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This supplementary material contains: 1) algorithms for iOPG and iMAVE; 2) expressions of
asymptotic covariance matrices in Theorem 2 and 3 in the main manuscript; 3) convergence
results of iIOPG and iMAVE on a general manifold; 4) a simulation study testing the CV proce-
dure of choosing the structural dimension d and a simulation study under the general manifold
case; 5) details of data collection and processing in the New York taxi network application; 6)

all proofs of theoretical results that appear in the main manuscript.

1. Algorithms of iMAVE and iOPG

7

First we introduce three operators in matrix algebra. “vec(-)” is the com-
mon matrix vec operator that vectorize an m X n matrix by column into

an mn x 1 vector. For an m X m symmetric matrix A = (a;;), define

vecs(A) = (ay1, 21, a2, .., Aty vy G ) . That is, “vecs(+)” vectorize the



lower triangle part of a symmetric matrix by row. For Cj in (3.8) in the main
manuscript, define vecss(Cp) = (¢f;(Xo), ca;(Xo), Cag(Xo),s oy cF 1(Xo), ooy el (X))

We will frequently use vec(B), vecs(a;) and vecss(b;).

The intrinsic MAVE under the log-Euclidean metric is formulated as

. T 2
_min 22wij||aj +b; [In @ {BT(X; — X;)}] —logYill%,  (SL.1)
aj,bj J=1 1=

We show how to solve a; and b; from . Similar to classic MAVE, the
alternating iterative optimization approach can be adopted here. We first
fix B, differentiate w.I.t aj,b;, set the derivative to 0 and solve out
a;,b;. Then fix a;, b; to similarly get B.

Now suppose B is known. Since ||A||% = tr(A%?) where A®? = AAT
and the minimizer of tr(A®?) is the same as that of tr{vecs(A)®*} when A is
symmetric, we rewrite the Frobenius norm as the matrix trace since differ-

entiating the trace w.r.t. a matrix or a vector is convenient. So optimizing

(S1.1)) is equivalent to optimizing

Z Z wijtr [{vecs(a;) + vees{b; - I, ® (BT (X; — X;))} — vecs(logY;) }*?] .

(S1.2)



Recall that b, = (Ckl(Xj))kl where ¢ (X;) = ci(X;) € R%. Thus
vecs {b; - I, ® (BT(X; — X;)) }
— (L, BT(X; — X;),c, BT(Xi — X;), cy BT(X; — X)), ..., el BT(X; — X))
= {vecss(b;)" - I, ® (BT (X; — X)) }T ,
where ¢ = m(m + 1)/2. Here and hereafter we drop X; from ¢};(X;) for

simplicity. Define

. . vecs(a;)
Xi(B'Xj) = (g, Iy @ (Xi = X5) " B), oy =
vecss(b;)
Then (S1.2)) can be written as
Z Zwij tr [{Xi(BTXj)aj — VeCS(lOgY;‘)}®2:| : (S1.3)

j=1 i=1

Differentiate (S1.3) w.r.t o; and we get the expression of «; which we present
in the algorithm later to avoid redundancy.

Now we fix a; and b; and differentiate (S1.2) w.r.t B. We write

ey BYX = X;) 0 o, BT(X — X))
b 1, ® (BT(X; — X;)) =
BT (Xi — X;) - ¢, BT(X: — X))

Since ¢}, BT(X; — X;) is a scalar,
e BT (Xi — X;) =vec{eg BT (X; — Xj)} = {eu ® (Xi — X;)} vee(B)

:=a;, -vec(B), k,l=1,..,m.



Hence,

al,vec(B) -+ af, vec(B)
b I, @ (BT(X; — X;)) = :
al vec(B) --- al vec(B)

and
vecss { B; - I, ® B" ((Xi — X;)) }
= (a{;vec(B), agyvec(B), agyvec(B), ..., a} vec(B), ..., a;mvec(B))T
=(a11, Gg1, A22, -, A1 -+ Qo) ' vVEC(B)
£ A;; - vec(B),
where ¢ and j in A;; indicate A;; varies according to X; and Xj.

Consequently we can rewrite (S1.2)) as

Z Z wy; - tr [{vecs(a; — logY;) + Ajjvec(B)}#?] . (S1.4)

j=1 i=1
Differentiate w.r.t vec(B) to get the expression of vec(B). We place
it in the algorithm as well. The optimization procedure of iOPG can be
derived similaryly and is thus omitted.

Now we are ready to state algorithms for iMAVE and iOPG. In order
to reduce the dimension of the kernel form p to d, we adopt the approach

of the refined MAVE (Xia, 2007). That is, replace K, (X; — X;) with



Kht(B(Tt) (X; — Xj)) in each iteration. Denote ¢ = m(m + 1)/2 and

Kn(BT(X; — X)) o vecs(a;)
SKWBT(X, - X)) YT :

wij =

vecss(b;)
Xi(X;) = (qu Ig @ (X; - XJ)T>T7 Xi(B'X;) = (Iq, I, @ {(Xi - XJ)TB})T>
Aij = (Cll(Xj)aCzl(Xj)>C22(Xj)7 o Cm1 (X)), ---,Cmm(Xj)> ® (Xi — Xj),
where ¢(X;) (1 <1<k <m) are components of Cj.

Algorithm 1: refined iMAVE under the log-Euclidean metric

Step 1. Marginally standardize X7, ..., X,, when necessary. Set the band-
width hg = con™"/®0+6) where ¢y = 2.34 and py = max(p, 3). Let 3(0) be
an initial estimator. Set ¢t = 1.

Step 2. Compute
-1
{Zw(t Y By X; )XZ(B(T )Xj)T}
X Zw(t Yy B(t nXj)vees(logY;), j =1,....n

Read off vecs(&g-t)) and vecss( Y) ) respectively from the first ¢ and the re-
maining gd components of (Szj(t).
Step 3. Compute

vec( {ZZUJ (= 1)A } ZZwt % A( Vecs(logYi—d;t)).

j=1 =1 j=1 i=1

Step 4. Ift < 30, reset hyy1 = max(r,hy, con™ /(@) where r, = n=1/2Po+6)),
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Set t =t + 1 and go back to step 2. Otherwise, get the iMAVE estimator
B.

The choice of bandwidth in iOPG is the same as iIMAVE and the esti-
mated Bz’O pc by iIOPG can usually be used as the initial value for B(O) in
iMAVE.

Algorithm 2: refined iOPG under the log-FEuclidean metric

Stepl. Marginally standardize Xi, ..., X,, when necessary. Set the band-
width ho = con™"/®0+6) wwhere ¢y = 2.34 and py = max(p, 3). Set E(O) = I,
Set iteration time ¢t = 1.

Step2. Compute

n 1 on
;) = {ZwS”xxX»xi(Xj)T} >l (X vees(loghy) j = 1, ...
i=1 i=1

Read oft vecss(Agt)) from the last ¢gd components of o??.

Step3. Recover l;§-t),j =1,...,n from Vecss(Agt)) in step 2 as

-
C11
T T
5 (1) Ca1 Ca2
b - 7] - 17 * ’n7
T T T
cml Cm2 e Cmm

with the symmetric part omitted. Rearrange the lower triangle part of I;§t)
to get B](‘t) = (c11, €1, Co2, -5 Cont “‘7Cmm)T € R”? 5 =1,..,n.
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Step 4. Compute

A —

S|

> (GO
j=1

Perform eigen-decomposition for A® and get the d eigenvectors vy, ..., Ug
corresponding to its largest d eigenvalues. Let B(t) = (01, ..., 0g)-
Step 5. If t < 30, reset hyyy = max(r,hy, con™ @) where r, =

n~1/2@o1+6) Set t =t + 1 and go back to step 2. Otherwise, get the iOPG

estimator E’(t).

2. Asymptotic Properties of iMAVE and iOPG
Recall our transformed model under the log-Euclidean metric is
logY = log{g(Bg X)} + loge. (52.5)

Denote h(B]X) = log{g(BJ X)} and ¢ = loge. Since h(B]X) and
¢ are m x m symmetric matrices, denote their (k,[)-th component as hy,
and Gy (1 <1 <k <m). Let up(u) = E(X | BTX = u), wg(u) =
E(XXT | B'X = u), vg(u) = ug(B™w) — u, and wp(u) = wp(BTu) —
pp(BTu)pus(BTu) which will be frequently encountered in proofs. For any
square matrix A, A™' and AT denote the inverse (if it exists) and the

Moore-Penrose inverse matrix.



Define

m k
Wspp = {Zzhm (By X)hy (B X)T } ® {vg, (X UI?O(X)}] ’
k=1 I=1
k
Yspp = var H Zh (B; X) Ckl} ® g, (X) |
—1 =1

and W§FP = var |{ Mg, Y0t Y A7 (BT X)Gu | @ {05, (X)vs, ()}
Under several assumptions listed in the main manuscript, we have
Vi {vee(Bave Bliavi Bo) — vee(Bo) | 5 N(0, Webp SsppWep).
Vvn {Vec(BiopgéiTOPGBo) - VeC(BO)} A N(0, WSPP).
Next we extend our model to a general Riemannian manifold other than

Sym™(m). As noted in the main manuscript, we assume the model as
Log,Y = h(Bj X) + ¢, (S2.6)

where Y belongs to a general Riemannian manifold M and g is the Fréchet
mean of Y. Since Log,Y € T, M, Log,Y € R® where s is the dimension
of M. Denote the k-th component of h as hy (k = 1,...;s). Substitute
Yk, hi for yg, by in conditions (A1)-(A5) in the manuscript. Replace the
matrix Mgpp in condition (A4) with My = E{h™"(BJ X)Th(V(BJ X)} where
) = vh(BJ X) € R**?. Denote the modified conditions as (A1’)-(A5").
Define
W, = E [{hW(By X)ThW(By X)} @ {vg, (X)vh, (X)}]

S = var [{h(B] X)T @ vp,(X)} (],



and Wy = var [{M; 'hW(B] X)T¢} @ {wf (X)vp,(X)}].

