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Supplementary Material

This Supplementary Material contains a theoretical example in Section S1 to elucidate the

conclusion presented in Section 2.2, additional simulations in Section S2 and the technical

proofs in Section S3.

S1 A theoretical example

We present a theoretical example to illustrate how the power function

βHΦ(·) changes with the extracted information ∥∆Φ
ννν ∥2 and the dimension

of the projective space d. The functional observations yi1(t), . . . ,yini(t) are

generated from Gaussian process GP(µµµi(t),K(s, t)) for i= 1,2 with µµµ1(t) =

0 and µµµ2(t) = ∑K
k=1akψk(t). We set ak = a for k = 1, . . . ,K, ak = 0 for

k = K + 1, . . . ,K + d, and ψk(t) =
√

2cos(kπt) for k = 1, . . . ,K + d. The

covariance generator is generated by K(s, t) = 1 if s= t and 0 otherwise for

simplicity. We let K = 5, α= 0.05 and n1 = n2 = 25. In Case 1, we compare
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the power between two different values of the extracted information ∥∆Φ
ννν ∥2

with the dimension of the projective space d fixed. In Case 2, we investigate

the change in power with d when the value of ∥∆Φ
ννν ∥2 is fixed. The details

of the two cases are as follows.

Case 1: In this case we consider

Φ1,d = (ψ1, . . . ,ψd)T and Φ2,d = (ψK+1, . . . ,ψK+d)T with d= 1, . . . ,K.

Thus, the extracted information based on Φ1,d and Φ2,d is ∥∆Φ1,d
ννν ∥2 =

∑d
k=1a

2
k = da2 and ∥∆Φ2,d

ννν ∥2 = 0 for d= 1, . . . ,K, respectively. When the ex-

tracted information is equal to 0, the value of the power function is exactly

the significance level α. Figure S1.1(a) shows that the power of the test

corresponding to a non-zero extracted information is much higher than the

power corresponding to a zero extracted information with a fixed d. It also

demonstrates that the power increases with d when the projective space is

determined by Φ1,d. However, the extracted information changes as well in

this case. Figure S1.1(b) further illustrates that the extracted information

based on Φ1,d increases with d. The relationship between power and d when

α,n1,n2, and ∥∆Φ
ννν ∥2 are fixed is still unknown in this case.
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(a) Case 1: Theoretical power (b) Case 1: Extracted information

(c) Case 2: Theoretical power (d) Case 2: Extracted information

Figure S1.1: (a) and (b) respectively represent the theoretical power
βHΦ(∥∆Φ

ννν ∥2;d,n1,n2) and extracted information ∥∆Φ
ννν ∥2 in Case 1 with Φ1,d

and Φ2,d. Similarly, (c) and (d) respectively show the theoretical power and
extracted information in Case 2 with Φ3,d.
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Case 2: In this case we consider

Φ3,d=1 = (ψ1)T and Φ3,d = (ψ1,ψK+1, . . . ,ψK+d−1)T for d= 2, . . . ,K+1.

The extracted information based on Φ3,d is ∥∆Φ3,d
ννν ∥2 = a2

1 = a2 for d =

1, . . . ,K+ 1. Figure S1.1(c) demonstrates that, with the same value of the

extracted information but based on different projective space (as shown

in Figure S1.1(d)), the power decreases as the dimension of the projective

space d increases.

S2 Additional simulation results

In this section, we illustrate the finite sample behavior of the projection

tests based on different projection functions discussed in Section 3 with

different d. The data generation process is the same as in Section 4. In

each of 1000 repetitions we generate n1 = n2 = 150 observations.

Table S2.1 presents the change of size (when a = 0) of the tests for

d = 1, . . . ,15. We observe that BS is close to 0.05 when d is small but

increases above 0.05 as d increases. This is due to overfitting in (2.7) when

d becomes too large, resulting in a higher probability of falsely rejecting

the null hypothesis. The solution of CG tends to be stable as d increases.
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Table S2.1: The empirical size of the tests based on different projection
functions with a= 0, n1 = n2 = 150 and d= 1, . . . ,15

d BS CG PC K λ PC K Q PC M λ PC M Q
1 0.064 0.016 0.052 0.156 0.052 0.164
2 0.060 0.064 0.040 0.104 0.040 0.184
3 0.048 0.064 0.048 0.096 0.052 0.164
4 0.064 0.088 0.052 0.072 0.056 0.124
5 0.048 0.064 0.044 0.060 0.052 0.092
6 0.048 0.064 0.052 0.052 0.060 0.068
7 0.056 0.064 0.052 0.052 0.048 0.048
8 0.068 0.056 0.044 0.044 0.040 0.040
9 0.068 0.064 0.052 0.052 0.036 0.036
10 0.068 0.064 0.052 0.052 0.020 0.020
11 0.072 0.056 0.040 0.040 0.020 0.020
12 0.076 0.056 0.048 0.048 0.012 0.012
13 0.068 0.056 0.040 0.040 0.008 0.008
14 0.080 0.056 0.052 0.052 0.004 0.004
15 0.072 0.056 0.048 0.048 0.004 0.004

