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The proofs of Lemma 1 and Corollary 1 are presented in Section S1 and Section S2,

respectively. The proofs of Lemma 2 and Corollary 2 are given in Section S3. The definition of

Pitman’s asymptotic relative efficiency (Section 3.3 of the main text) is restated in Section S4.

The proofs of Theorem 1 and Corollary 3 are presented in Section S5. The proof of Theorem 2

is presented in Section S6. The proof of Theorem 3 is given in Section S7.
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S1 Proof of Lemma 1

We adopt the notations of the main text, for example,

f = pr(D = 1), θ = pr(X = 1), π = pr(E = 1).

We also introduce some additional notations:

pi = pr(D = 1 | E = i), qi = 1− pi = pr(D = 0 | E = i),

pij = pr(D = 1 | X = i, E = j), qij = 1− pij = pr(D = 0 | X = i, E = j),

(S1.1)

for i = 0, 1; j = 0, 1.

Throughout this document, we assume that X and E are independent

unless specially noted, so that pi = p1iθ + p0i(1− θ), qi = q1iθ + q0i(1− θ).

Under the retrospective setting, the random variables n1+1 and n0+1 follow

binomial distributions, i.e., n1+1 ∼ B(n1++, p
′
1) and n0+1 ∼ B(n0++, p

′
0),

where

p′1 = pr(E = 1 | D = 1) =
p1π

f
, p′0 = pr(E = 1 | D = 0) =

q1π

1− f
,

(S1.2)

q′1 = pr(E = 0 | D = 1) =
p0(1− π)

f
, q′0 = pr(E = 0 | D = 0) =

q0(1− π)

1− f
.

(S1.3)

For any f ∈ (0, 1), it follows from the standard large sample theory for
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the sample odds ratio and (S1.1)-(S1.3) that

γ̂M = log
p′1q

′
0

p′0q
′
1

+OP (n
− 1

2 )

= log
p1q0
p0q1

+OP (n
− 1

2 )

= log
{p11θ + p01(1− θ)}{q10θ + q00(1− θ)}
(p10θ + p00(1− θ)) (q11θ + q01(1− θ))

+OP (n
− 1

2 )

= γ + log

{
(1− θ + eα+β+γ + eβθ)(1 + eαθ + eα+β(1− θ))

(1− θ + eα+β + eβθ)(1 + eα+γθ + eα+β+γ(1− θ))

}
+OP (n

− 1
2 )

= γ + log

{
1 +

eα(b1 − b2)(1− eγ)

(1 + eαb2)(1 + eα+γb1)

}
+OP (n

− 1
2 )

= γ + δ +OP (n
− 1

2 ), (S1.4)

where

b1 = eβ(1−θ)+θ = 1+(eβ−1)(1−θ), b2 = eβ/(1−θ+eβθ) =
1

1 + (e−β − 1)(1− θ)
,

γ̂M = log(n1+1/n1+0)− log(n0+1/n0+0),

and

δ = log

{
1 +

eα(b1 − b2)(1− eγ)

(1 + eα+γb1)(1 + eαb2)

}
. (S1.5)

Moreover,

b1 = 1+(eβ−1)(1−θ) =
1 + (eβ + e−β − 2)θ(1− θ)

1 + (e−β − 1)(1− θ)
≥ 1

1 + (e−β − 1)(1− θ)
= b2 > 0.

(S1.6)
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S2 Proof of Corollary 1

It follows from b1 ≥ b2 > 0 that

−γ < δ ≤ 0 if γ > 0 and 0 ≤ δ < −γ if γ < 0 and δ = 0 if γ = 0, (S2.1)

so that

|γ + δ| ≤ |γ|.

Furthermore, it is easily seen from the expression of δ given in (S1.5) of the

main text that δ = 0 if and only if b1 = b2 (which leads to β = 0, i.e., X is

not associated with D) or γ = 0 (i.e., E is not associated with D). Finally,

setting the derivative of (S1.5) with respect to α to be 0, we can see that

|δ| is minimized at αmin defined in (3.8) of the main text.

S3 Proofs of Lemma 2 and Corollary 2

As defined in the main text, ν = n1++/n0++, so that n0++ = n/(1 + ν)

and n1++ = nν/(1 + ν). Assume a contiguous alternative scenario where

γ = cn−1/2.

First, we derive the asymptotic distribution of γ̂M . According to the

standard large sample theory, the regularity conditions R1 - R3 (see Chapter

4, Serfling, 2009) hold for logistic regression models, which gives

n1/2(γ̂M − γ − δ) → N(0, σ2
M) in distribution,
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where the asymptotic variance is

σ2
M =

n

n0++p′0q
′
0

+
n

n1++p′1q
′
1

=
(1 + ν)

p′0q
′
0

+
(1 + ν)

νp′1q
′
1

. (S3.1)

Since γ = 0 implies that p′1 = p′0 = π, we have that

σ2
M → σ2

0 as γ → 0, (S3.2)

where σ2
0 = (2 + ν + 1/ν)/{π(1 − π)}. The above results hold for any

f ∈ (0, 1).

Next we derive the asymptotic distribution of γ̂A. According to Gart

(1962), we have

n1/2 (γ̂A − γ) → N(0, σ2
A) in distribution,

where

σ2
A =

{(
n

n0++d00h00(1− h00)
+

n

n1++d01h01(1− h01)

)−1

+(
n

n0++d10h10(1− h10)
+

n

n1++d11h11(1− h11)

)−1}−1

=

{(
1 + ν

d00h00(1− h00)
+

1 + ν

νd01h01(1− h01)

)−1

+(
1 + ν

d10h10(1− h10)
+

1 + ν

νd11h11(1− h11)

)−1}−1

(S3.3)

and

dij = pr(X = i | D = j), hij = pr(E = 1 | X = i,D = j).
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If we denote

a10 =
d00h00

1 + ν
, a20 =

d00(1− h00)

1 + ν
, a30 =

νd01h01

1 + ν
, a40 =

νd01(1− h01)

1 + ν
,

a11 =
d10h10

1 + ν
, a21 =

d10(1− h10)

1 + ν
, a31 =

νd11h11

1 + ν
, a41 =

νd11(1− h11)

1 + ν
,

then we have

σ2
M =

1

a10 + a11
+

1

a20 + a21
+

1

a30 + a31
+

1

a40 + a41

and

σ2
A =

{(
1

a10
+

1

a20
+

1

a30
+

1

a40

)−1

+

(
1

a11
+

1

a21
+

1

a31
+

1

a41

)−1}−1

.

Applying the Minkowski inequality, we immediately have that σ2
M ≤ σ2

A,

and the inequality holds even when X and E are correlated. Moreover, the

equality holds if and only if ai1 = kai0 (i = 1, . . . , 4), or equivalently, X is

independent of D (i.e., β = 0).