Theorem S1. Under (A1)-(A5°) and (C1)-(C6), the estimated Bijave

from satisfies
| Biviave Biave — BoBq |l# = O(h® + hia, + 62, /h +n~1?)

in probability as n — oo, where 64, = (nh?/logn)~Y2. If h3+hdg,+02,/h =

o(n='?), then
\/ﬁ {VeC<BiMAVEBi-{\/[AVEBO) — VeC(Bo)} i) N(O, WEOZOWE())

Theorem S2. Under (A1°)-(A5°) and (C1)-(C6), the estimated Biopg from

satisfies
| Biora Biope; — BoBg || = O(R® + hdg, +n~*?)

in probability as n — oo, where dg, = (nh®/logn)='2. If h* + higy, =

o(n='?), then
Vin{vee(BopaBlopa Bo) — vee(Bo) } -5 N(0, W),

Results in Theorem [ST] and [S2] are consistent with those in Xia et al
(2002), Xia (2007) and Zhang (2021) as well. The discrepancy between
Log,Y; and Log,Y; does not affect the convergence results. Actually Theo-

rem 2 and 3 in the main manuscript can be seen as corollaries of Theorem

9



and [S2| here since m x m symmetric matrices in (S2.5)) are equivalent
to their lower triangle parts which are m(m + 1)/2-dimensional vectors and

Theorem [S1] and [S2] can be directly awakened.

3. More Simulation Studies

3.1 Simulation Study III: Spherical Data

Since the proposed iMAVE and iOPG can be extended to general manifolds,
we test the performance of our methods in a general manifold. We generate
Y € S? according to the following model:

I1I: Let po = (0,0,1)" and the tangent vector at py be

X+ X)) — 1 T
exp(Xi1 + Xio) +€z2,0> .

(X)) (exp( 1) sin X1 + € exp(Xo + Xp) 11

We generate i.i.d. observations X7, ..., X, from the uniform distribution on

[—1,1] and 1.i.d. €1,€;2 ~ N(0,0.1%). Then Y; is generated by
Yi = Exp,, {{(Xi)} = cos([[1(X:)[)po + sin(|[1(X)[NIX3) /|[1(X3)]],

where || - || is the Euclidean norm.
We set n = 100,200 and p = 20, 30. The simulation results are listed in

Table[S1 Our iMAVE or iOPG perform better than others in all scenarios.

10



3.2 Simulation Study IV: CV Procedure Tested

Model  (p,n) WIRE fOPG fMAVE iOPG iMAVE

III (20,100)  0.5247 1.2053 1.6644  0.4471 0.4849
+£0.1077 £0.2424 £0.0665 =0.0520 =+£0.3619

(20,200)  0.3651 0.7008 1.6491 0.2782  0.2365
+0.0550 £0.2036 +0.1306 =+0.0417 =£0.0406

(30,100)  0.6930 1.2803 1.6929 0.7287  0.6036
£0.0873 £0.1488 £0.1141 =+0.1569 =+0.3239

(30,200)  0.4431 1.0343 1.6810 0.3711 0.4619

+0.0360 +0.1799 +0.1070 =+0.0557 =+£0.3811

Table S1: Mean (4 standard deviation) of estimation errors for different

methods in model III.

3.2 Simulation Study IV: CV Procedure Tested

We assume now the structural dimension d is unknown. We generate data
from the five models in simulation study I, II (in the main manuscript) and
ITI and use the proposed CV procedure to estimate d. We use iOPG to
estimate B. We set p = 10, n = 200, repeat 100 times for each model and
list the counts of correct and false estimates in 100 times when o = 0.1 and
0.2, which is shown in Figure [S1]

Except model I-1 with o = 0.2, the CV procedure always gives satisfying

estimations, reaching an accuracy greater than 80% and even approaching
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Figure S1: Bar charts: counts of correct and false estimates in 100 replica-

tions for five models with (p,n) = (10,200). The upper and the lower row

correspond respectively to o = 0.1 and 0.2.
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100% in most cases. And if we increase the sample size to 300, the result

corresponding to model I-1 with o = 0.2 becomes: (d < d) : 0, (d = d) : 92,

(d > d) : 8. Such improvement validates Theorem 1 in the main manuscript.

4. New York Taxi Network Data

The New York City Taxi and Limousine Commission (TLC) provides records
on pick-up and drop-off dates and times, pick-up and drop-off locations, trip
distances, itemized fares, payment types and other information for yellow
taxis (Tucker et al., 2021). The data are available from

https://wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Similar to Tucker et al. (2021), we transform the raw data into network
data (adjacent matrices), where zones are nodes and edges are weighted by
the number of taxi rides which picked up in one zone and dropped off in
another within a single hour. After proper mapping, these adjacent matrices
can lie in the space of SPD matrices. We do the following to collect SPD
matrices together with several prediction variables:

1. We only choose the data of January and February, 2019 (59 days)
due to resource restrictions.

2. We further filter on observations with both pick-up and drop-off

occurring in Manhattan (islands excluded).
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TLC Taxi Zones %\
Manhattan YAV

Qs /ﬁ\t, 0 0.5 1 2 Miles
105 I R Y Y |
(,/ New York City Taxi and Limousine Commission May 15, 2018

Figure S2: The map of the TLC taxi zones in Manhattan. This map is
downloaded from https:/ /wwwl.nyc.gov/assets/tlc/images/content/pages

/about /taxi_zone_map_manhattan.jpg
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Bigger Zones Original Taxi Zones

128, 127, 243, 244, 120, 116, 152,
1 42, 41, 74, 75, 166, 24, 151, 238,

239, 43, 236, 237, 263, 262, 141, 140

143, 142, 50, 48, 246, 68, 90, 186,
2 230, 100, 163, 161, 164, 234, 162,

170, 107, 229, 233, 137, 224

158, 249, 125, 113, 114, 211, 144,
3 79, 4, 148, 232, 231, 13, 261, 12,

88, 87, 209, 45

Table S2: Grouped zones of Manhattan.

3. We then group zones in Manhattan into 3 zones and label them
similar to Dubey and Miiller (2020). To be specific, Figure |S2| shows the
map of the TLC taxi zones in Manhattan. We group these zones (islands
excluded) into three bigger zones according to Table That is, each
network has 3 nodes.

4. For each hour, we collected the number of pairwise connections be-
tween nodes based on pick-ups and drop-offs. These correspond to weights
between nodes. We then further normalize the weights by the maximum

edge weight in each hour so that they lie in [0, 1].
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By doing so, we collected 1416 (59x24) weighted adjacent matrices of
3 x 3 describing the taxi movements between zones in Manhattan. To ensure
that they are SPD matrices, we apply exp(:) to these symmetric matrices.
From the taxi data, we also collect the following 9 potential predictors,
with values averaged over each hour:
Ave. Distance: mean distance traveled, standardized
Awve. Fare: mean total fare, standardized
Ave. Passengers: mean number of passengers, standardized
Ave.tip: mean tip, standardized
Cash: sum of cash indicators for type of payment, standardized
Credit: sum of credit indicators for type of payment, standardized
Dispute: sum of dispute indicators for type of payment, standardized
Free: sum of free indicators for type of payment, standardized
LateHour: indicator for the hour being between 11pm and 5am
Apart from these, we also collect New York City weather history for
January and February 2019 from
https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date
The following 5 weather variables are included as potential predictors:
Awve.temp: daily mean temperatire, standardized

Ave.humid: daily mean humidity, standardized
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Ave.wind: daily mean wind speed, standardized
Ave.press: daily mean barometric pressure, standardized
Precip: daily total precipitation, standardized

This then yields a total of 14 potential predictors.

5. Proof

5.1 Proof of Theorem 1

All the proofs of lemmas needed for theoretical proof can be found in sec-
tion . Here we prove the CV result of iMAVE or iOPG for Sym™(m)
endowed with the log-Euclidean metric. As we have mentioned, the log-
Cholesky case only replaces logY; by chol(Y;) and thus the conclusion to-
gether with the proof is the same and is omitted. Little modification is
needed to derive the CV procedure for the general Riemannian manifolds,
which is also shown in Zhang (2021). To prove Theorem 1, we need the
following lemma.

Lemma S1. Suppose logY; = g(X;) + €;,i = 1,...,n where g(-) : R —

A~

Sym(m) . Suppose gi(-) has fifth derivatives. Let (a;,b;) minimize

> IlogY; — aj — by - Ly @ (X; — X;) | Kn(X; — X;). (S5.7)
1#]
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5.1 Proof of Theorem 1

Then

— Z |[vees(logY;) — vecs(a;)||* = Zakl + h4 /{tr g,(j) 2 f(z)dx
1<k

<k

[0 0 _
+) ghjl{1+op(1)}+op(h5+n 1/2)

<k

where Y <, is short for > jcpern,s 04 iS the variance of ey and o, =

{[ K?(u)du}?.

