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This Supplementary Material contains a theoretical example in Section to elucidate the
conclusion presented in Section additional simulations in Section and the technical

proofs in Section

S1 A theoretical example

We present a theoretical example to illustrate how the power function
Bye () changes with the extracted information |A2||? and the dimension
of the projective space d. The functional observations y;1(t),...,yin, (t) are
generated from Gaussian process GP(u;(t),/KC(s,t)) for i =1,2 with p(t) =
0 and po(t) = Zleak@/zk(t). We set ap, =a for k=1,...,K, a; =0 for
k=K+1,...,K+d, and ¢y(t) = \/2cos(knt) for k=1,...,K+d. The

covariance generator is generated by KC(s,t) =1 if s =t and 0 otherwise for

simplicity. We let K =5, a =0.05 and n; =ng =25. In Case 1, we compare
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the power between two different values of the extracted information |A®||?
with the dimension of the projective space d fixed. In Case 2, we investigate
the change in power with d when the value of [|A2||? is fixed. The details

of the two cases are as follows.

Case 1: In this case we consider

(I)l,d = (1/}17“‘7¢d)T and (I)Q,d = (¢K+17‘”7¢K+d>T with d = ]-7”'7K'

. : . )
Thus, the extracted information based on @14 and ®g4 is [|A,"|? =

>3, a? =da® and HA?“ |?=0ford=1,...,K, respectively. When the ex-
tracted information is equal to 0, the value of the power function is exactly
the significance level a. Figure (a) shows that the power of the test
corresponding to a non-zero extracted information is much higher than the
power corresponding to a zero extracted information with a fixed d. It also
demonstrates that the power increases with d when the projective space is
determined by ®1 4. However, the extracted information changes as well in
this case. Figure (b) further illustrates that the extracted information

based on @1 4 increases with d. The relationship between power and d when

|? are fixed is still unknown in this case.

a,n1,ng, and ||AL
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(d) Case 2: Extracted information

(a) and (b) respectively represent the theoretical power

Bre (A2 d,n1,n2) and extracted information [|AZ[|? in Case 1 with ®; 4
and ®, 4. Similarly, (c) and (d) respectively show the theoretical power and
extracted information in Case 2 with ®3 4.



Functional Two-Sample Test based on Projection

Case 2: In this case we consider

D3 g—1 = (11)" and @3 4= (V1,¥K11,. ., VK4d-1)" ford=2,... K +1.

The extracted information based on ®3 4 is ||A§3’d|]2 =a? =da® for d =
1,...,K+1. Figure [S1.1{c) demonstrates that, with the same value of the
extracted information but based on different projective space (as shown
in Figure (d)), the power decreases as the dimension of the projective

space d increases.

S2 Additional simulation results

In this section, we illustrate the finite sample behavior of the projection
tests based on different projection functions discussed in Section [3| with
different d. The data generation process is the same as in Section [} In
each of 1000 repetitions we generate n; =ngo = 150 observations.

Table presents the change of size (when a = 0) of the tests for
d=1,...,15. We observe that BS is close to 0.05 when d is small but
increases above 0.05 as d increases. This is due to overfitting in ([2.7) when
d becomes too large, resulting in a higher probability of falsely rejecting

the null hypothesis. The solution of CG tends to be stable as d increases.
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Table S2.1: The empirical size of the tests based on different projection
functions with a =0, ny =no =150 and d=1,...,15

d BS CG PCK) PCKQ PCMA PCMQ
1 0.064 0016 0052  0.156  0.052  0.164
2 0.060 0.064 0040 0104  0.040  0.184
3 0.048 0.064 0.048  0.096  0.052  0.164
4 0064 0.088 0.052 0072 0056  0.124
5 0.048 0.064 0.044  0.060  0.052  0.092
6 0.048 0.064 0.052  0.052  0.060  0.068
7 0056 0.064 0.052  0.052  0.048  0.048
8 0.068 0.056 0.044  0.044  0.040  0.040
0 0068 0.064 0.052 0052 0036  0.036
10 0.068 0.064 0052  0.052  0.020  0.020
11 0.072 0.056 0.040  0.040  0.020  0.020
12 0.076 0.056 0.048  0.048  0.012  0.012
13 0.068 0.056 0.040  0.040  0.008  0.008
14 0.080 0056 0052 0052  0.004  0.004
15 0.072 0.056 0.048  0.048  0.004  0.004

