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This supplementary material contains: 1) algorithms for iOPG and iMAVE; 2) expressions of

asymptotic covariance matrices in Theorem 2 and 3 in the main manuscript; 3) convergence

results of iOPG and iMAVE on a general manifold; 4) a simulation study testing the CV proce-

dure of choosing the structural dimension d and a simulation study under the general manifold

case; 5) details of data collection and processing in the New York taxi network application; 6)

all proofs of theoretical results that appear in the main manuscript.

1. Algorithms of iMAVE and iOPG

First we introduce three operators in matrix algebra. “vec(·)” is the com-

mon matrix vec operator that vectorize an m × n matrix by column into

an mn × 1 vector. For an m × m symmetric matrix A = (aij), define

vecs(A) = (a11, a21, a22, ..., am1, ..., amm)T. That is, “vecs(·)” vectorize the
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lower triangle part of a symmetric matrix by row. For C0 in (3.8) in the main

manuscript, define vecss(C0) = (cT11(X0), c
T
21(X0), c

T
22(X0), ..., c

T
m1(X0), ..., c

T
mm(X0))

T.

We will frequently use vec(B), vecs(aj) and vecss(bj).

The intrinsic MAVE under the log-Euclidean metric is formulated as

min
B:BTB=I

aj ,bj

n∑
j=1

n∑
i=1

wij‖aj + bj
[
Im ⊗ {BT(Xi −Xj)}

]
− logYi‖2F , (S1.1)

We show how to solve aj and bj from (S1.1). Similar to classic MAVE, the

alternating iterative optimization approach can be adopted here. We first

fix B, differentiate (S1.1) w.r.t aj, bj, set the derivative to 0 and solve out

aj, bj. Then fix aj, bj to similarly get B.

Now suppose B is known. Since ||A||2F = tr(A⊗2) where A⊗2 = AAT

and the minimizer of tr(A⊗2) is the same as that of tr{vecs(A)⊗2} when A is

symmetric, we rewrite the Frobenius norm as the matrix trace since differ-

entiating the trace w.r.t. a matrix or a vector is convenient. So optimizing

(S1.1) is equivalent to optimizing

n∑
j=1

n∑
i=1

wij·tr
[
{vecs(aj) + vecs{bj · Im ⊗

(
BT(Xi −Xj)

)
} − vecs(logYi)}⊗2

]
.

(S1.2)
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Recall that bj =
(
ckl(Xj)

)
kl

where ckl(Xj) = clk(Xj) ∈ Rd. Thus

vecs
{
bj · Im ⊗

(
BT(Xi −Xj)

)}
=
(
cT11B

T(Xi −Xj), c
T
21B

T(Xi −Xj), c
T
22B

T(Xi −Xj), ..., c
T
mmB

T(Xi −Xj)
)T

=
{

vecss(bj)
T · Iq ⊗

(
BT(Xi −Xj)

)}T
,

where q = m(m + 1)/2. Here and hereafter we drop Xj from cTkl(Xj) for

simplicity. Define

χi(B
TXj) = (Iq, Iq ⊗ (Xi −Xj)

TB), αj =

 vecs(aj)

vecss(bj)

 .

Then (S1.2) can be written as

n∑
j=1

n∑
i=1

wij · tr
[{
χi(B

TXj)αj − vecs(logYi)
}⊗2]

. (S1.3)

Differentiate (S1.3) w.r.t αj and we get the expression of αj which we present

in the algorithm later to avoid redundancy.

Now we fix aj and bj and differentiate (S1.2) w.r.t B. We write

bj · Im ⊗
(
BT(Xi −Xj)

)
=


cT11B

T(Xi −Xj) · · · cT1mB
T(Xi −Xj)

...
...

cTm1B
T(Xi −Xj) · · · cTmmB

T(Xi −Xj)

 .

Since cTklB
T(Xi −Xj) is a scalar,

cTklB
T(Xi −Xj) =vec{cTklBT(Xi −Xj)} = {ckl ⊗ (Xi −Xj)}Tvec(B)

:=aTkl · vec(B), k, l = 1, ...,m.
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Hence,

bj · Im ⊗
(
BT(Xi −Xj)

)
=


aT11vec(B) · · · aT1mvec(B)

...
...

aTm1vec(B) · · · aTmmvec(B)

 ,

and

vecss
{
Bj · Im ⊗BT

(
(Xi −Xj)

)}
=
(
aT11vec(B), aT21vec(B), aT22vec(B), ..., aTm1vec(B), ..., aTmmvec(B)

)T
=(a11, a21, a22, ..., am1, ..., amm)Tvec(B)

,Aij · vec(B),

where i and j in Aij indicate Aij varies according to Xi and Xj.

Consequently we can rewrite (S1.2) as

n∑
j=1

n∑
i=1

wij · tr
[
{vecs(aj − logYi) + Aijvec(B)}⊗2

]
. (S1.4)

Differentiate (S1.4) w.r.t vec(B) to get the expression of vec(B). We place

it in the algorithm as well. The optimization procedure of iOPG can be

derived similaryly and is thus omitted.

Now we are ready to state algorithms for iMAVE and iOPG. In order

to reduce the dimension of the kernel form p to d, we adopt the approach

of the refined MAVE (Xia, 2007). That is, replace Kht(Xi − Xj) with
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Kht(B̂
T
(t)(Xi −Xj)) in each iteration. Denote q = m(m+ 1)/2 and

wij =
Kh(B

T(Xi −Xj))∑n
i=1Kh(BT(Xi −Xj))

, αj =

 vecs(aj)

vecss(bj)

 ,

χi(Xj) =
(
Iq, Iq ⊗ (Xi −Xj)

T
)T
, χi(B

TXj) =
(
Iq, Iq ⊗ {(Xi −Xj)

TB}
)T
,

Aij =
(
c11(Xj), c21(Xj), c22(Xj), ..., cm1(Xj), ..., cmm(Xj)

)
⊗ (Xi −Xj),

where ckl(Xj) (1 ≤ l ≤ k ≤ m) are components of Cj.

Algorithm 1: refined iMAVE under the log-Euclidean metric

Step 1. Marginally standardize X1, ..., Xn when necessary. Set the band-

width h0 = c0n
−1/(p0+6), where c0 = 2.34 and p0 = max(p, 3). Let B̂(0) be

an initial estimator. Set t = 1.

Step 2. Compute

α̂
(t)
j =

{ n∑
i=1

w
(t−1)
ij χi(B̂

T
(t−1)Xj)χi(B̂

T
(t−1)Xj)

T
}−1

×
n∑
i=1

w
(t−1)
ij χi(B̂

T
(t−1)Xj)vecs(logYi), j = 1, ..., n.

Read off vecs(â
(t)
j ) and vecss(b̂

(t)
j ) respectively from the first q and the re-

maining qd components of α̂
(t)
j .

Step 3. Compute

vec(B̂(t)) =
{ n∑

j=1

n∑
i=1

w
(t−1)
ij A

(t)
ij (A

(t)
ij )T

}−1 n∑
j=1

n∑
i=1

w
(t−1)
ij A

(t)
ij vecs(logYi−â(t)j ).

Step 4. If t < 30, reset ht+1 = max(rnht, c0n
−1/(d+4)), where rn = n−1/2(p0+6)).
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Set t = t + 1 and go back to step 2. Otherwise, get the iMAVE estimator

B̂(t).

The choice of bandwidth in iOPG is the same as iMAVE and the esti-

mated B̂iOPG by iOPG can usually be used as the initial value for B̂(0) in

iMAVE.

Algorithm 2: refined iOPG under the log-Euclidean metric

Step1. Marginally standardize X1, ..., Xn when necessary. Set the band-

width h0 = c0n
−1/(p0+6), where c0 = 2.34 and p0 = max(p, 3). Set B̂(0) = Ip.

Set iteration time t = 1.

Step2. Compute

α̂
(t)
j =

{
n∑
i=1

w
(t−1)
ij χi(Xj)χi(Xj)

T

}−1 n∑
i=1

w
(t−1)
ij χi(Xj)vecs(logYi), j = 1, ..., n.

Read off vecss(b̂
(t)
j ) from the last qd components of α̂

(t)
j .

Step3. Recover b̂
(t)
j , j = 1, ..., n from vecss(b̂

(t)
j ) in step 2 as

b̂
(t)
j =



cT11

cT21 cT22

...
...

. . .

cTm1 cTm2 · · · cTmm


, j = 1, ..., n,

with the symmetric part omitted. Rearrange the lower triangle part of b̂
(t)
j

to get β̂
(t)
j = (c11, c21, c22, ..., cm1, ..., cmm)T ∈ Rq×p, j = 1, ..., n.
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Step 4. Compute

Λ̂(t) =
1

n

n∑
j=1

(β̂
(t)
j )Tβ̂

(t)
j .

Perform eigen-decomposition for Λ̂(t) and get the d eigenvectors v̂1, ..., v̂d

corresponding to its largest d eigenvalues. Let B̂(t) = (v̂1, ..., v̂d).

Step 5. If t < 30, reset ht+1 = max(rnht, c0n
−1/(d+4)), where rn =

n−1/2(p0+6)). Set t = t+ 1 and go back to step 2. Otherwise, get the iOPG

estimator B̂(t).

2. Asymptotic Properties of iMAVE and iOPG

Recall our transformed model under the log-Euclidean metric is

logY = log{g(BT
0X)}+ logε. (S2.5)

Denote h(BT
0X) = log{g(BT

0X)} and ζ = logε. Since h(BT
0X) and

ζ are m × m symmetric matrices, denote their (k, l)-th component as hkl

and ζkl (1 ≤ l ≤ k ≤ m). Let µB(u) = E(X | BTX = u), wB(u) =

E(XXT | BTX = u), vB(u) = µB(BTu) − u, and w̄B(u) = wB(BTu) −

µB(BTu)µT
B(BTu) which will be frequently encountered in proofs. For any

square matrix A, A−1 and A+ denote the inverse (if it exists) and the

Moore-Penrose inverse matrix.

7



Define

WSPD = E

[{
m∑
k=1

k∑
l=1

h
(1)
kl (BT

0X)h
(1)
kl (BT

0X)T

}
⊗
{
vB0(X)vTB0

(X)
}]

,

ΣSPD = var

[{
m∑
k=1

k∑
l=1

h
(1)
kl (BT

0X)ζkl

}
⊗ vB0(X)

]
,

and W SPD
0 = var

[{
M−1

SPD

∑m
k=1

∑k
l=1 h

(1)
kl (BT

0X)ζkl

}
⊗
{
w̄+
B0

(X)vB0(X)
}]
.

Under several assumptions listed in the main manuscript, we have

√
n
{

vec(B̂iMAVEB̂
T
iMAVEB0)− vec(B0)

}
d→ N(0,W+

SPDΣSPDW
+
SPD),

√
n
{

vec(B̂iOPGB̂
T
iOPGB0)− vec(B0)

}
d→ N(0,W SPD

0 ).

Next we extend our model to a general Riemannian manifold other than

Sym+(m). As noted in the main manuscript, we assume the model as

LogµY = h(BT
0X) + ζ, (S2.6)

where Y belongs to a general Riemannian manifoldM and µ is the Fréchet

mean of Y . Since LogµY ∈ TµM, LogµY ∈ Rs where s is the dimension

of M. Denote the k-th component of h as hk (k = 1, ..., s). Substitute

yk, hk for ykl, hkl in conditions (A1)-(A5) in the manuscript. Replace the

matrixMSPD in condition (A4) withM0 = E{h(1)(BT
0X)Th(1)(BT

0X)} where

h(1) = Oh(BT
0X) ∈ Rs×d. Denote the modified conditions as (A1’)-(A5’).

Define

WB0 = E
[{
h(1)(BT

0X)Th(1)(BT
0X)

}
⊗
{
vB0(X)vTB0

(X)
}]
,

Σ0 = var
[{
h(1)(BT

0X)T ⊗ vB0(X)
}
ζ
]
,
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and W0 = var
[{
M−1

0 h(1)(BT
0X)Tζ

}
⊗
{
w̄+
B0

(X)vB0(X)
}]

.

