
Statistica Sinica: Supplement

Identifiability and estimation of causal effects with

non-Gaussianity and auxiliary covariates

Kang Shuaia, Shanshan Luob, Yue Zhanga, Feng Xieb and Yangbo Hea∗

aPeking University, bBeijing Technology and Business University

Supplementary Material

This supplementary material includes additional proofs, simulation results for two treatments

case, sensitivity analysis and a data illustration for evaluating the effect of the trade on the

income.

S1 Proofs

S1.1 Proof of Corollary 1

From the proof of Theorem 1, we obtain the following relations

E(Y | A) = αA+ hE(Z | A) + h̃AE(Z | A),

where E(Z | A) must be nonlinear in A. Thus, A,E(Z | A) and AE(Z | A)

must be linearly independent. Then the target parameter can be computed
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as follows 
α

h

h̃

 = E
{
g̃(A)g̃(A)T

}−1
E
{
g̃(A)Y

}
,

where g̃(A) =
{
A,E(Z | A), AE(Z | A)

}T
.

S1.2 Proof of Corollary 2

Firstly, we have the following relations because (Z̃, εA) ⊥⊥ (Z,U)

E(Z | A, Z̃, εA) = E(Z | γZ + λTU),

E(U | A, Z̃, εA) = E(U | γZ + λTU),

which immediately implies (similar as Theorem 1)

E(U | A, Z̃, εA) =
γξ + λ

γ + ξTλ
E(Z | A, Z̃, εA).

Thus, we have

E(Y | A, Z̃) = αA+

{
β +

sT(γξ + λ)

γ + ξTλ

}
E(Z | A, Z̃) + β̃TZ̃.

So the only requirement for identification is that E(Z | A, Z̃) should not

be linear in A, Z̃. This is similar to the proof of Theorem 1 as long as we

observe that

E(Z | A, Z̃) = E(Z | Ã),
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where Ã = A− γ̃TZ̃. Thus, similar arguments as Theorem 1 will imply that

E(Z | A, Z̃) is nonlinear in Ã and we complete the proof of Corollary 2.

S1.3 Proof of Corollary 3

From the proof of Theorem 1, the conditional expectation E(Z | A) and

E(U | A) are proportional. Thus, we have

E(Y | A) = f(A)+βE(Z | A)+sTE(U | A) = f(A)+β̃E(Z | A) = f(A)+β̌A,

where β̃, β̌ are constants. Under first condition of Corollary 1, β̌ can be

solved as follows

β̌ = lim
a→∞

E(Y | A = a)

a
,

which implies

f(A) = E(Y | A)− lim
a→∞

E(Y | A = a)

a
E(Z | A).

Under the second condition that f(A) does not include the linear term of

A, write the conditional expectation E(Y | A) as the following expansion

E(Y | A) =
∞∑
i=1

biA
i,

which demonstrates the constants b1 is identifiable. Thus, f(A) = E(Y |

A)− b1A is identifiable. So we have completed the proof.
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S1.4 Proof of Theorem 2

Let Z

U

 ∼ N

0,

 Il Σ

ΣT It


 ,

and the conditional expectation of Z given εA and A will be

E(Z | εA, A) = E(Z | εA,ΓZ + ΛU + εA)

= E(Z | εA,ΓZ + ΛU)

= E(Z | ΓZ + ΛU),

where the last equality holds because εA ⊥⊥ (Z,U). Similar calculation as

proof of Theorem 1 gives

E(Z | εA, A) = E(Z | ΓZ +ΛU) = (ΓT +ΣΛT)cov(ΓZ +ΛU)−1(ΓZ +ΛU).

Similar arguments show

E(U | εA, A) = E(U | ΓZ+ΛU) = (ΛT+ΣTΓT)cov(ΓZ+ΛU)−1(ΓZ+ΛU).

Combined from all above, we have

E(Z | A) = (ΓT + ΣΛT)cov(ΓZ + ΛU)−1EεA|A(ΓZ + ΛU),

E(U | A) = (ΛT + ΣTΓT)cov(ΓZ + ΛU)−1EεA|A(ΓZ + ΛU).