PC K λ remains stable and close to 0.05 for different d, while PC M λ

stays around 0.05 only when d is not too large. This is because M̂ contains

the sample between-population covariation, which increases the variance

in the projected data and interferes with the mean test as d increases.

Both PC K Q and PC M Q are significantly greater than 0.05 when d is

small. However, as d increases, they have the same subset as PC K λ and

PC M λ, respectively, resulting in similar performance. Although PC K Q

and PC M Q are unstable with given d, we will demonstrate that they

perform well when using the data-driven d selected by the method in Section

3.2 in the following section.
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S3 All technique proofs

Proof of Theorem 1. Under H0, i.e. µµµ= 0, ννν = Φµµµ= 0 holds, i.e. HΦ
0 holds.

Under H1, i.e. µµµ ̸= 0, by assumption that Φµµµ ̸= 0 if µµµ ̸= 0, HΦ
1 holds. Thus

testing H0 is equivalent to test HΦ
0 . What’s more,

βH0(·) = pr(Ireject |H0) = pr(Ireject |HΦ
0 ) = βHΦ

0
(·) (S3.1)

βH1(·) = pr(Ireject |H1) = pr(Ireject |HΦ
1 ) = βHΦ

1
(·) (S3.2)

that is, βH(·) = βHΦ(·).

Proof of Proposition 1. Φd = (ϕ1, . . . ,ϕd)T is a multivariate function such

that ϕk(k= 1,2, . . .) generate the range of K. Record K−1
d = ΦT(ΦKΦT)−1Φ,

then ∥∆Φ
ννν ∥2 = µµµTK−1

d µµµ. By monotone convergence theorem, µµµTK−1
d µµµ con-

verges to µµµTK−1µµµ as d→ ∞, i.e. ∥∆Φ
ννν ∥2 d→∞→ ∥∆µµµ∥2.

Proof of Theorem 2. We write

|µ̂µµTϕ̂CG
t −µµµTϕCG

t | ≤ ∥µ̂µµ−µµµ∥∥ϕ̂CG
t ∥+ |µµµT(ϕ̂CG

t −ϕCG
t )|,

|(ϕ̂CG
t )TK̂ϕ̂CG

t − (ϕCG
t )TKϕCG

t | ≤ ∥ϕ̂CG
t ∥∥K̂ −K∥∞∥ϕ̂CG

t ∥+ |(ϕ̂CG
t )TKϕ̂CG

t − (ϕCG
t )TKϕCG

t |.

Proceeding as in the proof of Theorem 1 in Kraus and Stefanucci (2019),
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we can show that

|µµµT(ϕ̂CG
t −ϕCG

t )| =Op(n−1/2
0 ω−1

t ∥γ(d)∥+n−1
0 ω−3

t ),

|(ϕ̂CG
t )TKϕ̂CG

t − (ϕCG
t )TKϕCG

t | =Op(n−1/2
0 ω−1

t ∥γ(d)∥+n−1
0 ω−3

t ).

Combining this with the facts that ∥µ̂µµ− µµµ∥ = Op(n−1/2
0 ), ∥K̂ − K∥∞ =

Op(n−1/2
0 ) and ∥ϕ̂CG

t ∥ =Op(1) gives

̂∥∆CG,t
ννν ∥2 = (µ̂µµTϕ̂CG

t )2

⟨ϕ̂CG
t ,K̂ϕ̂CG

t ⟩
P→ (µµµTϕCG

t )2

⟨ϕCG
t ,KϕCG

t ⟩
= ∥∆CG,t

ννν ∥2 d→∞→ ∥∆µµµ∥2.

The second result follows as in the proof of Proposition 1. Under H0 we

have

(
n1n2
n1 +n2

) 1
2 µ̂µµTϕ̂CG

t

⟨ϕ̂CG
t ,K̂ϕ̂CG

t ⟩1/2
P→

(
n1n2
n1 +n2

) 1
2 µ̂µµTϕCG

t

⟨ϕCG
t ,KϕCG

t ⟩1/2
D→N(0,1).