Theorem S1. Under (A1’)-(A5’) and (C1)-(C6), the estimated B̂iMAVE

from (S2.6) satisfies

‖B̂iMAVEB̂
T
iMAVE −B0B

T
0 ‖F = O(h3 + hδdh + δ2dh/h+ n−1/2)

in probability as n→∞, where δdh = (nhd/logn)−1/2. If h3+hδdh+δ2dh/h =

o(n−1/2), then

√
n
{

vec(B̂iMAVEB̂
T
iMAVEB0)− vec(B0)

}
d→ N(0,W+

B0
Σ0W

+
B0

).

Theorem S2. Under (A1’)-(A5’) and (C1)-(C6), the estimated B̂iOPG from

(S2.6) satisfies

‖B̂iOPGB̂
T
iOPG −B0B

T
0 ‖F = O(h3 + hδdh + n−1/2)

in probability as n → ∞, where δdh = (nhd/logn)−1/2. If h3 + hδdh =

o(n−1/2), then

√
n
{

vec(B̂iOPGB̂
T
iOPGB0)− vec(B0)

}
d→ N(0,W0).

Results in Theorem S1 and S2 are consistent with those in Xia et al

(2002), Xia (2007) and Zhang (2021) as well. The discrepancy between

Logµ̂Yi and LogµYi does not affect the convergence results. Actually Theo-

rem 2 and 3 in the main manuscript can be seen as corollaries of Theorem
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S1 and S2 here since m × m symmetric matrices in (S2.5) are equivalent

to their lower triangle parts which are m(m+ 1)/2-dimensional vectors and

Theorem S1 and S2 can be directly awakened.

3. More Simulation Studies

3.1 Simulation Study III: Spherical Data

Since the proposed iMAVE and iOPG can be extended to general manifolds,

we test the performance of our methods in a general manifold. We generate

Y ∈ S2 according to the following model:

III: Let p0 = (0, 0, 1)T and the tangent vector at p0 be

l(Xi) =

(
exp(Xi1) sinXi1 + εi1,

exp(Xi1 +Xi2)− 1

exp(Xi1 +Xi2) + 1
+ εi2, 0

)T

.

We generate i.i.d. observations X1, ..., Xn from the uniform distribution on

[−1, 1] and i.i.d. εi1, εi2 ∼ N(0, 0.12). Then Yi is generated by

Yi = Expp0{l(Xi)} = cos(||l(Xi)||)p0 + sin(||l(Xi)||)l(Xi)/||l(Xi)||,

where || · || is the Euclidean norm.

We set n = 100, 200 and p = 20, 30. The simulation results are listed in

Table S1. Our iMAVE or iOPG perform better than others in all scenarios.
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3.2 Simulation Study IV: CV Procedure Tested

Model (p, n) WIRE fOPG fMAVE iOPG iMAVE

III (20,100) 0.5247 1.2053 1.6644 0.4471 0.4849

±0.1077 ±0.2424 ±0.0665 ±0.0520 ±0.3619

(20,200) 0.3651 0.7008 1.6491 0.2782 0.2365

±0.0550 ±0.2036 ±0.1306 ±0.0417 ±0.0406

(30,100) 0.6930 1.2803 1.6929 0.7287 0.6036

±0.0873 ±0.1488 ±0.1141 ±0.1569 ±0.3239

(30,200) 0.4431 1.0343 1.6810 0.3711 0.4619

±0.0360 ±0.1799 ±0.1070 ±0.0557 ±0.3811

Table S1: Mean (± standard deviation) of estimation errors for different

methods in model III.

3.2 Simulation Study IV: CV Procedure Tested

We assume now the structural dimension d is unknown. We generate data

from the five models in simulation study I, II (in the main manuscript) and

III and use the proposed CV procedure to estimate d. We use iOPG to

estimate B. We set p = 10, n = 200, repeat 100 times for each model and

list the counts of correct and false estimates in 100 times when σ = 0.1 and

0.2, which is shown in Figure S1.

Except model I-1 with σ = 0.2, the CV procedure always gives satisfying

estimations, reaching an accuracy greater than 80% and even approaching
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Figure S1: Bar charts: counts of correct and false estimates in 100 replica-

tions for five models with (p, n) = (10, 200). The upper and the lower row

correspond respectively to σ = 0.1 and 0.2.
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100% in most cases. And if we increase the sample size to 300, the result

corresponding to model I-1 with σ = 0.2 becomes: (d̂ < d) : 0, (d̂ = d) : 92,

(d̂ > d) : 8. Such improvement validates Theorem 1 in the main manuscript.

4. New York Taxi Network Data

The New York City Taxi and Limousine Commission (TLC) provides records

on pick-up and drop-off dates and times, pick-up and drop-off locations, trip

distances, itemized fares, payment types and other information for yellow

taxis (Tucker et al., 2021). The data are available from

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Similar to Tucker et al. (2021), we transform the raw data into network

data (adjacent matrices), where zones are nodes and edges are weighted by

the number of taxi rides which picked up in one zone and dropped off in

another within a single hour. After proper mapping, these adjacent matrices

can lie in the space of SPD matrices. We do the following to collect SPD

matrices together with several prediction variables:

1. We only choose the data of January and February, 2019 (59 days)

due to resource restrictions.

2. We further filter on observations with both pick-up and drop-off

occurring in Manhattan (islands excluded).
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Figure S2: The map of the TLC taxi zones in Manhattan. This map is

downloaded from https:/ /www1.nyc.gov/assets/tlc/images/content/pages

/about/taxi zone map manhattan.jpg
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Bigger Zones Original Taxi Zones

1

128, 127, 243, 244, 120, 116, 152,

42, 41, 74, 75, 166, 24, 151, 238,

239, 43, 236, 237, 263, 262, 141, 140

2

143, 142, 50, 48, 246, 68, 90, 186,

230, 100, 163, 161, 164, 234, 162,

170, 107, 229, 233, 137, 224

3

158, 249, 125, 113, 114, 211, 144,

79, 4, 148, 232, 231, 13, 261, 12,

88, 87, 209, 45

Table S2: Grouped zones of Manhattan.

3. We then group zones in Manhattan into 3 zones and label them

similar to Dubey and Müller (2020). To be specific, Figure S2 shows the

map of the TLC taxi zones in Manhattan. We group these zones (islands

excluded) into three bigger zones according to Table S2. That is, each

network has 3 nodes.

4. For each hour, we collected the number of pairwise connections be-

tween nodes based on pick-ups and drop-offs. These correspond to weights

between nodes. We then further normalize the weights by the maximum

edge weight in each hour so that they lie in [0, 1].
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By doing so, we collected 1416 (59×24) weighted adjacent matrices of

3×3 describing the taxi movements between zones in Manhattan. To ensure

that they are SPD matrices, we apply exp(·) to these symmetric matrices.

From the taxi data, we also collect the following 9 potential predictors,

with values averaged over each hour:

Ave.Distance: mean distance traveled, standardized

Ave.Fare: mean total fare, standardized

Ave.Passengers: mean number of passengers, standardized

Ave.tip: mean tip, standardized

Cash: sum of cash indicators for type of payment, standardized

Credit: sum of credit indicators for type of payment, standardized

Dispute: sum of dispute indicators for type of payment, standardized

Free: sum of free indicators for type of payment, standardized

LateHour: indicator for the hour being between 11pm and 5am

Apart from these, we also collect New York City weather history for

January and February 2019 from

https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date

The following 5 weather variables are included as potential predictors:

Ave.temp: daily mean temperatire, standardized

Ave.humid: daily mean humidity, standardized
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Ave.wind: daily mean wind speed, standardized

Ave.press: daily mean barometric pressure, standardized

Precip: daily total precipitation, standardized

This then yields a total of 14 potential predictors.

5. Proof

5.1 Proof of Theorem 1

All the proofs of lemmas needed for theoretical proof can be found in sec-

tion 5.6. Here we prove the CV result of iMAVE or iOPG for Sym+(m)

endowed with the log-Euclidean metric. As we have mentioned, the log-

Cholesky case only replaces logYi by chol(Yi) and thus the conclusion to-

gether with the proof is the same and is omitted. Little modification is

needed to derive the CV procedure for the general Riemannian manifolds,

which is also shown in Zhang (2021). To prove Theorem 1, we need the

following lemma.

Lemma S1. Suppose logYi = g(Xi) + εi, i = 1, ..., n where g(·) : Rp →

Sym(m) . Suppose gkl(·) has fifth derivatives. Let (âj, b̂j) minimize

∑
i 6=j

‖logYi − aj − bj · Im ⊗ (Xi −Xj)‖Kh(Xi −Xj). (S5.7)
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5.1 Proof of Theorem 1

Then

1

n

n∑
j=1

‖vecs(logYj)− vecs(âj)‖2 =
∑
l≤k

σ2
kl +

1

4
h4
∑
l≤k

∫
{tr(g(2)kl )(x)}2f(x)dx

+
∑
l≤k

αpσ
2
kl

nhp
{1 + oP (1)}+OP (h5 + n−1/2)

where
∑

l≤k is short for
∑

1≤l≤k≤m, σ2
kl is the variance of εkl and αp =

{
∫
K2(u)du}p.

Proof of Theorem 1: The proof follows almost the same line as that of

Xia et al. (2002). Let (B0, B̄0) : p× p satisfy (B0, B̄0)
T(B0, B̄0) = I and Bl

be the first l columns of (B0, B̄0). Define

f̃l,j(x) =
1

n

∑
i 6=j

Kh(B
T
l (Xi − x)),

ãl0,j(x) = {nf̃l,j(x)}−1
∑
i 6=j

Kh(B
T
l (Xi − x))vecs(logYi),

f̂l,j(x) =
1

n

∑
i 6=j

Kh(B̂
T
l (Xi − x)),

âl0,j(x) = {nf̂l,j(x)}−1
∑
i 6=j

Kh(B̂
T
l (Xi − x))vecs(logYi).

Suppose Bd = (β1, ..., βd). That is, logY = g(β1X, ..., βdX)+ε. If d < p,

nominally extend the number of directions to p, say {β1, ..., βd, ..., βp}, such

that they are perpendicular to one another. Now the problem becomes the

selection of covariates among {β1X, ..., βpX}, which is just the focus of Yao

and Tong (1994). However, since β1, ..., βp are unknown, we must replace
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5.1 Proof of Theorem 1

βk by their estimate β̂k. So to take advantage of the proof in Yao and Tong

(1994), we need f̃l,j(x) and ãl0,j(x).

Let CV0(l) = n−1
∑n

j=1 ||vecs(logYj)− ãl0,j(Xj)||2 and CV(l) =

n−1
∑n

j=1 ||vecs(logYj)− âl0,j(Xj)||2. Suppose we have shown that

CV(d)− CV0(d) = oP (h4). (S5.8)

Following the proof of Yao and Tong (1994), there is a constant δ > 0

such that for the working dimension l < d,

lim
n→∞

P{CV(l) > CV0(d) + δ} = 1.

Hence limn→∞ P{CV(l) > CV(d)} = 1.

For l > d, by Lemma S1, we have CV(l) > CV(d) + O(h4). Conse-

quently,

lim
n→∞

P{CV(l) > CV(d)} = 1.

Therefore, all that is left is to prove (S5.8).

CV(d) =
1

n

n∑
j=1

||vecs(logYj)− âd0,j(Xj)||2

=
1

n

n∑
j=1

||vecs(logYj)− ãl0,j(Xj) + ãl0,j(Xj)− âd0,j(Xj)||2

=
1

n

n∑
j=1

||vecs(logYj)− ãl0,j(Xj)||2 +
1

n

n∑
j=1

||ãl0,j(Xj)− âd0,j(Xj)||2

+
2

n

n∑
j=1

(vecs(logYj)− ãl0,j(Xj))
T (ãl0,j(Xj)− âd0,j(Xj)) .

19



5.2 Proof of Proposition 1

Let wij(Bl) = Kh(B
T
l (Xi − Xj))/

∑
i 6=jKh(B

T
l (Xi − Xj)) and denote

Y kl
j as the (k, l) element of the m×m matrix logYj. We have

CV(d) =
∑
l≤k

{
1

n

n∑
j=1

(
Y kl
j −

∑
i 6=j

wij(B̂d)Y
kl
j

)2

+
1

n

n∑
j=1

(∑
i 6=j

wij(Bd)Y
kl
j −

∑
i 6=j

wij(B̂d)Y
kl
j

)2

+
1

n

n∑
j=1

(
Y kl
j −

∑
i 6=j

wij(B̂d)Y
kl
j

)(∑
i 6=j

wij(Bd)Y
kl
j −

∑
i 6=j

wij(B̂d)Y
kl
j

)}
.

