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1 Assumptions and conclusions in the main paper

Suppose that the big data consist of N observations {Zi}Ni=1, which are independent and

identically distributed (i.i.d.) copies from a population Z with an unknown cumulative

distribution function F . Parametric models indexed by a q-dimensional parameter θ are

usually imposed to extract information from data. Let `(z, θ) be a user-specific convex

loss function that quantifies the lack-of-fit of a parametric model indexed by a parameter

θ based on an observation z. The average loss or risk function is R(θ) = E{`(Z, θ)} =∫
`(z, θ)dF (z). We define the parameter of interest θ0 to be the risk minimizer (Shen et al.,

2021)

θ0 = arg min
θ
R(θ). (1)

This setup includes many common problems as special cases. When Z is a scalar, the

true parameter value θ0 is the mean or median of Z if `(z, θ) = (z − θ)2 or |z − θ|. When

Z = (Y,X>)>, θ0 may be the population-level regression coefficient in the generalized linear

regression, least-squares regression, quantile regression, and expectile regression models

under the specification of `(z; θ) given in Table 1.

Assumption 1. The N random vectors (Zi, Di1, Di2) (i = 1, . . . , N) are independent and

identically distributed (i.i.d.) copies of (Z,D(1), D(2)). Suppose that the distribution F (z)

of Z is nondegenerate, E(D(1)|Z) = E(D(1)) = α10, E(D(2)|Z) = π(Z) and α20 = E(D(2)) =

E{π(Z)}.

Let D = I(D(1) + D(2) > 0) and thus E(D) = 1 − {1 − E(D(1))}{1 − E(D(2))} =

1−(1−α10)(1−α20). Under Assumption 1, given the datum Z, the conditional probability

of being sampled is ϕ(Z) = E(D|Z) = 1− (1− α10){1− π(Z)}.
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Assumption 2. Suppose that `(z, θ) is a loss function and convex with respect to θ, and that

`(z, θ0 + t) = `(z, θ0) + ˙̀(z)>t+ ξ(z, t) holds in a neighborhood of t = 0, where ˙̀(z) satisfies

E{ ˙̀(Z)} = 0 and B ˙̀ ˙̀ = E{ ˙̀(Z) ˙̀>(Z)/ϕ(Z)} is finite, and ξ(z, t) satisfies E{ξ(Z, t)} =

(1/2)t>V t+ o(‖t‖2) and E{ξ2(Z, t)} = o(‖t‖2) for a positive definite matrix V as ‖t‖ → 0.

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied and that α10, α20 ∈ (0, 1) are

fixed quantities. As N goes to infinity,
√
N(θ̂IPW − θ0)

d−→ N (0,ΣIPW), where
d−→ stands

for “converge in distribution to” and ΣIPW = V −1B ˙̀ ˙̀V −1.

Theorem 1. Suppose that Assumptions 1 and 2 hold, Bhh = E{he(Z)h>
e (Z)/ϕ(Z)} is

positive definite and that α10, α20 ∈ (0, 1) are fixed and known. As N goes to infinity,

(a) θ̂ELW is consistent to θ0, and
√
N(θ̂ELW − θ0) = −V −1 ·N1/2

∑N
i=1 p̂i

˙̀(Zi) + op(1);

(b)
√
N(θ̂ELW − θ0)

d−→ N (0,ΣELW) with ΣELW = V −1(B ˙̀ ˙̀ − B ˙̀hB
−1
hhB

>
˙̀h

)V −1, where

B ˙̀h = E{ ˙̀(Z)h>
e (Z)/ϕ(Z)} and B ˙̀ ˙̀ = E{ ˙̀(Z) ˙̀>(Z)/ϕ(Z)};

(c) If the auxiliary information defined by
∑N

i=1 pih(Zi) = 0 is ignored, then
√
N(θ̂ELW−

θ0)
d−→ N (0,ΣELW0), where ΣELW0 = V −1{B ˙̀ ˙̀ − (B ˙̀1B

>
˙̀1

)/(B11 − α−1
0 )}V −1 and

B ˙̀1 = E{ ˙̀(Z)/ϕ(Z)}.

Thus far, we have assumed that the overall sampling fraction of the big data is

nonnegligible, i.e. α0 ∈ (0, 1). When the volume of the big data is huge, it is reasonable

to assume that the sampling fraction may be negligible.