Next, we compare σ2
M and σ2

A under the condition of γ → 0. We rewrite

the asymptotic variances as

σ2
M =

(1 + ν)(1− f)2

q0q1π(1− π)
+

(1 + ν)f 2

νp0p1π(1− π)

=
1

π(1− π)

{
(1 + ν)(1− f)2

q0q1
+

(1 + ν)f 2

νp0p1

}
=

1 + ν

π(1− π)

{
(1− f)2

E(qX0)E(qX1)
+

f 2

νE(pX0)E(pX1)

}
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and

σ2
A =

{
(1− θ)

(
(1 + ν)(1− f)

q01π
+

(1 + ν)(1− f)

q00(1− π)
+

(1 + ν)f

νp01π
+

(1 + ν)f

νp00(1− π)

)−1

+

θ

(
(1 + ν)(1− f)

q11π
+

(1 + ν)(1− f)

q10(1− π)
+

(1 + ν)f

νp11π
+

(1 + ν)f

νp10(1− π)

)−1}−1

=(1 + ν)

[
E

{
(1− f)

qX1π
+

(1− f)

qX0(1− π)
+

f

νpX1π
+

f

νpX0(1− π)

}−1
]−1

.

If γ → 0, then pi1 → pi0 and qi1 → qi0 for i = 1, 2. Consequently,

lim
γ→0

σ2
A

σ2
M

=

[
E

{
(1−f)
qX0

+ f
νpX0

}−1
]−1

(
1−f
EqX0

)2
+ 1

ν

(
f

EpX0

)2

=

(1 + 1
ν
)

[{
1 + (1−θ

θ
)(1+eα+β

1+eα
)(ν+e−β

ν+1
)

}−1

+

{
1 + ( θ

1−θ
)( 1+eα

1+eα+β )(
ν+eβ

ν+1
)

}−1
]−1

1 + 1
ν

=

[{
1 +

(
1− θ

θ

)(
1 + eα+β

1 + eα

)(
ν + e−β

ν + 1

)}−1

+

{
1 +

(
θ

1− θ

)(
1 + eα

1 + eα+β

)(
ν + eβ

ν + 1

)}−1]−1

(S3.4)

=1 +
νθ(1− θ)

(1 + ν)

(1− eβ)2{
(1− θ)ϕ+ eβθϕ−1

}2
+ νeβ

{
(1− θ)ϕ+ θϕ−1

}2 ,
=λ, (S3.5)

where ϕ =
√

1+eα+β

1+eα
and λ ≥ 1, and λ = 1 if and only if β = 0.

Denote ρ = eα. In the rare outcome case (f → 0 or equivalently ρ → 0),
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applying Taylor’s expansion to (S3.4), we have

lim
γ→0

σ2
A

σ2
M

=

[{
1 +

(
1− θ

θ

)(
ν + e−β

ν + 1

)}−1

+

{
1 +

(
θ

1− θ

)(
ν + eβ

ν + 1

)}−1
]−1

+O(ρ)

= 1 +
νθ(1− θ)

(1 + ν)

(1− eβ)2{
(1− θ + eβθ)2 + νeβ

} +O(ρ)

= λ0 +O(ρ),

where λ0 is defined in (3.10) of the main text. Obviously, λ0 ≥ 1 and λ0 = 1

if and only if β = 0.

Finally, we derive the asymptotic distribution of γ̂AC . The logarithm

of the likelihood function (2.4) of the main text can be written as

lAC =
n∑

i=1

[
(α + βxi + γgi)di − log(1 + exp(α + βxi + γgi))

+ xi log θ + (1− xi) log(1− θ) + gi log(π) + (1− gi) log(1− π)
]
,

where θ is defined in (2.3) of the main text. It can be easily checked that

the regularity conditions required for the asymptotic normality of γ̂AC hold

true (see Chapter 5, Van der Vaart, 2000). The Fisher information matrix

is

IAC(u) = −E
∂2lAC

∂u∂uT
,
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where u = (α, β, γ, π)T . It is easy to derive that

IAC(u) =



a b c 0

b b d 0

c d c 0

0 0 0 t


+ g

∂θ

∂u
∂θ

∂uT
+ h

∂2θ

∂u∂uT
,

where

a = E

(
n+11

eα+β+γ

(1 + eα+β+γ)2
+ n+10

eα+β

(1 + eα+β)2
+ n+01

eα+γ

(1 + eα+γ)2
+ n+00

eα

(1 + eα)2

)
,

b = E

(
n+11

eα+β+γ

(1 + eα+β+γ)2
+ n+10

eα+β

(1 + eα+β)2

)
,

c = E

(
n+11

eα+β+γ

(1 + eα+β+γ)2
+ n+01

eα+γ

(1 + eα+γ)2

)
,

d = E

(
n11+

eα+β+γ

(1 + eα+β+γ)2

)
,

t = E

(
n+11 + n+01

π2
+

n+10 + n+00

(1− π)2

)
,

g = E

(
n+11 + n+10

θ2
+

n+01 + n+00

(1− θ)2

)
,

h = E

(
n+01 + n+00

1− θ
− n+11 + n+10

θ

)
.

Since

E(n+ij) = n1++p1ij + n0++p0ij =
n

1 + ν
(νp1ij + p0ij) ,

p1ij = pr(X = i, E = j | D = 1) = (pijθ
i(1− θ)1−iπj(1− π)1−j)/f,

p0ij = pr(X = i, E = j | D = 0) = (qijθ
i(1− θ)1−iπj(1− π)1−j)/(1− f),
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we have that

lim
γ→0

lim
f→0

a =
eα+βnθ

1 + ν

(
eβν

eβθ + 1− θ
+ 1

)
+

eαn(1− θ)

1 + ν

(
ν

eβθ + 1− θ

)
,

lim
γ→0

lim
f→0

b =
eα+βnθ

1 + ν

(
eβν

eβθ + 1− θ
+ 1

)
,

lim
γ→0

lim
f→0

c =
eα+βnθπ

1 + ν

(
eβν

eβθ + 1− θ
+ 1

)
+

eαn(1− θ)π

1 + ν

(
ν

eβθ + 1− θ

)
,

lim
γ→0

lim
f→0

d =
eα+βnθπ

1 + ν

(
eβν

eβθ + 1− θ
+ 1

)
,

lim
γ→0

lim
f→0

t =
n

π(1− π)
,

lim
γ→0

lim
f→0

g =
n

θ(1 + ν)

(
eβν

eβθ + 1− θ
+ 1

)
+

n

(1− θ)(1 + ν)

(
ν

eβθ + 1− θ
+ 1

)
,

and

lim
γ→0

lim
f→0

h =
nν(1− eβ)

(1 + ν)(eβθ + 1− θ)
.

The standard likelihood theory gives that

n1/2(γ̂AC − γ) → N(0, σ2
AC) in distribution, (S3.6)

where

σ2
AC = n(IAC)

−1
33 . (S3.7)

After tedious symbolic algebra using the software Mathematica, we have

that

lim
γ→0

lim
f→0

n(IAC)
−1
33 = σ2

0, (S3.8)

where σ2
0 = (2 + ν + 1/ν)/{π(1− π)}. That is,

σ2
AC → σ2

0 as f → 0 and γ → 0. (S3.9)
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S4 Restatement of Pitman’s asymptotic relative effi-

ciency

We restate Pitman’s asymptotic relative efficiency (Pitman, 1979; Serfling,

2009) below to facilitate our discussion in the main context.