That is, CV(d) is the summation of the CV values of the case where

Y is a scalar, which is the focus of Xia et al. (2002). Directly apply the

results of Xia et al. (2002) and get the result.

5.2 Proof of Proposition 1

Proof of Proposition 1: Our model Y = g(BT
0 X)⊕ ε is equivalent to

Y = e⊕ g(BT
0 X)⊕ ε, (S5.9)

where e is the identity element of group (Sym+(m),⊕). According to Lin

et al. (2022), we have Logµ(µ ⊕ z) = φe,µlog(z) for µ, z ∈ Sym+(m).

Applying this to (S5.9) with µ = e and z = g(BT
0 X)⊕ ε, we have LogeY =

log(g(BT
0 X)⊕ ε). Use another equation in Lin et al. (2020): log(u⊕ v) =

log(u) + log(v), u, v ∈ Sym+(m) and we have LogeY = log(g(BT
0 X)) + logε.

Based on the bi-invariance of the Log-Euclidean metric, Loge = log = log

which helps us arrive at the conclusion.

20



5.3 Proof of Theorem 2 and 3

5.3 Proof of Theorem 2 and 3

As pointed out below Theorem S1 and S2, Theorem 2 and 3 in the main

manuscript can be seen as corollaries of Theorem S1 and S2. So we only

present proofs for Theorem S1 and S2 here.

Recall that our model is

logµYi = h(BT
0Xi) + ζi (i = 1, ..., n),

where logµYi, ζi ∈ Rs and h(·) : Rd → Rs.

Expand logYi at BT
0 x by Taylor expansion, we have

logYi =h(BT
0 x) +


h
(1)
1 (BT

0 x)TBT
0 (Xi − x)

...

h
(1)
s (BT

0 x)TBT
0 (Xi − x)

+
1

2


(Xi − x)TB0h

(2)
1 (BT

0 x)BT
0 (Xi − x)

...

(Xi − x)TB0h
(2)
s (BT

0 x)BT
0 (Xi − x)


+O(||BT

0 (Xi − x)||3) + ζi.

Here h
(1)
k (BT

0 x) is a d× 1 vector and is the coefficient of the first-order

term in the Taylor expansion series at BT
0 x of the kth component of logYi.

Similarly, h
(2)
k (BT

0 x) is a d × d matrix and is the second-order derivative

matrix. We collect these derivatives and form into two matrices for later
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5.3 Proof of Theorem 2 and 3

use:

h(1)(BT
0 x) =


h
(1)
1 (BT

0 x)T

...

h
(1)
s (BT

0 x)T


s×d

h(2)(BT
0 x) =


h
(2)
1 (BT

0 x)

...

h
(2)
s (BT

0 x)


sd×d

.

We first provide some lemmas needed for the proofs. We denote µB(u) =

E(X | BTX = u), wB(u) = E(XXT | BTX = u), vB(x) = µB(BTx) −

x, w̃B(x) = wB(BTx) − µB(BTX)xT − xµT
B(BTx) + xxT and w̄B(x) =

wB(BTx)− µB(BTx)µT
B(BTx) = w̃B(x)− vB(x)vTB(x). Additionally, we de-

note δn = (n/logn)−1/2, δdh = (nhd/logn)−1/2 and τn = h2 + δdh. Assume

An is a matrix. We say An = O(an) (or o(an)) for simplicity if all elements

in An are O(an) (or o(an)) almost surely.

Lemma S2 (Kernel smoother in OPG). Let

SBn (x) =
1

n

n∑
i=1

Kh(B
T(Xi − x))

 Is

Is ⊗ (Xi − x)


 Is

Is ⊗ (Xi − x)


T

and ax

vecs(bx)

 = (nSBn (x))−1
n∑
i=1

Kh(B
T(Xi−x))

 Is

Is ⊗ (Xi − x)

LogµYi.

Under assumptions (A1’)-(A3’), if h → 0, δB/h → 0 and nhd/logn → 0,
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5.3 Proof of Theorem 2 and 3

then

vecs(bx) =(Is ⊗B0)vecs(h(1)(BT
0 x))

+ {nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))Is ⊗

[
w̄+
B(x) {Xi − µB(x)}

]
ζi +O(εdh),

where εdh = h3 + hδdh + hδB.

Lemma S3 (Kernel smoother in MAVE). Let

ΣB
n (x) =

1

n

n∑
i=1

Kh(B
T(Xi−x))

 Is

Is ⊗BT(Xi − x)/h


 Is

Is ⊗BT(Xi − x)/h


T

and ax

vecs(bx)h

 = (ΣB
n (x))−1

n∑
i=1

Kh(B
T(Xi−x))

 Is

Is ⊗BT(Xi − x)/h

LogµYi.

Under assumptions (A1’)-(A3’), if h → 0, δB/h → 0 and nhd/logn →

0, then

ax = h(BT
0 x) + h(1)(BT

0 x)(B0 −B)TvB(x) + tr(x)h2/2 + V B
1n(x) +O(h3 + hδdh + hδB),

hvecs(bx) = hvecs{h(1)(BT
0 x)}+ V B

2n(x) +O(h3 + hδdh + hδB),

where

V B
1n(x) =EBn,1(x) +MB

2n(x)EBn,2(x)h,

V B
2n(x) =MB

3n(x)EBn,1(x)h+ EBn,2(x).

23



5.3 Proof of Theorem 2 and 3

Above tr(x),MB
kn(x) (k = 1, 2, 3) are matrices whose components are all

bounded and continuous functions (explicit forms can be found in the proofs)

and

EBn,1(x) ={nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))ζi,

EBn,2(x) ={nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))Is ⊗ {BT(Xi − x)/h}ζi.

Lemma S4 (Denominator of MAVE). Define Aij = bTj ⊗ (Xi−Xj). Under

assumptions (A1’)-(A3’), if h→ 0, δB/h→ 0 and nhd+3/logn→ 0, then{
1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi −Xj))AijA

T
ij

/
1

n

n∑
i=1

Kh(B
T(Xi −Xj))

}−1

=(Id ⊗B)LB1 (Id ⊗BT )− (Id ⊗B)LB2 − LB3 (Id ⊗BT ) +W+
B /2 +O(τn/h+ δB),

where

LB1 =
[
E{G(BT

0X)⊗ Id}
]−1

/h2,

LB2 =(LB3 )T =
[
E{G(BT

0 X)⊗ Id}
]−1

F TW+
B /2,

F =E
[
G(BTX)⊗

{
vB(X)OTfB(BTX) + fB(BTX)OvB(X)

}
/fB(BTX)

]
,

WB =E
[
G(BTX)⊗ {vB(X)vTB(X)}

]
,

and G(BTX) = h(1)(BTX)Th(1)(BTX).

Lemma S5 (Numerator of MAVE). Define Aij = bTj ⊗ (Xi −Xj). Under
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5.3 Proof of Theorem 2 and 3

assumptions (A1’)-(A3’), if h→ 0, δB/h→ 0 and nhd+3/logn→ 0, then

1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi −Xj))Aij{LogµYi − aj − AT

ijvec(B0)}/
1

n

n∑
i=1

Kh(B
T(Xi −Xj))

=WBvec(B −B0) + Φn(B0) +O(h3 + hδdh + hδB + δ2dh/h+ δdhδB/h),

where

WB =E
[
G(BTX)⊗ {vB(X)vTB(X)}

]
,

Φn(B0) =− 1

n

n∑
i=1

{
h(1)(BT

0Xi)
T ⊗ vB0(Xi)

}
ζi.

Proof of Theorem S1: Define M as the inverse of “vec”. In one iteration

of the algorithm,

Λt+1 =[M {vec(Bt+1)}]TM {vec(Bt+1)},

Bt+1 =M {vec(Bt+1)}Λ−1/2t+1 .

In our algorithms, we use Logµ̂Yi instead of LogµYi. So replacing LogµYi

by LogµYi + (φLogµ̂Yi − LogµYi) in Lemma S3 and we have

ãx =ax +D1(x)
1

n

n∑
i=1

Kh(B
T(Xi − x))(φLogµ̂Yi − LogµYi),

hvecs(b̃x) =hvecs(bx) +D2(x)
1

n

n∑
i=1

Kh(B
T(Xi − x))BT(Xi − x)(φLogµ̂Yi − LogµYi),

where ax and hvecs(bx) are exactly what have been listed in Lemma S3 and

D1(x), D2(x) are bounded matrices. As in Lin and Yao (2019), we write

φLogµ̂Yi − LogµYi = {−Hi(µ) + ∆i(µ̂)}Logµµ̂ and apply the theoretical

25



5.3 Proof of Theorem 2 and 3

result that ||Logµµ̂|| = O(n−1/2) to see under conditions (A1’)-(A3’) and

(C1)-(C6),

|| 1
n

n∑
i=1

Kh(B
T(Xi − x))(φLogµ̂Yi − LogµYi)||

=|| 1
n

n∑
i=1

Kh(B
T(Xi − x)){−Hi(µ) + ∆i(µ̂)}Logµµ̂||

≤const

{
1

n

n∑
i=1

K2
h(BT(Xi − x))

}1/2

||Logµµ̂||

=OP (n−1/2).

Similarly n−1
∑n

i=1Kh(B
T(Xi − x))BT(Xi − x)(φLogµ̂Yi − LogµYi) =

OP (n−1/2). Thus we can write ãx = ax +Ra(x) and hvecs(b̃x) = vecs(bx) +

Rb(x) where Ra(x), Rb(x) = OP (n−1/2).

Replacing aj, bj,LogµYi in Lemma S4 and Lemma S5 by ãj, b̃j,LogµYi+

(φLogµ̂Yi − LogµYi), calculations show the extra Ra(Xj) and Rb(Xj) have

no effects on the results of the denominator and the numerator of MAVE.

Thus we have

vec(B) =vec(B0)

+
{

(Id ⊗B)LB1 (Id ⊗BT)− (Id ⊗B)LB2 − LB3 (Id ⊗BT) +W+
B /2 +OP (τn/h+ δB)

}
×
{
WBvec(B −B0) + Φn(B0) +OP (h3 + hδdh + hδB + δ2dh/h+ δdhδB/h)

}
.

Since (Id⊗B)TWB = 0, (Id⊗B0)
TΦn(B0) = 0, Id⊗B = Id⊗B0+O(δB),

W+
BWB = Id ⊗ (B̃B̃T), (Id ⊗ B)LB2 WB = 0 and (Id ⊗ B)LB2 Φn(B) = 0, we
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5.3 Proof of Theorem 2 and 3

have

vec(B) =(Id ⊗B0)vec(Id) + (Id ⊗ B̃B̃T)vec(B −B0)/2 +W+
B Φn(B0)/2

+ (Id ⊗B0)/h
2OP{h3 + δ2dh/h+ hδdh + (δdh/h+ h)δB}

+OP{(δdh/h+ h)δB + h3 + δ2dh + δ2dh/h}.

For any Bt ∈ B = {B : ||B − B0|| ≤ δBt}, if δBt/h → 0, then Id ⊗

B̃tB̃t
T

= Id⊗ B̃0B̃0
T

+O(δBt). Here and hereafter we use the subscript t to

indicate the tth iteration.

vec(Bt+1) =(Id ⊗B0)vec(Id) + (Id ⊗ B̃tB̃t
T
)vec(Bt −B0)/2 +W+

Bt
Φn(B0)/2

+ (Id ⊗B0)/h
2
tOP{h3t + δ2dht/ht + htδdht + (δdht/ht + ht)δBt}

+OP{(δdht/ht + ht)δBt + h3t + δ2dht + δ2dht/ht}

=(Id ⊗B0){vec(Id) +OP (Ct)}+ Ψtvec(Bt −B0)/2 +W+
Bt

Φn(B0)/2

+OP{4t + (ht + δdht/ht)δBt},

where 4t = h3t + δ2dht/ht + htδdht , Ct = {4t + (ht + δdht/ht)δBt}/h2t , Ψt =

Id ⊗ (B̃tB̃t
T
) = Id ⊗ (B̃0B̃0

T
) +O(δBt).

