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S1 Technical proofs

S1.1 The upper and lower bounds of covariance element σij

The following inequalities can be easily derived from the properties of prob-

ability,

Pr(Yi = 1) + Pr(Yj = 1)− 1 < Pr(Yi = 1, Yj = 1) < min{Pr(Yi = 1),Pr(Yj = 1)}.
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Because σij = E(YiYj)− E(Yi)E(Yj) = Pr(Yi = 1, Yj = 1)− µiµj, Pr(Yi =

1) = µi and Pr(Yj = 1) = µj, we rewrite the inequalities as follows,

max{0, µi + µj − 1} < Pr(Yi = 1, Yj = 1) < min{µi, µj},

and then we have

max{−µiµj,−1} ≤ max{0, µi + µj − 1} − µiµj < σij < min{µi, µj} − µiµj.

Since σii = µi(1 − µi) and σjj = µj(1 − µj), the correlation coefficient

ϱij = σij/(σiiσjj)
1/2 satisfies

max
{
− [µiµj/((1− µi)(1− µj))]

1/2 ,− [(1− µi)(1− µj)/(µiµj)]
1/2
}
< ϱij

< min
{
[µi(1− µj)/(µj(1− µi))]

1/2 , [µj(1− µi)/(µi(1− µj))]
1/2
}
,

S1.2 HPC method is order-dependent

Demonstration: suppose we have a p-dimensional correlation matrix R =

(Rjk)1≤j,k≤p, where p ≥ 4 and the elements of the corresponding angle

matrix ω31 ∈ (0, π/2), ω21 ∈ (0, π/2), ω32 ∈ (π/2, π), ωj2 ∈ (π/4, π/2)

and ωj3 ∈ (π/4, π/2) for some j ≥ 4. Here we exchange the labels j and

2 in the data. Denote Ω(R) = {ωmk|1 ≤ k < m ≤ p} by the set of all

angles involved in the HPC decomposition of R. Furthermore, for fixed l,

Ωl(R) = {ωml|m > l}.

We first consider the set Ω1(R) under exchange between labels j and
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2. We denote the original correlation matrix and correlation matrix after

change by R and R′, respectively. Note that we have

cos(ω′
21) = R′

21 = Rj1 = cos(ωj1),

cos(ω′
j1) = R′

j1 = R21 = cos(ω21),

cos(ω′
k1) = R′

k1 = Rk1 = cos(ωk1),

for j > 2, k > 2 and k ̸= j. Because cosine function is monotonic in

(0, π), we conclude that Ω1(R) = Ω1(R
′). That is, Ω1(R) is invariant

under exchange between labels j and 2.

We next consider Ω2(R). Regarding Rj2 and R′
j2, it is easy to see that

R′
j2 = R2j = Rj2, since R is a symmetric matrix. And by the equation (6)

in Zhang et al. (2015), we have

Rj2 = sin(ωj1) sin(ω21)[cos(ωj2) + cos(ωj1) cos(ω21)],

R′
j2 = sin(ω′

j1) sin(ω
′
21)[cos(ω

′
j2) + cos(ω′

j1) cos(ω
′
21)].

Thus we have cos(ωj2) = cos(ω′
j2). Since the angle ω ∈ (0, π) and cosine

function is monotonic in (0, π), then we can obtain that

ωj2 = ω′
j2.

In terms of the correlation coefficient R32, we have R32 = R′
j3 under
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exchange between labels j and 2. In addition,

R32 = sin(ω31) sin(ω21)[cos(ω32) + cos(ω31) cos(ω21)],

R′
j3 = cos(ω′

j3)

2∏
l=1

sin(ω′
jl) sin(ω

′
3l) +

2∑
l=1

[
cos(ω′

jl) cos(ω
′
3l)

l−1∏
t=1

sin(ω′
jt) sin(ω

′
3t)

]
,

where
∏0

l=1 = 1.

If HPC decomposition is order independent, we then have

ω′
j3 = ω32, ω′

32 = ωj3.