Definition 1. Consider the problem of testing null hypothesis H0 : γ = 0

against the alternative hypothesis γ ̸= 0. For a sequence of test statistics in-

dexed by sample size n, T = {Tn}, suppose that (i) there exist non-random

variates µn(γ) and σn(γ) such that n1/2(Tn − µn(γ))/σn(γ) converges in

distribution to the standard normal distribution as n → ∞ under the con-

tiguous alternative hypothesis H1 : γ = cn−1/2, (ii) µn(γ) has a continuous

derivative µ′
n(γ) in a neighbourhood of 0, and (iii) σn(γ) is continuous at

0. Then n1/2σn(0)/µ
′
n(0) converges to some constant as n → ∞. Let κA

and κB denote such constants corresponding to test statistic sequences TA

and TB, respectively. Pitman’s asymptotic relative efficiency of TA to TB

is defined as eP (TA, TB) = (κB/κA)
2.

S5 Proof of Theorem 1 and Corollary 3

Adopting the previous notations

ρ = eα, b1 = eβ(1− θ) + θ, and b2 = eβ/(eβθ − θ + 1), (S5.1)
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then for δ defined in (S1.5) we have that

lim
γ→0

d(γ + δ)

dγ
= lim

γ→0

[
1 +

d

dγ
log

{
1 +

eα(b1 − b2)(1− eγ)

(1 + eα+γb1)(1 + eαb2)

}]
= 1− (b1 − b2)ρ

(1 + b1ρ)(1 + b2ρ)

=
b1b2ρ

2 + 2b2ρ+ 1

b1b2ρ2 + (b1 + b2)ρ+ 1
. (S5.2)

By (S5.2) and Lemma 2, Pitman’s asymptotic relative efficiency of Mar

to Adj is equal to

eP (γ̂M , γ̂A) =

{
lim
γ→0

(
d(γ + δ)/dγ

dγ/dγ

)}2{
lim
γ→0

var(γ̂A)

var(γ̂M)

}
=

{
b1b2ρ

2 + 2b2ρ+ 1

b1b2ρ2 + (b1 + b2)ρ+ 1

}2

λ.

In the rare outcome situation (f → 0 or equivalently ρ → 0), applying

Taylor’s expansion to (S5.2), we have

lim
γ→0

d(γ + δ)

dγ
= 1− (b1 − b2)ρ+ (b21 − b22)ρ

2 +O(ρ3). (S5.3)

Consequently,

(
lim
γ→0

d(γ + δ)

dγ

)2

= 1−2(b1−b2)ρ+{2(b21−b22)+(b1−b2)
2}ρ2+O(ρ3). (S5.4)

By (S5.4) and Corollary 2, when the outcome is rare, as indicated by a
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small ρ, Pitman’s asymptotic relative efficiency of Mar to Adj is equal to

eP (γ̂M , γ̂A) =

{
lim
γ→0

(
d(γ + δ)/dγ

dγ/dγ

)}2{
lim
γ→0

var(γ̂A)

var(γ̂M)

}
=
(
1− 2(b1 − b2)ρ+O(ρ2)

)
(λ0 +O(ρ))

= λ0 +O(ρ),

where λ0 is defined in (3.10) of the main text.

S6 Proof of Theorem 2

We adopt the notations in the proof of Lemma 2:

σ2
AC = lim

n→∞
var(n1/2γ̂AC), σ2

M = lim
n→∞

var(n1/2γ̂M).

The second-order Taylor expansion of σ2
AC with respect to f is

σ2
AC = σ2

AC |f=0 +
∂

∂f
σ2
AC

∣∣∣
f=0

× f +
1

2

∂2

∂f 2
σ2
AC

∣∣∣
f=0

× f 2 +O(f 3),

so that

eP (γ̂M , γ̂AC)

=

(
lim
γ→0

d(γ + δ)/dγ

dγ/dγ

)2

× lim
γ→0

var(γ̂AC)

var(γ̂M)

=

{
1− 2(b1 − b2)ρ+

{
2(b21 − b22) + (b1 − b2)

2
}
ρ2 +O(ρ3)

}
× lim

γ→0

(
σ2
AC |f=0

σ2
M

+

∂
∂f
σ2
AC |f=0

σ2
M

× f +
1

2

∂2

∂f2σ
2
AC |f=0

σ2
M

× f 2 +O(f 3)

)

(S6.1)
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by (S5.4). Symbolic algebra with the software Mathematica gives

∂

∂f
σ2
AC

∣∣∣
f=0,γ=0

=
2(2 + ν + 1/ν)(θ − 1)θ

(
eβ − 1

)2
(θ (eβ − 1) + 1)2 (π − 1)π

(S6.2)

and

∂2

∂f 2
σ2
AC

∣∣∣
f=0,γ=0

=−
[
eβν2 + θ2(eβ − 1)2(2ν + 1)− θ(eβ − 1 ){(eβ − 3)ν − 2}+ 5eβν + ν + 1

]
×

2(θ − 1)θ
(
eβ − 1

)2
(ν + 1)2

(θ (eβ − 1) + 1)4 (π − 1)πν2
. (S6.3)

If γ = 0, then the outcome prevalence can be expressed as

f |γ=0 =
eα+β

1 + eα+β
θ +

eα

1 + eα
(1− θ),

so that

f |γ=0 = (eβθ − θ + 1)ρ− (e2βθ − θ + 1)ρ2 +O(ρ3). (S6.4)

It follows from (S3.2) and (S3.9) that

σ2
M |γ=0 = σ2

0 and σ2
AC |f=0,γ=0 = σ2

0. (S6.5)

Furthermore, from (S6.2)-(S6.4), we have
∂
∂f
σ2
AC |f=0,γ=0

σ2
0

× f

=
2(1− θ)θ

(
eβ − 1

)2
θ (eβ − 1) + 1

ρ+
2(1− θ)θ(eβ − 1)2(θ − 1− e2βθ)

(θ(eβ − 1) + 1)2
ρ2 +O(ρ3)

= 2(b1 − b2)ρ−
2(1− θ)θ(eβ − 1)2(1 + (e2β − 1)θ)

(θ(eβ − 1) + 1)2
ρ2 +O(ρ3) (S6.6)
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and

1

2

∂2

∂f2σ
2
AC |f=0

σ2
0

× f 2

=
[
(eβν2 + θ2(eβ − 1)2(2ν + 1)− θ(eβ − 1){(eβ − 3)ν − 2}+ 5eβν + ν + 1

]
× (θ − 1)θ(eβ − 1)2

{θ(eβ − 1) + 1}2ν
ρ2 +O(ρ3). (S6.7)

By equations (S6.1) and (S6.5)-(S6.7), we have

eP (γ̂M , γ̂AC) = 1 + τρ2 +O(ρ3),

where

τ = −(1− θ)θ(eβ − 1)2{(1 + 1/ν)[(θ(eβ − 1) + 1)2 + eβν] + 2(1 + (e2β − 1)θ)}
{θ (eβ − 1) + 1}2

.