Assumption 3. Suppose that π(z) depends on N and is written as πN(z), there exist a

positive sequence {bN}∞N=1, a positive function 0 < π∗(Z) ≤ 1, and a positive constant α1∗

such that bN →∞, bN/N → 0, bNπN(Z)→ π∗(Z), and bNα10 → α1∗ as N →∞.

Under Assumption 3, we have bNα20 = E{bNπN(Z)} → α2∗ = E{π∗(Z)} as N → ∞.

Define α0 = bNα10 + bNα20 and ϕ(Z) = bNα10 + bNπN(Z). Then, α0 and ϕ(Z) converge
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to α∗ = α1∗ + α2∗ and ϕ∗(Z) = α1∗ + π∗(Z), respectively. Because α10 and the π(Zi) are

prespecified, the log-likelihood under Assumption 3, up to a constant not depending on

the unknown parameters pi, is equal to
∑N

i=1 Di log(pi). Besides the constraints pi ≥ 0

and
∑N

i=1 pi = 1, pi’s in this situation should satisfy
∑N

i=1 pihe∗(Z) = 0, where he∗(Z) =

(ϕ∗(Z)− α∗, h>(Z))>.

The maximum empirical likelihood estimator of pi is p̂i∗ = n−1{1 + λ>
∗he∗(Zi)}, where

λ is the solution to

1

n

n∑
i=1

he∗(Zi)

1 + λ>
∗he∗(Zi)

= 0. (2)

The empirical likelihood weighting (ELW) estimator of θ0 is

θ̂ELW = arg minθ
∑n

i=1 p̂i∗`(Zi, θ).

Theorem 2. Suppose that Assumptions 1–3 hold, the distribution of Z is nondegenerate,

and that Chh∗ = E{he∗(Z)h>
e∗(Z)/ϕ∗(Z)} is positive definite. As N goes to infinity,√

N/bN(θ̂ELW − θ0)
d−→ N (0,ΣELW∗) and

√
N/bN(θ̂IPW − θ0)

d−→ N (0,ΣIPW∗), where

ΣELW∗ = V −1(C ˙̀ ˙̀∗ − C ˙̀h∗C
−1
hh∗C

>
˙̀h∗)V

−1 and ΣIPW∗ = V −1C ˙̀ ˙̀∗V
−1 with

C ˙̀h∗ = E{ ˙̀(Z)h>
e∗(Z)/ϕ∗(Z)} and C ˙̀ ˙̀∗ = E{ ˙̀(Z) ˙̀>(Z)/ϕ∗(Z)}.

2 Proofs of Lemma 1 and Theorems 1–2

Before presenting the proofs of Theorems, we give some important lemmas which can

ease the burden of proofs. The Lemma S1 characterizes the asymptotic behavior of the

minimizer of a convex loss function. Lemma S2 states that the proposed ELW method is

well defined with probability approaching one. Lemmas S3 and S4 investigate the large-

sample properties of the Lagrange multipliers.
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Lemma S1 (Basic corollary of Hjort and Pollard (2011)). Suppose AN(s) is convex, and

can be represented as

AN(s) =
1

2
s>V s+ U>

Ns+ CN + rN(s),

where V is symmetric and positive definite, UN is stochastically bounded, CN is arbitrary,

and rN(s) goes to zero in probability for each s. Let αN = arg minsAN(s) and

βN = arg min
s

(
1

2
s>V s+ U>

Ns+ CN

)
= −V −1UN .

Then αN = βN + op(1) as N goes to infinty. Furthermore, if UN
d−→ U , then αN

d−→

−V −1U .

Lemma S2. For a function h, let (p̂1, . . . , p̂N) be the maximizer of
∑N

i=1 Di log(pi) under

the constraints pi ≥ 0,
∑N

i=1 pi = 1, and
∑N

i=1 pihe(Zi) = 0, where

he(Z) = (ϕ(Z) − α0, h>(Z))>. If Var(he(Z)|D = 1) is positive definite, then

limN→∞ P (p̂1, . . . , p̂N are well defined) = 1.