And under H1 we have

TCG −
(
n1n2
n1 +n2

) 1
2

∥∆CG,t
ννν ∥ P→

(
n1n2
n1 +n2

) 1
2 (µ̂µµ−µµµ)TϕCG

t

⟨ϕCG
t ,KϕCG

t ⟩1/2
D→N(0,1).

Proof of Theorem 3. The asymptotic distribution under H0 and asymptotic
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consistent under H1 of the test based on T 2
PC(B0) have been proved in the

Theorem 5.3,5.4 of Horváth and Kokoszka (2012). Similar results can be

established for the test based on T 2
PC(BQ).

To show the divergence rate of T 2
PC(B), record ϕPC

d = ΦT
PCθθθ0 and Kd =

∑d
k=1λ

−1
rk
ψrk

ψT
rk

, then ϕPC
d = ΦT

PC(ΦPCKΦT
PC)−1ΦPCµµµ= Kdµµµ and ∥∆PC,d

ννν ∥2 =

µµµTϕPC
d . We write

|µ̂µµTϕ̂PC
d −µµµTϕPC

d | ≤ ∥µ̂µµ−µµµ∥∥ϕ̂PC
d ∥+∥µµµ∥∥ϕ̂PC

d −ϕPC
d ∥, (S3.3)

∥ϕ̂PC
d −ϕPC

d ∥ ≤ ∥K̂d −Kd∥∞∥µ̂µµ∥+∥Kd∥∞∥µ̂µµ−µµµ∥, (S3.4)

and

∥K̂d −Kd∥∞

=∥
d∑

k=1
λ̂−1

rk
ψ̂rk

ψ̂T
rk

−
d∑

k=1
λ−1

rk
ψrk

ψT
rk

∥∞

≤d max
1≤k≤d

∥λ̂−1
rk
ψ̂rk

ψ̂T
rk

−λ−1
rk
ψrk

ψT
rk

∥∞

≤d max
1≤k≤d

{|λ̂−1
rk

−λ−1
rk

|∥ψ̂rk
ψ̂T

rk
∥∞ + |λ−1

rk
|∥ψ̂rk

ψ̂T
rk

−ψrk
ψT

rk
∥∞}. (S3.5)

By Equation (4.43) and Lemmas 4.2 and 4.3 of Bosq (2000), we have |λ̂rk
−

λrk
| ≤ ∥K̂ −K∥∞ and ∥ψ̂rk

−ψrk
∥ ≤ ark

∥K̂ −K∥∞. And since ∥K̂ −K∥∞ =

Op(n−1/2
0 ), we have |λ̂−1

rk
−λ−1

rk
|I{λ̂rk

≥ λrk
/2} ≤ 2λ−2

rk
∥K̂−K∥∞. And since
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the probability of the event {λ̂rk
< λrk

/2} is bounded by λ−2
rk
Op(n−1

0 ) and

hence converges to 0, thus we have |λ̂−1
rk

−λ−1
rk

| = λ−2
rk
Op(n−1/2

0 ). In addition,

∥ψ̂rk
ψ̂T

rk
−ψrk

ψT
rk

∥∞ ≤ 2∥ψ̂rk
−ψrk

∥ ≤ 2ark
∥K̂ −K∥∞ = ark

Op(n−1/2
0 ).

Combining Equations (S3.3),(S3.4) and (S3.5) with the facts that ∥µ̂µµ∥ =

Op(1),∥µ̂µµ−µµµ∥ = Op(n−1/2
0 ) and ∥Kd∥∞ = λ−1

d∗ , where d∗ = max1≤k≤d{rk},

we have

∣∣∣∣∣ ̂∥∆PC,d
ννν ∥2 −∥∆PC,d

ννν ∥2
∣∣∣∣∣ =

∣∣∣µ̂µµTϕ̂PC
d −µµµTϕPC

d

∣∣∣
≤ 2λ−1

d∗ Op(n−1/2
0 )+d max

1≤k≤d
{λ−2

rk
Op(n−1/2

0 )+λ−1
rk
ark

Op(n−1/2
0 )}

= dλ−2
d∗ Op(n−1/2

0 )+dλ−1
d∗ ad∗Op(n−1/2

0 ).