(S6.8)

Obviously, τ ≤ 0 and the equality holds if and only if β = 0.

S7 Robustness of AdjCon with respect to prevalence

specification

S7.1 Notations and preliminary results

Let s = (β, γ, θ, π)⊤ denote unknown model parameters. Denote by f0 the

true outcome prevalence, which is incorrectly specified as f1 in AdjCon.

In this section, we show that AdjCon is robust with respect to the mis-

specification of the outcome prevalence. Let B be the domain of (β, γ, θ, π):
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B = {(β, γ, θ, π) | β and γ are bounded away from infinity, θ and π are

bounded away from zero and one}.

Assume that f0, f1 ∈ (0, 1− ϵ] for some give ϵ > 0, which is easily hold

in practice. Assume that s∗f = (β∗, γ∗, θ∗, π∗) ∈ B for any f ∈ (0, 1 − ϵ].

The log-likelihood is

lf (s) = (α + βX + γE)D − log(1 + exp(α + βX + γE))+

X log θ + (1−X) log(1− θ) + E log(π) + (1− E) log(1− π),

subject to the prevalence constraint

f =
1∑

i=0

1∑
j=0

p(D = 1 | X = i, E = j)p(X = i)p(E = j). (S7.1)

We will show that both s∗f1 and the corresponding asymptotic covari-

ance matrix Σf1(s
∗
f1
) are Lipschitz continuous with respect to f1, that is

∥s∗f1 − s∗f0∥ = C1|f1 − f0|

and

∥Σf1(s
∗
f1
)− Σf0(s

∗
f0
)∥ = C2|f1 − f0|, (S7.2)

where

s∗f0 = argmax
s

Ef0{lf0(s)}, s∗f1 = argmax
s

Ef0{lf1(s)}, (S7.3)

and C1, C2 are independent of f0 and f1.
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We define the following quantities that will be used in the proof of

Lemma 1. Let

M1(s) = eβ+γθπ + eβθ(1− π) + eγ(1− θ)π + (1− θ)(1− π),

then

0 < m1 = min
s∈B

{eβ+γ, eβ, eγ, 1} ≤ M1(s) ≤ max
s∈B

{eβ+γ, eβ, eγ, 1} = M1.

Let

M2(s) = e−β−γθπ + e−βθ(1− π) + e−γ(1− θ)π + (1− θ)(1− π),

then

0 < m2 = min
s∈B

{e−β−γ, e−β, e−γ, 1} ≤ M2(s) ≤ max
s∈B

{e−β−γ, e−β, e−γ, 1} = M2.

The following lemma presents a decomposition of the intercept param-

eter α under the prevalence constraint.

Lemma 1. Assume f ∈ (0, 1−ϵ] for some ϵ > 0, β and γ are bounded away

from infinity and θ and π are bounded away from zero and one. Denote

s = (β, γ, θ, π). The intercept α, as a function of f and s due to constraint

f =
1∑

i=0

1∑
j=0

pr(D = 1 | X = i, E = j)pr(X = i)pr(E = j), (S7.4)

can be decomposed into two parts:

α(f, s) = α1(f) + α2(f, s),
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where α2(f, s) is Lipschitz continuous with respect to f .

Proof. Denote ρ(f, s) = exp(α(f, s)) and rewrite the constraint (S7.4):

f =F (α, s) =
1∑

i=0

1∑
j=0

p(D = 1|X = i, E = j)p(X = i)p(E = j)

=
exp(α + β + γ)θπ

1 + exp(α + β + γ)
+

exp(α + β)θ(1− π)

1 + exp(α + β)
+

exp(α + γ)(1− θ)π

1 + exp(α + γ)

+
exp(α)(1− θ)(1− π)

1 + exp(α)

=
ρ

1 + ρ

(
(1 + ρ)eβ+γθπ

1 + ρeβ+γ
+

(1 + ρ)eβθ(1− π)

1 + ρeβ
+

(1 + ρ)eγ(1− θ)π

1 + ρeγ
+ (1− θ)(1− π)

)
=

ρ

1 + ρ
C ′(ρ, s), (S7.5)

where as ρ ranges from 0 to ∞, C ′(ρ, s) ranges from M1(s) to 1. Similarly,

1− f =
1

1 + ρ

[
(1 + ρ)θπ

1 + ρeβ+γ
+

(1 + ρ)θ(1− π)

1 + ρeβ
+

(1 + ρ)(1− θ)π

1 + ρeγ
+ (1− θ)(1− π)

]
=

1

1 + ρ
C ′′(ρ, s), (S7.6)

where as ρ ranges from 0 to ∞, C ′′(ρ, s) ranges from 1 to M2(s). Combining

(S7.5) and (S7.6), we have

α(f, s) = {log f − log(1− f)}+ {logC ′′(ρ(f, s), s)− logC ′(ρ(f, s), s)}

= α1(f) + α2(f, s).

In what follows, we show that

α2(f, s) = logC ′′(ρ(f, s), s)− logC ′(ρ(f, s), s) (S7.7)
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is Lipschitz continuous with respect to f . First,

∣∣∣∣∂ logC ′′(ρ, s)

∂f

∣∣∣∣ = ∣∣∣∣ 1

C ′′(ρ, s)

∂C ′′(ρ, s)

∂ρ

∂ρ

∂f

∣∣∣∣
=

∣∣∣∣ 1

C ′′(ρ, s)

θπ(1−eβ+γ)
(1+ρeβ+γ)2

+ θ(1−π)(1−eβ)
(1+ρeβ)2

+ (1−θ)π(1−eγ)
(1+ρeγ)2

eβ+γθπ
(1+ρeβ+γ)2

+ eβθ(1−π)
(1+ρeβ)2

+ eγ(1−θ)π
(1+ρeγ)2

+ (1−θ)(1−π)
(1+ρ)2

∣∣∣∣
=

1

C ′′(ρ, s)

1

C ′′′(ρ, s)

∣∣∣∣ (1 + ρ)2θπ

(1 + ρeβ+γ)2
+

(1 + ρ)2θ(1− π)

(1 + ρeβ)2
+

(1 + ρ)2(1− θ)π

(1 + ρeγ)2

+ (1− θ)(1− π)− C ′′′(ρ, s)

∣∣∣∣
≤ 1

m2

1

min{m1,m2}
(M2

2 +M1 +M2), (S7.8)

where

C ′′′(ρ, s) =

{
(1 + ρ)2eβ+γθπ

(1 + ρeβ+γ)2
+

(1 + ρ)2eβθ(1− π)

(1 + ρeβ)2
+

(1 + ρ)2eγ(1− θ)π

(1 + ρeγ)2

+ (1− θ)(1− π)

}
.