Proof. It is clear that p̂i = 0 if Di = 0. Let PN denote the empirical probability measure

based on Zi’s with Di = 1, and Ω be the set of unit vector of the same dimension as he(Zi).

It can be verified that

EN = {those p̂i with Di = 1 are well defined}

= { inf
u∈Ω

PN(u>he(Z) > 0) > 0}.

By a generalization of the Glivenko-Cantelli theorem to uniform convergence over half

spaces,

sup
u∈Ω
|PN(u>he(Z) > 0)− P (u>he(Z) > 0|D = 1)| → 0 a.s. (3)
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Under the condition that Var(he(Z)|D = 1) is positive definite, Lemma 2 of Owen

(1990) indicates that

ε0 = inf
u∈Ω

P (u>he(Z) > 0|D = 1) > 0.

This together with (3) implies

P (EN) ≥ P ( inf
u∈Ω

PN(u>he(Z) > 0) ≥ ε0/2)→ 1

as N →∞. This proves Lemma 2.

Lemma S3. Suppose α0 ∈ (0, 1) and E{he(Z)h>
e (Z)/ϕ(Z)} is positive definite. Then

λ̂− λ0 = Op(N
−1/2), where λ0 = (α−1

0 , 0, . . . , 0)>.

Proof. The Equation (5) defining λ̂ is equivalent to

0 =
1

N

N∑
i=1

α0Di

ϕ(Zi)
· he(Zi)

1 + α0

ϕ(Zi)
(λ̂− λ0)>he(Zi)

. (4)

Write λ̂ − λ0 = ρu, where ρ = ‖λ̂ − λ0‖ and u is a unit vector. Multiplying both sides of

the above equation by u> from left gives

0 =
1

N

N∑
i=1

α0Di

ϕ(Zi)
· u>he(Zi)

1 + α0ρu>he(Zi)/ϕ(Zi)

=
1

N

N∑
i=1

α0Di

ϕ(Zi)
·
{
u>he(Zi)−

(u>he(Zi))
2/ϕ(Zi)

1 + α0ρu>he(Zi)/ϕ(Zi)
α0ρ

}
.

This equation is further equivalent to∣∣∣∣∣ 1

N

N∑
i=1

Diu
>he(Zi)

ϕ(Zi)

∣∣∣∣∣ =
1

N

N∑
i=1

Di

ϕ(Zi)

(u>he(Zi))
2/ϕ(Zi)

1 + α0ρu>he(Zi)/ϕ(Zi)
α0ρ.

Because Bhh = E{he(Z)h>
e (Z)/ϕ(Z)} is positive definite, it follows Lemma 3 of Owen

(1990) and the Cauchy-Schwartz inequality that

max
1≤i≤N

{Di‖he(Zi)‖/ϕ(Zi)} = op(N
1/2)
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and ξN = max1≤i≤N{|u>Dihe(Zi)|/ϕ(Zi)} = op(N
1/2). Therefore∣∣∣∣∣ 1

N

N∑
i=1

Diu
>he(Zi)

ϕ(Zi)

∣∣∣∣∣ ≥ 1

1 + α0ρξN
· u> 1

N

N∑
i=1

Di

ϕ(Zi)

he(Zi)h
>
e (Zi)

ϕ(Zi)
u · α0ρ.

Because the left-hand side is equal to Op(N
−1/2) and

E[Dhe(Z)h>
e (Z)/{ϕ(Z)}2] = E[he(Z)h>

e (Z)/ϕ(Z)] is positive definite, we conclude that

ρ = Op(N
−1/2).

Lemma S4. Suppose α0 ∈ (0, 1) and Bhh = E{he(Z)h>
e (Z)/ϕ(Z)} is positive definite.

Then

λ̂− λ0 = α−1
0 B−1

hh

1

N

N∑
i=1

Dihe(Zi)

ϕ(Zi)
+ op(N

−1/2).

Proof. Applying the second-order Taylor expansion to Equation (4) gives

0 =
1

N

N∑
i=1

Dihe(Zi)

ϕ(Zi)
·
{

1− α0

ϕ(Zi)
(λ̂− λ0)>he(Zi)

}
+RN ,

where RN = op(‖λ̂− λ0‖). This lemma is proved by noting that

1

N

N∑
i=1

Dihe(Zi)h
>
e (Zi)

{π(Zi)}2
= Bhh + op(1).