Bt+1 =M [(Id ⊗B0){vec(Id) +OP (Ct)}] + M {Ψtvec(Bt −B0)}/2 + M {W+
Bt

Φn(B0)}/2

+OP{4t + (ht + δdht/ht)δBt}

=B0Ωt + M {Ψvec(Bt −B0)}/2 + M {W+
Bt

Φn(B0)}/2 +OP{4t + (ht + δdht/ht)δBt},

where Ωt = Id + OP (Ct). Since Ψvec(Bt − B0) = O(δBt), Φn(B0) = O(δn),
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5.3 Proof of Theorem 2 and 3

we have Bt+1 = B0Ωt +OP{δBt + δn +4t + (ht + δdht/ht)δBt}. Then

Λt+1 =[M {vec(Bt+1)}]TM {vec(Bt+1)}

=(B0Ωt)
T(B0Ωt) +OP{δBt + δn +4t + (ht + δdht/ht)δBt}

=Ω2
t +OP{δBt + δn +4t + (ht + δdht/ht)δBt},

and

Bt+1 =M {vec(Bt+1)}Λ−1/2t+1

=
[
B0Ωt + M {Ψvec(Bt −B0)}/2 + M {W+

Bt
Φn(B0)}/2 +OP{4t + (ht + δdht/ht)δBt}

]
×
[
Ω2
t +OP{δBt + δn +4t + (ht + δdht/ht)δBt}

]−1/2
.

We can show that C(t) = o(1) and thus

Bt+1 =B0 + M {Ψvec(Bt −B0)}/2 + M {W+
Bt

Φn(B0)}/2 +OP{4t + (ht + δdht/ht)δBt}

=B0 + M {Ψvec(Bt −B0)}/2 +OP{δn +4t + (ht + δdht/ht)δBt}.

Since Ψ2 = Ψ, we have

vec(Bt+1 −B0) =Ψvec(Bt −B0)/2 +OP{δn +4t + (ht + δdht/ht)δBt}

=Ψvec(Bt −B0)/2 +OP (δn +4t)

=Ψ {Ψvec(Bt−1 −B0)/2 +OP (δn +4t−1)} /2 +OP (δn +4t)

=Ψvec(Bt−1 −B0)/2
2 +OP (δn +4t)

=...

=Ψvec(B1 −B0)/2
t +OP (δn +4t).
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Now let t→∞, we have δB∞ = OP (δn +4∞) = OP (δn + h3 + δ2dh/h+

hδdh) = OP (h3 + δ2dh/h + hδdh + n−1/2). This is the first part of the con-

clusions. From Bt+1 = B0 + M {Ψvec(Bt −B0)}/2 + M {W+
Bt

Φn(B0)}/2 +

OP{4t + (ht + δdht/ht)δBt}, we know that when t→∞,

B∞−B0 = M {Ψvec(B∞−B0)}/2+M {W+
B∞

Φn(B0)}/2+OP (h3+δ2dh/h+hδdh).

(S5.10)

Then multiplying (S5.10) by BT
0 from left, we have

BT
0B∞ −BT

0B0

=BT
0B∞ − Id

=BT
0 M {Ψvec(B∞ −B0)}/2 +BT

0 M {W+
B∞

Φn(B0)}/2 +OP (h3 + δ2dh/h+ hδdh)

=M {(Id ⊗BT
0 )Ψvec(B∞ −B0)}/2 + M {(Id ⊗BT

0 )W+
B∞

Φn(B0)}/2 +OP (h3 + δ2dh/h+ hδdh)

=M {Id ⊗BT
0 B̃0B̃0

T
vec(B∞ −B0)}/2

+ M {(Id ⊗BT
0 )(Id ⊗B∞)[(Id ⊗BT

∞)WB∞(Id ⊗B∞)]−1(Id ⊗BT
∞)Φn(B0)}/2

+OP (h3 + δ2dh/h+ hδdh)

=OP (δB∞ + δn + h3 + δ2dh/h+ hδdh) = OP (δn + h3 + δ2dh/h+ hδdh).

From above calculations we can also see that BT
0B∞ = Id+OP (δn+h3+

δ2dh/h+ hδdh), which also implies BT
∞B0 = Id +OP (δn + h3 + δ2dh/h+ hδdh).

Multiply (S5.10) from right by BT
∞B0, we have

B∞B
T
∞B0−B0 = M {Ψvec(B∞−B0)}/2+M {W+

B∞
Φn(B0)}/2+OP (h3+δ2dh/h+hδdh).
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Then we have

vec(B∞B
T
∞B0)− vec(B0)

=Ψvec(B∞ −B0)/2 +W+
B∞

Φn(B0)/2 +OP (h3 + δ2dh/h+ hδdh)

=Ψ
{

Ψvec(B∞ −B0)/2 +W+
B∞

Φn(B0)/2 +OP (h3 + δ2dh/h+ hδdh)
}
/2

+W+
B∞

Φn(B0)/2 +OP (h3 + δ2dh/h+ hδdh)

=Ψvec(B∞ −B0)/2
2 + ΨW+

B∞
Φn(B0)/2

2 +W+
B∞

Φn(B0)/2 +OP (h3 + δ2dh/h+ hδdh)

=Ψvec(B∞ −B0)/2
2 +W+

B∞
Φn(B0)/2

2 +W+
B∞

Φn(B0)/2 +OP (h3 + δ2dh/h+ hδdh)

=...

=Ψvec(B∞ −B0)/2
t +W+

B∞
Φn(B0)/(2

t + ...+ 2) +OP (h3 + δ2dh/h+ hδdh)

=W+
B0

Φn(B0) +OP (δB∞δn + h3 + δ2dh/h+ hδdh)

=W+
B0

Φn(B0) +OP (h3 + δ2dh/h+ hδdh).

where the fourth equality comes from ΨW+
B∞

= W+
B∞

+O(δB∞).

If h3+δ2dh/h+hδdh = o(n−1/2), vec(B∞B
T
∞B0)−vec(B0) = W+

B0
Φn(B0)+

oP (n−1/2). HereW+
B0

is a non-random matrix and Φn(B0) = −n−1
∑n

i=1

{
h(1)(BT

0Xi)
T ⊗ vB(Xi)

}
ζi.

We can calculate E{Φn(B0)} = 0 and var{Φn(B0)} = var
[{
h(1)(BT

0X)T ⊗ vB0(X)
}
ζ
]

=

Σ0. So we have

√
n
{

vec(B∞B
T
∞B0)− vec(B0)

} d→ N(0,W+
B0

Σ0W
+
B0

).
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Proof of Theorem S2: Replacing LogµYi by LogµYi+(φLogµ̂Yi−LogµYi)

in Lemma S2, we have

bxk =B0h
(1)
k (BT

0 x) + {nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))w̄+

B(x)(Xi − µB(BTx))ζik

+R(x) +O(εdh)

=(B0, B̃0)

 h
(1)
k (BT

0 x)

O(εdh)

+ {nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))w̄+

B(x)(Xi − µB(BTx))ζik

+R(x) +O(εdh).

where R(x) = n−1
∑n

i=1Kh(B
T(Xi−x)){γB(x) + w̄+

B(x)}(Xi−x)(ŷik− yik)

and ŷik − yik is the kth component in φLogµ̂Yi − LogµYi. Similar rea-

soning as in the proof of Theorem S1 gives R(x) = OP (n−1/2). Denote

{nfB(BTx)}−1
∑n

i=1Kh(B
T(Xi−x))w̄+

B(x)(Xi−µB(BTx))ζik = EBk (x), then

bxkb
T
xk =(B0, B̃0)

 h
(1)
k (BT

0 x)h
(1)
kl (BT

0 x)T O(εdh)

O(εdh) O(ε2dh)


 BT

0

B̃T
0


+B0h

(1)
k (BT

0 x)EBk (x)T + EBk (x)h
(1)
k (BT

0 x)TBT
0 +OP (n−1/2) +O(εdhδdh).

We use the subscript t in letters to indicate the tth iteration and denote
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bxk in the tth iteration as b̂
(t)
k (x). Then

Σ̂(t+1) =
1

n

n∑
j=1

b̂
(t)
k (Xj)

Tb̂
(t)
k (Xj)

=(B0, B̃0)

 n−1
∑n

j=1 h
(1)(BT

0Xj)
Th(1)(BT

0Xj) O(εdht)

O(εdht) O(ε2dht)


 BT

0

B̃T
0


+

1

n

n∑
j=1

{
S
(t)
j + (S

(t)
j )T

}
+O(n−1/2) +O(εdhtδdht)

=(B0, B̃0)

 Λ
(t)
n O(εdht)

O(εdht) O(ε2dht)


 BT

0

B̃T
0

+
1

n

n∑
j=1

{
S
(t)
j + (S

(t)
j )T

}

+OP (n−1/2) +O(εdhtδdht),

where

S
(t)
j = B0

s∑
k=1

h
(1)
k (BT

0Xj)EBk (Xj)
T.

Now we calculate n−1
∑n

j=1

{
S
(t)
j + (S

(t)
j )T

}
.

1

n

n∑
j=1

{
S
(t)
j + (S

(t)
j )T

}

=(B0, B̃0)


 BT

0

B̃T
0

 1

n

n∑
j=1

{
S
(t)
j + (S

(t)
j )T

}
(B0, B̃0)


 BT

0

B̃T
0



=(B0, B̃0)

 0 C
(t)
12,n

(C
(t)
12,n)T 0


 BT

0

B̃T
0

+O(δdhtδBt)

In above calculation, we write Sj = B0Aj where Aj is the summation

shown in the definition of Sj. Note that BTµB(BTx) = 0, which implies

32



5.3 Proof of Theorem 2 and 3

BTw̄+
B(x) = 0 and further BTEBk (x) = 0, BTAj = 0. Additionally, one can

show that EBkl(x) = O(δdh). These relationships help us derive the above

equation where

C12,n =
1

n

n∑
j=1

s∑
k=1

h
(1)
k (BT

0Xj)EBk (Xj)
TB̃0 = M (t)

n B̃0.

We can show that the matrixMn =
∑s

k=1 n
−1∑n

i=1 n
−1∑n

j=1 f
−1
B (BTXj)Kh(B

T(Xi−

Xj))h
(1)
k (BT

0Xj)(Xi − µB(BTXj)
Tw̄+

B(x)ζik = O(δn). So

Σ̂(t+1) =B0ΛnB
T
0 +O(εdht) +B0M

(t)
n B̃0B̃

T
0 + B̃0B̃

T
0 (M (t)

n )TBT
0

+O(δdhtδBt) +O(εdhtδdht) +OP (n−1/2)

=B0ΛnB
T
0 +B0M

(t)
n B̃0B̃

T
0 + B̃0B̃

T
0 (M (t)

n )TBT
0 +OP (h3t + htδdht + htδBt)

=B0Λ
(t)
n B

T
0 +OP (δn + h3t + htδdht + htδBt).

(S5.11)

By the same argument used by Xia (2007), we have

Bt+1B
T
t+1 −B0B

T
0 = OP (δn + h3t + htδdht + htδBt).

Let t → ∞, we have B∞B
T
∞ − B0B

T
0 = OP (h3 + hδdh + δn) and this is the

first part of the conclusions.

By (S5.11), we have

Σ̂∞ = (B0 + ηn)Λn(B0 + ηn)T +OP (h3 + hδdh),
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5.3 Proof of Theorem 2 and 3

where ηn = (M
(t)
n )TΛ−1n = O(δn) and (B0 + ηn)T(B0 + ηn) = Id +O(δ2n). By

the same reasoning as Xia (2007), we have

B̂∞B̂
T
∞ −B0B

T
0 =(B0 + ηn)(B0 + ηn)T −B0B

T
0 +OP (h3 + hδdh)

=B0η
T
n + ηnB

T
0 +OP (h3 + hδdh).