As ρ ranges from 0 to ∞, C ′′′(ρ, s) ranges from M1(s) to M2(s). Second,

∣∣∣∣∂ logC ′(ρ, s)

∂f

∣∣∣∣ = ∣∣∣∣ 1

C ′(ρ, s)

∂C ′(ρ, s)

∂ρ

∂ρ

∂f

∣∣∣∣
=

∣∣∣∣ 1

C ′(ρ, s)

eβ+γθπ(1−eβ+γ)
(1+ρeβ+γ)2

+ eβθ(1−π)(1−eβ)
(1+ρeβ)2

+ eγ(1−θ)π(1−eγ)
(1+ρeγ)2

eβ+γθπ
(1+ρeβ+γ)2

+ eβθ(1−π)
(1+ρeβ)2

+ eγ(1−θ)π
(1+ρeγ)2

+ (1−θ)(1−π)
(1+ρ)2

∣∣∣∣
=

1

C ′(ρ, s)

1

C ′′′(ρ, s)

∣∣∣∣C ′′′(ρ, s)−
[
e2β+2γ(1 + ρ)2θπ

(1 + ρeβ+γ)2
+

e2β(1 + ρ)2θ(1− π)

(1 + ρeβ)2

+
e2γ(1 + ρ)2(1− θ)π

(1 + ρeγ)2
+ (1− θ)(1− π)

]∣∣∣∣
≤ 1

m1

1

min{m1,m2}
(M2

1 +M1 +M2). (S7.9)
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It follows from (S7.7)-(S7.9) that α2(f, s) is Lipschitz continuous with re-

spect to f ∈ (0, 1− ϵ] for some ϵ > 0 and any s ∈ B. Denote the Lipschitz

constant by

LC =
1

min{m1,m2}

(
1

m2

(M2
2 +M1+M2)+

1

m1

(M2
1 +M1+M2)

)
. (S7.10)

S7.2 Proof of Theorem 3: part I (Lipschitz continuity of s∗f1)

Before proving ∥s∗f1 − s∗f0∥ ≤ C1|f1 − f0|, we first prove

Ef0 [lf0(s
∗
f0
)− lf0(s

∗
f1
)] ≤ C|f1 − f0|. (S7.11)

Since Ef0 [lf1(s
∗
f0
)] ≤ Ef0 [lf1(s

∗
f1
)], we have

Ef0 [lf0(s
∗
f0
) + (lf1(s

∗
f0
)− lf0(s

∗
f0
))] ≤ Ef0 [lf0(s

∗
f1
) + (lf1(s

∗
f1
)− lf0(s

∗
f1
))].

(S7.12)

Thus,

0 ≤ Ef0 [lf0(s
∗
f0
)−lf0(s

∗
f1
)] ≤ Ef0 [(lf1(s

∗
f1
)−lf0(s

∗
f1
))]−Ef0 [(lf1(s

∗
f0
)−lf0(s

∗
f0
))],

where the first equality holds according to the definition of (S7.3). We need

only to prove that the right-hand side of the above inequality is Lipschitz

continuous with respect to f .
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For any s ∈ B, we have

Ef0 [lf1(s)− lf0(s)] = Ef0

[
∂lf (s)

∂f

∣∣∣∣
f=f∗

]
(f1 − f0)

= Ef0

[
(α1 − α0)D − log

1 + exp(α1 + βX + γE)

1 + exp(α0 + βX + γE)

]
= ν/(1 + ν)(α1 − α0)− Ef0

[
log

1 + exp(α1 + βX + γE)

1 + exp(α0 + βX + γE)

]
,

so that

Ef0 [(lf1(s
∗
f1
)− lf0(s

∗
f1
))]− Ef0 [(lf1(s

∗
f0
)− lf0(s

∗
f0
))]

=Ef0

[
ν/(1 + ν)(α(f1, s

∗
f1
)− α(f0, s

∗
f1
))− log

1 + exp(α(f1, s
∗
f1
) + βX + γE)

1 + exp(α(f0, s∗f1) + βX + γE)

]
− Ef0

[
ν/(1 + ν)(α(f1, s

∗
f0
)− α(f0, s

∗
f0
))− log

1 + exp(α(f1, s
∗
f0
) + βX + γE)

1 + exp(α(f0, s∗f0) + βX + γE)

]
=

ν

1 + ν

(
[α(f1, s

∗
f1
)− α(f0, s

∗
f1
)]− [α(f1, s

∗
f0
)− α(f0, s

∗
f0
)]
)

−
{
Ef0

[
ρ∗1 exp(β

∗
1X + γ∗

1E)

1 + ρ∗1 exp(β
∗
1X + γ∗

1E)

]
∂α(f, s∗f1)

∂f

∣∣∣∣
f=f∗

1

− Ef0

[
ρ∗0 exp(β

∗
0X + γ∗

0E)

1 + ρ∗0 exp(β
∗
0X + γ∗

0E)

]
∂α(f, s∗f0)

∂f

∣∣∣∣
f=f∗

0

}
(f1 − f0). (S7.13)

When 0 < f1, f0 < 1 − ϵ, s∗f1 , s
∗
f0

∈ B, in what follows, we show both

of the two terms in the righthand side of (S7.13) are Lipschitz continuous

with respect to f . First, according to Lemma 1,

α(f, s) = α1(f) + α2(f, s). (S7.14)
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For the first term in (S7.13),

[α(f1, s
∗
f1
)− α(f0, s

∗
f1
)]− [α(f1, s

∗
f0
)− α(f0, s

∗
f0
)]

=[α(f1, s
∗
f1
)− α(f1, s

∗
f0
)]− [α(f0, s

∗
f1
)− α(f0, s

∗
f0
)]

=[α2(f1, s
∗
f1
)− α2(f0, s

∗
f1
)]− [α2(f1, s

∗
f0
)− α2(f0, s

∗
f0
)]

≤2LC |f1 − f0|

holds because α2(f, s) is Lipschitz continuous with respect to f . Next, we

show the second term is also Lipschitz continuous with respect to f . Note

that
∂α(f, s)

∂f
=

{
ρ

(1 + ρ)2

[
(1 + ρ)2eβ+γθπ

(1 + ρeβ+γ)2
+

(1 + ρ)2eβθ(1− π)

(1 + ρeβ)2
+

(1 + ρ)2eγ(1− θ)π

(1 + ρeγ)2

+ (1− θ)(1− π)

]}−1

=
(1 + ρ)2

ρC ′′′(ρ, s)
=

1 + ρ

ρ

1 + ρ

C ′′′(ρ, s)
=

1 + ρ

ρ

C ′′(ρ, s)

(1− f)C ′′′(ρ, s)
.

