_{\infty} \\
& \leq_{(3)}(1-\alpha) \underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K}\left(\boldsymbol{X}_{i} a_{i, k}^{*}-\mathbb{E}\left(\boldsymbol{X}_{i} a_{i, k}^{*}\right)\right) \|_{\infty}}_{I I} \\
& +\alpha \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E}\left(\boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)\right) \|_{\infty}}_{I},
\end{aligned}
$$

where (1) comes from the first order condition in (S9.195). By Step 2 in Section S10.2, we have $I \leq C_{2} M \sqrt{\log (p) / n}$ w.p.a.1. Next, we consider $I I$. In fact, by noting that $Y_{i}=\epsilon_{i}+\boldsymbol{\beta}^{(1)} \mathbf{1}\left\{i \leq\left\lfloor n t_{1}\right\rfloor\right\}+\boldsymbol{\beta}^{(2)} \mathbf{1}\left\{i>\left\lfloor n t_{1}\right\rfloor\right\}$, we have:

$$
\begin{aligned}
I I & ={ }_{(1)}\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}+t_{1}\left(\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{*}\right)+t_{2}\left(\widehat{\boldsymbol{\Sigma}}\left(t_{1}: 1\right)-\boldsymbol{\Sigma}\right)\left(\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{*}\right)\right\|_{\infty} \\
& \leq_{(2)}\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \epsilon_{i}\right\|_{\infty}+t_{1}\left\|\widehat{\boldsymbol{\Sigma}}\left(0: t_{1}\right)-\boldsymbol{\Sigma}\right\|_{\infty}\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{*}\right\|_{1}+t_{2}\left\|\widehat{\boldsymbol{\Sigma}}\left(t_{1}: 1\right)-\boldsymbol{\Sigma}\right\|_{\infty}\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{*}\right\|_{1} \\
& ={ }_{(3)} O_{p}\left(M \sqrt{\frac{\log (p n)}{n}}\right)+O_{p}\left(M^{2} \sqrt{\frac{\log (p n)}{n}}\right)\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{*}\right\|_{1}+O_{p}\left(M^{2} \sqrt{\frac{\log (p n)}{n}}\right)\left\|\boldsymbol{\beta}^{(2)}-\boldsymbol{\beta}^{*}\right\|_{1} \\
& ={ }_{(4)} O_{p}\left(M \sqrt{\frac{\log (p n)}{n}}\right)+O_{p}\left(M^{2} \sqrt{\frac{\log (p n)}{n}}\right)\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1}={ }_{(5)} O_{p}\left(M^{2} \sqrt{\frac{\log (p n)}{n}}\right),
\end{aligned}
$$

where (3) comes from Lemmas 7 and 8, (4) and (5) come from Remark 6 and the assumption that $\left\|\boldsymbol{\beta}^{(1)}-\boldsymbol{\beta}^{(2)}\right\|_{1} \leq C_{\boldsymbol{\Delta}}$. Hence, combining the above bounds, w.p.a.1, we have:

$$
\left\|\nabla_{1} L_{n, K}^{\alpha}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)\right\|_{\infty} \leq C_{1} M^{2} \sqrt{\frac{\log (p n)}{n}},\left\|\nabla_{2} L_{n, K}^{\alpha}\left(\underset{\sim}{\boldsymbol{\beta}^{*}}\right)\right\|_{\infty} \leq C_{2} M^{2} \sqrt{\frac{\log (p n)}{n}}
$$

Step 2: Let $\lambda \geq 2 M^{2}\left(C_{1} \vee C_{2}\right) \sqrt{\log (p) / n}$, where C_{1} and C_{2} are defined in Step 1. Using a similar proof procedure as in Step 2 of Section S10.2, we can derive that:

$$
\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J^{c}\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1} \leq 3\left\|\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\left\|\widehat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|,
$$

which finishes the proof.

S10.6 Proof of Lemma 22

Proof. Recall

$$
L_{K}^{\alpha}(\boldsymbol{\beta}):=(1-\alpha) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\rho_{\tau_{k}}\left(Y_{i}-b_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)\right]+\frac{\alpha}{2 n} \sum_{i=1}^{n} \mathbb{E}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2} .
$$

Note that $L_{K}^{\alpha}(\underset{\sim}{\boldsymbol{\beta}})$ is a combination of the composite quantile loss and the squared loss. Moreover, the excess risk for the squared loss is lower bounded by a squared form. Hence, combining the results in Section S10.3, we can prove that there exists some $c_{*}>0$ such that

$$
H^{\alpha}(\underline{\boldsymbol{\Delta}}) \geq c_{*} \min \left(\frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}^{2}}{4}, \frac{\|\boldsymbol{\Delta}\|_{\boldsymbol{S}}}{4}\right)
$$

To save space, we omit the details.