Since BT
∞ηn = 0 and B0 − B∞ = δB∞ = OP (h3 + hδdh + δn), we have

B̂∞B̂
T
∞B0−B0 = ηn+B0η

T
nB0+OP (h3+hδdh) = ηn+OP (h3+hδdh). When

h3 + hδdh = o(n−1/2), all left is to calculate the variance of vec(ηn).
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5.4 Proof of Theorem 4: DOPG

We first prove the conclusion about DOPG. Before our proof, we introduce

some notations. Under the log-Euclidean metric, our model Y = g(BT
0X)⊕

ε can be transformed into logY = logg(BT
0 X) + logε which we rewrite as

logY = h(BT
0X) + ζ.

Expand logYi at x by Taylor expansion, we have

logYi =h(x) +


h
(1)
11 (x)T (Xi − x) ... h

(1)
1m(x)T (Xi − x)

...
...

h
(1)
m1(x)T (Xi − x) ... h

(1)
mm(x)T (Xi − x)



+
1

2


(Xi − x)Th

(2)
11 (x)(Xi − x) ... (Xi − x)Th

(2)
1m(x)(Xi − x)

...
...

(Xi − x)Th
(2)
m1(x)(Xi − x) ... (Xi − x)Th

(2)
mm(x)(Xi − x)


+O(|(Xi − x)|3) + ζi.

That is, we expand every element of the m ×m matrix logYi at x. Above

h
(1)
kl (x) is a p× 1 vector and is the coefficient of the first-order term in the

Taylor expansion series at x of the (k, l)-th element of logYi. Similarly,

h
(2)
kl (x) is a p× p matrix and is the second-order derivative matrix.

For further simplicity, we denote the (k, l)-th element of the m × m

symmetric matrix h(x) as akl(x), 1 ≤ l, k ≤ m and denote h
(1)
kl (x) as bkl(x).
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5.4 Proof of Theorem 4: DOPG

Proof of DOPG: By the same argument of Cai et al. (2022), we have

almost surely for 1 ≤ l ≤ k ≤ m

sup
x∈D
|âkl(x)− akl(x)| = O

((
pnlogn

nh
|α|
n

)1/2

+ ω2
n

)

sup
x∈D
|b̂[j]kl (x)− b[j]kl (x)| = O

((
pnlogn

nh
|α|+2αj
n

)1/2

+
ω2
n

h
αj
n

)
, j = 1, ..., p.

By condition (1), we denote the support of X by D which is a compact set

in Rp. Then for every x ∈ D,

b̂kl(x) = bkl(x) + ∆bnkl(x) = B0h
(1)
kl (BT

0 x) + ∆bnkl(x),

where ∆bnkl(x) = ((bnkl)
[1](x), ..., (bnkl)

[p](x))T is a p-dimensional vector. If

αj = 0, we have (bnkl)
[j](x) = OP (

√
pn/n). If αj 6= 0, we have (bnkl)

[j](x) =

O(c
[j]
n ). Let (B0, B̃0) be a p×p orthogonal matrix such that (B0, B̃0)(B0, B̃0)

T =

Ip and (B0, B̃0)
T(B0, B̃0) = Ip. We can write

b̂kl(x) = (B0, B̃0)

 h
(1)
kl (BT

0 x) +BT
0 ∆bnkl(x)

B̃T
0 ∆bnkl(x)

 .

By the algorithm of OPG,

Σ̂ =
1

n

n∑
j=1

∑
l≤k

b̂klb̂
T
kl = (B0, B̃0)

 Λ
(1)
n Λ

(2)
n

Λ
(3)
n Λ

(4)
n

 (B0, B̃0)
T, (S5.12)

where

Λ(1)
n =

∑
l≤k

1

n

n∑
j=1

{h(1)kl (BT
0Xj)(h

(1)
kl (BT

0Xj))
T

+ 2BT
0 ∆bnkl(Xj)(h

(1)
kl (BT

0Xj))
T +BT

0 ∆bnkl(Xj)(∆b
n
kl(Xj))

TB0},
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5.4 Proof of Theorem 4: DOPG

Λ(2)
n = (Λ(3)

n )T =
∑
l≤k

1

n

n∑
j=1

{h(1)kl (BT
0Xj)(∆b

n
kl(Xj))

TB̃0+B
T
0 ∆bnkl(Xj)(∆b

n
kl(Xj))

TB̃0},

Λ(4)
n =

∑
l≤k

1

n

n∑
j=1

B̃T
0 ∆bnkl(Xj)(∆b

n
kl(Xj))

TB̃0.

Note that the p-dimensional vector βk in B0 satisfies ‖βk‖22 = 1 and

the remainder ∆bnkl(x) satisfies ‖∆bnkl(x)‖2 =
∑p

j=1{(bnkl)[1]}2 = σ2
n with

σn = {
∑

αj 6=0(c
[j]
n )2 +

∑
αj=0 pn/n}1/2. Then it can be shown that for a

p-dimensional unit vector β,

β∆bnkl(x) ≤ ‖β‖ · ‖∆bnkl(x)‖ ≤ σ.

This together with assumption (A2) results in BT
0 ∆bnkl(Xj)(h

(1)
kl (BT

0Xj))
T =

OP (σn). By the same discussion, we have BT
0 ∆bnkl(Xj)(∆b

n
kl(Xj))

TB0 =

OP (σ2
n).

By the central limit theorem, it is easy to see that

Λ(1)
n = E{h(1)kl (BT

0X)(h
(1)
kl (BT

0X))T}+OP (1/
√
n)+OP (σn) := Σ0+OP (σn+1/

√
n).

Using Lemma 6 in Cai et al. (2022), we conclude that the eigenvalues

of Λ
(1)
n is asymptotically converge to eigenvalues of Σ0 in probability with

order O(d(σn + 1/
√
n)).

37



5.5 Proof of Theorem 4: DMAVE

Similarly, we obtain that Λ
(2)
n = (Λ

(3)
n )T = OP (σn + 1/

√
n) and Λ

(4)
n =

OP (σ2
n + 1/

√
n) with eigenvalues of Λ

(4)
n being O(σ2

n + (pn − d)/
√
n). Let

λ1 ≥ ... ≥ λp be the eigenvalues of Σ̂ and β̂1, ..., β̂p be their corresponding

eigenvectors. By the Eigenvalue Interlacing Theorem and assumption 3 and

4, we have min{λ1, ..., λd} > c > 0 and max{λd+1, ..., λp} = O(σ2
n + (pn −

d)/
√
n = o(1)). Therefore, the top-d eigenvalues can be distinguished from

others asymptotically. By (S5.12) we have in probability

Σ̂ = B0Σ0B
T
0 +OP (σn + 1/

√
n). (S5.13)

Let B̂DOPG = (β̂1, ..., β̂d). Using (ii) of Lemma 6 in Cai et al. (2022) and

under assumptions (B1) and (B3), we obtained

B̂DOPGB̂
T
DOPG −B0B

T
0 = OP (pnσn).

5.5 Proof of Theorem 4: DMAVE

The target function of DMAVE is equivalent to

n∑
j=1

n∑
i=1

tr
[
{vecs(aj) + Iq ⊗ (XT

ijB)vecss(bj)− vecs(logYi)}⊗2
]
Kh(Xij; α̂)

which can be rewritten as

∑
1≤l≤k≤m

n∑
j=1

n∑
i=1

{yikl − akl(Xj)− cTkl(Xj)B
TXij}2Kh(Xij; α̂)
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5.5 Proof of Theorem 4: DMAVE

where yikl is the (k, l)-th element of the matrix logYi. So it is safe to only

inspect akl(x) and ckl(x) for some 1 ≤ l ≤ k ≤ m. To simplify our notations,

we now fix (k, l) and write yikl as Yi, akl(x) as a(x) and ckl(x) as c(x). From

our model logYi = logg(BT
0Xi) + logεi, we have yikl = (logg(BT

0Xi))kl + ζkl

and we denote it as Yi = h(BT
0Xi) + εi since (k, l) is fixed. That is, we

now only need to consider the model Y = m(X) + ε = h(BT
0X) + ε where

Y ∈ R and X ∈ Rp. And the DMAVE for Y = h(BT
0X) + ε estimates B0

by minimizing the following objective function

1

n2

n∑
j=1

n∑
i=1

{Yi − aj − cTj BT(Xi −Xj)}}2Kh(Xi −Xj; α̂),

Before proof, we introduce the following notations as Cai et al. (2022)

did. A local approximation of m(z) by a polynomial of total order r is given

by

m(z) ≈
∑

0≤|k|≤r

1

k!
(Dkm)(z)(z − x)k,

where

k = (k[1], ..., k[p]), k! = k[1]!× ...× k[p]!, |k| =
p∑
j=1

k[j];

xk = (x[1])k
[1] × ...× (x[p])k

[p]

,
∑

0≤|k|≤r

=
r∑
j=0

j∑
k[1]=0

· · ·
j∑

k[p]=0

k[1]+...+k[p]=j

;

and

(Dkm)(x) =
∂m(y)

∂(y[1])k[1] · · · ∂(y[p])k[p]

∣∣∣
y=x

.
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5.5 Proof of Theorem 4: DMAVE

With samples (Xi, Yi), i = 1, ..., n, the problem of local linear regression

can be written as minimizing

n∑
i=1

{Yi −
∑

0≤|k|≤1

bk(x)(Xi − x)k}2Kh(Xi − x; α̂) (S5.14)

w.r.t. bk(x). Denote the minimizer of (S5.14) by b̂k(x), then we have

estimation (̂Dkm)(x) = k!b̂k(x). The minimization of (S5.14) leads to the

set of equations

tj(x) =
∑

0≤|k|≤1

hk·αb̂k(x)sj+k(x), 0 ≤ |j| ≤ 1, (S5.15)

where

tj(x) =
1

n

n∑
i=1

Yi[Zi(h;α)− z(h;α)]jKh(Xi − x; α̂),

sj(x) =
1

n

n∑
i=1

[Zi(h;α)− z(h;α)]jKh(Xi − x; α̂),

(S5.16)

with

z(h;α) = (
x[1]

hα1
, ...,

x[p]

hαp
).

Define τ(x) = (τ0(x), ..., τp(x))T, where τ0(x) = t(0,...,0)(x), τ1(x) =

t(1,...,0)(x),...,τp(x) = t(0,...,1)(x). Arranging hk·αb̂k(x), 0 ≤ |k| ≤ 1 in the

same order, we can obtain θ̂ as an estimator of column vector θ(x) =

(θ0(x), ..., θp(x))T := (m(x), hα1m[1](x), ..., hαpm[p](x))T. Then define S(x)
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5.5 Proof of Theorem 4: DMAVE

as

S(x) =



s(0,0,...,0)(x) s(1,0,...,0)(x) · · · s(0,0,...,1)(x)

s(1,0,...,0)(x) s(2,0,...,0)(x) · · · s(1,0,...,1)(x)

...
...

. . .
...

s(0,0,...,1)(x) s(1,0,...,1)(x) · · · s(0,0,...,2)(x)


.

Then the set of equations in (S5.15) can be written in matrix as

τ(x) = S(x)θ̂(x).

By assumption (B4), S(x) is invertible and we can henceforth write

θ̂(x) = S−1(x)τ(x),

as the solution of the set of equations (S5.15).

A fundamental decomposition for the error θ̂ − θ is provided next.

Firstly, let

t∗j(x) =
1

n

n∑
i=1

[Yi −m(Xi)][Zi(h;α)− z(h;α)]jKh(Xi − x; α̂),

and we have

tj(x)− t∗j(x) =
1

n

n∑
i=1

m(Xi)[Zi(h;α)− z(h;α)]jKh(Xi − x; α̂). (S5.17)

The Taylor series of m(Xi) at x with a mean-value form of remainder

is

m(Xi) =
∑

0≤|k|≤1

1

k!
(Dkm)(x)(Xi − x)k +

∑
|k|=2

(Dkm)(x̃i)(Xi − x)k, (S5.18)
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5.5 Proof of Theorem 4: DMAVE

where x̃i is a point between x and Xi. Substituting (S5.18) and (S5.16) to

(S5.17), we find

tj(x)− t∗j(x) =
∑

0≤|k|≤1

1

k!
hk·α(Dkm)(x)sj+k(x) + ej(x),

where

ej(x) =
1

n

∑
|k|=2

hk·α

k!

n∑
i=1

(Dkm)(x̃i)[Zi(h;α)− z(h;α)]jKh(Xi − x; α̂).