(S7.15)

According to Equation (S7.15), the second term is{
Ef0

[
(1 + ρ∗1) exp(β

∗
1X + γ∗

1E)

1 + ρ∗1 exp(β
∗
1X + γ∗

1E)

]
C ′′(ρ∗1, s

∗
f1
)

(1− f ∗
1 )C

′′′(ρ∗1, s
∗
f1
)

− Ef0

[
(1 + ρ∗0) exp(β

∗
0X + γ∗

0E)

1 + ρ∗0 exp(β
∗
0X + γ∗

0E)

]
C ′′(ρ∗0, s

∗
f0
)

(1− f ∗
0 )C

′′′(ρ∗0, s
∗
f0
)

}
(f1 − f0)

≤2L1LϵL3|f1 − f0|,

where

L1 = max
s∗∈B

{
1, Ef0 exp(β

∗X+γ∗E)
}
≤ max

s∗∈B
{1, exp(β∗+γ∗), exp(β∗), exp(γ∗)} = M1,
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Lϵ = max

{
1

1− f1
,

1

1− f0

}
≤ 1

ϵ
, if f1, f0 ≤ 1− ϵ,

L3 = max
ρ∗>0,s∗∈B

C ′′(ρ∗, s∗)

C ′′′(ρ∗, s∗)
=

M2

min{m1,m2}
.

So we have

Ef0{lf0(s∗f0)− lf0(s
∗
f1
)} ≤ C|f1 − f0|,

where C = 2νLC/(1 + ν) + 2L1LϵL3.

Taylor’s expansion of lf0(s∗f1) at s∗f0 gives that

lf0(s
∗
f1
) = lf0(s

∗
f0
) + (s∗f1 − s∗f0)

⊤∂lf0(s)

∂s

∣∣∣∣
s=s∗f0

+ (s∗f1 − s∗f0)
⊤∂

2lf0(s)

∂s∂s⊤

∣∣∣∣
s=s′

(s∗f1 − s∗f0),

(S7.16)

where s′ lies in between s∗f0 and s∗f1 . Consequently,

Ef0{lf0(s∗f0)− lf0(s
∗
f1
)} = (s∗f1 − s∗f0)

⊤
{
− Ef0

∂2lf0(s)

∂s∂s⊤

∣∣∣∣
s=s′

}
(s∗f1 − s∗f0)

≤ C|f1 − f0|. (S7.17)

It can be easily show that the matrix −Ef0{∂2lf0(s)/(∂s∂s
⊤)|s=s′} is posi-

tive definite. Let the corresponding smallest eigenvalue be λmin > 0, then

(S7.17) implies

∥s∗f1 − s∗f0∥ ≤ C

λmin

|f1 − f0|. (S7.18)

Finally, let C1 = C/λmin which is given in Theorem 3 of the paper.
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S7.3 Proof of Theorem 3: part II (Lipschitz continuity of Σf1(s
∗
f1
))

We prove the asymptotic covariance matrix Σf1(s
∗
f1
) is Lipschitz continuous

with respect to f1. Let ŝf1 maximize the log-likelihood function

ln,f1 =
n∑

i=1

[
(α1 + βxi + γgi)di − log(1 + exp(α1 + βxi + γgi))

+ xi log θ + (1− xi) log(1− θ) + gi log(π) + (1− gi) log(1− π)
]

with the outcome prevalence being specified to be f1.

According to White (1982), the maximum likelihood estimator ŝf1 is

consistent for s∗f1 and asymptotically normal:

√
n(ŝf1 − s∗f1) → N(0,Σf1(s

∗
f1
)), (S7.19)

where

Σf1(s
∗
f1
) = A−1(f1, s

∗
f1
)B(f1, s

∗
f1
)A−1(f1, s

∗
f1
) (S7.20)

with

A(f, s) =
1

n
Ef0

{
∂2ln,f (s)

∂s∂s⊤

}
and B(f, s) =

1

n
Ef0

{
∂ln,f (s)

∂s

∂ln,f (s)

∂s⊤

}
.

(S7.21)

Assume that A(f, s) and B(f, s) have good condition numbers among all

f ∈ (0, 1 − ϵ] and s ∈ B. Specifically, ∥A(f, s)∥ ≤ ΛA, ∥A−1(f, s)∥ ≤ λA

and ∥B(f, s)∥ ≤ ΛB, ∥B−1(f, s)∥ ≤ λB. Similarly, we have

Σf0(s
∗
f0
) = A−1(f0, s

∗
f0
)B(f0, s

∗
f0
)A−1(f0, s

∗
f0
). (S7.22)
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Note that

−A(f0, s
∗
f0
) = B(f0, s

∗
f0
). (S7.23)

In order to show ∥Σf1(s
∗
f1
)−Σf0(s

∗
f0
)∥ ≤ C2|f1 − f0|, we only need to show

∥A(f1, s∗f1)− A(f0, s
∗
f0
)∥ ≤ CA|f1 − f0|, (S7.24)

and

∥B(f1, s
∗
f1
)−B(f0, s

∗
f0
)∥ ≤ CB|f1 − f0|. (S7.25)

In fact, according to the Woodbury matrix identity

(A−B)−1 = A−1 + A−1B(A−B)−1

that

A−1(f0, s
∗
f0
) = (A(f1, s

∗
f1
)− [A(f1, s

∗
f1
)− A(f0, s

∗
f0
)])−1

= A−1(f1, s
∗
f1
) + A−1(f1, s

∗
f1
)[A(f1, s

∗
f1
)− A(f0, s

∗
f0
)]A−1(f0, s

∗
f0
)

(S7.26)

Consequently,

∥A−1(f1, s
∗
f1
)− A−1(f0, s

∗
f0
)∥ ≤ ∥A−1(f1, s

∗
f1
)∥∥A(f1, s∗f1)− A(f0, s

∗
f0
)∥∥A−1(f0, s

∗
f0
)∥

≤ λ2
ACA|f1 − f0|.

(S7.27)
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By (S7.20), (S7.22), (S7.23), (S7.24) and (S7.27), we have

∥Σf1(s
∗
f1
)− Σf0(s

∗
f0
)∥

=∥A−1(f1, s
∗
f1
)B(f1, s

∗
f1
)A−1(f1, s

∗
f1
)− A−1(f0, s

∗
f0
)B(f0, s

∗
f0
)A−1(f0, s

∗
f0
)∥

=∥A−1(f1, s
∗
f1
)B(f1, s

∗
f1
)A−1(f1, s

∗
f1
)− A−1(f1, s

∗
f1
)B(f0, s

∗
f0
)A−1(f1, s

∗
f1
)

+ A−1(f1, s
∗
f1
)B(f0, s

∗
f0
)A−1(f1, s

∗
f1
)− A−1(f0, s

∗
f0
)B(f0, s

∗
f0
)A−1(f0, s

∗
f0
)∥

≤∥A−1(f1, s
∗
f1
)∥∥B(f1, s

∗
f1
)−B(f0, s

∗
f0
)∥∥A−1(f1, s

∗
f1
)∥

+ ∥A−1(f1, s
∗
f1
)− A−1(f0, s

∗
f0
)∥∥B(f0, s

∗
f0
)∥∥A−1(f1, s

∗
f1
) + A−1(f0, s

∗
f0
)∥

≤(λ2
ACB + 2λ3

ACAΛB)|f1 − f0|.
(S7.28)

Here we let C2 = λ2
ACB + 2λ3

ACAΛB which is given in Theorem 3 of the

main text.