Proof of Theorem 1: The proof follows almost the same line as that of
Xia et al. (2002). Let (By, By) : p x p satisfy (By, By)"(By, By) = I and By

be the first [ columns of (By, By). Define

fig@ ZKth i — ),

Z#J
(1) = {nfij(@)} ) Ku(BI(X; — z))vecs(logV;),
i#j
frilz Z Ki(B] (Xi — x)),
zsﬁj
no j () = {nfi;(@)} ") Kn(B(X; — x))vecs(log;).
i#j

Suppose By = (B, ..., B4). That is, logY = g(51 X, ..., Ba X )+e. If d < p,
nominally extend the number of directions to p, say {1, ..., B4, ..., Bp}, such
that they are perpendicular to one another. Now the problem becomes the
selection of covariates among {1 X, ..., 6, X }, which is just the focus of Yao

and Tong (1994). However, since fi, ..., 3, are unknown, we must replace
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5.1 Proof of Theorem 1

B by their estimate Bk So to take advantage of the proof in Yao and Tong
(1994), we need f ;(z) and d ().
Let CVo(l) = n~' 377, [[vecs(logY;) — au;(X;)]|* and CV(I) =

n~t Y70 [lvees(logY;) — ai(X;)]]*. Suppose we have shown that
CV(d) — CVy(d) = op(h?). (S5.8)

Following the proof of Yao and Tong (1994), there is a constant 6 > 0

such that for the working dimension [ < d,

lim P{CV(l) > CVo(d) + 0} = 1.

n—>00
Hence lim,, o, P{CV(l) > CV(d)} =
For | > d, by Lemma [SI| we have CV(l) > CV(d) + O(h*). Conse-
quently,

lim P{CV(l) > CV(d)} =

n—oo

Therefore, all that is left is to prove (S5.8)).

1 — .
CV(d) = Z |[vecs(logY;) — dqo;(X;)|°

=1

1 < _ . X
“n D lIvees(logY;) — o (X;) + i (X;) = dao (X;)|[?

1 - ~ 2 ~ 2
= z; |[vecs(logY;) — aw,;(X;)[|” + Z [|au0,5(X5) — Gao,; (X;)]|

j:
2 o N N .
+- > (vees(logY;) — i (X)) (G0 3 (X;) — @ao (X)) -

Jj=1
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5.2 Proof of Proposition 1

Let wi;(By) = Kin(B] (X; — X;))/ Z#j Kn(B] (X; — X;)) and denote

ijz as the (k,[) element of the m x m matrix logY;. We have

SICED I D 9 (D SRRERE IS 9l DRI SR TIFY

= i#] =1 \i%s i#5
1 < ) )
(- S ) (St - i) |
7=l 7 i#j itj

That is, CV(d) is the summation of the CV values of the case where
Y is a scalar, which is the focus of Xia et al. (2002). Directly apply the

results of Xia et al. (2002) and get the result.

5.2 Proof of Proposition 1

Proof of Proposition 1: Our model Y = g(BI'X) @ ¢ is equivalent to
Y =e®g(BiX)®e, (S5.9)

where e is the identity element of group (Sym™(m),®). According to Lin
et al. (2022), we have Log,(u @ z) = ¢, log(z) for p,z € Sym™(m).
Applying this to (S5.9) with u = e and z = g(BI X) @ ¢, we have Log,Y =
log(g(BI X) @ ¢). Use another equation in Lin et al. (2020): log(u ® v) =
log(u) + log(v),u,v € Sym™ (m) and we have Log,Y = log(g(BI X)) + loge.
Based on the bi-invariance of the Log-Euclidean metric, Log, = log = log

which helps us arrive at the conclusion.
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5.3 Proof of Theorem 2 and 3

5.3 Proof of Theorem 2 and 3

As pointed out below Theorem [SI] and [S2| Theorem 2 and 3 in the main
manuscript can be seen as corollaries of Theorem [SI] and [S2] So we only
present proofs for Theorem [S1] and [S2] here.

Recall that our model is

where log,,Y;, ¢; € R® and h(:) : R* — R®.
Expand logY; at Bz by Taylor expansion, we have

W(BIz)TBI(X; — z) (X; — 2)TBoh? (Bl 2) BY (X; — x)

log; =h(Byx) + : +

W (BI2) B (X, — x) (X; — )T Boh® (BI2)BI (X, — x)
+O(||Bg (X; — 2)||*) + ¢

Here h,(:)(Bg x) is a d x 1 vector and is the coefficient of the first-order
term in the Taylor expansion series at Bj z of the kth component of logY;.
Similarly, hg)(Bg x) is a d x d matrix and is the second-order derivative

matrix. We collect these derivatives and form into two matrices for later
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5.3 Proof of Theorem 2 and 3

use:
n (BT h (B] )
hO(Blz) = : W (Bgx) =
hY (Bl z)T h? (Bl x)
sxd sdxd
We first provide some lemmas needed for the proofs. We denote pp(u) =
E(X | B'X = u), wp(u) = E(XX" | B'X = u), vg(z) = ug(BTz) —
z, wp(r) = wp(B'z) — up(B"X)x" — xuL(BTx) + x27 and wg(z) =
wp(BTr) — up(BTx)us(BTx) = wg(r) —vp(x)vL(x). Additionally, we de-
note 8, = (n/logn)~Y2, 64, = (nh?/logn)~'/? and 7, = h? + 64,. Assume
A, is a matrix. We say A,, = O(a,,) (or o(a,)) for simplicity if all elements

in A,, are O(ay) (or o(a,)) almost surely.

Lemma S2 (Kernel smoother in OPG). Let

-
1 n I I
=1 I, ® (X; —x) I, ®(X; — )
and
Qg I,
= (nSB(x ZK;L —1)) Log,Y;.
vecs(by) I, ® (X; — x)

Under assumptions (A1°)-(A8’), if h — 0, ég/h — 0 and nh?/logn — 0,
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5.3 Proof of Theorem 2 and 3

then
vecs(by) =(I; @ Bo)vecs(hW (Bl z))

+{nfa(BT0)} ' Y Kn(BT(X; — )L, ® [h(2) {Xi — pp()}] G + Olean),

i=1

where eg, = h® + hdg, + hip.

Lemma S3 (Kernel smoother in MAVE). Let

.

n [s [3
E(2) = - 3 Ku(BT(Xi—2))

n

i=1 I,® BY(X; —x)/h I,® BY(X; —x)/h

and
Qg n I,
= (B7(x)™' Y Ea(BT(Xi—x)) Log,V;.
vecs(b, )h i=1 I, @ BY(X; —x)/h

Under assumptions (A1°)-(A3°), if h — 0, dg/h — 0 and nh?/logn —
0, then
a, = h(BJz) + hV(BJ2)(By — B)"vp(z) + tr(z)h?/2 + ViE(x) + O(h* + hdan + hép),
hvecs(b,) = hvecs{h(BJ2)} + ViZ(x) + O(h® 4 hdan + hép),
where
Vin(@) =&, (2) + My (2) €75 (),

‘/22(55) :M£($)551(x)h + EEQ(x).
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5.3 Proof of Theorem 2 and 3

Above tr(x), ME (z) (k = 1,2,3) are matrices whose components are all
bounded and continuous functions (explicit forms can be found in the proofs)

and

E8(2) ={nfs(B )} S Ku(BT(X: — 2))C,

i=1

Eva(x) ={nfp(Bx) ZKh X; — )1, @ {BT(X; — z)/h}G.

Lemma S4 (Denominator of MAVE). Define Ay; = b] @ (X; — X;). Under

assumptions (A1°)-(A3’°), if h — 0, dg/h — 0 and nh®*3/logn — 0, then

{% Y Ku(BT(Xi - Xﬂ)&ﬁ%/% Z Kn(BT(X; — Xj))}

=(I;® B)LY(I;® B") — (I; ® B)LY — LY (I; ® B") + W} /2 + O(7,,/h + 0p),
where
LP = [E{G(BIX) @ I;}] " /h?,
L3 =(L5)" = [B{G(B{X) & 1Y] ' FTW /2

F=E[G(B"X) @ {vp(X)V' fp(B"X) + f5(B" X)Vup(X)} /fe(B"X)] ,
Wp =E [G(B"X) @ {vs(X)vp(X)}]

and G(BTX) = h(BTX)Th(W)(BTX).

Lemma S5 (Numerator of MAVE). Define A;; = bj ® (X; — X;). Under
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5.3 Proof of Theorem 2 and 3

assumptions (A1°)-(A3’), if h — 0, dg/h — 0 and nh®*3/logn — 0, then

1 n n
n? > ) Ku(BT(X; - X;))Ay{Log,Y; — a; — Afjvec(By)}/~ ZKh

j=1 i=1
=Wgvec(B — By) + ®,(By) + O(h* + hégn + hdp + 63, /h + Sands/h),
where

Ws —E [G(BTX) & {up(X)u) ()]

1 n
D, (Bo) = — - Z; {RV(BIX:)T @ v, (Xi)} Gie

Proof of Theorem Define . as the inverse of “vec”. In one iteration
of the algorithm,

Avr =[tt {vec(By1) YTt {vec(Byy1)},

Byg1 = {vec(By 1) }A (.