So if the second condition in Theorem 2 holds, we know the equation ΛT +

ΣTΓT = Φ · (ΓT + ΣΛT) has solution for Φ. This also means E(U | A) =
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Φ · E(Z | A) has solution for Φ. Now we can obtain

E(Y | A) = αTA+ βTE(Z | A) + sTE(U | A)

= αTA+ (βT + sTΦ)E(Z | A),

where E(Z | A) and A are linearly independent from the first condition of

Theorem 2. Let

h = β + ΦTs, g(A) =
{
AT, E(Z | A)T

}T
,

then

α

h

 = E
{
g(A)g(A)T

}−1
E
{
g(A)Y

}
,

which implies α is identifiable.

S1.5 Proof of Theorem 3

To prove estimator α̂ is root-n consistent, it is enough to show each term

in our expression is root-n consistent. The n−1/4-consistency of Ê(Z | A)
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implies

1

n

n∑
i=1

AiÊ(Z | Ai)
T =

1

n

n∑
i=1

AiE(Z | Ai)
T + op(n

−1/2),

1

n

n∑
i=1

YiÊ(Z | Ai) =
1

n

n∑
i=1

YiE(Z | Ai) + op(n
−1/2),

1

n

n∑
i=1

Ê(Z | Ai)Ê(Z | Ai)
T =

1

n

n∑
i=1

E(Z | Ai)E(Z | Ai)
T +

1

n

n∑
i=1

{
Ê(Z | Ai)− E(Z | Ai)

}
·
{
Ê(Z | Ai)− E(Z | Ai)

}T
+ op(n

−1/2)

=
1

n

n∑
i=1

E(Z | Ai)E(Z | Ai)
T +

{
op(n

−1/4)
}2

+ op(n
−1/2)

=
1

n

n∑
i=1

E(Z | Ai)E(Z | Ai)
T + op(n

−1/2),

so the matrix estimator X̂ is
√
n-consistent for X, where

X̂ =

X̂11 X̂12

X̂T
12 X̂22

 =


1

n

n∑
i=1

 Ai

Ê(Z | Ai)


 Ai

Ê(Z | Ai)


T


−1

,

and

X =

X11 X12

XT
12 X22

 = E


 A

E(Z | A)


 A

E(Z | A)


T


−1

,
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which implies

√
n(α̂− α) =X̂11

(
1√
n

n∑
i=1

AiYi

)
+ X̂12

{
1√
n

n∑
i=1

Ê(Z | Ai)Yi

}
−
√
nX11E(AY )

−
√
nX12E{E(Z | A)Y }

=X̂12
1√
n

n∑
i=1

{
E(Z | Ai)Yi − E{E(Z | A)Y }

}
+
√
n(X̂12 −X12)E{E(Z | A)Y }

+ X̂11
1√
n

n∑
i=1

{AiYi − E(AY )}+
√
n(X̂11 −X11)E(AY ) + op(1)

=X12
1√
n

n∑
i=1

{
E(Z | Ai)Yi − E{E(Z | A)Y }

}
+
√
n(X̂12 −X12)E{E(Z | A)Y }

+X11
1√
n

n∑
i=1

{AiYi − E(AY )}+
√
n(X̂11 −X11)E(AY ) + op(1),

=
1√
n

n∑
i=1

{
X11AiYi +X12E(Z | Ai)Yi − α

}
+
√
n(X̂11 −X11)E(AY ) +

√
n(X̂12 −X12)E{E(Z | A)Y }+ op(1).

Let ξ = vec{AAT, E(Z | A)AT, E(Z | A)E(Z | A)T}, µ = E(ξ), ξ̃ =

n−1
∑n

i=1 ξi, then the delta method demonstrates

√
n(X̂11 −X11)E(AY ) =

∂

∂µ
{X11E(AY )} ·

√
n(ξ̃ − µ),

√
n(X̂12 −X12)E{E(Z | A)Y } =

∂

∂µ

{
X12E{E(Z | A)Y }

}
·
√
n(ξ̃ − µ).