2.1 Proof of Lemma 1

We prove the asymptotic normality of the IPW estimator using Lemma S1. Define

AN(s) =
N∑
i=1

Di

ϕ(Zi)

{
`(Zi, θ0 + s/

√
N)− `(Zi, θ0)

}
.

Under Assumption 2, AN(s) is convex with respect to s, and its minimum is attained at

√
N(θ̂IPW − θ0).
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Using the representation of `(z, θ0 + t), we have

AN(s) = U>
Ns+ rN(s) +

1

2
s>V s+ rN,0(s),

where

UN = N−1/2

N∑
i=1

Di

ϕ(Zi)
˙̀(Zi),

rN(s) =
N∑
i=1

{
Di

ϕ(Zi)
ξ(Zi, s/

√
N)− Eξ(Zi, s/

√
N)

}
,

rN,0(s) = NEξ(Z, s/
√
N)− 1

2
s>V s.

As assumed, rN,0(s) = N · o(‖s‖2/N)→ 0 for fixed s. For rN(s), because (Di, Zi)’s are

i.i.d. as (D,Z) and Var(T ) = Var{E(T |Z)}+ E{Var(T |Z)} for any variable T , we have

Var{rN(s)} = NVar

{
D

ϕ(Z)
ξ(Z, s/

√
N)

}
= NVar

{
ξ(Z, s/

√
N)
}

+NE
{

1− ϕ(Z)

ϕ(Z)
ξ2(Z, s/

√
N)

}
≤ NE

{
ξ2(Z, s/

√
N)

ϕ(Z)

}
,

for each fixed s. Further it follows from ϕ(Z) ≥ α10 that

Var{rN(s)} ≤ Nα−1
10 E

{
ξ2(Z, s/

√
N)
}

= N · o(N−1) = o(1).

Applying the Markov’s inequality, this together with E{rN(s)} = 0 implies rN(s) = op(1).

By Lemma S1, we have

√
N(θ̂IPW − θ0) = −V −1UN + op(1).

Because B ˙̀ ˙̀ = E{ ˙̀(Z) ˙̀>(Z)/π(Z)} is finite, by the central limit theorem, we have UN
d−→

N (0, B ˙̀ ˙̀). Accordingly
√
N(θ̂IPW−θ0)

d−→ N (0,ΣIPW). This completes the proof of Lemma

1.

9



2.2 Proof of Theorem 1

By Lemma S2, p̂i’s are all well defined with probability approaching one. Without loss of

generality, we assume that they are well defined. When they are well defined,

p̂i =
1

n
· Di

1 + λ̂>he(Zi)
,

where n =
∑N

i=1Di and λ̂ satisfies

N∑
i=1

Dihe(Zi)

1 + λ̂>he(Zi)
= 0. (5)

Before giving the proofs, we begin by deriving an approximate of p̂i. Let δ1 = n/N −α0

and δ2 = λ̂−λ0. By the central limit theorem and Lemma S3, it follows that δ1 = Op(N
−1/2)

and δ2 = Op(N
−1/2). Applying the second-order Taylor expansion to pi with respect to

(δ1, δ2) at zero, we have

p̂i =
α0

N(n/N)
· Di

ϕ(Zi)

1

1 + α0(λ̂− λ0)>he(Zi)/ϕ(Zi)

=
1

N(1 + δ1/α0)
· Di

ϕ(Zi)

1

1 + α0δ>2 he(Zi)/ϕ(Zi)

=
1

N

{
1− δ1

α0

+
2α0δ

2
1

(α0 + ξ1)3

}
× Di

ϕ(Zi)
×

[
1− α0δ

>
2 he(Zi)

ϕ(Zi)

+
2

{1 + α0ξ>
2 he(Zi)/ϕ(Zi)}3

{
α0δ

>
2 he(Zi)

ϕ(Zi)

}2
]
,

where the first equation uses the definition of λ0 = (α−1
0 , 0, . . . , 0)>, ξ1 lies between 0 and

δ1, and ξ2 lies between 0 and δ2. Further we have

p̂i =
Di

Nϕ(Zi)

{
1− δ1

α0

− α0δ
>
2 he(Zi)

ϕ(Zi)