In our algorithms, we use LogY; instead of Log,Y;. So replacing Log,,Y;

by Log,Y; + (¢Log,Y; — Log,Y;) in Lemma [S3| and we have

. =a, + Di(z Z Kn(BT(X; — z))(¢Log,Y; — Log,Yi),

X5))

hvecs(b,) =hvecs(b,) + Dy(x Z Ky(B"(X; — x))BT(X; — z)(¢Log,Y; — Log,Y),

where a, and hvecs(b,) are exactly what have been listed in Lemma[S3| and
Dy (z), Dy(x) are bounded matrices. As in Lin and Yao (2019), we write

¢pLog,Y; — Log,Y; = {—Hi(p) + Ai(j1)}Log,fi and apply the theoretical
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5.3 Proof of Theorem 2 and 3

result that ||Log,/i|| = O(n™'/?) to sec under conditions (A1)-(A3’) and

(CL-(Co).
1537 Ka(BT(X, - ) (@Log,; — Log, Y

Il 3™ Ka(BT(X: = )} {—Hi1) + A} Lo,

n 1/2
1
< t{=Y K} B'(X;— Log i
<cons {n; (BT( w))} | Log,, 2|

=0p(n~Y?).
Similarly n=' 377, K3,(BT(X; — 2))BT(X; — x)(¢Log;Y; — Log,Y;) =
Op(n='/?). Thus we can write d, = a, + Rq(x) and hvecs(b,) = vecs(b,) +
Ry(z) where R,(x), Ry(z) = Op(n=/?).
Replacing ay, b;, Log,Y; in Lemma and Lemma by a;, IN)J-, Log,Yi+
(¢pLog,Y; — Log,Yi), calculations show the extra R,(X;) and Ry(X;) have
no effects on the results of the denominator and the numerator of MAVE.
Thus we have
vec(B) =vec(By)
+{(ls® B)LE(I;® B") — (I; ® B)LY — L¥(1;® BT) + W} /2 4+ Op(1,/h + 05)}
x {Wgvec(B — By) + ©,,(Bo) + Op(h® + héan, + hdp + 03, /h + Sandp/h) } .
Since (I;®@B)"Wg = 0, (I;&By)"®,(By) = 0, [;®B = [, By+0(d5),

WEWp =1, ® (BBT), (I; ® B)YLFWg =0 and (I; ® B)LE®,(B) = 0, we
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5.3 Proof of Theorem 2 and 3

have
vec(B) =(I; ® By)vec(Iy) + (I, ® BB )vec(B — By)/2 + Wi ®,.(By)/2
+ (I3 ® Bo)/h?Op{h® 4+ 62, /h + héan + (0an/h + h)dp}
+ Op{(0an/h + h)p + h* + 03, + 65,/ h}.
For any B, € 8 = {B : ||B — Bo|| < 0p,}, if 05,/h — 0, then I; ®
EtBtT =1;® BOBOT + O(6p,). Here and hereafter we use the subscript ¢ to
indicate the tth iteration.
vee(Byy1) =(Is @ Bo)vee(Iy) + (Iq® ByB; )vec(B; — By)/2 + Wi @,(Bo)/2
+ (Ig ® By)/hiOp{h + 03, /he + Puban, + (Ban,/he + he)dB, }
+ Op{(8an, /Mt + he)dp, + i + 83y, + O3,/ I}
=(I4 ® By){vec(Iz) + Op(Cy)} + Wyvec(B; — By) /2 + W ©,,(By) /2
+ Op{A¢ + (hy + Oan, /he)0B, },
where A, = hi + 03, /he + Miban,, Cr = {2 + (b + ban, /)0, } /13, Uy =
L@ (BB ) =1, (ByBy )+ O(55,).
By =4 (13 ® By){vec(1y) + Op(Cy) Y| + A {V,vec(B; — By)}/2 + M{W S ©,.(By)} /2
+ Op{&¢ + (h¢ + San, /he)0B, }
=By + A {Vvec(B;, — By)}/2 + M{WS, D, (Bo)}/2 + Op{ D¢ + (hy + dan, /)05, },

where Q; = I; + Op(Cy). Since Uvec(B; — By) = O(dp,), Pn(Boy) = O(4,),
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5.3 Proof of Theorem 2 and 3

we have By = BoSl + Op{0p, + 0, + &t + (he + San, /ht)0p, ;. Then

A :[///{VGC(BHI)}]T///{VGC(BHI)}
=(Bo%) " (Bo%) + Op{0p, + 0n + D¢ + (he + San, /he)0, }
=07 + Op{6p, + 6, + ¢ + (hy + San, /1), }
and
Bty ://{VGC(BtH)}A;:{Q
= [BoSd + A {Vvec(B;, — By)}/2 + M {W S ®,.(Bo)}/2 + Op{ Ly + (hy + San/he)05, }]
x [QF + Op{0p, + 6 + A + (he + San, /)05, }] e

We can show that C(t) = o(1) and thus
By =By + M {Wvec(B, — By)}/2 + M{WE ©,(Bo)}/2 + Op{L + (hy + dan, /7)), }
=By + M {Vvec(B;, — By)}/2 + Op{0n + Ay + (hy + San, /1), }.
Since U2 = ¥, we have
vec(Byy1 — Bo) =Uvec(B; — By)/2 + Op{dn + Lt + (hy + dan, /Pt )05, }
=Wvec(B, — By)/2 + Op (8, + 1)
=W {Uvec(B;_1 — By)/2 + Op(0p, + L¢-1)} /2 + Op(0, + L)

=WUvec(By_1 — By)/2* + Op(d, + 1\y)

=Uvec(B; — By)/2" + Op (0, + 1\y).
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5.3 Proof of Theorem 2 and 3

Now let ¢t — oo, we have dg = Op(d, + No) = Op(d, + h® + 62, /h +
hégn) = Op(h® 4 82, /h + hdg, + n~Y2). This is the first part of the con-
clusions. From B, 1 = By + #{WVvec(B; — By)}/2 + %{qu)n(B@}ﬂ +

Op{A¢+ (ht + ban, /ht)0p, }, we know that when t — oo,

Boo—By = M {Uvec(Boo—Bo)} 2+ M {W}_ P, (Bo)}/2+0p(h*+673,/h+hda).
(S5.10)

Then multiplying by By from left, we have

B Bss — BJ By
=By Boo — 14
=B, M {Uvec(Bo — Bo)}/2 4+ By M{W}_2,(Bo)}/2+ Op(h* + 63,/h + hdan)
=M {(14® B} )Vvec(Bo — Bo)}/2 + M {(14 @ By )W _0,(Bo)}/2+ Op(h® + 63, /h + héa)
=M{I;® BgéoéoTvec(Boo — By)}/2

+ A {(1a® By )(1a® Boo)[(Ia @ BL)Wa. (Ia ® Buo)| ™' (1a @ BL)®u(Bo)}/2

+ Op(h® + 62, /h + hdap)

=O0p(6p,, + 0p + h> + 6%, /h + hdan) = Op(8, + h* + 83,/h + hdap).
From above calculations we can also see that Bl Bo, = Ig+Op(6,+h3+
62, /h + higp), which also implies BX By = I;+ Op(6,, + h® + 6%, /h + hdan).

Multiply (S5.10) from right by BL By, we have

BBl By—By = M {Wvec(Bo—Bo) } 24+ {W_©,(Bo)}/24+0p(h*+63,/h+hdar).
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5.3 Proof of Theorem 2 and 3

Then we have
vec(Bo BL By) — vec(By)
=Uvec(Bo — By) /2 + Wj_9,(Bo)/2+ Op(h® + 63,/h + hda)
=V {Uvec(Bs — By)/2 + Wi _®4(Bo)/2+ Op(h® + 05, /h + hdap) } /2
+ Wi ®,(Bo)/2 4 Op(h® + 63,/h + hdan)
=Uvec(Bo — By)/2” + YW} _®@,(By)/2* + Wi _@,(Bo)/2 + Op(h* + 63, /h + hdan)

=Uvec(Bs — By) /2% + Wj_®,(Bo)/2° + Wi_®,(Bo)/2+ Op(h® + 63, /h + hday)

=Uvec(Bo — By) /2" + Wi _®,(Bo)/(2" + ... + 2) + Op(h® + 63, /h + héap)
=W ©,(Bo) + Op(6p..0, + h* + 05, /h + hap)

=W ®u(Bo) + Op(h* + 63, /h + hda).

where the fourth equality comes from YW = W7 +O(0p,).

If h3+0%, /h+hda, = o(n™/?), vec(Bo BL, By)—vec(By) = W5 ®,(Bo)+

op(n='/2). Here W}, is a non-random matrix and ®,,(By) = —n~' > | {h)(BJ X;)T @ vp(

We can calculate E{®,(By)} = 0 and var{®, (Bo)} = var [{hV(B] X)T @ vp,(X)} (] =

>o. So we have

Vn {vee(Bu BLBy) — vee(By)} 5 N(0, Wy, SoWi ).
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5.3 Proof of Theorem 2 and 3

Proof of Theorem [S2} Replacing Log,Y; by Log,Y; +(¢Log,Y; — Log,Y;)

in Lemma [S2] we have
bt =Bohy (Byw) + {nfp(BT2)} Y Ku(BT(X; — 2))wf(2)(Xi — pp(BTx))Cu
i=1

+ R([E) + O(Edh)

_ | n(Blx) "
=(By, By) +{nfp(BT)} Y Ku(BT(X; — x))wh(x)(X; — pp(B x))Cu
O(Gdh) i=1

+ R(I) + O(Edh).
where R(z) = n~"' 321, K(B"(Xi — 2)){yp(x) + wh(x) }(X; — 2) (G — yir)
and ¥;z — yir is the kth component in (ﬁLogﬂYi — Log, Y. Similar rea-
soning as in the proof of Theorem [S1| gives R(z) = Op(n~'/2). Denote

{nfp(BT2)} 7' 3oL, Kn(BT(Xi—2))wy(2)(Xi—pp(B )G = & (), then

b, —(Bo. i) W (Bl (BI2)T Oew) | | BY
O(€an) O(€an) By

+ Bohy (BJx)&8 ()T + £ ()b (B )T B + Op(n~"?) + O(eandan)-

We use the subscript ¢ in letters to indicate the tth iteration and denote

31



5.3 Proof of Theorem 2 and 3

byr in the tth iteration as B(t) (). Then

Sir1) = Zb (X;)Th

n~t 30 MO(BIX) TRV (BIX;) Oean,)

BO7 BO
O(ean,) O(€an,) By

By

Sy(t + S't + O(n™ ') + O(éan,dan,)

—

Z

O(ean,) By IR0 )
“f‘ﬁZ{St —f-(S]t)T}

B07 BO
Bl i=1

O(€an,) Gdht)
—1/2
/ + O Edhtédhi)
where

S =By m(BIX)EP (X,)T

k=1

Now we calculate n=! Z?:l {Sj(-t) + (Sg('t))T}'