Thus, we have

√
n(X̂11−X11)E(AY )+

√
n(X̂12−X12)E{E(Z | A)Y } =

∂α(µ)

∂µ
·
√
n(ξ̃−µ),
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where α(µ) = X11E(AY ) + X12E{E(Z | A)Y }. Finally, we obtain the

following linear expansion

√
n(α̂−α) =

1√
n

n∑
i=1

{X11AiYi+X12E(Z | Ai)Yi−α+
∂α(µ)

∂µ
ξi−µ}+op(1)

d→ N(0,Σα),

where

Σα = var

{
X11AY +X12E(Z | A)Y +

∂α(µ)

∂µ
ξ

}
,

which demonstrates that α̂ is root-n consistent for α.

S2 Simulation

In this section, we will present the simulation results for two treatments case

and the sensitivity analysis for the Gaussianity of unmeasured confounders.

S2.1 Two treatments case

In this section, we conduct extensive experiments based on the model for

multiple treatments in terms of nine scenarios with two causally correlated

treatments, as shown in Figure 1(b) of our paper. Here we use the EUNC

algorithm to calculate causal effects of A = (A1, A2)
T on Y , namely α. The

vector of two-dimensional observed covariate Z = (Z1, Z2) follow multivari-

ate normal distribution with unit variance. The latent confouder U ∈ R1.

The non-Gaussian noise terms εA1 and εA2 are respectively sampled
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from exponential distribution with rate 0.1 while Z1, Z2, U and εY are all

sampled from a standard normal distribution, where Z1 ⊥⊥ Z2. We set the

values α = (1, 1)T,Λ = (0.5, 0.5)T and s = (0.5, 0.5)T. The elements of

vectors Γ = (γ1, γ2)
T, β = (β1, β2)

T and (ξ1, ξ2) = {cov(Z1, U), cov(Z2, U)}

will vary. If the edge in Figure 2 is present, we will set the corresponding

parameter to a nonzero number (γi = 1, βi = 1, ξi = 0.5, i = 1, 2); except in

weak IV settings, we set γi = 0.01 (i = 1, 2). Otherwise, it would be zero.

We consider these settings here to compare the estimation performance

of our proposed estimator with the 2SLS estimator. Case 1-3 demonstrate

the efficiency of our method in the valid IV setting, where case 2 and 3

respectively represent situations with one and two weak IVs. Cases 4-9 are

designed for evaluating the performance of the two estimators with a possi-

bly invalid IV, where the exclusion restriction or independence assumption

may be violated. The details of these setting are presented in Table 1-2.

We consider sample sizes n ∈ {100, 300, 500}, and perform 300 repeated

experiments for each scenario. The conditional expectation E(Z | A) is esti-

mated using the gradient boosting method. We report the main estimation

results for α̂1 and α̂2 in Table 1 and 2, respectively.

As illustrated, the EUNC algorithm is considerably more effective than

the 2SLS estimator and achieves superior performance across all evaluation
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metrics in all scenarios.

S2.2 Sensitivity analysis

In this section, we evaluate the robustness of our estimator with respect

to the non-Gaussian assumption of treatment noise variable, and the pos-

sible violation of Gaussian assumption for latent concounders by imposing

an additional non-Gaussian confounder W ∼ tν confounding the treatment

and outcome. Figure 1 gives an illustration of our setting in the presence of

W . Here εA ∼ tν is the treatment noise variable generated from Student’s

tν-distribution. As the degree of freedom ν increases, εA or W is more

approaching the standard normal distribution. We display the results for

ν ∈ [5, 30] with step size of 0.5, and the absolute estimation bias of causal

effects are shown in Figure 2, 3, 4 and 5. Note that in Figure 4 and Fig-

ure 5 with W ∼ tν confounding A-Y relation, εA still follows exponential

distribution with the rate of 0.1. The sample size n is fixed at 300, and all

scenario are based on 300 repeated experiments. We also fix α, β, γ all at

1 and λ, s at 0.5, and Z, U and εY all marginally follow a standard normal

distribution. It is important to note that Figure 2 and 4 present the results

under the assumption that Z is unconfounded by U , while Figure 3 and 5

allow Z to be confounded by U with ξ = cov(Z,U) = 0.5.
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Table 1: Comparison results for α̂1 of EUNC procedure and 2SLS in two-treatment