By (S5.15) and (Dkm)(x) = k!bk(x), we obtain

t∗j(x) =
∑

0≤|k|≤1

hk·α[b̂k(x)− bk(x)]sj+k(x)− ej(x). (S5.19)

For 0 ≤ |j| ≤ 1, using the same arrangement as for τ(x), we can define

the (p+ 1) column vector τ ∗(x) and e(x) as

τ ∗(x) =



t∗(0,...,0)(x)

t∗(1,...,0)(x)

...

t∗(0,...,1)(x)


, e(x) =



e(0,...,0)(x)

e(1,...,0)(x)

...

e(0,...,1)(x)


.

The vector form of (S5.19) is

τ ∗(x) = S(x)(θ̂(x)− θ(x))− e(x).

Thus

θ̂(x)− θ(x) = S−1(x)τ ∗(x) + S−1(x)e(x).

We next prove the following two lemmas.
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Lemma S6 (Kernel smoother in DMAVE). Let

S(BTx) =
1

n

n∑
i=1

Kh(Xix; α̂)

 1

BTXix


 1

BTXix


T

and  â(x)

ĉ(x)

 = {nS(BTx)}−1
n∑
i=1

Kh(Xix; α̂)

 1

BTXix

Yi.

Suppose assumptions (B1)-(B5), (A2) and (A4) hold, then we have almost

surely

sup
x∈D
|â(x)− a(x)| = O

((
pnlogn

nh
|α|
n

)1/2

+ ω2
n

)

sup
x∈D
|ĉ[j](x)− c[j](x)| = O

((
pnlogn

nh
|α|+2αj
n

)1/2

+
ω2
n

h
αj
n

)
, j = 1, ..., p.

Proof. Note that ωn =
∑

αj 6=0 h
αj‖β[j]‖2 and

∑p
j=1 ‖β[j]‖22 = d. By the

Cauchy-Schwarz inequality: (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i and (a+ b)1/2 ≤ a1/2 +

b1/2 for a, b ≥ 0, it can be easily seen that{ p∑
j=1

(hαj‖β[j]‖2)2
}1/2

=
{∑
αj 6=0

(hαj‖β[j]‖2)2 +
∑
αj=0

‖β[j]‖22
}1/2

≤
{∑
αj 6=0

(hαj‖β[j]‖2)2
}1/2

+
{∑
αj=0

‖β[j]‖22
}1/2

≤
∑
αj 6=0

hαj‖β[j]‖2 +
{ p∑

j=1

‖β[j]‖22
}1/2

≤ ωn + d1/2,

(S5.20)
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and

p∑
j=1

hαj‖β[j]‖2 =
∑
αj 6=0

hαj‖β[j]‖2 +
∑
αj=0

‖β[j]‖2

≤ ωn +

p∑
j=1

‖β[j]‖2 ≤ ωn +
{
p

p∑
j=1

‖β[j]‖22
}1/2

≤ ωn + d1/2p1/2n .

(S5.21)

The above two inequalities are widely employed in the following analysis.

By the Taylor’s expansion of h(BT
0Xi) at x and Yi = h(BT

0Xi) + εi, we

have

Yi = h(BT
0 x) + (Dh)T(BT

0 x)BT
0Xix +

∑
|k|=2

1

k!
(Dkm)(x̃i)X

k
ix + εi

=

 1

BT
0Xix


T h(BT

0 x)

(Dh)(BT
0 x)

+
∑
|k|=2

1

k!
hα·k(Dkm)(x̃i)[Xi(h;α)− x(h;α)]k + εi,

where (Dh)(BT
0 x) is the derivative vector of h(·) at BT

0 x.

Then (â(x), ĉ(x)) can be written as â(x)

ĉ(x)

 =

 h(BT
0 x)

(Dh)(BT
0 x)

+ {nS(BTx)}−1
n∑
i=1

Kh(Xix; α̂)

 1

BTXix

 εi

+ {nS(BTx)}−1
n∑
i=1

Kh(Xix; α̂)

 1

BTXix

∑
|k|=2

1

k!
hα·k(Dkm)(x̃i)[Xi(h;α)− x(h;α)]k

:=

 h(BT
0 x)

(Dh)(BT
0 x)

+ A1 + A2.
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Firstly the numerator in A1:

sup
x∈D

∣∣∣ 1
n

n∑
i=1

Kh(Xix; α̂)

 1

BTXix

 εi

∣∣∣

= sup
x∈D

∣∣∣
 1 0 · · · 0

0d hα1(β[1])T · · · hαp(β[p])T

 1

n

n∑
i=1

Kh(Xix; α̂)



1

X
[1]
ix /h

α1

...

X
[p]
ix /h

αp


∣∣∣

=

 supx∈D |t∗(0,0,...,0)(x)|

supx∈D |
∑p

j=1 h
αj(β[j])Tt∗j(x)|


where t∗j(x) = n−1

∑n
i=1Kh(Xix; α̂)[Xi(h;α) − x(h;α)]jεi for each j with

0 ≤ |j| ≤ 1. By an argument similar to Lemma 5 in Cai et al. (2021), we

have supx∈D |t∗j(x)| = O[{pnlogn/(nh
|α|
n )}1/2]. And

sup
x∈D
|

p∑
j=1

hαj(β[j])Tt∗j(x)| ≤ sup
x∈D
|

p∑
j=1

hαj(β[j])T| · sup
x∈D
|

p∑
j=1

t∗j(x)|

≤ sup
x∈D
‖

p∑
j=1

hαj(β[j])T‖2 · sup
x∈D
|

p∑
j=1

t∗j(x)| · 1d

= sup
x∈D
{

p∑
j=1

p∑
s=1

hαj+αsβ[j](β[l])T}1/2 · sup
x∈D
|

p∑
j=1

t∗j(x)| · 1d

≤ sup
x∈D
{

p∑
j=1

p∑
s=1

hαj+αs‖β[j]‖2‖β[l]‖2}1/2 · sup
x∈D
|

p∑
j=1

t∗j(x)| · 1d

= sup
x∈D

p∑
j=1

hαj‖β[j]‖2 · sup
x∈D
|

p∑
j=1

t∗j(x)| · 1d.
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This together with (S5.20) results in

sup
x∈D
|

p∑
j=1

hαj(β[j])Tt∗j(x)| = O
(

(
p2nlogn

nh
|α|
n

)1/2
)
.

And this implies for the numerator in A1:

sup
x∈D

∣∣∣ 1
n

n∑
i=1

Kh(Xix; α̂)

 1

BTXix

 εi

∣∣∣ =

 O((pnlogn/(nh
|α|
n ))1/2)

O((p2nlogn/(nh
|α|
n ))1/2)

 .

Consequently we obtain

sup
x∈D
|A1| =

 O((pnlogn/(nh
|α|
n ))1/2)

O((p2nlogn/(nh
|α|
n ))1/2)

 .

Secondly, the numerator in A2 is

1

n

n∑
i=1

Kh(Xix; α̂)

 1

BTXix

∑
|k|=2

1

k!
hα·k(Dkm)(x̃i)[Xi(h;α)− x(h;α)]k

=

 e(0,0,...,0)(x)∑p
j=1 h

αj(β[j])Tej(x)

 ,

where ej(x) =
∑
|k|=2

1
k!
hα·kn−1

∑n
i=1(D

km)(x̃i)[Xi(h;α)− x(h;α)]k+j with

supx∈D |ej(x)| = O(ω2
n) for each 0 ≤ |j| ≤ 1. Follow the same steps used

for A1, we get

sup
x∈D
|A2| =

 O(ω2
n)

O(p
1/2
n ω2

n)

 .
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In conclusion, we have supx∈D |â(x)− h(BT
0 x)|

supx∈D |ĉ(x)− (Dh)(BT
0 x)|

 = sup
x∈D
|A1 + A2| ≤ sup

x∈D
|A1|+ sup

x∈D
|A2|

=

 O((pnlogn/(nh
|α|
n ))1/2 + ω2

n)

O((p2nlogn/(nh
|α|
n ))1/2 + p

1/2
n ω2

n)

 .

Lemma S7. Suppose assumptions (B1)-(B5), (A2) and (A4) hold, we have

β̂[j] − β[j] = O(c[j]n ), j = 1, ..., p,

where c
[j]
n = pnlogn/(nh

|α|+2αj
n ))1/2 + ω2

n/h
αj
n .

Proof. Observe that (Dh)T(BT
0 x)BT

0Xix = (BT
0Xix)

T(Dh)(BT
0 x) =

∑p
j=1 β

[j]X
[j]
ix (Dh)(BT

0 x).

Let β[1] = β(1,0,...,0), ..., β
[p] = β(0,0,...,1). For a p-dimensional vector k satisfy-

ing |k| =
∑p

j=1 kj = 1, we further have (Dh)T(BT
0 x)BT

0Xix =
∑
|k|=1 βkX

k
ix(Dh)(BT

0 x).

Then the expression of Yi can be written as

Yi = h(BT
0 x) +

∑
|k|=1

βkX
k
ix(Dh)(BT

0 x)

+
∑
|k|=2

1

k!
hα·kDkm(x̃i)[Xi(h;α)− x(h;α)]k + εi

= a(x) +
∑
|k|=1

hα·kβk[Xi(h;α)− x(h;α)]kc(x)

+
∑
|k|=2

1

k!
hα·kDkm(x̃i)[Xi(h;α)− x(h;α)]k + εi
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Given (a(Xj), c(Xj)), 1 ≤ l ≤ k ≤ m, j = 1, ..., n, the analytic solution

of B equals to

β̂k = arg min
βkβ

T
k=1

1

n2

n∑
j=1

n∑
i=1

{Yi−a(Xj)−
∑
|k|=1

hα·kβk[Xi(h;α)−Xj(h;α)]kc(Xj)}2Kh(Xij; α̂)

(S5.22)

where k ∈ Rp with |k| = 1. Denote

L(βj) =
1

n

n∑
i=1

{Yi−a(x)−
∑
|k|=1

hα·kβk[Xi(h;α)−x(h;α)]kc(x)}2Kh(Xix; α̂), |j| = 1.

The minimizer β̂j satisfying DL(β̂j) = 0, which is equivalent to

1

n

n∑
i=1

{Yi − a(x)}[Xi(h;α)− x(h;α)]jc(x)Kh(Xix; α̂)

=
1

n

n∑
i=1

∑
|k|=1

hα·kβ̂k[Xi(h;α)− x(h;α)]kc(x)[Xi(h;α)− x(h;α)]jc(x)Kh(Xix; α̂).

Recall the definitions of tj(x), t∗j(x), ej(x), sj(x) with |j| = 1. By the de-

composition of Yi, the above equation can be written in the form of a row

vector as

∑
l≤k

∑
|k|=1

hα·k(β̂k − βk)sk+j(x)c(x)cT(x) =
∑
l≤k

{
t∗j(x)cT(x) + ej(x)cT(x)

}
.

Its matrix form is

∑
l≤k

S−1,−1(x)diag(hα1 , ..., hαp)(B̂−B)c(x)cT(x) =
∑
l≤k

{τ ∗−1(x)cT(x)+e∗−1(x)cT(x)},

where τ ∗−1(x) and e∗−1(x) are p-dimensional vectors after removing the first

element in τ(x) and e(x), respectively , and S−1,−1(x) ∈ Rp×p is a (1, 1)-
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5.5 Proof of Theorem 4: DMAVE

minor of matrix S(x). Replacing x with Xj, we have

1

n

n∑
j=1

S−1,−1(Xj)diag(hα1 , ..., hαp)(B̂ −B)c(Xj)c
T(Xj)

=
1

n

n∑
j=1

{τ ∗−1(Xj)c
T(Xj) + e∗−1(Xj)c

T(Xj)}

Applying the vectorization operator vec(·) with properties: vec(A1 +A2) =

vec(A1) + vec(A2) and vec(A1BA2) = (AT
2 ⊗ A1) · vec(B), we have

1

n

n∑
j=1

[
{c(Xj)c

T(Xj)} ⊗ S−1,−1(Xj)
]
vec{diag(hα1 , ..., hαp)(B̂ −B)}

=
1

n

n∑
j=1

vec
[
{τ ∗−1(Xj) + e∗−1(Xj)}cT(Xj)

]
.