Putting all the above results together, after simplification, we can obtain

that

sin(ω31) sin(ω21)[cos(ωj3) cos(ωj2) + cos(ω32) sin(ωj2) sin(ωj3)− cos(ω32)]

= cos(ω31) cos(ω21)[sin(ω31) sin(ω21)− 1]. (8)

Since we assume that all the angles are in (0, π), we have

sgn[sin(ω31) sin(ω21)− 1] = −1, sgn[sin(ω31) sin(ω21)] = 1,

Note

cos(ωj3) cos(ωj2) + cos(ω32) sin(ωj2) sin(ωj3)− cos(ω32) > 0,

if and only if

tan(ωj2) tan(ωj3) >
1

1− cos(ω32)
,
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which is implied by ω32 ∈ (π/2, π), ωj2 ∈ (π/4, π/2) and ωj3 ∈ (π/4, π/2).

Since ω31 ∈ (0, π/2) and ω21 ∈ (0, π/2), we can conclude that

sin(ω31) sin(ω21)[cos(ωj3) cos(ωj2) + cos(ω32) sin(ωj2) sin(ωj3)− cos(ω32)] > 0,

cos(ω31) cos(ω21)[sin(ω31) sin(ω21)− 1] < 0.

This is a contradiction with the equation (8). Therefore, the HPC method

is order-dependent.

S1.3 Proof of Theorem 1

We first show that β̂ is a
√
n-consistent estimator for parameter β. Accord-

ing to McCullagh (1983), we have

β̂ − β =

{
1

n

(
∂µ⊤

∂β

)
Σ−1

(
∂µ⊤

∂β

)⊤}−1{
1

n

(
∂µ⊤

∂β

)
Σ−1(y − µ)

}
+ op(n

−1/2).

The expectation of S1(β) = (∂µ⊤/∂β)Σ−1(y − µ) at the true value β

is E(S1(β)) = 0 and the matrix

E

(
∂S1(β)

∂β

)
=

{(
∂µ⊤

∂β

)
Σ−1

(
∂µ⊤

∂β

)⊤
}

= (v(Xβ)X)⊤Σ−1(v(Xβ)X),

where

v(Xβ) = diag

(
exp(X⊤

1 β)

(1 + exp(X⊤
1 β))

2
, . . . ,

exp(X⊤
n β)

(1 + exp(X⊤
n β))

2

)
is an n × n diagonal matrix. Since by Cholesky decomposition, Σ−1 =

T⊤D−1T , where D−1 = diag(σ−1
11 , . . . , σ

−1
nn ), the matrix E(∂S1(β)/∂β) =

(Tv(Xβ)X)⊤D−1(Tv(Xβ)X). By condition (A3), there exists a constant
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λβ such that E(∂S1(β)/∂β) ≤ λβ1pβ×pβ , where 1pβ×pβ is the pβ-dimensional

matrix whose elements are all 1. Since S1(β) involves a sum of n zero-mean

random variables, by the law of large numbers,

1

n
S1(β) =

{
1

n

(
∂µ⊤

∂β

)
Σ−1(y − µ)

}
→ 0

with probability tending to 1 as n → ∞ and (1/n)S1(β) = Op(n
−1/2).

Similarly, we can prove that

1

n
E

(
∂S1(β)

∂β

)
=

{
1

n

(
∂µ⊤

∂β

)
Σ−1

(
∂µ⊤

∂β

)⊤
}

is a bounded matrix and also (1/n)E(∂S1(β)/∂β) = O(1). Finally, combin-

ing all these results, we have β̂ → β as n → ∞ and

||β̂ − β||2 = Op(n
−1/2).

And then, the consistency of parameter estimator γ̂ can be obtained

similarly. According to the generalized estimating equation S2(γ), we have

γ̂ − γ =

{
1

N

(
∂η⊤

∂γ

)
M−1

(
∂η⊤

∂γ

)⊤}−1 {
1

N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − F (R(γ); c(β̂)))

}
+ op(N

−1/2)

= D−1
1 B1 + op(N

−1/2),

where

D1 =
1

N

(
∂η⊤

∂γ

)
M−1

(
∂η⊤

∂γ

)⊤

,

B1 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − F (R(γ); c(β̂)))
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Next, we decompose B1 as follows,

B1 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − F (R(γ); c(β̂))) = J1 + J2 + J3,

where r̂ = y − µ̂,

J1 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − rr⊤),

J2 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(rr⊤ − F (R(γ); c(β))),

J3 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(F (R(γ); c(β))− F (R(γ); c(β̂))).