1 n
S )

: Bi | 1 g0, g - By
=B, Bo) || | oS+ 8T BB | |
By | = By
. 0o Cy, Bl
:<Bo,Bo> ~ +O(§dht53t)
(Clg,)T 0 By

In above calculation, we write S; = ByA; where A; is the summation
shown in the definition of S;. Note that BTup(BTz) = 0, which implies
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5.3 Proof of Theorem 2 and 3

BTw}(z) = 0 and further BTEP(z) = 0, BT A; = 0. Additionally, one can
show that £F(z) = O(da). These relationships help us derive the above

equation where
1 - -
Cran == > D W (BIX)EF (X)) By = MY B,

We can show that the matrix M, = >3 n=' >0 0=t Y0 f5 (BTX;) Ku(BT(Xi—
X)) (BT X)) (X = ps(BTX;) T ()G = O(8,). So
Y41y =BoAn By + O(ean,) + BoMD BoBy + By By (M) B
+ O(64n,08,) + O(€qn,dan,) + Op(n="?)
=BoA, By + BoMY BoBy + BoBy (M) BJ 4+ Op(h3 + hydan, + hidp,)
=BoAYB] + Op (6, + hd + hyban, + hidp,).
(S5.11)

By the same argument used by Xia (2007), we have
Biy1Bl,, — BoBy = Op(6, + B} + hiban, + hid,).

Let t — 0o, we have B Bl — BoBd = Op(h® + hdg, + 6,) and this is the

first part of the conclusions.

By (S5.11]), we have

A

Yoo = (Bo + 1) An(Bo + 1) " + Op(h?* + héan),
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5.3 Proof of Theorem 2 and 3

where 7, = (M{))TA," = O(8,) and (By + 1) T (Bo + 1) = g+ O(62). By
the same reasoning as Xia (2007), we have
BooBY — BBy =(Bo + 1,)(Bo 4 n,)" — BoBg + Op(h® + hian)
:Bon;lb— + ﬁnB(—)r + Op(h3 + h(Sdh).

Since B;nn =0 and By — By, = 05

oo

= Op(h3 + hédh + 5n)> we have
BOOB(;I-OBO _BO = T]n—i-Bonz;Bo—i-Op(hS—i-hédh) = 77”+Op(h3—|—h(5dh). When

h? 4+ hdan, = o(n~1/%), all left is to calculate the variance of vec(n,).

34



5.4 Proof of Theorem 4: DOPG

5.4 Proof of Theorem 4: DOPG

We first prove the conclusion about DOPG. Before our proof, we introduce
some notations. Under the log-Euclidean metric, our model Y = g(BJ X) &

e can be transformed into logY = logg(B{ X) + loge which we rewrite as
logY = h(B; X) + (.

Expand logY; at x by Taylor expansion, we have

WY (@) (X —2) . i (2)T(X; — z)
logY; =h(z) +
MO(@T(X —x) ... hih(2)T(X; — )

(X; — 2)ThY (@) (X; —2) . (Xi— 2)Th{) (2)(X; — x)

(X, — ) Th2 (2)(Xi — 2) ... (X; —2)ThEh(2)(X; — 2)
+O0(|(Xi — 2)P°) + G.

That is, we expand every element of the m x m matrix logY; at z. Above
h,(i) (x) is a p x 1 vector and is the coefficient of the first-order term in the
Taylor expansion series at x of the (k,l)-th element of logY;. Similarly,
hg) (x) is a p x p matrix and is the second-order derivative matrix.

For further simplicity, we denote the (k,[)-th element of the m x m
symmetric matrix h(x) as ag(z), 1 < I,k < m and denote h,S)(:c) as by ().
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5.4 Proof of Theorem 4: DOPG

Proof of DOPG: By the same argument of Cai et al. (2022), we have

almost surely for 1 <[l <k <m

. nlogn 1/2
sup |ag () — ap(r)] = O <<p \§| ) +WT2L>

1/2 2
N ; prlogn Wi .
sup [b () — bl (x)] = O ((—nh|) + h) =1,

zeD n

By condition (1), we denote the support of X by D which is a compact set

in RP. Then for every z € D,
bua(x) = ba(x) + Abjy(x) = Bohyy (By ) + Abjy (),

where AbY(z) = ((bp)H(2), ..., (b3)P)(z))T is a p-dimensional vector. If
aj = 0, we have (0)V(z) = Op(y/pa/n). If a; # 0, we have (b},)V)(z) =
O(cg]). Let (By, By) be a pxp orthogonal matrix such that (By, Bo)(Bo, Bo)T
I, and (By, By)T(By, By) = I,. We can write
o) — (5o, By | 0 B+ BEAM()
By Abjy(x)

By the algorithm of OPG,

1 . ) AS) Aq(sz) .
==Y bubj, = (Bo, Bo) (Bo,Bo)",  (S5.12)
ne= = A%S) A#)

where

=> - Z{hi? By X;) (b (BY X;))"

<k J=1

+ 285 Abjy (X;) (hiy (By X;))T + BY Abjy (X)) (Ab (X)) By},
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5.4 Proof of Theorem 4: DOPG

L= AT A n ;
AW = Z o Z By Abiy (X;)(Aby(X;))" Bo.

<k ' j=1

Note that the p-dimensional vector By in By satisfies ||Gx]|3 = 1 and
the remainder Ab(x) satisfies [|Aby(x)[|> = >7_ {(bp)"}? = o with
o, = {ZWO(CL{?V + 2,20 pn/n}Y2. Then it can be shown that for a

p-dimensional unit vector f3,
BAb(z) < B8] - [|Aby ()] < 0.

This together with assumption (A2) results in BY Aby, (X;) (A (BT X;)T =
Op(0,). By the same discussion, we have Bj AbY,(X;) (AW, (X;)) By =
Op(0'2).

n

By the central limit theorem, it is easy to see that
AD = B{)(BI X) (hiy (BY X)) }+0p(1//n)+0p(0,) 1= So+Op(a,+1//n).

Using Lemma 6 in Cai et al. (2022), we conclude that the eigenvalues

of AY is asymptotically converge to eigenvalues of >, in probability with

order O(d(o, + 1/4/n)).
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5.5 Proof of Theorem 4: DMAVE

Similarly, we obtain that AY = (AP)T = Op(o, + 1/y/n) and AY) =
Op(0? 4 1/y/n) with eigenvalues of AY) being O(02 + (p, — d)//n). Let
A1 > ... > A, be the eigenvalues of S and Bl, e Bp be their corresponding
eigenvectors. By the Eigenvalue Interlacing Theorem and assumption 3 and
4, we have min{\, ..., \g} > ¢ > 0 and max{Agy1,..., \y} = O(c2 + (p, —
d)/v/n = o(1)). Therefore, the top-d eigenvalues can be distinguished from

others asymptotically. By (S5.12)) we have in probability
S = ByXoB 4 Op(0, +1//n). (S5.13)

Let Bpopg = (B, -.., Ba). Using (i) of Lemma 6 in Cai et al. (2022) and

under assumptions (B1) and (B3), we obtained
BooraBhop — BoBy = Op(puon).

5.5 Proof of Theorem 4: DMAVE

The target function of DMAVE is equivalent to

Z Z tr [{Vecs(aj) +1,® (XJB)vecss(bj) - vecs(log}/;)}m] Ky (Xij; &)

j=1 i=1

which can be rewritten as

Z Z Z{yiz — an(X;) — ey (X5) BT X} Kn(Xij; @)

1<I<k<m j=1 i=1
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5.5 Proof of Theorem 4: DMAVE

where yi, is the (k,[)-th element of the matrix logY;. So it is safe to only
inspect ag () and ¢ (x) for some 1 <1 < k < m. To simplify our notations,
we now fix (k, 1) and write yi; as Y;, ay(z) as a(z) and ¢ (x) as ¢(x). From
our model logV; = logg(B] X;) + loge;, we have yi, = (logg(B] Xi))u + Cu
and we denote it as Y; = h(Bj X;) + ¢ since (k,l) is fixed. That is, we
now only need to consider the model Y = m(X) + € = h(B]J X) + € where
Y € Rand X € RP. And the DMAVE for Y = h(BJX) + € estimates By
by minimizing the following objective function

1 n n )
22 {Yima; = ¢ BT(X = X)W KX, — X;:.),

j=1 i=1

Before proof, we introduce the following notations as Cai et al. (2022)

did. A local approximation of m(z) by a polynomial of total order r is given

by
1
m(z)~ Y E(ka)(Z)(z—x)’“
0<|k|<r
where
k= (kMY EPY R = kM s s kPN || = Zk ;
0
SECUSEPREUCED DD 9D o0 91
0<\k;\<r J=0 g[11=0 klPl=0
K4 +k[P]_j
and

y=x

— a(y[l])k[l] L a(y[p])k;[l”]



5.5 Proof of Theorem 4: DMAVE

With samples (X, Y;),7 = 1, ..., n, the problem of local linear regression
can be written as minimizing
D Y- D bel@)(Xi — @) PEW(X; — 234) (S5.14)
i=1 0<[k[<1

wrt. be(z). Denote the minimizer of (S5.14) by by(z), then we have

—

estimation (D*m)(z) = klby(z). The minimization of (85.14) leads to the

set of equations

ti(@)= Y hb(x)sjr(z), 0< i <1, (S5.15)
0<[k|<1
where
L) = S VilZi(hs @) — 2(h )l (X — 230),
n <
= (S5.16)
1 . .
sj(z) = - Z[Zi(h; a) — z(h; ) Kp(X; — x; &),
i=1
with
LU
Z(h, O{) = (W, ceey E).
Define 7(x) = (1o(z), ,Tp(:r;))T, where 19(x) = t(,. 0 (x), (x) =

-----

N

same order, we can obtain # as an estimator of column vector 6(z) =

(0o(), ..., ,(2))T = (m(x), hRrml (), ..., hm/Pl(x))T. Then define S(z)
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5.5 Proof of Theorem 4: DMAVE

as
$(0,0,.0)(¥)  S(10,...0)(T) $(0,0,...1)(2)
5(1,0,..., 0)(90) 5(2,0,..., 0)($) 5(1,0,..., 1)($)
S(z) =
5(0,0,..., 1)(175) 5(1,0,..., 1)($) s 80,0, 2)($)

Then the set of equations in ((S5.15) can be written in matrix as

as the solution of the set of equations (S5.15|).