By Lemma S6, we have c(x) = (Dh)(BT
0 x) + OP ((p2nlogn/(nh

|α|
n ))1/2 +

p
1/2
n ω2

n). Simple calculation yields that[ 1

n

n∑
j=1

{c(Xj)c
T(Xj)} ⊗ S−1,−1(Xj)

]−1
≤ 1

n

n∑
j=1

[
{(Dh)(BT

0Xj)(Dh)T(BT
0Xj)} ⊗ S−1,−1(Xj)

]−1
+OP ((p2nlogn/(nh|α|n ))1/2 + p1/2n ω2

n)

=E
[
{(Dh)(BT

0X)(Dh)T(BT
0X)}−1 ⊗ S−1−1,−1(X)

]
+OP ((p2nlogn/(nh|α|n ))1/2 + p1/2n ω2

n),

where the inequality comes from the Jensen’s inequality applied to the

convex function x→ x−1 for x ≥ 0.

By supx∈D |t∗j(x)| = O((pnlogn/(nh
|α|
n ))1/2) and supx∈D |ej(x)| = O(ω2

n),

it can be seen that

1

n

n∑
j=1

vec
[
{τ ∗−1(Xj) + e∗−1(Xj)}cT(Xj)

]
= O((pnlogn/(nh|α|n ))1/2 + ω2

n).
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From

vec{diag(hα1 , ..., hαp)(B̂ −B)}

=
[∑
l≤k

1

n

n∑
j=1

{c(Xj)c
T(Xj)} ⊗ S−1,−1(Xj)

]−1
·
∑
l≤k

1

n

n∑
j=1

vec
[
{τ ∗−1(Xj) + e∗−1(Xj)}cT(Xj)

]
,

we know that for each j = 1, ..., p,

hαj(β̂[j] − β[j]) = O((pnlogn/(nh|α|n ))1/2 + ω2
n),

which completes the proof.

Now we are ready to prove results of DMAVE.

Proof of DMAVE: Let B̂DMAVE = ((β̂[1])T, ..., (β̂[p])T)T be the DMAVE

estimation ofB0 and B̂DMAVEB̂
T
DMAVE = (β̂[j](β̂[l])T)j,l=1,...,p. By the Cauchy-

Schwarz inequality, we can show that

(β̂[j] − β[j]) · (β[l])T = ‖(β̂[j] − β[j]) · (β[l])‖2 ≤ ‖β̂[j] − β[j]‖2 · ‖β[l]‖2

≤
p∑
j=1

‖β̂[j] − β[j]‖2 ·
p∑
l=1

‖β[l]‖2

≤ {p
p∑
j=1

‖β̂[j] − β[j]‖22}1/2 · {p
p∑
l=1

‖β[l]‖22}1/2

= pn{
p∑
j=1

‖β̂[j] − β[j]‖22}1/2 · d1/2.

Note that for αj 6= 0 we have β̂[j]−β[j] = O(c
[j]
n ) where c

[j]
n = pnlogn/(nh

|α|+2αj
n ))1/2+

ω2
n/h

αj
n and for αj = 0 we have β̂[j]−β[j] = OP (

√
pn/n). Hence

∑p
j=1 ‖β̂[j]−
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5.5 Proof of Theorem 4: DMAVE

β[j]‖22 =
∑

αj 6=0(c
[j]
n )2 +

∑
αj=0 pn/n = σ2

n. This implies

(β̂[j] − β[j]) · (β[l])T = OP (pnσn), j, l = 1, ..., p.

Similarly (β̂[j] − β[j])(β̂[j] − β[j])T = OP (pnσ
2
n). Then it follows that

β̂[j](β̂[l])T = β[j](β[l])T +OP (pnσn), j, l = 1, ..., p,

which completes the proof.
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5.6 Proof of Lemmas

Here we collect proofs of Lemmas S1-S5 in the previous section.

Proof of Lemma S1: Denote the solution to S5.7) as δ̂−j(Xj). We have

vecs{δ̂−j(Xj)}

=


∑
i 6=j

wij

 Iq Iq ⊗ (Xi −Xj)
T

Iq ⊗ (Xi −Xj) Iq ⊗ (Xi −Xj)(Xi −Xj)
T



−1

·
∑
i 6=j

wij

 Iq

Iq ⊗ (Xi −Xj)

 vecs(logYi)

,A−12j ·
1

n

∑
i 6=j

wij

 Iq

Iq ⊗ (Xi −Xj)

 vecs(logYi),

where wij = Kh(Xi −Xj). Apply Taylor expansion at Xj:

logYi = g(Xj) + g(1)(Xj) · Im ⊗ (Xi −Xj) +Rij + εi,

where Rij is the remaining term of the Taylor series. Thus

vecs{δ̂−j(Xj)}

=

 vecs{g(Xj)}

vecs{g(1)(Xj)}

+ A−12j ·
1

n

∑
i 6=j

wij

 Iq

Iq ⊗ (Xi −Xj)

 {vecs(Rij) + vecs(εi)}

,δ(Xj) + A−12j A1j.

Denote f̂j = n−1
∑

i 6=j wij, B1j = n−1
∑

i 6=j wij(Xi−Xj), B2j = n−1
∑

i 6=j wij(Xi

−Xj)(Xi−Xj)
T. Then eT1A

−1
2j = (Iq⊗ (f̂j +C1j), Iq⊗ (−C2j)) where e1 is a
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(q+ qd)-dimensional vector with the first q elements equaling 1 and the re-

maining equaling 0, C1j = f̂−2j BT
1j(B2j−f̂−1j B1iB

T
1i) and C2j = f̂−1j BT

1j(B2j−

f̂−1j B1iB
T
1i)
−1. Then vecs(âj) = eT1 vecs{δ̂−j(Xj)} = vecs{g(Xj)}+eT1A−12j A1j.

Denote Dkl
j = n−1

∑
i 6=j wij(R

kl
ij + εklj )/f̂j, M

kl
j = n−1

∑
i 6=j wij(R

kl
ij +

εklj ){C1j − C2j(Xi −Xj)} (1 ≤ l ≤ k ≤ m), then

vecs(âj) =



g11(Xj) +D11
j +M11

j

g21(Xj) +D21
j +M21

j

...

gmm(Xj) +Dmm
j +Mmm

j


.

Thus

1

n

n∑
j=1

||vecs(logYj)− vecs(âj)||2

=
1

n

n∑
j=1

||vecs(g(Xj)) + vecs(εj)− vecs(âj)||2

=
1

n

n∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



g11(Xj) + ε11j − (g11(Xj) +D11
j +M11

j )

g21(Xj) + ε21j − (g21(Xj) +D21
j +M21

j )

...

gmm(Xj) + εmmj − (gmm(Xj) +Dmm
j +Mmm

j )



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
1

n

n∑
j=1

∑
l≤k

(εklj −Dkl
j −Mkl

j )2

=
∑
l≤k

1

n

n∑
j=1

(εklj −Dkl
j −Mkl

j )2,
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which is just a summation of the CV values of the case in Li and Racine

(2004) where Y is a scalar. Directly applying the results of Li and Racine

(2004), we reach the conclusion.

Proof of Lemma S2: The proof is similar to that of Lemma S3 and more

details can be found in the proof of Lemma S3.

First

SBn (x) = fB(BTx)

 Is Is ⊗ vTB(x)

Is ⊗ vTB(x) Is ⊗ w̃B(x)

+O(h2 + δdh),

where w̃B(x) = wB(x)− µB(x)xT − xµB(x)T + xxT.

And we can calculate

{SBn (x)}−1 = f−1B (BTx)

 Is ⊗ CB(x) Is ⊗ γTB(x)

Is ⊗ γB(x) Is ⊗ w̄+
B(x)

+O(h2 + δdh),

where

CB(x) ={1− vTB(x)w̃+
B(x)vB(x)}−1,

γB(x) =− w̄+
B(x)vB(x).

Expanding LogµYi at BT
0 x by Taylor expansion, we have

LogµYi =
{
h(BT

0 x) + h(1)(BT
0 x)BT

0 (Xi − x)
}

+
1

2
Is ⊗ {(Xi − x)TB}h(2)(BT

0 x)BT(Xi − x) + ζi

+O
{
||BT

0 (Xi − x)||3 + ||BT
0 (Xi − x)|| × ||Xi − x||δB + ||Xi − x||2δ2B

}
=(1) + (2) + (3) + (4),
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and we denote

1

n

n∑
i=1

Kh(B
T(Xi − x))

 Is

Is ⊗ (Xi − x)

LogµYi

=
1

n

n∑
i=1

Kh(B
T(Xi − x))

 Is

Is ⊗ (Xi − x)

 {(1) + (2) + (3) + (4)}

,(1′) + (2′) + (3′) + (4′).

We can show

{SBn (x)}−1 × (1′) =

 h(BT
0 x)

(Is ⊗B0)vecs{h(1)(BT
0 x)}

 ;

{SBn (x)}−1×(2′) =

 Is ⊗ {CB(x) + γTB(x)vB(x)}

Is ⊗ {γB(x) + w̄+
B(x)vB(x)}

 tr(x)h2+O(h4+h2δdh),

where

tr(x) =
(

tr{h(2)1 (BT
0 x)}, ..., tr{h(2)s (BT

0 x)}
)T

;

{SBn (x)}−1 × (3′)

={nfB(BTx)}−1
n∑
i=1

Kh(B
T(Xi − x))

 Is ⊗ {CB(x) + γTB(x)(Xi − x)}

Is ⊗ {γB(x) + w̄+
B(x)(Xi − x)}

 ζi

+O{(h2 + δdh)δdh};
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and

{SBn (x)}−1 × (4′) = O(h3 + δdh + hδB + δ2B).

Putting everything together, we reach the conclusion.

Proof of Lemma S3: First we can calculate that

ΣB
n (x) =

 fB(BTx)Is hIs ⊗ OTfB(BTx)

hIs ⊗ OfB(BTx) fB(BTx)Isd

+O(h2 + δdh),

and

{
ΣB
n (x)

}−1
=f−1B (BTx)

I − hf−1B (BTx)

 0 Is ⊗ OTfB(BTx)

Is ⊗ OfB(BTx) 0




+O(h2 + δdh).

Next expand LogµYi at BT
0 x by Taylor expansion, we have

LogYi =
{
h(BT

0 x) + h(1)(BT
0 x)BT(Xi − x)

}
+ h(1)(BT

0 x)(B0 −B)T(Xi − x)

+
1

2
Is ⊗ {(Xi − x)TB}h(2)(BT

0 x)BT(Xi − x) + ζi

+
1

2

[
Is ⊗ {(Xi − x)T (B0 −B)}h(2)(BT

0 x)BT(Xi − x)

+ Is ⊗ {(Xi − x)TB}h(2)(BT
0 x)(B0 −B)T(Xi − x)

+ Is ⊗ {(Xi − x)T(B0 −B)}h(2)(BT
0 x)(B0 −B)T(Xi − x)

]
+O(||BT

0 (Xi − x)||3)

=(1) + (2) + (3) + (4) + (5) + (6).
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Then we calculate

1

n

n∑
i=1

Kh(B
T(Xi − x))

 Is

Is ⊗BT(Xi − x)/h

LogµYi

=
1

n

n∑
i=1

Kh(B
T (Xi − x))

 Is

Is ⊗BT(Xi − x)/h

 {(1) + (2) + (3) + (4) + (5) + (6)}

=(1′) + (2′) + (3′) + (4′) + (5′) + (6′).

By the definition of ΣB
n (x), we have

{ΣB
n (x)}−1 × (1′) =

 h(BT
0 x)

hvecs{h(1)(BT
0 x)}

 .

Next we turn to (2′).