PC_K_\ remains stable and close to 0.05 for different d, while PC_M_\
stays around 0.05 only when d is not too large. This is because M contains
the sample between-population covariation, which increases the variance
in the projected data and interferes with the mean test as d increases.
Both PC_K_Q and PC_M_Q are significantly greater than 0.05 when d is
small. However, as d increases, they have the same subset as PC_K_\ and
PC_M_A\, respectively, resulting in similar performance. Although PC_K_Q
and PC_M_Q are unstable with given d, we will demonstrate that they
perform well when using the data-driven d selected by the method in Section

in the following section.
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S3 All technique proofs

Proof of Theorem [l Under Hy, i.e. p =0, v=®u =0 holds, i.e. H} holds.
Under Hy, i.e. p# 0, by assumption that ®u # 0 if p # 0, Hf holds. Thus

testing Hy is equivalent to test H{]I) . What’s more,

BH{)(') :pr(jreject | HO) :pr<]reject | H(?) = BH(‘)I)() (S?)l)
5H1(') :pr([re]’ect ’ Hl) :pr<1reject ‘ Hil)) — 5H{b() (S32)
that iS, 5H() = 5Hq>() ]

Proof of Proposition[]. ®4= (¢1,...,¢4)" is a multivariate function such
that ¢r(k=1,2,...) generate the range of . Record lC;l = dT(PKLPT) 1,
then ||A®||2 = uTKC; ' p. By monotone convergence theorem, ™K p con-

verges to K as d — oo, i.e. ||AL|? dpe [AAIE O

Proof of Theorem [ We write

BT0FC — wt o < - mlllof Ol + 1" (0FC = of )],

(65 C) R — (7)o O| < IOFCINIK = KllooldF | + (65 ) K — (0 ) Koy .

Proceeding as in the proof of Theorem 1 in Kraus and Stefanucci| (2019)),
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we can show that

In —-1/2 _ _ _
BT (BEC — 67%)| = Op(ng w7 D) +ny twi ),

n n —-1/2 _ _ _
(BTG TICHTE — (689K C| = Op(ng 2wy A D) + 1y i ®).
Combining this with the facts that || — pl| = Op(ng /%), |K = Klloo =

Op(ny %) and [|gEC| = O,(1) gives

A/CG\,I‘/ 2 __ (ﬂ'TAtCG)Q P (”T¢1€CG)2 _ ACG,t 2 d—go A 2

The second result follows as in the proof of Proposition [I Under Hy we

have

[N

( ning ) TR P ( ning )5 TR B N(0,1)
nm+ng/ (GFC KeF2 T \nitng/  (¢fC, Kopc)1/? e

And under H; we have

1
ning 2
Tog — <> |AGE

L \T . CG
E) ( ning )2 (ll‘ ﬂ) t R N(O,l)
ni+ng <

nitng/ (¢fS,KCHF)Y2

]

Proof of Theorem[3 The asymptotic distribution under Hy and asymptotic
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consistent under Hj of the test based on T3(Bp) have been proved in the
Theorem 5.3,5.4 of [Horvath and Kokoszka (2012). Similar results can be
established for the test based on TE)C(BQ).

To show the divergence rate of T3+ (B), record ¢5¢ = ®F 0y and K4 =

2:

_ — C,d
S A T then ¢FC = 08 (PpeKDE) " Ppep =Kapand A,
pThC. We write
8705 — 1 04 < A —ullloFl + 66 — 24, (S3.3)
166 = 04Nl < 1K = Kalloo |2 + 1Callool |2 = al, (S3.4)

and

1K g — Kalloo
d NPT d .
:H Z /\;k wrkng‘k - Z )\;k wrkl/}Ek”OO
k=1 k=1

NP »
Sdfg?% AR DT = A b T [l

<d awax (851 = A G 8 oo + I 19 05, = 00} (53.5)

By Equation (4.43) and Lemmas 4.2 and 4.3 of Bosq| (2000)), we have |5\7"k —
Al < H’a_’CHoo and H&“k — Ul < aTkHI/C\_IC”OO' And since HE_ICHOO =

Op(ng %), we have |52 = A2 T{A, > A, /2} <227 %|K = Klloo. And since



Functional Two-Sample Test based on Projection

the probability of the event {er < Ar./2} is bounded by /\T_]fOp(na 1) and
hence converges to 0, thus we have |5\7Tkl A= )\,T]fOp(na 1/ 2). In addition,

Tk

-~ n > ~1/2
i, = llso < 2, = | < 205, 1K = Klloo = ar, Op(ng '?).