S10.7 Proof of Lemma 23

Define

$$
\begin{align*}
U_{i}^{(1)}(\boldsymbol{\Delta}, \boldsymbol{\delta}) & =\frac{1}{K} \sum_{k=1}^{K}\left[\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)-\rho_{\tau_{k}}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}\right)\right] \\
U_{i}^{(2)}(\boldsymbol{\Delta}, \boldsymbol{\delta}) & =\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\Delta}+\delta_{k}\right)\right)^{2}-\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-b_{k}^{*}\right)^{2} . \tag{S10.210}
\end{align*}
$$

Hence, using the above notations, we have:

$$
\begin{aligned}
& \left(L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}^{\alpha}\left(\boldsymbol{\beta}_{\sim}^{*}\right)\right)-\left(L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right) \\
& \quad=(1-\alpha) \frac{1}{n} \sum_{i=1}^{n}\left[U_{i}^{(1)}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}^{(1)}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right]\right]+\frac{\alpha}{2} \frac{1}{n} \sum_{i=1}^{n}\left[U_{i}^{(2)}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}^{(2)}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right]\right] .
\end{aligned}
$$

To prove Lemma 23, it is sufficient to bound I and $I I$, where:

$$
\begin{align*}
& I=\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\| \boldsymbol{S} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} U_{i}^{(1)}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}^{(1)}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right]\right| \\
& I I=\sup _{\boldsymbol{\Delta} \in \mathcal{A},\|\boldsymbol{\Delta}\|_{\boldsymbol{s}} \leq \xi}\left|\frac{1}{n} \sum_{i=1}^{n} U_{i}^{(2)}(\boldsymbol{\Delta}, \boldsymbol{\delta})-\mathbb{E}\left[U_{i}^{(2)}(\boldsymbol{\Delta}, \boldsymbol{\delta})\right]\right| . \tag{S10.211}
\end{align*}
$$

Note that in Section S10.4, we have proved that $I=O_{p}(\xi \sqrt{s \log (p) / n})$. Hence, it only remains to consider $I I$. Let $\underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\boldsymbol{\beta}}{ }^{*}+\underset{\sim}{\boldsymbol{\Delta}}$. Then, it is equivalent to consider :

$$
\begin{align*}
& I I=\sup _{\boldsymbol{\beta}-\mathcal{R}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { R }}-\mathcal{\beta}^{*}\right\|_{\boldsymbol{S}} \leq \xi} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n}\left[\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}-\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)^{2}\right]\right. \\
& \quad-\mathbb{E}\left[\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}-\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)^{2}\right] \mid \tag{S10.212}\\
& \leq I I .1+I I .2+I I .3
\end{align*}
$$

where

$$
\begin{aligned}
I I .1:= & \sup _{\substack{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A} \\
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{S} \leq \xi}}\left|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)\right|, \\
I I .2:= & \sup _{\substack{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A} \\
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|}} t_{1} \left\lvert\, \frac{1}{n t_{1} \leq \xi} \sum_{i=1}^{n t_{1}}\left[\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}\right]\right. \\
& \quad-\mathbb{E}\left[\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}\right] \mid, \\
I I .3:= & \sup _{\substack{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A} \\
\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{S}} \leq \xi}} t_{2} \left\lvert\, \frac{1}{n t_{2}} \sum_{i=n t_{1}+1}^{n}\left[\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)}\right)^{2}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)}\right)^{2}\right]\right. \\
& -\mathbb{E}\left[\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)}\right)^{2}-\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{(2)}\right)^{2}\right] \mid .
\end{aligned}
$$

Next, we consider $I I .1-I I .3$, respectively. For $I I .1$, we have

$$
\begin{aligned}
& \leq_{(2)} C M \sqrt{\frac{\log (p n)}{n}} \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s}} \leq \xi}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right\|_{1} \\
& \leq{ }_{(3)} C M \sqrt{\frac{\log (p n)}{n}} \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{S}} \leq \xi}\left(4\left\|\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{1}+\left\|\boldsymbol{b}-\boldsymbol{b}^{*}\right\|_{1}\right) \\
& \leq{ }_{(4)} C M \sqrt{\frac{\log (p n)}{n}} \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\| \boldsymbol{s} \leq \xi}\left(4 \sqrt{s}\left\|\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}\right)_{J\left(\boldsymbol{\beta}^{*}\right)}\right\|_{2}+\sqrt{K}\left\|\boldsymbol{b}-\boldsymbol{b}^{*}\right\|_{2}\right) \\
& \leq_{(5)} C M \xi \sqrt{s \frac{\log (p n)}{n}},
\end{aligned}
$$

where (2) comes from Lemma 7, (3) follows from the definition of \mathcal{A}, (5) follows from the definiteness of \boldsymbol{S}.