Similar to the proof of β̂, it is easy to derive that J2 = Op(N
−1/2) since

E(rr⊤) = F (R(γ); c(β)). Then it suffices to show that

J1 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − rr⊤)

=
1

N

(
∂η⊤

∂γ

)
M−1vech∗(µ̂µ̂⊤ − µµ− y(µ̂− µ)⊤ − (µ̂− µ)y⊤)

=
1

N

(
∂η⊤

∂γ

)
M−1vech∗[(µ̂− µ)(µ̂− y)⊤ + (µ− y)(µ̂− µ)⊤]

=
1

N

(
∂η⊤

∂γ

)
M−1vech∗

{[
(β̂ − β)⊤

∂µ⊤

∂β

]
(µ̂− y)⊤ + (µ− y)

(
∂µ⊤

∂β

)⊤

(β̂ − β)

}

Therefore, J1 = Op(n
−1/2). And also, following Taylor’s expansion,

J3 =
1

N

(
∂η⊤

∂γ

)
M−1vech∗(F (R(γ); c(β))− F (R(γ); c(β̂)))

=
1

N

(
∂η⊤

∂γ

)
M−1

(
∂η⊤

∂β

)⊤

(β̂ − β) = Op(n
−1/2).

Since all the elements of matrix M−1 are bounded, we can obtain that

D1 = O(1). Putting all the results together, we have

∥γ̂ − γ∥2 = Op(n
−1/2).
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S1.4 Proof of Theorem 2

Next, we give proof of the asymptotic normality of the generalized estimat-

ing equation estimators β̂ and γ̂. According to the proof of Theorem 1, we

have

√
n(β̂ − β) =

{
1

n

(
∂µ⊤

∂β

)
Σ−1

(
∂µ⊤

∂β

)⊤}−1{
1√
n

(
∂µ⊤

∂β

)
Σ−1(y − µ)

}
+ op(1)

By Condition (A4) in Section 3, we can obtain that

1√
n

(
∂µ⊤

∂β

)
Σ−1(y − µ)

D−→ Npβ(0,Λβ).

Using Condition (A7) in Ye and Pan (2006), we have, as n → ∞,

1

n

(
∂µ⊤

∂β

)
Σ−1

(
∂µ⊤

∂β

)⊤
P−→ Vβ.

Therefore,
√
n(β̂−β)

D−→ Npβ(0,V
−1
β ΛβV

−1
β ). In a similar way, the asymp-

totic normality of parameter estimator γ̂ can be easily derived. Based on

the proof of the consistency of parameter estimator γ̂, we have

√
N(γ̂ − γ) =

{
1

N

(
∂η⊤

∂γ

)
M−1

(
∂η⊤

∂γ

)⊤}−1 {
1

√
N

(
∂η⊤

∂γ

)
M−1vech∗(r̂r̂⊤ − F (R(γ); c(β̂)))

}
+ op(1).

By Condition (A5) in Section 3, we have, as N → ∞,

√
NJ2 =

1√
N

(
∂η⊤

∂γ

)
M−1vech∗(rr⊤ − F (R(γ); c(β))) + op(1)

=
1√
N

(
∂η⊤

∂γ

)
M−1vech∗(rr⊤ − E(rr⊤)) + op(1)

D−→ Npγ (0,Λγ).
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We expand
√
NJ1 and

√
NJ3 in a Taylor series as follows,

√
NJ1 =

1√
N

(
∂η⊤

∂γ

)
M−1

(
∂vec(rr⊤)⊤

∂β

∣∣∣∣
β̃∗

)⊤

(β̂ − β),

√
NJ3 =

1√
N

(
∂η⊤

∂γ

)
M−1

(
∂vech∗(F (R(γ); c(β)))⊤

∂β

∣∣∣∣
β∗

)⊤

(β̂ − β),

where β̃∗ and β∗ are two values in the neighborhood N (β̂, β), and for the

(i, j)-th element of matrix rr⊤ and F (R(γ); c(β)), 1 ≤ i, j ≤ n,

∂rirj
∂β

= (µi − yi)

(
∂g−1(X⊤

j β)

∂β

)
+ (µj − yj)

(
∂g−1(X⊤

i β)

∂β

)
,

∂[F (Rij(γ); ci(β), cj(β))]