Combining Equations ((S3.3)),(S3.4) and (S3.5)) with the facts that ||| =

. _1/2 _ .
Op(1),| — pl| = Op(ny / ) and || Kglloo = At, where d* = max)<p<a{rt},

we have

PC.d Cd C C
) P 5 2 5 AP P
AT 2 — | APOA)2| = a7 85 — p |

_ —1/2 _ —1/2 — —1/2
< 2071 0p(ny ) +d max (A 20,(ng %) + X ar, Op(ng %)}

_ ~1/2 _ —1/2
= d)\d*ZOp<n0 / >+d)\d*1a/d*0p(n0 / )
Thus by Assumption , we have ||A1,jc’d||2 L HAEC’d||2, and under H1,

ning PC.d|2
T2, — 2 ||IAPC
fo— A

_mmd«mp%m+mm(im%m im%M)DZ

ny+n2 ;- A

Tk

Proof of Theorem[f. Under Hy, the central limit theorem yields

1
ning 2 D T
Ppsii = Ny (0, dpsKPE),
(nl + TLQ) BSH d< BS BS)
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Thus we have T]%S b x2%. Under Hj, Combining this with the facts that
~ -1/2y 1 —1/2
=l = Op(ng /%), IR = Klloo = Oy /%) and lor]| = Op(1). b =1......d

gives

—

Ay

2:n1+n2

p _
ning Tgs — (Ppsp) " (PpsKPhg) ' Ppsp = [|AF>|%.

And if pr(k =1,2,...) generate the range of K, then by Proposition 2.1,

BS,d (2 d
1AL = | Aul?. O

Proof of Proposition[ The conjugate gradient method minimizes the quadratic

objective function in the Krylov subspace K (/C, ) whose elements are in

the form ¢ = Zg;é BikCF = p(KC) , where p(-) is a polynomial of order lower

than d. Then ¢ € K4(KC, p) can be written as ¢ = Zg;(l) B (00 Mphyap Ve =
P21 S0 BrAE T = 202 p(\k)bitby, with by = "4y, The information

extracted by ¢ equals

WP (SRR (SR’ =R
TG R b (M) oy iti()\k) =g

1Ag)

where g(A) = p(A)A is a polynomial of degree at most d such that ¢(0) =
0. The last inequality is according to the Jensen’s inequality, where the

equality is achieved if and only if ¢(\1) = ¢(A2) = ---, which is impossible
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because the degree of p(\) is less than d.

Record ¢; = max(argmax, | >, I(¢(Ax) =c¢)|), and define A} ={k | q(\x) =
c1}, Ag = {k | q(\x) # c1}, where |A;| <d—1. Recored ay = b2 /A, qx =
q( M), ke, ax = €; and Yjpea, apqr/e2 = co, then Ypca, arqr = cie; for

, 2 _ 2 2. .2
i =1,2, Dkea, apqi = cie1, YreA, Gkqj > c3e2, and

(7 akgr)?  (crer +cze2)?

2
1AD)? = “2— 52
> k=1 kG, cie1 +cses

As cg is the weighted average of qp, where k € As, g — 0 as A\ — 0 by
the continuity of ¢(-), the weight aj < e1 +ea = ||A,|*> < 0o and ay doesn’t
&

decline to 0 as k — oo, we have cg — 0 and ||A,¢,’ < e1 when there are

infinite eigenvalues close to 0. Thus the information extracted by ¢ is less
than Y e, b3/ Ak

The information extracted by ®pc(Bg) is X¢_, b7, /Ar,,, which is larger
than Y pca, b%//\k due to the way we choose ). Thus for a given d, the
testing based on ®pc(Bg) is more powerful than based on QSSG. In addition,
by the proof of Proposition 2 in |[Kraus and Stefanucci (2019), we have the

testing based on qbgG is more powerful than based on ®pc(By). O
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