Now we prove Equations (S7.24) and (S7.25). Given the prevalence

constraint (S7.5), i.e., f = F (α, s), we have

∂α(f, s)

∂s
= −∂F/∂s

∂F/∂α
(f, s).

It can be verified that when f ∈ (0, 1 − ϵ], s ∈ B, ∂α(f, s)/∂s is bounded



S7. ROBUSTNESS OF ADJCON WITH RESPECT TO PREVALENCE
SPECIFICATION

Lipschitz continuous with respect to f , and the derivative

∂lf (s)

∂s
=



(D − exp(α+βX+γE)
1+exp(α+βX+γE)

)(X + ∂α
∂β
)

(D − exp(α+βX+γE)
1+exp(α+βX+γE)

)(E + ∂α
∂γ
)

X
θ
− 1−X

1−θ
+ (D − exp(α+βX+γE)

1+exp(α+βX+γE)
)∂α
∂θ

E
π
− 1−E

1−π
+ (D − exp(α+βX+γE)

1+exp(α+βX+γE)
)∂α
∂π


is also bounded Lipschitz continuous with respect to f , since exp(α(f, s))/(1+

exp(α(f, s))) is bounded Lipschitz continuous with respect to f . By the

fact that the product of two bounded Lipschitz continuous functions is also

bounded Lipschitz continuous, we have {∂lf (s)/∂s}{∂lf (s)/∂s⊤} is Lips-

chitz continuous with respect to f (assume the Lipschitz constant LBf ).

Moreover, {∂lf (s)/∂s}{∂lf (s)/∂s⊤} is a continuously differentiable func-

tion with respect to s in the compact set B, so B(f, s) is Lipschitz con-

tinuous with respect to s (assume the Lipschitz constant LBs). Using

∥s∗f1 − s∗f0∥ ≤ C1|f1 − f0| proved in Section S7.2, we have that Equa-

tion (S7.25) holds:

∥B(f1, s
∗
f1
)−B(f0, s

∗
f0
)∥ ≤ ∥B(f1, s

∗
f1
)−B(f0, s

∗
f1
)∥+ ∥B(f0, s

∗
f1
)−B(f0, s

∗
f0
)∥

≤ (LBf + LBsC1)|f1 − f0|.

Let CB = LBf + LBsC1 which is defined in (S7.25).

Similarly,

∂2α(f, s)

∂s∂s⊤
= −

∂F
∂α

(∂α
∂s
)2 + 2 ∂2F

∂α∂s
∂α
∂s

+ ∂2F
∂s∂s⊤

∂F
∂α
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is also bounded Lipschitz continuous with respect to f . Denote

l1(f, s) =
∂l(α, s)

∂α
, l2(f, s) =

∂l(α, s)

∂s
,

l11(f, s) =
∂2l(α, s)

∂α∂α
, l12(f, s) =

∂2l(α, s)

∂α∂s
, l22(f, s) =

∂2l(α, s)

∂s∂s
.

Since lf (s) = l(α(f, s), s), we have

∂2lf (s)

∂s∂s⊤
=

∂

∂s

[
l1(f, s)

∂α

∂s
+ l2(f, s)

]
=

[
l11(f, s)

∂α

∂s
+ l12(f, s)

]
∂α

∂s
+ l1(f, s)

∂2α

∂s∂s⊤
+ l12(f, s)

∂α

∂s
+ l22(f, s)

= l11(f, s)
∂α

∂s

∂α

∂s⊤
+ 2l12(f, s)

∂α

∂s⊤
+ l1(f, s)

∂2α

∂s∂s⊤
+ l22(f, s)

is bounded Lipschitz continuous since each of the terms in the right hand

side of the above equation is a bounded Lipschitz continuous function with

respect to f . Also ∂2lf (s)/(∂s∂s
⊤) is continuously differentiable with re-

spect to s in the compact region B, thus A(f, s) is also Lipschitz continuous

with respect to s. So we have that (S7.24) holds:

∥A(f1, s∗f1)− A(f0, s
∗
f0
)∥ ≤ ∥A(f1, s∗f1)− A(f0, s

∗
f1
)∥+ ∥A(f0, s∗f1)− A(f0, s

∗
f0
)∥

≤ CA|f1 − f0|.

Finally, following from (S7.24) and (S7.25), we have (S7.28) holds.



S8. SIMULATION STUDY FOR ROBUSTNESS OF ADJCON

Table S1: Type-I error rate/power with possibly misspecified f .

γ = 0 γ = 0.075

f0 Mar Adj AdjCon Mar Adj AdjCon

0.01 0.050 0.050 0.050 0.755 0.733 0.754

0.05 0.052 0.051 0.051 0.748 0.730 0.747

0.10 0.049 0.049 0.049 0.737 0.730 0.737

0.20 0.050 0.050 0.050 0.728 0.730 0.731

In any of the four scenarios, the prevalence f is specified to be 0.05 in AdjCon.

S8 Simulation study for robustness of AdjCon

In this study, we assess the robustness of AdjCon against disease preva-

lence misspecification. Case-control data are generated in a manner anal-

ogous to Section 4 of the main text, with γ = 0 or 0.075 and f0 = 0.01,

0.05, 0.10, and 0.2. When applying AdjCon, we specify the disease preva-

lence to be 0.05, so that the disease prevalence is correctly specified when

f0 = 0.05 and misspecified otherwise. We also include Mar and Adj for

the purpose of comparison. The resulting type-I error rates (γ = 0) and

powers (γ = 0.075) are presented in Figure S1, which are obtained based

on 50,000 replications. As demonstrated in Figure S1(A), AdjCon main-

tains well-controlled type-I error rates, even in scenarios where the disease

prevalence is significantly misestimated. Furthermore, AdjCon is at lest
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comparative in terms of powers against the two alternative methods in the

presence of prevalence misspecfication (Figure S1(B)). These empirical re-

sults coincide with the theoretical insights discussed in Section 3.3 of the

main text.

0.05 0.10 0.15 0.20

0

1

2

3

4

5

6

Disease prevalence

Ty
pe

−
I e

rr
or

 (
%

)

0.05 0.10 0.15 0.20

70

71

72

73

74

75

76

Disease prevalence

P
ow

er
 (

%
)

Figure S1: (A) Type-I error rates of Mar (dotted line), Adj (dashed line), and AdjCon

(solid line) for testing exposure-disease association (H0 : γ = 0) with γ = 0, β = 1,

θ = π = 0.5, n0 = n1 = 10000; (B) Powers of Mar (dotted line), Adj (dashed line), and

AdjCon (solid line) for testing exposure-disease association (H0 : γ = 0) with γ = 0.075,

β = 1, θ = π = 0.5, n0 = n1 = 10000.