}
+ δNi, (6)

where

δNi =
Di

N

2α0δ
2
1

(α0 + ξ1)3

[
1

ϕ(Zi)
− α0δ

>
2 he(Zi)

{ϕ(Zi)}2
+

2

{1 + α0ξ>
2 he(Zi)/ϕ(Zi)}3

{α0δ
>
2 he(Zi)}2

{ϕ(Zi)}3

]
+
Di

N

(
1− δ1

α0

)
× 2

{1 + α0ξ>
2 he(Zi)/ϕ(Zi)}3

{α0δ
>
2 he(Zi)}2

{ϕ(Zi)}3

+
Di

N

δ1

α0

× α0δ
>
2 he(Zi)

{ϕ(Zi)}2
.
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2.2.1 Proof of Result (a) in Theorem 1

Consider the convex function

AN(s) = N

N∑
i=1

p̂i{`(Zi, θ0 + s/
√
N)− `(Zi, θ0)}.

Clearly, it attains its minimal value at s =
√
N(θ̂ELW − θ0). Note that NEξ(Z, s/

√
N) =

s>V s/2 + rN,0(s), where rN,0(s) = No(‖s‖2/N) → 0 for fixed s. Using the representation

of `(z, θ) in Assumption 2, we have

AN(s) = N

N∑
i=1

p̂i{ ˙̀(Zi)
>s/
√
N + ξ(Zi, s/

√
N)− Eξ(Zi, s/

√
N)}+NE{ξ(Z, s/

√
N)}

= U>
Ns+ rN(s) +

1

2
s>V s+ rN,0(s),

where

UN = N1/2

N∑
i=1

p̂i ˙̀(Zi) and rN(s) = N
N∑
i=1

p̂i{ξ(Zi, s/
√
N)− Eξ(Zi, s/

√
N)}.

If we can prove that rN(s) = op(1) for each s, then the Result (a) of Theorem 1 follows by

Lemma S1. In fact, using the approximate of p̂i in (6) implies

rN(s) = N
N∑
i=1

p̂i{ξ(Zi, s/
√
N)− Eξ(Z, s/

√
N)}

=
N∑
i=1

Di

ϕ(Zi)
{ξ(Zi, s/

√
N)− Eξ(Z, s/

√
N)}

− δ1

α0

N∑
i=1

Di

ϕ(Zi)
{ξ(Zi, s/

√
N)− Eξ(Z, s/

√
N)}

−α0

N∑
i=1

Di
δ>2 he(Zi)

{ϕ(Zi)}2
{ξ(Zi, s/

√
N)− Eξ(Z, s/

√
N)}

+N
N∑
i=1

{ξ(Zi, s/
√
N)− Eξ(Z, s/

√
N)}δNi

=:
4∑
j=1

rNj(s).
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We shall prove that rNj(s) = op(1) for 1 ≤ j ≤ 4 and each fixed s.

In the proof of Lemma 1, we have shown that E(rN1(s)) = 0 and

Var(rN1(s)) = NVar{Dξ(Z, s/
√
N)/ϕ(Z)} = o(1) for fixed s, which implies that

rN1(s) = op(1). It follows from δ1 = Op(N
−1/2) that rN2(s) = op(1)rN1(s) = op(1) for fixed

s.

For rN3(s), by the Cauchy-Schwarz inequality, we have

|rN3(s)| = α0

∣∣∣∣∣
N∑
i=1

Di
δ>2 he(Zi)

ϕ(Zi)
· ξ(Zi, s/

√
N)− Eξ(Z, s/

√
N)

ϕ(Zi)
Di

∣∣∣∣∣
≤ α0

√√√√ N∑
i=1

Di{δ>2 he(Zi)}2

{ϕ(Zi)}2
×

N∑
i=1

Di{ξ(Zi, s/
√
N)− Eξ(Zi, s/

√
N)}2

{ϕ(Zi)}2
.

Since ϕ(Z) ≥ α10, it follows that

E

[
N∑
i=1

Di

{ϕ(Zi)}2
{ξ(Zi, s/

√
N)− Eξ(Zi, s/

√
N)}2

]

= NE

[
{ξ(Z, s/

√
N)− Eξ(Z, s/

√
N)}2

ϕ(Z)

]
≤ Nα−1

10 E
{
ξ2(Z, s/

√
N)
}

= N · o(N−1) = o(1).