Thus by Assumption 4, we have ̂∥∆PC,d
ννν ∥2 P→ ∥∆PC,d

ννν ∥2, and under H1,

T 2
PC − n1n2

n1 +n2
∥∆PC,d

ννν ∥2

= n1n2
n1 +n2

d∑
k=1

((µ̂µµ−µµµ)Tψ̂rk
)2

λ̂rk

+ n1n2
n1 +n2

 d∑
k=1

(µµµTψ̂rk
)2

λ̂rk

−
d∑

k=1

(µµµTψrk
)2

λrk

 D→ χ2
d.

Proof of Theorem 4. Under H0, the central limit theorem yields

(
n1n2
n1 +n2

) 1
2

ΦBSµ̂µµ
D→ Nd(0,ΦBSKΦT

BS),



Functional Two-Sample Test based on Projection

Thus we have T 2
BS

D→ χ2
d. Under H1, Combining this with the facts that

∥µ̂µµ−µµµ∥ =Op(n−1/2
0 ), ∥K̂−K∥∞ =Op(n−1/2

0 ) and ∥φk∥ =Op(1),k= 1, . . . ,d

gives

̂∥∆BS,d
ννν ∥2 = n1 +n2

n1n2
T 2

BS
P→ (ΦBSµµµ)T(ΦBSKΦT

BS)−1ΦBSµµµ= ∥∆BS,d
ννν ∥2.

And if φk(k = 1,2, . . .) generate the range of K, then by Proposition 2.1,

∥∆BS,d
ννν ∥2 d→∞→ ∥∆µµµ∥2.

Proof of Proposition 2. The conjugate gradient method minimizes the quadratic

objective function in the Krylov subspace Kd(K,µµµ) whose elements are in

the form ϕ= ∑d−1
k=0βkKkµµµ= p(K)µµµ, where p(·) is a polynomial of order lower

than d. Then ϕ∈Kd(K,µµµ) can be written as ϕ= ∑d−1
k=0βk(∑∞

r=1λrψrψ
T
r )kµµµ=

∑∞
r=1

∑d−1
k=0βkλ

k
rψrψ

T
r µµµ= ∑∞

k=1 p(λk)bkψk with bk = µµµTψk. The information

extracted by ϕ equals

∥∆ϕ
ννν∥2 = (µµµTϕ)2

ϕTKϕ
= (∑∞

k=1 b
2
kp(λk))2∑∞

k=1 b
2
kλkp2(λk) =

(∑∞
k=1

b2
k

λk
q(λk))2

∑∞
k=1

b2
k

λk
q2(λk)

<
∞∑

k=1

b2k
λk
,

where q(λ) = p(λ)λ is a polynomial of degree at most d such that q(0) =

0. The last inequality is according to the Jensen’s inequality, where the

equality is achieved if and only if q(λ1) = q(λ2) = · · · , which is impossible
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because the degree of p(λ) is less than d.

Record c1 = max(argmaxc |∑
k I(q(λk) = c)|), and defineA1 = {k | q(λk) =

c1}, A2 = {k | q(λk) ̸= c1}, where |A1| ≤ d− 1. Recored ak = b2k/λk, qk =

q(λk), ∑
k∈Ai

ak = ei and ∑
k∈A2 akqk/e2 = c2, then ∑

k∈Ai
akqk = ciei for

i= 1,2, ∑
k∈A1 akq

2
k = c21e1, ∑

k∈A2 akq
2
k > c2

2e2, and

∥∆ϕ
ννν∥2 = (∑∞

k=1akqk)2∑∞
k=1akq

2
k

<
(c1e1 + c2e2)2

c21e1 + c22e2
.

As c2 is the weighted average of qk, where k ∈ A2, qk → 0 as λk → 0 by

the continuity of q(·), the weight ak < e1 +e2 = ∥∆µµµ∥2 <∞ and ak doesn’t

decline to 0 as k → ∞, we have c2 → 0 and ∥∆ϕ
ννν∥2 < e1 when there are

infinite eigenvalues close to 0. Thus the information extracted by ϕ is less

than ∑
k∈A1 b

2
k/λk.

The information extracted by ΦPC(BQ) is ∑d
k=1 b

2
rk
/λrk

, which is larger

than ∑
k∈A1 b

2
k/λk due to the way we choose Q. Thus for a given d, the

testing based on ΦPC(BQ) is more powerful than based on ϕCG
d . In addition,

by the proof of Proposition 2 in Kraus and Stefanucci (2019), we have the

testing based on ϕCG
d is more powerful than based on ΦPC(B0).
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