(2′) =
1

n

n∑
i=1

Kh(B
T(Xi − x))

 h(1)(BT
0 x)(B0 −B)T(Xi − x)

Is ⊗ {BT(Xi − x)/h}h(1)(BT
0 x)(B0 −B)T(Xi − x)


For example, we can calculate the first term in the upper half of the

vector (2′):

1

n

n∑
i=1

Kh(B
T(Xi − x))h

(1)
1 (BT

0 x)T(B0 −B)T(Xi − x)

=fB(BTx)h
(1)
1 (BT

0 x)(B0 −B)TvB(x) +O(h2δB + δdh),

and the first term in the lower half of (2′):

1

n

n∑
i=1

Kh(B
T(Xi − x)){BT(Xi − x)/h}h(1)1 (BT

0 x)T(B0 −B)T(Xi − x)

=h
(1)
1 (BT

0 x)T(B0 −B)TvB(x)OTfB(BTx)h+O(δdh) = O(hδB).

57



5.6 Proof of Lemmas

So

(2′) =

 fB(BTx)h(1)(BT
0 x)(B0 −B)TvB(x) +O(h2δB)

O(hδB)

+O(δdhδB)

and

{ΣB
n (x)}−1 × (2′) =

 h(1)(BT
0 x)(B0 −B)TvB(x) +O(h2δB + δdhδB)

O(hδB)

 .

Similarly, (3′) equals

1

n

n∑
i=1

Kh(B
T(Xi − x))

 Is ⊗ {(Xi − x)TB}h(2)(BT
0 x)BT(Xi − x)

Is ⊗ {BT(Xi − x)(Xi − x)TB/h}h(2)(BT
0 x)BT(Xi − x)


In the upper half, the first component, for example, is

1

n

n∑
i=1

Kh(B
T(Xi − x))(Xi − x)TBh(2)(BT

0 x)BT(Xi − x)

=fB(BTx)tr{h(2)1 (BT
0 x)}h2 +O(h4 + h2δdh)

=fB(BTx)tr1(x)h2 +O(h4 + h2δdh).

The first component in the lower half is

1

n

n∑
i=1

Kh(B
T(Xi − x))BT(Xi − x)/h(Xi − x)TBh

(2)
1 (BT

0 x)BT(Xi − x)

=h3
∫
K(u)uuTh

(2)
1 (BT

0 x)uOTfB(BTx)udu+O(h2δdn)

=MB
11(x)h3 +O(h2δdh).
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Hence

(3′) =
1

2

 fB(BTx)tr(x)h2 +O(h4)

MB
1n(x)h3

+O(h2δdh)

and

{ΣB
n (x)}−1 × (3′) =

 tr(x)h2

MB
1n(x)h3

+O(h4 + h2δdh).

We next move to (4′).

{ΣB
n (x)}−1 × (4′)

=

 EBn,1(x)− hf−1B (BTx)Is ⊗ OTfB(BTx)EBn,2(x)

−hf−1B (BTx)Is ⊗ OfB(BTx)EBn,1(x) + EBn,2(x)

+O(h2 + δdh)

 fB(BTx)EBn,1(x)

fB(BTx)EBn,2(x)

 ,

where

EBn,1(x) =(nfB(BTx))−1
n∑
i=1

Kh(B
T(Xi − x))ζi,

EBn,2(x) =(nfB(BTx))−1
n∑
i=1

Kh(B
T(Xi − x))Is ⊗ {BT(Xi − x)/h}ζi.

It can be shown that EBn,1(x) = EBn,2(x) = O(δdh). Hence

{ΣB
n (x)}−1 × (4′) =

 EBn,1(x) +MB
2n(x)EBn,2(x)h

MB
3n(x)EBn,1(x)h+ EBn,2(x)

+O(h2δdh + δ2dh)

=

 V B
1n(x)

V B
2n(x)

+O(h2δdh + δ2dh)

59



5.6 Proof of Lemmas

where

MB
2n(x) =− hf−1B (BTx)Is ⊗ OTfB(BTx),

MB
3n(x) =− hf−1B (BTx)Is ⊗ OfB(BTx) = {MB

2n(x)}T.

In the end, we similarly calculate that

{ΣB
n (x)}−1 × {(5′) + (6′)} = O(h3 + hδB + δ2B).

Putting everything together, we get the result.

Proof of Lemma S4:

vec(B)

=

{
1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi −Xj))(b

T
j bj)⊗ {(Xi −Xj)(Xi −Xj)

T}
/

1

n

n∑
i=1

Kh(B
T(Xi −Xj))

}−1

× 1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi −Xj))b

T
j ⊗ (Xi −Xj)(LogµYi − aj)

/
1

n

n∑
i=1

Kh(B
T (xi − xj)).

From Lemma S3, we have

(bTj bj)⊗ {(Xi −Xj)(Xi −Xj)
T}

=h2
{
G(BT

0Xj) +O(h4 + hδdh + h2δB)
}
⊗
{

(Xi −Xj)(Xi −Xj)
T/h2

}
,

where G(BT
0 x) = h(1)(BT

0 x)Th(1)(BT
0 x). Thus the denominator equals[ 1

n

n∑
j=1

{
G(BT

0Xj) +O(h4 + hδdh + h2δB)
} ]
⊗
[h2
n

n∑
i=1

Kh(B
T(Xi −Xj)){(Xi −Xj)(Xi −Xj)

T/h2}

/ 1

n2

n∑
i=1

Kh(B
T(Xi −Xj))

]
, (1)⊗ (2).
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Suppose B̃ is a p× (p−d) matrix such that (B, B̃) is a p×p orthogonal

matrix. Then (Id ⊗B, Id ⊗ B̃) is a dp× dp orthogonal matrix and we have

the denominator equaling

(Id ⊗B, Id ⊗ B̃)

 Id ⊗BT

Id ⊗ B̃T

{(1)⊗ (2)
}

(Id ⊗B, Id ⊗ B̃)

 Id ⊗BT

Id ⊗ B̃T



=(Id ⊗B, Id ⊗ B̃)

 (1)⊗ {BT(2)B} (1)⊗ {BT(2)B̃}

(1)⊗ {B̃T(2)B} (1)⊗ {B̃T(2)B̃}


 Id ⊗BT

Id ⊗ B̃T

 .

(S5.23)

First we notice in (S5.23) that BT(2)B BT(2)B̃

B̃T(2)B B̃T(2)B̃



=

 h2Id +O(h2τn) h2FT
B (BTx)/fB(BTx)B̃ +O(hτn)

B̃TFB(BTx)/fB(BTx)h2 +O(hτn) CB(BTx) +O(τn)

 ,

where FB(BTx) = vB(x)OTfB(BTx) + fB(BTx)OvB(x) and CB(BTx) =

B̃Tw̄B(x)B̃. Here OvB(x) is the derivative matrix of vB(x) w.r.t BTx and

vB(x) ∈ Rp×d.

Now the denominator becomes

(Id ⊗B, Id ⊗ B̃)

 (1′) (2′)T

(2′) (3)


 Id ⊗BT

Id ⊗ B̃T

 .
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where

(1′) = (1)⊗ {h2Id +O(h2τn)} = h2E{G(BT
0X)⊗ Id}+O(h4 + h2δdh + h4δB),

(2′) = (1)⊗ {B̃TFB(BTx)/fB(BTx)h2 +O(hτn)} = h2(Id ⊗ B̃)TF +O(h3 + hδdh + h2δB),

(3′) = (1)⊗ {CB(BTx) +O(τn)} = 2(Id ⊗ B̃0)
TWB(Id ⊗ B̃0) +O(h2 + δdh + δB),

and F = E{G(BT
0X)⊗FB(BTX)/fB(BTX)}, WB = E[G(BT

0X)⊗{vB(X)vTB(X)}].

Then use (A+ hB)−1 = A−1 − hA−1BA−1 +O(h2) to get

1/Denominator

=(Id ⊗B)LB1 (Id ⊗BT)− (Id ⊗B)LB2 − LB3 (Id ⊗BT) +
1

2
W+
B +O(τn/h+ δB),

where

LB1 = h−2
[
E{G(BT

0X)⊗ Id}
]−1

,

LB2 = (LB3 )T =
[
E{G(BT

0 X)⊗ Id}
]−1

F TW+
B /2,

W+
B = (Id ⊗ B̃)

{
(Id ⊗ B̃T)WB(Id ⊗ B̃)

}−1
(Id ⊗ B̃T).

Proof of Lemma S5: Lemma S5 aims to simplify

1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi −Xj))b

T
j ⊗ (Xi −Xj){LogµYi − aj − bj ⊗ (Xi −Xj)

T}

divided by n−1
∑n

i=1Kh(B
T(Xi−Xj)). We have proved in Lemma S3 that

aj = h(BT
0Xj) + h(1)(BT

0Xj)(B0 −B)TvB(Xj) + h2tr(Xj)/2 + V B
1n(Xj) +O(h3 + hδdh + hδB),

vecs(bj) = vecs(h(1)(BT
0Xj)) + V B

2n(Xj)/h+O(h2 + δdh + δB).
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Thus by Taylor expansion, we have

LogµYi − aj − bj ⊗ (Xi −Xj)
T

=h(BT
0Xj) + h(1)(BT

0Xj)B
T
0 (Xi −Xj) + Is ⊗ {(Xi −Xj)

TB0}h(2)(BT
0Xj)B

T
0 (Xi −Xj) + ζi

+O(||BT
0 (Xi −Xj)||3)− h(BT

0Xj)− h(1)(BT
0Xj)(B0 −B)TvB(Xj)− h2tr(Xj)/2− V B

1n(Xj)

+O(h3 + hδdh + hδB)− h(1)(BT
0Xj)(Xi −Xj)−M {V B

2n(Xj)}BT
0 (Xi −Xj)/h

+O(h2 + δdh + δB)BT
0 (Xi −Xj)

=Is ⊗ {(Xi −Xj)
TB}h(2)(BT

0Xj)B
T(Xi −Xj)/2 + ζi + h(1)(BT

0Xj)(B −B0)
TvB(Xj)− h2tr(Xj)/2

− V B
1n(Xj)−M {V B

2n(Xj)}BT
0 (Xi −Xj)/h+4n(Xi, Xj, B)

+O(||BT
0 (Xi −Xj)||3) +O(h3 + hδdh + hδB) +O(h2 + δdh + δB)BT

0 (Xi −Xj)

=(1) + (2) + (3)− (4)− (5)− (6) + (7) + (8) + (9) + (10).

where

4n(Xi, Xj, B) =
1

2

[
Is ⊗ {(Xi −Xj)

T(B0 −B)}h(2)(BT
0Xj)B

T(Xi −Xj)

+ Is ⊗ {(Xi −Xj)
TB}h(2)(BT

0Xj)(B0 −B)T(Xi −Xj)

+ Is ⊗ {(Xi −Xj)
T(B0 −B)}h(2)(BT

0Xj)(B0 −B)T(Xi −Xj)
]
.

Next we calculate

1

n2

n∑
j=1

n∑
i=1

Kh(B
T(Xi−Xj))b

T
j ⊗(Xi−Xj)

{
(1) ∼ (10)

}
/

1

n

n∑
i=1

Kh(B
T(Xi−Xj))
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and denote corresponding results as (1′) ∼ (10′).

(1′) =
h2

n

n∑
j=1

s∑
k=1

h
(1)
k (BT

0Xj)⊗ vB(Xj)trk(Xj) +O(h4 + hδdh + h2δB),

(2′) =− 1

n

n∑
i=1

h(1)(BT
0Xi)

T ⊗ vB(Xi)ζi + o(n−1/2) , Φn(B0) + o(n−1/2),

(3′) =WBvec(B −B0) +O(h2δB + δdhδB/h+ δ2B),

(4′) =
h2

n

n∑
j=1

s∑
k=1

h
(1)
k (BT

0Xj)⊗ vB(Xj)trk(Xj) +O(h4 + hδdh + h2δB),

(5′) =O(h2δdh + δ2dh/h+ δBδdh), (6
′) = O(h3 + δdhδB + h2δB + δdh),

(7′) =O(h2δB + δ2B), (8′) = O(h3), (9′) = O(h3 + hδdh + hδB),

(10′) =O(h4 + h2δdh + h2δB).

Collecting above 10 terms shows the numerator equals WBvec(B−B0)+

Φn(B0) +O(h3 + hδdh + hδB + δ2dh/h+ δdhδB/h).
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