Our next goal is to bound II.2. To that end, we suppose that there exists some universal constant $\eta>0$ such that for all $\underset{\sim}{\boldsymbol{\beta}}$ satisfying $\| \underset{\sim}{\boldsymbol{\beta}}-$
$\boldsymbol{\beta}^{*} \|_{S} \leq \xi$, we have:

$$
\left|\boldsymbol{X}^{\top} \boldsymbol{\beta}-\boldsymbol{X}^{\top} \boldsymbol{\beta}^{(1)}\right| \leq \eta .
$$

Note that this is a very common assumption for proving the concentration inequality for squared error loss (see Bühlmann and Van de Geer (2011)).

Define the functional class:

$$
\gamma\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right)=\frac{\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}-\boldsymbol{X}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}-\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}-\boldsymbol{X}^{\top} \boldsymbol{\beta}^{(1)}\right)^{2}}{2 \eta}
$$

By definition, we can see that $\left|\gamma\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}^{\prime}\right)\right| \leq\left|\boldsymbol{X}^{\top} \boldsymbol{\beta}-\boldsymbol{X}^{\top} \boldsymbol{\beta}^{\prime}\right|$, which is 1-Lipschitz continous. Moreover, by defining $\gamma\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right), I I .2$ reduces to:

$$
I I .2=2 \eta t_{1} \underbrace{\sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A}}^{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{S} \leq \xi}}_{Z} \left\lvert\, \frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}}\left[\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right]-\mathbb{E}\left[\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right] .\right.
$$

Note that

$$
\left|\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\mathbb{E}\left[\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right]\right| \leq 2\left|\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)\right|:=C_{i}(\boldsymbol{\beta}) .
$$

In what follows, we will use the Massart's inequality (Theorem 14.2 in Bühlmann and Van de Geer (2011)) to obtain the tail bound:

$$
\begin{equation*}
\mathbb{P}(Z>\mathbb{E} Z+t) \leq \exp \left(-\frac{n t^{2}}{8 \sigma^{2}}\right) \tag{S10.213}
\end{equation*}
$$

where $\sup _{\mathcal{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s}} \leq \xi} \frac{1}{n} \sum_{i=1}^{n} C_{i}^{2}(\boldsymbol{\beta}) \leq \sigma^{2}$. Hence, to use Massart's inequality, we need two steps.

Step 1: Obtain the upper bound for σ^{2}. In fact, w.p.a.1, we have:

$$
\begin{aligned}
& \sup _{\boldsymbol{\mathcal { R }}-\boldsymbol{\mathcal { R }}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { R }}-\boldsymbol{\mathcal { B }}^{*}\right\|_{\boldsymbol{s}} \leq \xi} \frac{1}{n} \sum_{i=1}^{n} C_{i}^{2}(\boldsymbol{\beta}) \\
& ={ }_{(1)} 4 \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{S}} \leq \xi}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}(0: 1)\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right) \\
& ={ }_{(2)} 4 \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s}} \leq \xi}\left|\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)^{\top}(\widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma})\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)\right| \\
& +4 \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{s} \leq \xi}\left|\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)^{\top} \boldsymbol{\Sigma}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)\right| \\
& \left.\leq{ }_{(3)} 4 \sup _{\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{S}} \leq \xi} \| \widehat{\boldsymbol{\Sigma}}(0: 1)-\boldsymbol{\Sigma}\right)\left\|_{\infty}\right\| \boldsymbol{\beta}-\boldsymbol{\beta}^{*} \|_{1}^{2} \\
& +4 \lambda_{\max } \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s}} \leq \xi}\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|^{2} \\
& \leq_{(4)} C_{1} M^{2} \sqrt{\frac{\log (p n)}{n}} s \xi^{2}+C_{2} \xi^{2} \leq{ }_{(5)} C_{3} \xi^{2}:=\sigma^{2} .
\end{aligned}
$$