scenarios. Here ✓ implies the edge exists and × means the absence of the edge. SD rep-

resents standard deviation and 95% CP is the coverage proportion of the 95% asymptotic

confidence intervals. Simulations results are averaged over 300 repeated experiments.

Z1 → A1 Z2 → A2 Z1 → Y Z2 → Y U → Z
Sample

size

Bias SD 95%CP

EUNC 2SLS EUNC 2SLS EUNC 2SLS

Case 1 ✓ ✓ × × ×

100 1.1 38.5 23.6 6226.2 89.3% 94.0%

300 2.0 19.1 12.2 4416.3 94.0% 97.3%

500 2.6 48.3 9.0 2938.8 94.0% 98.0%

Case 2
✓

(weak)
✓ × × ×

100 1.5 771.0 23.6 10026.9 90.3% 94.0%

300 0.4 159.4 12.8 8670.1 92.0% 90.7%

500 0.3 629.7 9.6 8029.0 92.0% 94.0%

Case 3
✓

(weak)

✓

(weak)
× × ×

100 1.7 659.9 23.6 53275.0 93.7% 90.3%

300 0.4 973.3 12.9 7115.5 91.0% 91.7%

500 1.2 9557.8 9.8 9251.7 91.3% 92.0%

Case 4 ✓ ✓ ✓ × ×

100 6.6 248.4 31.1 32625.6 92.7% 91.7%

300 6.6 1109.5 15.3 40624.7 92.3% 97.3%

500 6.3 1257.8 10.9 34004.9 93.7% 97.0%

Case 5 ✓ ✓ ✓ ✓ ×

100 5.8 993.9 38.1 39949.3 90.0% 92.3%

300 5.0 219.3 19.1 64458.8 93.0% 96.3%

500 6.0 1284.0 13.7 59922.9 88.7% 96.7%

Case 6
✓

(weak)
✓ ✓ ✓ ×

100 2.0 7252.4 39.0 90346.6 89.3% 90.3%

300 1.8 1398.2 21.9 132812.6 92.0% 89.0%

500 0.1 64809.9 16.5 149433.3 91.0% 89.7%

Case 7
✓

(weak)

✓

(weak)
✓ ✓ ×

100 3.5 2220.6 39.4 312877.9 89.3% 87.7%

300 0.2 14827.5 22.7 90396.9 92.0% 88.7%

500 0.8 516347.5 17.6 152163.3 88.3% 88.0%

Case 8 × × × × ✓

100 2.1 28.0 23.5 25008.4 91.7% 88.0%

300 1.4 24391.3 12.7 17748.2 93.3% 90.0%

500 2.3 31.5 9.2 34062.2 94.0% 86.7%

Case 9 × × ✓ ✓ ✓

100 4.1 203.5 44.7 90593.2 91.3% 87.0%

300 5.7 128267.0 24.8 84866.2 90.7% 91.7%

500 6.4 698.0 17.4 179913.0 91.7% 87.3%
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Table 2: Comparison results for α̂2 of EUNC procedure and 2SLS in two-treatment

scenarios. Here ✓ implies the edge exists and × means the absence of the edge. SD rep-

resents standard deviation and 95% CP is the coverage proportion of the 95% asymptotic

confidence intervals. Simulations results are averaged over 300 repeated experiments.