∂β
=


Φ

(
cj(β)−Rij(γ)ci(β)√

1−(Rij(γ))2

)
ϕ(ci(β))

ϕ(1− µi)
− (1− µj)


(
∂g−1(X⊤

i β)

∂β

)

+


Φ

(
ci(β)−Rij(γ)cj(β)√

1−(Rij(γ))2

)
ϕ(cj(β))

ϕ(1− µj)
− (1− µi)


(
∂g−1(X⊤

j β)

∂β

)
,

and

∂F (Rij(γ); ci(β), cj(β))

∂γ
=

∂

∂γ

∫ ci(β)

−∞
Φ

(
cj(β)−Rij(γ)x√

1− (Rij(γ))2

)
ϕ(x)dx.

It is easy to obtain that
√
NJ1 = Op(1) and

√
NJ3 = Op(1) since

∥β̂− β∥2 = Op(n
−1/2) and N = n(n− 1)/2. On the other hand, as n → ∞,

1

N

(
∂η⊤

∂γ

)
M−1

(
∂η⊤

∂γ

)⊤
P−→ Vγ.

Hence,

√
N(γ̂ − γ)|β̂

D−→ Npγ (V
−1
γ (J∗

1 + J∗
3 ),V

−1
γ ΛγV

−1
γ ),
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where J∗
1 = lim

N→∞

√
NJ1 and J∗

3 = lim
N→∞

√
NJ3. Let J

∗ = J∗
1 + J∗

3 , and then

√
N(γ̂ − γ)|β̂

D−→ Npγ (V
−1
γ J∗,V−1

γ ΛγV
−1
γ ).

S2 Further simulation studies

S2.1 Varying correlation strengths

In this subsection, we conduct numerical simulations to compare all the

methods under varying correlation strengths and summarize the simulation

results in Table 1. The settings of latent angle parameter γ are given as

follows.

1. Weak latent correlation strength: γ = (−0.2, 0.4,−0.2)⊤ and ζij =

(1, d(si, sj), d
2(si, sj))

⊤. The ranges of latent correlation coefficients

and correlations between binary responses are [6.123e-17,0.1561] and

[-6.8239e-16,0.0997], respectively.

2. Moderate latent correlation strength: γ = (−1, 0.4)⊤ and

ζij = (1, d(si, sj))
⊤. The ranges of latent correlation coefficients and

correlations between pairs of binary responses are [0.3984,0.6909] and

[0.2154,0.4855], respectively.

3. Strong latent correlation strength: γ = (−2, 1)⊤ and

ζij = (1, d(si, sj))
⊤. The ranges of latent correlation coefficients and
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correlations between pairs of binary responses are [0.5054,0.8838] and

[0.2316,0.6900], respectively.

From Table 1, we can find that when the latent correlation strength is

moderate or strong, the proposed joint modelling method is an improvement

over the existing marginal model methodologies, in terms of the standard

deviations (SDs) of mean structure parameters. In addition, the improve-

ments are more obvious than that of the weak association case.

S2.2 Large sample size

In this subsection, we implement simulation experiments when the sample

size n increases to 144, 225, and 400 (i.e., 12×12, 15×15, and 20×20 grids).

Table 2 presents the estimate of each parameter and the associated standard

deviation in parenthesis when the sample size n ∈ {100, 144, 225, 400}. It

can be seen that the biases and standard deviations of parameter estimators

improve as the sample size n increases.

S2.3 The convergence of algorithm

In Section 2.4, we introduce the quasi-Fisher scoring algorithm to solve the

generalized estimating equations (2.5) & (2.6) and reach the numerical so-

lutions for the parameters in our joint model. The number of iterations
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Table 1: Simulation results on spatial binary data over 500 replications. The biases of

parameter estimates are presented in the table (the standard deviations of parameter

estimates are in parentheses). Various latent correlation strengths (weak, moderate, and

strong) are considered. The sample size n = 100.