Using the Markov’s inequality, we get

N∑
i=1

Di

(ϕ(Zi))2
{ξ(Zi, s/

√
N)− Eξ(Zi, s/

√
N)}2 = op(1).

This together with

N∑
i=1

Di{δ>2 he(Zi)}2

{ϕ(Zi)}2
≤ ‖δ2‖2 ·

N∑
i=1

Di‖he(Zi)‖2

{ϕ(Zi)}2
= Op(1)

implies that |rN3(s)| =
√
Op(1)× op(1) = op(1).

For rN4(s), it can be verified that δNi in (6) is asymptotically equal to

δNi =
Di

Nϕ(Zi)
· δNi1{1 + δNi2},

12



where maxi δNi2 = op(1) and

δNi1 =
δ2

1

α2
0

+
Di{α0δ

>
2 he(Zi)}2

{ϕ(Zi)}2
.

Then, using the Cauchy-Schwarz inequality implies

|rN4(s)| ≤

∣∣∣∣∣
N∑
i=1

{ξ(Zi, s/
√
N)− Eξ(Z, s/

√
N)} Di

ϕ(Zi)
· δNi1{1 + δNi2}

∣∣∣∣∣
≤ {1 + op(1)} ·

√√√√ N∑
i=1

Di{ξ(Zi, s/
√
N)− Eξ(Z, s/

√
N)}2

{ϕ(Zi)}2
·
N∑
i=1

δ2
Ni1.

We have proved that
∑N

i=1Di{ξ(Zi, s/
√
N)−Eξ(Z, s/

√
N)}2/{ϕ(Zi)}2 = op(1), and it can

be shown that
∑N

i=1 δ
2
Ni1 = Op(1). Therefore rN4(s) = op(1).

In summary, we prove that rN(s) =
∑4

j=1 rNj(s) = op(1). This finishes the proof of

Result (a) of Theorem 1.

2.3 Proof of Results (b) and (c) of Theorem 1

Result (a) indicates that
√
N(θ̂ELW − θ0) = −V −1 · N1/2

∑N
i=1 p̂i

˙̀(Zi) + op(1). To prove

result (b), we need to prove the asymptotical normality of UN = N1/2
∑N

i=1 p̂i
˙̀(Zi).

In the proof of Result (a), we have shown that

p̂i =
Di

Nϕ(Zi)

{
1− δ1

α0

− α0δ
>
2 he(Zi)

ϕ(Zi)
+ τNi

}
,

where

τNi =

[
δ2

1

α2
0

+
Di{α0δ

>
2 he(Zi)}2

{ϕ(Zi)}2

]
· {1 + op(1)}.

13



It then follows that

UN = N−1/2

N∑
i=1

Di

ϕ(Zi)
˙̀(Zi)−N−1/2 δ1

α0

N∑
i=1

Di

ϕ(Zi)
˙̀(Zi)

−α0δ
>
2N

−1/2

N∑
i=1

Dihe(Zi)

{ϕ(Zi)}2
˙̀(Zi) +N−1/2

N∑
i=1

DiτNi
ϕ(Zi)

˙̀(Zi)

= N−1/2

N∑
i=1

Di

ϕ(Zi)
˙̀(Zi)−N−1/2 × α0

N∑
i=1

˙̀(Zi)
Diδ

>
2 he(Zi)

{ϕ(Zi)}2
+ op(1)

= N−1/2

N∑
i=1

Di

ϕ(Zi)
˙̀(Zi)−N−1/2B ˙̀hB

−1
hh

N∑
i=1

Dihe(Zi)

ϕ(Zi)
+ op(1)

= N−1/2

N∑
i=1

Di

ϕ(Zi)
{ ˙̀(Zi)−B ˙̀hB

−1
hh he(Zi)}+ op(1),

where B ˙̀h = E{ ˙̀(Z)h>
e (Z)/ϕ(Z)} and we have used the approximate of δ2 = λ̂− λ0 given

in Lemma S4.