Z1 → A1 Z2 → A2 Z1 → Y Z2 → Y U → Z
Sample

size

Bias SD 95%CP

EUNC 2SLS EUNC 2SLS EUNC 2SLS

Case 1 ✓ ✓ × × ×

100 3.1 14.7 17.3 3918.8 90.0% 93.3%

300 1.5 13.4 9.0 3680.8 93.3% 96.3%

500 1.8 16.7 6.7 2301.9 91.0% 99.0%

Case 2
✓

(weak)
✓ × × ×

100 3.2 664.0 17.8 7747.0 86.3% 93.3%

300 1.5 27.3 9.8 4827.6 87.7% 91.7%

500 2.0 21.4 7.4 3112.0 89.0% 94.7%

Case 3
✓

(weak)

✓

(weak)
× × ×

100 3.3 192.7 17.3 34050.8 91.0% 91.0%

300 1.9 995.4 9.2 4914.1 90.0% 92.3%

500 3.5 3942.6 7.0 7922.2 88.0% 90.7%

Case 4 ✓ ✓ ✓ × ×

100 1.9 101.6 22.8 20445.8 89.3% 89.0%

300 0.8 22.9 11.3 33023.8 92.0% 96.0%

500 1.6 199.4 8.1 22557.8 91.0% 97.3%

Case 5 ✓ ✓ ✓ ✓ ×

100 2.1 1002.3 28.0 28381.1 89.3% 92.0%

300 4.3 1075.1 14.2 59410.9 90.7% 96.3%

500 1.6 2687.3 10.4 43382.8 88.0% 97.3%

Case 6
✓

(weak)
✓ ✓ ✓ ×

100 0.3 8857.1 29.0 89392.1 88.3% 91.7%

300 4.5 123.6 16.6 73801.8 89.3% 89.7%

500 1.0 9095.5 12.8 51014.7 90.3% 92.7%

Case 7
✓

(weak)

✓

(weak)
✓ ✓ ×

100 4.9 1150.6 28.9 189587.8 89.7% 88.3%

300 1.1 14439.3 16.4 70957.2 89.3% 88.7%

500 3.7 215947.8 12.8 128235.0 90.0% 87.3%

Case 8 × × × × ✓

100 0.4 85.9 17.4 20488.9 91.3% 89.0%

300 0.8 8829.0 9.2 12436.5 92.7% 91.3%

500 0.3 57.1 6.8 20171.9 91.7% 85.0%

Case 9 × × ✓ ✓ ✓

100 4.8 266.3 33.3 61598.3 91.3% 89.0%

300 4.5 46584.4 18.2 61424.9 90.7% 91.0%

500 2.7 767.0 12.9 106884.5 93.3% 85.3%
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The results in Figure 4 and 5 both demonstrate that when an additional

non-Gaussian variable W confounds the treatment-outcome relation, the

estimation bias will not expand with nearly all values below 0.004, regardless

of the degree of freedom ν. The results in Figure 2 and 3 show that with

the noise variable εA ∼ tν , the estimation bias will increase a little when

degree of freedom ν increases. However, when ν is less than 15, the bias

remains under 0.1, which illustrates that the strength of non-Gaussianity

from variable εA should be significant for better performance. The non-

Gaussianity from εA plays a more vital role while the possible violation of

Gaussian assumption of U seems not to be a big problem.

Figure 1: Causal diagram with an observed covariate Z, a treatment A, a latent con-

founder U , an outcome Y and an additional random variable W confounding A-Y rela-

tion.
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Figure 2: Estimation bias of causal effects

α with varying degrees of freedom ν. Here

Z is unconfounded by U and εA ∼ tν .

Figure 3: Estimation bias of causal effects

α with varying degrees of freedom ν. Here

Z is confounded by U and εA ∼ tν .

Figure 4: Estimation bias of causal ef-

fects α with an additional non-Gaussian

W ∼ tν confounding A− Y relation, vary-

ing degrees of freedom ν. Here Z is uncon-

founded by U .

Figure 5: Estimation bias of causal effects

α with an additional non-GaussianW ∼ tν

confounding A − Y relation, varying de-

grees of freedom ν. Here Z is confounded

by U .