A fundamental decomposition for the error § — 6 is provided next.

Firstly, let
t;(x) = 1 Z[Y; —m(X)][Zi(h; ) — 2(h; @) K (X — x5 4),

and we have

n

SN () Zhi @) — (b ) KX, - a:d). ($5.17)

) — ) =+
=1
The Taylor series of m(X;) at  with a mean-value form of remainder
1s
1 ~
m(X;) = Z E(ka)(m)(Xl — )"+ Z (D*m)(z:)(X; — x)*, (S5.18)

0<|k[<1 |k|=2
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5.5 Proof of Theorem 4: DMAVE

where Z; is a point between x and X;. Substituting (S5.18]) and (S5.16) to

(1S5.17]), we find

L)~ @) = YD D) @)sy ) + ey (o),

0<[k|<1

n

) =~ hk',a SO (DFm) (0 [Zi(hs o) — 2(hs )P Kn(X; — 73.6).

k=2 =1

By (S5.15) and (D*m)(z) = k!bi(x), we obtain

tr(z)= Y hb(x) — be(@)]sjer(z) — ej(x). (S5.19)

0<[k|<1

For 0 < |j| < 1, using the same arrangement as for 7(z), we can define

the (p + 1) column vector 7*(x) and e(z) as

o, .0)(@) e,...0) ()

t () €(1,...,0) (x)
)= O ce(z) =

tfo ..... 1) (z) €(o,..., 1)(1‘)

Thus

0(x) — 0(z) = S~ (z)7*(x) + S~ Hz)e(x).
We next prove the following two lemmas.
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5.5 Proof of Theorem 4: DMAVE

Lemma S6 (Kernel smoother in DMAVE). Let

.
1 < 1 1
To) == Kuy(Xiu:a
n 4
=1 BTX;, BT X,
and
a(x) 1
= {nS(B"x) ZKh Y.

Suppose assumptions (B1)-(B5), (A2) and (A4) hold, then we have almost

surely

B 1/2
sup () — a(e) = O ((p B wi)
zeD nhn

1/2 2
A : palogn w .
sup ()~ M)l = 0 ( (LB ) 42 ) =1
nhy J hn

zeD

Proof. Note that w, = 33, ,oh®[[8W]ls and Y7_ [|BY)]3 = d. By the

Cauchy-Schwarz inequality: (3°0 #;)?2 <n Y. 2? and (a+b)/? < a2+

b2 for a,b > 0, it can be easily seen that

{Z(haj||/8[j]||2)2}l/2 _ { Z(hajH@[j}”2)2 + Z Hﬂ[j]H%}l/Q
. ;=0

7=1 a;

IS e} + {3 s}

Ocjfo Oé]—O

PRI +{Z 18z}

;70

IN

IA

< w, + dl/z,

(S5.20)
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and

Zh‘“”ﬁmﬂz _ Z ha]Hﬁ H2 + Z HB[J]HQ

a; 70 a;=0
) al? (85.21
Swn+21|5]!|z§wn+{p2|!5]Hz} (85.21)
=1 j=1

< w, + dl/2p1/2.
The above two inequalities are widely employed in the following analysis.
By the Taylor’s expansion of h(B] X;) at x and Y; = h(B] X;) + €;, we
have

1
Y; = h(Bjz) + (Dh)"(By x) By Xz + Z E(ka)(fz)Xﬁc + €

|k|=2
1 h(B{ z)
_ £y %ha'k(ka)(i’i)[Xi(h;a) — e ) + e
BS—XW (Dh)(BE)rx) k=2

where (Dh)(Bg z) is the derivative vector of h(-) at B z.

Then (a(x),é(x)) can be written as

a(x h(Bg 1
(x) _ (By =) + {nS( BT ZKh s €
&(x) (Dh)(Bgx) B X,
T 1 Lo ok, \ (=
+{nS(B'z ZKh > h (D m) () [Xi(hs o) —
BTXM |k|=2
h(BJz)
= ‘ —+ A1 -+ AQ.
(Dh)(Bgx)
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5.5 Proof of Theorem 4: DMAVE

Firstly the numerator in Aj:

n 1

1
sup |— Z K (Xiz; &) €
zeD I T i—1 BTXZ:L.
1
1 0 . 0 1 n Xl[i}/hal
. LS K (X)
x n <
€D 04 h™ (5[1])1— oo ho (5[1’])1_ i=1
X her

SUPzep ’tfo,o ..... 0) ()]
SUpep | 2251 h (BY) T ()]
where t(x) = n~' 3" Kin(Xip; @)[Xi(h; o) — x(h; )l e; for each j with
0 < |j| < 1. By an argument similar to Lemma 5 in Cai et al. (2021), we

have sup,cp [t5(z)] = O[{pnlogn/(nhi*H}1/2]. And
T % - T -
D E R DR Dol
p ) p
< sup | Z A (BT ]lz - sup Z t()

_ SUP{Z Z ha]Jras 6[1 }1/2 sup ‘ Zt

xED]lsl

< Sup{z Z poitas

xeDglsl

= sup Z e[| 895 - sup | Z t;(x)
zeD =1 zeD j=1

B8 )22 - SUPIZt*
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5.5 Proof of Theorem 4: DMAVE

This together with ((S5.20)) results in

p 2
a; j * pnlogn 1/2
sup R (BUNTE (2)] = O (=22 .
IGDQF; @) = o2 o))

And this implies for the numerator in A;:

- 1 O((p,logn/(nhl®))1/2
sup [+ 37 K (X ) o = [ Cllpnosn/ (nha))

zeD 1M = BTX,, O((pfllogn/(nhfl‘))l/?)

Consequently we obtain
O((palogn/ (nhi"))"/?)

sup [ 4| =
< O((p3logn/ (nhi"))"/?)

Secondly, the numerator in Ay is

1 n
- K Xix; )
- ; n(Xiz; @)

>h 1 hei (B9)Te;(w)
where e;(x) = 32, whe =t 300 (DFm)(2;)[Xi(h; @) — w(h; a)]*H7 with
sup,ep |ej ()| = O(w;) for each 0 < [j| < 1. Follow the same steps used

for A, we get

O(w;)
sug |As| =
" O(pi*w2)
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In conclusion, we have
SUP,ep |a(x) — h(Bj )]

SUp,ep |6(x) — (Dh)(Bj )|

= sup [4; + Ap| < SUP | Av| + sup | As|
xeD
O((pulogn/ (nhii)/? + w?2)

O(Elosn/(nhls )2 + pif*2)
[l

Lemma S7. Suppose assumptions (B1)-(B5), (A2) and (A4) hold, we have

B[J] - B[j] = O<C[r{])7 j = 17 - D,
7] _ o] +2a;\\1/2 2 /1%
where ¢z’ = pplogn/(nhy N2+ w2y

Proof. Observe that (Dh)T(BJ#)BI X;, = (BI X;)T(Dh) (Bl z) = S22_, U X5 (Dn)(B ).

=1

Let 5[1] = B1,0,...,0)5 -+ ﬁ[p} = B0,0,..,1)- For a p-dimensional vector k satisfy-
ing [k| = >2"_, k; = 1, we further have (Dh)"(Bg 2) By Xiy = 3"y =y Br X[, (Dh)(Bg x).
Then the expression of Y; can be written as

Y; = h(Bjz) + Y X\ (Dh)(Bjx)
k|=1

+Z L okl (7)[X:(h: ) — 2(h; )]* + €
|k|= 2 !

x)+ Z hOF B[ X (h; o) — z(h; a))Fe(x)

Ik|=1

+) .ha’“D’“ 2)[Xi(h; @) — z(h; 2)]F + ¢

|k|=2
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5.5 Proof of Theorem 4: DMAVE

Given (a(Xj),c(X;)),1 <1<k <m,j=1,..,n, the analytic solution

of B equals to

B, = arg min — ZZ{Y a(X Zhwkﬂk[Xi(h;Oé)—Xj(hQ‘l)] o(X;) 2 Kn(Xij; &)

T_ n
BBy =1 j=1 i=1 k|=1

(S5.22)

where k € RP with |k| = 1. Denote

L(B) = - S Vima(a) = 37 BB (s 0) —a(hs )] e() PR X ), 1] = 1

i=1 |k|=1

The minimizer Bj satisfying DL(Bj) = 0, which is equivalent to
1 n
- > Y —al@)}Xi(h; ) — w(h; @)Y e(x) Kn(Xin; &)
i=1

- Z Z Rk B X (hy o) — (R a)]Fe(2)[X; (h; o) — z(h; o) e(x) Ky (Xie; &)

i=1 |k|=1

Recall the definitions of t;(x),t;(x), e;(x), sj(z) with [j| = 1. By the de-
composition of Y;, the above equation can be written in the form of a row

vector as

> 2 (B = s ()e(@)eT(@) = Y- {5 @) (@) + ()T (@)

1<k |k|=1 1<k

Its matrix form is

3 S_ia(@)diag(h®, ..., k) (B~ B)e = {T@)cT (@) +ey (2)cT (@)},

<k <k

where 7%, (x) and e*(x) are p-dimensional vectors after removing the first
element in 7(z) and e(z), respectively , and S_; _1(z) € RP*? is a (1,1)-
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5.5 Proof of Theorem 4: DMAVE

minor of matrix S(z). Replacing x with X, we have

. Z S_1,-1(X;)diag(h®, ..., h*?)(B — B)e(X;)e" (X;)

1 Z{T X))+ €8 (G)eT (X))

Applying the vectorization operator vec(-) with properties: vec(A; + Ay) =

vec(Ap) + vec(Ay) and vec(A;BAs) = (AY @ Ay) - vec(B), we have

y Z {e(X))eT(X5)} @ 1,1 (X,) | vee{diag(h™, .., i) (B — B)}

:—Zvec {700G) + ¢, (X))} (X))

By Lemma , we have c(z) = (Dh)(BJx) + Op((pilogn/(nhlffll))1/2 +

w?). Simple calculation yields that

% ()T @ 8 (X)]

1

—

[{(DR) (B X,)(DR)T(B] X))} & S_l,_1<Xj>} + Op((p2logn/ (nhle) /2 + pl/%u?)