Thus UN
d−→ N (0, B ˙̀ ˙̀−B ˙̀hB

−1
hhB

>
˙̀h

). This together with Result (a) implies

√
N(θ̂ELW − θ0) = −V −1UN + op(1)

d−→ N (0,ΣELW),

where ΣELW = V −1
(
B ˙̀ ˙̀−B ˙̀hB

−1
hhB

>
˙̀h

)
V −1. This proves Result (b).

Result (c) is a direct corollary of Result (b) by noticing that when the auxiliary

information is ignored,

B ˙̀h = E

[
˙̀(Z){ϕ(Z)− α0}

ϕ(Z)

]
= −α0B ˙̀1,

Bhh = E
[
{ϕ(Z)− α0}2

ϕ(Z)

]
= α2

0B11 − α0,

where B ˙̀1 = E{ ˙̀(Z)/ϕ(Z)} and B11 = E{1/ϕ(Z)}.

2.4 Proof of Theorem 2

The proof is similar to that of Theorem 1 and hence is omitted.
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3 Additional simulation results

Table 2 presents the full-data-based maximum likelihood estimator of the regression

coefficients of the Poisson regression models.

Table 2: Full-data-based maximum likelihood estimates of regression coefficients.

Data Intercept X1 X2 X3 X4 X5 X6

Bike sharing 5.136 0.014 0.352 -0.262 0.024

Hospital length-of-stay 1.280 0.110 0.198 0.227 0.251 0.243 0.205

In Section 4 of the main paper, we have presented two sample size determination

methods, M1 and M2, under the target precision requirements (R1) and (R2),

respectively. Both the M1 and M2 methods depend on the proposed sampling and

estimation strategy (ELW or ELWAI). When no auxiliary information is taken into

consideration, we use ELW to denote the toolkit of the proposed ELW estimation

method, together with the corresponding nearly optimal sampling plan and the

corresponding required sample size determination method given a target precision

requirement (R1 or R2). Let ELWAI denote the counterpart when auxiliary information

(big-data sample mean) is taken into consideration. Given a precision requirement, we

may wonder whether the ELW and ELWAI toolkits produce desirable estimates with the

promised precision.

To this end, we fix the first step sample size to n10 = 200 and set the ideal second step

sample size to be n20 = N(n0−n10)/(N −n10) in the second step sampling, where n0 is the

root of equation (4.2) in the main paper under requirement (R1) or equation (4.3) in the

main paper under requirement (R2) with a = 5% or coverage level 95%. 10 distinct values

of C0 in requirement (R1) and d0 in requirement (R2) are considered such that n20 ranges

15



from 300 to 1000. We generate subsamples from the two real datasets for each choice of C0

or d0. For a generic estimator θ̆, we calculate the ratios of the simulated MSEs to the target

C0 under requirement (R1) and the simulated coverage probabilities of {θ : ‖θ̆ − θ‖ ≤ d0}

under requirement (R2) based on 500 simulated subsamples. Figure 1 presents the plots of

MSE-to-C0 ratios versus C0 and coverage probabilities versus d0.
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Figure 1: Simulated MSE-to-C0 ratios under requirement (R1) and coverage probabilities

under requirement (R2) with a = 5%, where data were generated from the bike sharing

data and hospital length-of-stay data. ELW: N; ELWAI: ?.

Under requirement (R1), the MSE-to-C0 ratios of the ELW and ELWAI methods are all

no greater than 1.05 for various choices of C0 and both real data, and in particular, they

are no greater than 0.95 for the bike sharing data. This indicates that the proposed sample
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size determination method M1 does fulfill its promise and gives desirable sample sizes such

that the corresponding ELW or ELWAI estimator meets the target precision (R1). Under

requirement (R2), the coverage probabilities of the ELW and ELWAI methods are all no

less than the target level 95% for the bike sharing data and all choices of d0 and are no

less than 93% for the hospital length-of-stay data and most choice of d0. This confirms

that the proposed sample size determination method M2 also does fulfill its promise and

gives desirable sample sizes such that the corresponding ELW or ELWAI estimator meets

the target precision (R2). In the meantime, the ELWAI method has smaller MSE-to-C0

ratios than the ELW method in most cases, which may shows again that the former is more

efficient than the latter. This probably also explains the larger coverage probabilities of

ELWAI than ELW. Overall, the ELW and ELWAI toolkits do produce desirable estimates

with promised precision.
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