Step 2: Obtain the upper bound for $\mathbb{E}[Z]$. Let e_{1}, \ldots, e_{n} be i.i.d Rademacher random variables with $\mathbb{P}\left(e_{i}=1\right)=\mathbb{P}\left(e_{i}=-1\right)=1 / 2$. In fact, by the symmetrization procedure (Theorem 14.3 in Bühlmann and Van de Geer (2011)) and the contraction principle (Theorem 14.4 in Bühlmann and Van de Geer (2011)), we have:

$$
\begin{aligned}
\mathbb{E}[Z] & \leq 2 \mathbb{E}\left[\sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { B }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s} \leq \xi}}\left|\frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}} e_{i}\left(\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)-\gamma\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right)\right|\right] \\
& \leq 4 \mathbb{E}\left[\sup _{\boldsymbol{\mathcal { R }}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\mathcal { Q }}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s} \leq \xi}}\left|\frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}} e_{i}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)\right|\right] \\
& \leq 4 \sup _{\boldsymbol{\beta}-\boldsymbol{\beta}^{*} \in \mathcal{A},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{\boldsymbol{s} \leq \xi}}\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right\|_{1} \mathbb{E}\left\|\frac{1}{n t_{1}} \sum_{i=1}^{n t_{1}} e_{i} \boldsymbol{X}_{i}\right\|_{\infty} \leq C \xi \sqrt{s} M \sqrt{\frac{\log (p n)}{n}},
\end{aligned}
$$

where the last inequality comes from the Hoeffding's inequality. Hence,
combining Steps 1 and 2, taking $t=C \xi \sqrt{\log (p) / n}$ for some big enough constant $C>0$, we have, w.p.a.1, $Z=O(\xi \sqrt{s \log (p) / n})$, which implies $I I .2=O_{p}(\xi \sqrt{s \log (p) / n})$.

Similarly, we can prove $I I .3=O_{p}(\xi \sqrt{s \log (p) / n})$. Considering S10.211 and (S10.212), we have proved

$$
\sup _{\substack{\Delta \in \mathcal{A} \\\|\Delta\|_{S} \leq \xi}}\left|\left(L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{n, K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)-\left(L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}+\underset{\sim}{\boldsymbol{\Delta}}\right)-L_{K}^{\alpha}\left({\underset{\sim}{\boldsymbol{\beta}}}^{*}\right)\right)\right|=O_{p}\left(M \xi \sqrt{s \frac{\log (p n)}{n}}\right),
$$

which finishes the proof.

References

Belloni, A., M. Chen, and V. Chernozhukov (2016). Quantile graphical models : Prediction and conditional independence with applications to financial risk management. arXiv preprint: 1607.00286.

Belloni, A. and V. Chernozhukov (2011). 11-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics 39(1), 82-130.

Bickel, P. J., Y. Ritov, A. B. Tsybakov, et al. (2009). Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics 37(4), 1705-1732.

Bühlmann, P. and S. Van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Heidelberg Dordrecht London New York.

Chernozhukov, V., D. Chetverikov, K. Kato, et al. (2017). Central limit theorems and bootstrap
in high dimensions. The Annals of Probability 45(4), 2309-2352.

Downey, P. J. (1990). Distribution-free bounds on the expectation of the maximum with scheduling applications. Operations Research Letters 9(3), 189-201.

Embrechts, P., C. Klüppelberg, and T. Mikosch (2013). Modelling extremal events: for insurance and finance, Volume 33. Springer Science \& Business Media.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics 42(6), 2243-2281.

Leonardi, F. and P. Bühlmann (2016). Computationally efficient change point detection for high-dimensional regression. arXiv preprint: 1601.03704.

Nazarov, F. (2003). On the maximal perimeter of a convex set in R^{n} with respect to a Gaussian measure. Geometric aspects of functional analysis 1807, 169-187.

Van, D. and J. A. Wellner (1996). Weak convergence and empirical processes. Springer,.

Wang, D., Z. Zhao, K. Z. Lin, and R. Willett (2021). Statistically and computationally efficient change point localization in regression settings. Journal of Machine Learning Research 22(248), 1-46.

Xu, H., D. Wang, Z. Zhao, and Y. Yu (2022). Change point inference in high-dimensional regression models under temporal dependence. arXiv preprint arXiv:2207.12453.

Zhang, B., J. Geng, and L. Lai (2015). Change-point estimation in high dimensional linear regression models via sparse group lasso. In 2015 53rd Annual Allerton Conference on

REFERENCES

Communication, Control, and Computing (Allerton), pp. 815-821. IEEE.

Zhao, T., M. Kolar, and H. Liu (2014). A general framework for robust testing and confidence regions in high-dimensional quantile regression. arXiv preprint: 1601.03704.

Zhou, C., W.-X. Zhou, X.-S. Zhang, and H. Liu (2018). A unified framework for testing high dimensional parameters: a data-adaptive approach. arXiv preprint: 1601.03704.