1 ¢

1
<=
n

7j=1

=B [{(DR)(BTX)(D)T(BI X)) © 871y (X)] + Op((plogn/ (i) + pi/2u?),
where the inequality comes from the Jensen’s inequality applied to the

convex function x — z~! for x > 0.

By sup,cp [t5(2)] = O((palogn/(nhi))"/?) and sup,e p e;(x)| = O(w?2),

it can be seen that

- Zvec {720(G) + €, (X)) ()| = Ol(palogn/ (nhl) Y + w2).
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From

vec{diag(h**, ..., h%")(B — B)}

[Z Z{c X))} ®S_11(X; } Z ZV@C[{Tl

1<k 7=1 1<k Jj=1

we know that for each j =1, ..., p,

hes (BU1 — U = O((pylogn/ (nhleh)V2 + w?),

which completes the proof.

Now we are ready to prove results of DMAVE.

Proof of DMAVE: Let Bpyave = ((31)7, ..., (8P)T)T be the DMAVE

estimation of By and BpyaveBhyave = (5 (B[l])T)j’lzl

-----

Schwarz inequality, we can show that

»- By the Cauchy-

(B[j] _ 5[3‘1) . (5[11)T — ||(B[j] _ 5[3‘]) ) (5[”)||2 < ||B[j] _ 5[j]||2 ) ”5[l]||2

P P
< B = B> 18,
j=1 =1

p p
<{p> 189 = 9532 {p > 18152
j=1 =1

p
= D189 — BB @t

j=1

Note that for aj # 0 we have g4 — gl = O(ci!) where ¢! = palogn/(nhle T2y /24

w2 /hy? and for a;; = 0 we have 6 — gUl = Op(y/p,/n). Hence Py |66 —

20
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BUl|12 = z:aj;m(cg])2 + Zaj:opn/n = ¢2. This implies
(B[ﬂ _ 5[]'}) . (ﬁ[l])T = Op(pnoy), jl=1,...p.
Similarly (83U — gl (86 — BUNT = Op(p,o?). Then it follows that
B[ﬂ(@[l])T — 5[j](5[l]>T + Op(pnon), 4 l=1,...p,

which completes the proof.
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5.6 Proof of Lemmas

Here we collect proofs of Lemmas in the previous section.
Proof of Lemma : Denote the solution to } as 5_j (X;). We have

vees{d-;(X;)}

-1

]q ‘[(1 ® (XZ - X])T
i [,®(Xi—X;) I;® (X — X;)(X; — X;)T
[q
) Z wij vecs(logY;)
i I, ® (X; — X;)
1 Iq
L2712 . ;
o wa vecs(logys),
i#£] [q®(XZ_X])

where w;; = Kj,(X; — X;). Apply Taylor expansion at Xj:
logY; = g(X;) + ¢ (X;) - Lo ® (Xi — X;) + Ry + &4,
where R;; is the remaining term of the Taylor series. Thus
vees{d_;(X;)}

vees{g(X;)} I,

1
= + Ay - Z Wi {vecs(R;;) + vecs(e;)}
vees{g™ (X;)} i Iy ® (Xi — X;)
S6(X;) + Ayl Ay
Denote fj =n! Zi# wij, Bij =n"t Zi# w;(X;—X;), Byj =n! Zi;&j wij (X;
— X])<X,L — X]’)T. Then 6—{14231 = (Iq X (]E] + Clj)y Iq X (_02J>) where €1 isa
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(¢ + gd)-dimensional vector with the first ¢ elements equaling 1 and the re-
maining equaling 0, C; = f‘j_2B%;'<BZj_fjj_lBliBil;) and Cy; = fjleIj(BQJ_
fj»’lBuBi';)_l. Then vecs(a;) = e] vees{d_,;(X;)} = vees{g(X;) el Ay Ayj.

Denote Dfl =n! Z#j wij(Rfj + 6?)/]3, MJ’-” =n! Z#j wz-j(Rff +

eiN{Chj — Co(Xi — X;)} (1 <1<k <m), then

gll(Xj) + D]11 + Mjll

921(Xj) + D]21 + Mfl
vecs(a;) =

Gmm (Xj) + DF™ + M

Thus

1 — .
=D IIvecs(logY;) — vees(y) |
j=1
] — e
= Z |[vecs(g(X;)) + vecs(g;) — vecs(a;)||
j=1

g (X;) + 5}1 — (g11(X;) + Dgl'l + Mju)

1 n g21<X]’)+€?1 - (ggl(XJ)+DJ21+MJ21)

G (X5) + €7 = (gmm (X) + D™ + M)

J

=1 1<k

DS ST

<k = j=1
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5.6 Proof of Lemmas

which is just a summation of the CV values of the case in Li and Racine
(2004) where Y is a scalar. Directly applying the results of Li and Racine
(2004), we reach the conclusion.
Proof of Lemma [S2} The proof is similar to that of Lemma [S3]and more
details can be found in the proof of Lemma [S3]
First
I, I,®up(@)
Sy (x) = fp(BTx) + O(h* + dan),
L,@v(z) I, ®wp(x)
where wp(z) = wp(z) — pp(x)r" — zup(x)" + 22T,

And we can calculate

I,®Cp(x) I, @vyp(x
{S7(x)} " = f5'(BTx) “ o) 75() + O(h* + ban),

I ®@vp(x) 1, @ wy()

where
Cp(x) ={1 = vp(x)wh(x)vp(x)}

v8(1) = — wp(x)vp(x).
Expanding Log,Y; at Bz by Taylor expansion, we have
Log, Y, = {h(BJx) + h (BLa) BT (X, — )}
1
+ 5L @ {(Xi - 2)"BYh?(BJx)BT(X; — x) +
+O{[1Bg (Xi = 2)[]° + ||Bg (X; — a)|| x | X; — |5 + || X; — 2[|*0% }

=M+ @)+ B)+4),

o4
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and we denote

n Is
%ZKh(BT(Xi — 1)) Log,Y;
=1 ]s ® (XZ - I)
n [s
_% S Ku(BT(X; - 1)) {(1)+(2) +(3) + (9}
i=1 I, ® (X; — z)

We can show

h(Bg x)
{SP(x)} ' x (1) = ;
(I, ® Bo)vecs{hV(BJz)}

I, @ {Cp(x) + 75(x)vp()}

{SB(2)}'x(2) = ( ) tr(z)R2+O(h*+h%0qp),

Iy @ {yp(2) + wh(z)vp(z)}
where

tr(a) = (e (b (BI)}. .o tr (B (BT2)})

{Sy (@)} = (3)

I © {Cp(x) + 7p(2)(Xi — 2)} :
L, ® {yp(2) + @p(2)(Xi — 2)}

={nfp(BTx)}™ Z Kyn(B'(X; — @) (

+ O{(h* + dan)ban };
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and

{Sf(l‘)}il X (4/) = O(h3 + Ogn + hop + 5%)

Putting everything together, we reach the conclusion.

Proof of Lemma [S3} First we can calculate that

BTx)I, his Tfp(BT
$B() = fB(Bz) ® V' fp(B ) O +84),
h[s &® VfB(BT$> fB<BTI)]sd

and

0 I T BT
{Ef(x)}_l :fgl(BTl’) [—hf];l(BTiL‘) &KV fB( {L‘)
I, ® V fp(B ) 0
+ O(R* + 6qp).

Next expand Log,,Y; at Bz by Taylor expansion, we have

LogY; = {h(BJz) + " (BJ2)B"(X; — x)} + h'(Bjz)(By — B)"(X; — =)
+ 51 (X~ o) B (BI)BT (X, — o) +
+ 5[l @ {0 — )7 (Bo — BB BT(X, — 1)
+ I, @ {(X; — 2)"B}YW?(BLz)(By — B)"(X; — z)
+ L @ {(Xi — 2)"(Bo — B)}h®(Bja)(Bo — B)T(X; — )

+O(|By (X; = 2)[]°)

=(1) +(2) + (3) + (4) + (5) + (6).
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5.6 Proof of Lemmas

Then we calculate

n I,
LY Ru(BT(X ) Log,
=1 ]5®BT(XZ—ZE)/}L
n I,
=3 (BT (X~ 1) (D+ @)+ 6+ W) +6) +6)

I, ® BY(X; — z)/h

=1+ @)+ @)+ @)+ (5) + (6.