Latent correlation strength Parameter True JMA GLGM GEE ML

Weak

β1 1 0.0527(0.4790) 0.1040(0.4962) 0.0580(0.4898) 0.0551(0.4920)

β2 −0.5 −0.0471(0.4661) −0.0599(0.4810) −0.0485(0.4758) −0.0534(0.4797)

β3 0.3 0.0028(0.4517) 0.0085(0.4824) 0.0063(0.4500) 0.0093(0.4526)

β4 −0.7 −0.0793(0.8132) −0.0915(0.8098) −0.0751(0.8176) −0.0662(0.8188)

γ1 −0.2 −0.0117(0.2280)

γ2 0.4 0.0327(0.6780)

γ3 −0.2 −0.0160(0.5194)

Moderate

β1 1 0.2876(0.6016) 1.1384(2.1508) 0.2964(0.6064) 0.3187(0.6262)

β2 −0.5 −0.1606(0.4768) −0.6008(1.7934) −0.1588(0.4734) −0.1655(0.5286)

β3 0.3 0.0665(0.4116) 0.3153(1.7150) 0.0763(0.4230) 0.0847(0.4799)

β4 −0.7 −0.2358(0.7118) −0.7959(3.0312) −0.2159(0.7143) −0.2159(0.8342)

γ1 −1 0.0225(0.9745)

γ2 0.4 0.0832(0.8549)

Strong

β1 1 0.6955(0.8451) 2.9471(4.2224) 0.7549(0.8802) 0.7855(0.8929)

β2 −0.5 −0.3231(0.5198) −1.3912(2.8638) −0.3501(0.5529) −0.3681(0.6174)

β3 0.3 0.2100(0.4677) 0.9769(2.7131) 0.2495(0.4976) 0.2462(0.5687)

β4 −0.7 −0.4407(0.8220) −2.0427(4.2480) −0.4609(0.8753) −0.4751(0.9861)

γ1 −2 0.0931(1.9336)

γ2 1 0.3085(1.5228)
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needed for convergence of the algorithm depends on the convergence cri-

terion (stopping rule) and starting parameter value. we conduct further

simulation studies to study the effect of iterations on the convergence. For

different convergence criteria (the l2-norm of parameter estimate change:

||β(k+1)−β(k)||2 ≤ ϵ and ||γ(k+1)−γ(k)||2 ≤ ϵ for any given ϵ > 0), the num-

bers of iterations needed to meet them are recorded and then displayed in

Figure 1 The sample means and standard errors of parameter estimates are

summarized in Table 3. Based on the simulation results shown in Figure 1

and Table 3, we can conclude that a higher degree of convergence of the

parameter estimates obtained by the proposed algorithm is achieved as the

number of iterations grows.

Moreover, we also implement two simulation experiments to study the

sensitivity of the parameter estimates concerning the starting values: (1)

for each replication, the starting value of the angle parameter vector γ is

independently sampled from a uniform distribution U3(−1, 1); (2) for each

replication, the starting values of parameter vectors β and γ are indepen-

dently drawn from uniform distributions U3(−1, 1) and U4(−1, 1), respec-

tively. Table 4 displays the sample means and standard errors of parameter

estimates in the above settings. Compared with the results shown in Ta-

ble 3, it is easy to find that the parameter estimates are not sensitive to the
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starting values, although the number of iterations needed for convergence

is larger than that of the starting value setting proposed in section 2.4.

(a)
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Figure 1: The number of iterations used to update the mean parameter β and angle

parameter γ under different convergence criteria. The x-axis is the number of iterations

in one replication, and the y-axis is the percentage of replications which require that

number of iterations to reach the convergence criterion. The four plots correspond to

four convergence criteria (a) ϵ = 10−2, (b) ϵ = 10−3, (c) ϵ = 10−4 and (d) ϵ = 10−5. For

each convergence criterion, the number of replications is 500.
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Table 2: Simulation results on spatial binary data over 500 replications. The biases of

parameter estimates are presented in the table (the standard deviations of parameter

estimates are in parentheses). The sample size n ∈ {100, 144, 225, 400}.