S9. ADDITIONAL RESULTS FOR THE HDL-C DATA ANALYSIS

S9 Additional results for the HDL-C data analysis

Table S2: P-values for SNP vs. BMI association tests

SNP P-values SNP P-values SNP P-values SNP P-values

rs2144300 5.70E-01 rs4846914 5.70E-01 rs3779788 9.02E-01 rs255 9.99E-01

rs256 9.41E-01 rs263 7.42E-01 rs264 8.70E-01 rs271 9.76E-01

rs301 3.45E-01 rs328 6.93E-01 rs331 6.94E-01 rs12679834 7.95E-01

rs3208305 4.51E-01 rs3735964 8.03E-01 rs13702 4.74E-01 rs3916027 7.37E-01

rs2197089 2.40E-01 rs1340510 3.60E-01 rs3890182 5.47E-01 rs2275544 8.67E-01

rs1883025 5.61E-01 rs7120118 4.14E-01 rs102275 2.22E-01 rs2338104 5.46E-01

rs11635491 1.96E-02 rs1800588 1.55E-01 rs2070895 1.40E-01 rs8034802 5.26E-02

rs8033940 6.15E-02 rs261332 1.07E-01 rs588136 9.56E-02 rs261341 3.89E-02

rs261338 2.25E-01 rs13306677 1.59E-01 rs6499861 1.69E-02 rs6499863 6.29E-03

rs12708967 1.55E-01 rs3764261 1.51E-02 rs12720918 1.58E-01 rs17231506 1.51E-02

rs4783961 3.05E-02 rs1800775 4.41E-03 rs711752 1.43E-02 rs708272 1.43E-02

rs1864163 8.31E-03 rs7203984 1.38E-02 rs11508026 2.26E-02 rs12720922 3.84E-02

rs9939224 2.97E-02 rs11076174 3.89E-01 rs1532625 1.08E-02 rs1532624 6.00E-03

rs11076175 2.03E-02 rs7499892 1.11E-02 rs11076176 7.25E-01 rs289714 7.69E-01

rs5880 4.13E-01 rs1800777 6.67E-02 rs2292318 2.37E-01 rs255052 1.32E-01

rs1943981 1.08E-02 rs2156552 1.10E-02 rs2075650 2.53E-01 rs6073952 7.99E-01

Grayed are p-values smaller than 0.05.
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Table S3: P-values for SNP vs. HDL-C association tests

SNP Mar Adj AdjCon SNP Mar Adj AdjCon

rs2144300 1.07E-01 1.65E-01 1.37E-01 rs4846914 1.07E-01 1.65E-01 1.37E-01

rs3779788 6.10E-04 3.17E-04 2.33E-04 rs255 7.16E-03 2.80E-03 2.56E-03

rs256 1.73E-03 6.43E-04 4.83E-04 rs263 1.24E-04 3.44E-05 2.33E-05

rs264 1.64E-03 6.18E-04 5.27E-04 rs271 5.87E-03 2.43E-03 2.00E-03

rs301 1.23E-03 3.64E-03 2.41E-03 rs328 8.71E-04 8.94E-04 5.02E-04

rs331 1.79E-02 2.63E-02 2.19E-02 rs12679834 1.36E-03 1.16E-03 7.05E-04

rs3208305 2.69E-04 3.98E-04 2.51E-04 rs3735964 4.97E-03 3.77E-03 2.69E-03

rs13702 2.83E-04 3.46E-04 2.28E-04 rs3916027 1.21E-02 1.57E-02 1.29E-02

rs2197089 2.07E-01 2.52E-02 3.33E-02 rs1340510 6.77E-02 3.60E-02 3.40E-02

rs3890182 4.94E-02 2.35E-02 2.77E-02 rs2275544 2.86E-02 2.09E-02 2.36E-02

rs1883025 1.87E-02 2.99E-02 2.79E-02 rs7120118 9.75E-01 5.41E-01 6.20E-01

rs102275 1.24E-01 3.06E-01 2.53E-01 rs2338104 7.26E-01 5.26E-01 5.56E-01

rs1800588 1.77E-03 5.39E-03 3.98E-03 rs2070895 1.30E-03 5.10E-03 3.61E-03

rs8034802 9.94E-03 9.08E-02 5.64E-02 rs8033940 7.62E-03 6.47E-02 4.06E-02

rs261332 1.08E-03 7.75E-03 4.72E-03 rs588136 3.87E-03 2.68E-02 1.68E-02

rs261338 2.76E-02 6.99E-02 5.40E-02 rs13306677 8.00E-01 2.16E-01 2.92E-01

rs12708967 1.12E-02 7.53E-03 6.56E-03 rs12720918 2.14E-02 2.41E-02 2.17E-02

rs11076174 2.77E-06 4.36E-06 3.07E-06 rs11076176 8.81E-09 9.49E-10 8.12E-10

rs289714 8.22E-09 4.95E-10 4.73E-10 rs5880 8.25E-03 1.23E-02 1.43E-02

rs1800777 7.69E-03 4.03E-02 3.17E-02 rs2292318 8.96E-01 4.28E-01 5.10E-01

rs255052 9.03E-01 5.66E-01 6.58E-01 rs2075650 7.80E-02 2.93E-02 3.24E-02

rs6073952 5.37E-01 4.53E-01 4.46E-01

Results are present only for those SNPs not significantly associated with BMI at level 0.05. Bolded are

significant results at level 0.05 after Bonferroni correction (p-value < 0.05/64).



S10. SIMULATION RESULTS FOR THE PROBIT LINK

S10 Simulation results for the probit link

In this section, we evaluate the three considered methods Mar, Adj, and

AdjCon through simulations with the probit link function. The data gen-

eration process is the same as that in Section 4, except that the logit link

function is replaced with the probit link function:

pr(D = 1 | X = i, E = j) = Φ(α + βi+ γj), (S10.29)

where Φ is the cumulative function of the standard normal distribution. The

parameters are set as β = 1.0, γ = 0 or 0.04, and f = 0.01, 0.05, 0.1, 0.2,

0.25, or 0.3. A population of size 107 is generated for each parameter com-

bination, and a sample of n1++ = 10, 000 cases and n0++ = 10, 000 controls

are sampled from diseased and non-diseased individuals, respectively. Wald

test statistics for AdjCon, Mar, and Adj are calculated for each gener-

ated dataset. Type-I error rates (γ = 0) and powers (γ = 0.04) under

the nominal level 0.05 are obtained based on 100,000 simulation replicates.

Figure S2 presents the corresponding type-I error rates and powers for the

three methods.

As shown in Figure S2(A), all methods maintain well controlled type-I

error rates around the nominal level 0.05. Furthermore, Figure S2(B) shows

power trends of the three methods similar to those under the logit link
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function (Figure 1(C) and Figure 2(B)). Specifically, AdjCon is uniformly

more powerful than Mar and Adj across various disease prevalences, while

Mar is more powerful than Adj for small f and vice versa for large f .
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Figure S2: (A) Type-I error rates of Mar (dotted line), Adj (dashed line), and AdjCon

(solid line) for testing exposure-disease association under the probit link (H0 : γ = 0)

with γ = 0, β = 1, θ = π = 0.5, n0 = n1 = 10000; (B) Powers of Mar (dotted line),

Adj (dashed line), and AdjCon (solid line) for testing exposure-disease association

(H0 : γ = 0) with γ = 0.04, β = 1, θ = π = 0.5, n0 = n1 = 10000.
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