By the definition of ¥2(z), we have

h(B§z)
{Z7 @)} =< (1) =
hvecs{hV)(BJz)}

Next we turn to (2/).
h(Byx)(By — B)T(X; — )

@)= - Ku(BT(X. )
i=1 I, @ {BT(X; — x)/h}hY (Bl z)(By — B)"(X; — z)

For example, we can calculate the first term in the upper half of the
vector (2'):
1 n
= Ku(BT (X — )W (B]x) (By — B)" (X, — )
i=1
=15(BT2)\) (Bl 2)(By — B)Tvp(z) + O(h*55 + dap),
and the first term in the lower half of (2'):

%Z Kn(BT(X; — 2)){BT(X; — x)/h}h{" (B]2)T(By — B)T(X; — x)

=h\(BI2)T(By — B)Twp(2)V" f5(BT2)h + O(64) = O(hdp).
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So

f5(BTz)hW(BIz)(By — B)Tvp(z) + O(h?0p)
(2) = + O(dandp)

O(hds)

and

RO (BT 2)(By — B)Tv(x) + O(h265 + dunds
{Ef@)}_l x (2') = ( )( ) (x) ( + )
O(hdp)

Similarly, (3') equals

n I, {(X; —2)"BYh?(BJ2)B"(X; — x)
L3 Ku(BT(X — o) e
i=1 I, @ {BT(X; — 2)(X; — 2)TB/h}hP(BJz) BT (X; — )

In the upper half, the first component, for example, is
1 n
- > Kn(BY(X; — 2))(X; — 2)"Bh® (B]z)BT(X; — x)
i=1
= (B 2)tr{n? (B z)}h? + O(h* + h*64,)

:fB(BTI)tl"l(l’)h2 + O(h4 + h25dh)-

The first component in the lower half is

1 n

- > Ky (BT(X; — 2))BT(X; — 2)/W(X; — 2)T Bh (B] ) BT (X, — x)
i=1

=h3 / K(u)uuTh§2)(ng)uVTfB(BTx)udu + O(h*64n)

:Mﬁ (x)h3 + O(h25dh).
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Hence
s(BTx)tr(2)h? + O(h*
(3’);<f (Bl + O ))+0(h25dh)
M ()P

and

tr(x)h?
{Zg(ﬁ(])}_l X (3/) = ( ) + O(h4 + hQ(sdh)'
MB (z)h3

in

We next move to (4').

{0 (@)} x (@)

EB (z) — hfz'(BT2)I, Tfp(BTx)EB,(x p(BT2)EB (v
( 2\(2) = hf (BTa)1. V7 fal(BTa) ,())+O(h2+5dh)(f(3 ) ,<>)7

~hfz' (BTa) [, ® V f(BTa)ER (x) + EXy () fo(B )& ()
where
Enr(x) =(nfp(BTx) ZKh BT(X; — 2))G,
Eva(w) =(nfp(B x) ZK ), © {BT(X; — z)/h}¢;.

It can be shown that £7, (z) = EPy(x) = O(d4n). Hence

Bl -l o Ex(@) + My (2)E 7 ()h 2 2
(B @)} x (@) = + O(h™dan + dg3,)
ME (2)EE, (x)h + EPy(x)

T
= ) + O(hzédh + 5§h>
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where
My (2) = —hf (B'a)l, @ V' fp(B ),
Ms,(x) = = hfg (B'2)[, ® V fp(Bx) = { My, ()}
In the end, we similarly calculate that

{E7 (@)} < {(5) + (6} = O(h® + hip + 6p).

Putting everything together, we get the result.

Proof of Lemma [S2

vec(B)

{nzz;z;KhBTX — X;) (b)) @ {(Xi — X;)(X; — X)) }/ ZKhBT(X X))}1
><EZIEKh(BT(Xi—Xj))bJTQ@(Xi—X (Log,Y; / ZKh T — 1)),

From Lemma [S3] we have
(b7 b;) @ {(X; — X;)(X; — X;)"}
=h* {G(By X;) + O(h" + héa, + h*6p)} @ {(X; — X;)(X; — X;)T/R*},
where G(BJz) = hY(BJz)ThY(BJ x). Thus the denominator equals

[%i{G(ngj)+0(h4+h5dh+h253)}} [ iKhBT(X XX — X)X — X;)7 /b2

j=1 =1

/% Z K(BT(Xi = X;)| 2 e ).
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Suppose B is a p X (p — d) matrix such that (B, B) is a p X p orthogonal
matrix. Then (I; ® B, I; ® B) is a dp x dp orthogonal matrix and we have

the denominator equaling

B I,® BT B I,® BT
(I;® B,1;® B) {(1)@(2)}([d®3,1d®3)
[d ® BT Id X BT
| We{BT(2)B} (1){BT(2)B} I;® BT
=(I;,® B,1;® B)
(1)@ {BT(2)B} (1)®{B"(2)B} L,®BT
(S5.23)
First we notice in that
BT(2)B BT(2)B
BT(2)B BT(2)B
B h21, + O(h2T,) W2FY(B )/ fs(BT2)B + O(ht,)
BYF5(B )/ f5(BT2)h? + O(ht,) Cp(BTz) + O(r,)

where Fg(B'z) = vg(x)V' fg(BTx) + fp(BTx)Vug(z) and Cp(BTz) =
BTwg(z)B. Here Vug(z) is the derivative matrix of vg(z) w.r.t BTz and
vg(z) € RP*.

Now the denominator becomes
~ (1/) (2/)T [d ® BT
(I;®B,1;® B)
2y (3) I, ® BT
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where

(1) = (1) ® {h*Lg+ O(h*r)} = W*E{G(By X) @ Ia} + O(h" + h*6a + h'dp),
(2)
(3)

and F = E{G(B] X)®Fp(B"X)/ fs(BTX)}, W = E[G(BI X)@{vs(X)0§(X)}]

(1)@ {B"Fg(Bz)/fs(BTx)h? + O(ht,)} = h*(I; & B)TF + O(h® + héa, + h?65),

(1) ® {Cp(B™2) + O(1,)} = 2(14 ® By) "Wg(1y @ By) + O(h* + dap, + 0p),

Then use (A+ hB)™' = A"' — hA"'BA™' + O(h?) to get

1/Denominator
=(l;® B)LY(I;® B") — (I; ® B)LY — LY (I; ® B") + %Wg + O(7,/h + dp),
where
LP = h? [E{G(B{X)® I,}] ",
LY = (L§)T = [F{G(B X) @ L}] " F'W§ /2,
Wi = (I ® B) {(Id ® BNYWp(l;® B’)}_1 (I,® BT).

Proof of Lemma [S5} Lemma [S5| aims to simplify

1 n n
s DD Kn(BT(X; = X))b] @ (Xi = X;){Log,Y; —a; —b; ® (X; — X;)7}

j=1 i=1

divided by n=' >°" | K5 (BT(X; — X;)). We have proved in Lemma that

a; = h(By X;) + hY (B X;)(By — B)Twp(X;) + h*tr(X;)/2 + VE(X;) + O(B® + héa, + hdp),

vees(b;) = vees(h™V (BJ X;)) + Vi2(X;)/h + O(h* + dap, + 05).
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5.6 Proof of Lemmas

Thus by Taylor expansion, we have
Log,Y; — a; — b; @ (X; — X;)"
=h(Bg X;) + h'V (B3 X;) By (X — X;) + L, ® {(Xi = X;)" Bo}h'? (By X;) By (X; — X;) + G,
+O(IIBg (X; = X))|*) = h(Bg X;) — B (Bg X;)(Bo — B)Twp(X;) — h*tr(X;)/2 — Vin(X;)
+ O(h® 4 hdgn + hog) — WY (BIX)(X; — X;) — A {VE(X,)VBJ (X, — X;)/h
+ O(h* 4 64, + 68) By (X; — X))
=I, @ {(X; = X;) " BYh®(B] X;) BT(X; — X;)/2 + ¢ + BV (By X;)(B — Bo)Twp(X;) — h*tr(X;)/2
— Vin(X) — A {Va(X;)} By (Xi = X;)/h + Dn( X5, X5, B)
+ O(||Bg (X — X;)|°) + O(K* + héa, + hép) + O(h* + San + ) By (X; — X;)
=(1)+(2)+B) = (4) = (5) = (6) + (7) + (8) + (9) + (10).
where

An(Xi, X, B) = [[s ® {(Xi = X;)"(Bo — B)}h®(B) X;) BT (X, — X;)

DN | —

+ L, @ {(X; = X;)"BYh? (B{ X;)(Bo — B)T(X; — X))
+ L@ {(X; = X;)T(Bo — B)}h® (Bg X;)(Bo — B)T(X; — X;) .

Next we calculate

% Z Z Kh(BT(Xi—Xj))bjTe@(Xi—Xj){(1) ~ (10)}/% Z Kn(BT(Xi—X,))

j=1 i=1
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and denote corresponding results as (1') ~ (10').

, h2 n S
W)="3>" W (BT X;) @ vp(X;)tre(X;) + O(hY + héan + h*0),

71=1 k=1
1 n
(2) == =Y hO(BIX)T @ vp(Xi)G +o(n™/%) £ &,(By) + o(n”"/?),
=1

(3/) :WBVGC(B - Bo) + O(h253 + 5dh5B/h + 5%),

. h2 n S
(@) =— SN T h(BIX;) ® va(X;)tre(X;) + O(h* + hda + h*0p),

j=1 k=1
(5") =O(h*6an + g/ + 50an), (6") = O(h° + dandp + h*dp + dan),
(7)) =O(h*65 + 63), (8') = O(h*),(9') = O(h® + hda, + hip),
(10") =O(h* + h*0ay, + h*Sp).
Collecting above 10 terms shows the numerator equals Wgvec(B— By)+

®,,(By) + O(h® + hdap, + hop + 03, /h + dandp/h).
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