True JMA GLGM GEE ML

n = 100

β1 1 0.0527(0.4790) 0.1040(0.4962) 0.0580(0.4898) 0.0551(0.4920)

β2 −0.5 −0.0471(0.4661) −0.0599(0.4810) −0.0485(0.4758) −0.0534(0.4797)

β3 0.3 0.0028(0.4517) 0.0085(0.4824) 0.0063(0.4500) 0.0093(0.4526)

β4 −0.7 −0.0793(0.8132) −0.0915(0.8098) −0.0751(0.8176) −0.0662(0.8188)

γ1 −0.2 −0.0117(0.2280)

γ2 0.4 0.0327(0.6780)

γ3 −0.2 −0.0160(0.5194)

n = 144

β1 1 0.0411(0.3903) 0.1040(0.4962) 0.0400(0.3983) 0.0396(0.4021)

β2 −0.5 −0.0132(0.3731) −0.0599(0.4810) −0.0163(0.3749) −0.0170(0.3826)

β3 0.3 0.0020(0.3688) 0.0085(0.4824) 0.0016(0.3756) 0.0032(0.3801)

β4 −0.7 −0.1019(0.6437) −0.0915(0.8098) −0.0937(0.6464) −0.0961(0.6450)

γ1 −0.2 −0.0105(0.1988)

γ2 0.4 0.0323(0.5105)

γ3 −0.2 −0.0232(0.3797)

n = 225

β1 1 0.0182(0.3045) 0.0691(0.3149) 0.0211(0.3074) 0.0204(0.3104)

β2 −0.5 −0.0009(0.3024) −0.0258(0.3165) −0.0004(0.3049) −0.0020(0.3097)

β3 0.3 0.0217(0.2771) 0.0390(0.2846) 0.0215(0.2756) 0.0238(0.2787)

β4 −0.7 −0.0015(0.4664) −0.0333(0.4943) −0.0012(0.4758) −0.0071(0.4785)

γ1 −0.2 −0.0062(0.1514)

γ2 0.4 0.0145(0.4138)

γ3 −0.2 −0.0112(0.3261)

n = 400

β1 1 0.0245(0.2354) 0.0626(0.2313) 0.0294(0.2382) 0.0280(0.2442)

β2 −0.5 −0.0187(0.2168) −0.0399(0.2341) −0.0193(0.2196) −0.0175(0.2243)

β3 0.3 −0.0050(0.2102) 0.0165(0.2159) −0.0056(0.2145) −0.0102(0.2204)

β4 −0.7 −0.0070(0.3728) −0.0337(0.3760) −0.0061(0.3766) −0.0053(0.3802)

γ1 −0.2 0(0.1293)

γ2 0.4 −0.0168(0.3131)

γ3 −0.2 0.0148(0.2597)
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Table 3: Simulation results on balanced data over 500 replications. The sample means

of all the parameter estimates with sample standard errors in parentheses are shown in

the table. ANI is the averaged number of iterations used to update the estimates of

mean and angle parameters, and the values of ϵ listed below are the convergence criteria

(estimation precision).

True (a) ϵ = 10−2 (b) ϵ = 10−3 (c) ϵ = 10−4 (d) ϵ = 10−5

β1 1 1.0536(0.4755) 1.0527(0.4790) 1.0527(0.4791) 1.0527(0.4791)

β2 −0.5 −0.5464(0.4662) −0.5471(0.4661) −0.5472(0.4663) −0.5472(0.4663)

β3 0.3 0.3017(0.4488) 0.3028(0.4517) 0.3029(0.4519) 0.3029(0.4519)

β4 −0.7 −0.7817(0.8124) −0.7793(0.8132) −0.7792(0.8132) −0.7792(0.8132)

γ1 −0.2 −0.2166(0.2091) −0.2117(0.2280) −0.2111(0.2298) −0.2111(0.2299)

γ2 0.4 0.4425(0.6337) 0.4327(0.6780) 0.4314(0.6821) 0.4312(0.6825)

γ3 −0.2 −0.2213(0.4842) −0.2160(0.5194) −0.2152(0.5227) −0.2151(0.5231)

ANI 18.32 41.66 64.948 88.398
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Table 4: Simulation results on balanced data over 500 replications. The sample means of

all the parameter estimates with sample standard errors in parentheses are shown in the

table. ANI is the averaged number of iterations used to update the estimates of mean

and angle parameters. (1) and (2) are two starting value settings of parameters.

True (1) (2)

β1 1 1.0525(0.4792) 1.0526(0.4788)

β2 −0.5 −0.5471(0.4660) −0.5472(0.4664)

β3 0.3 0.3033(0.4526) 0.3030(0.4520)

β4 −0.7 −0.7794(0.8130) −0.7791(0.8131)

γ1 −0.2 −0.2112(0.2308) −0.2103(0.2290)

γ2 0.4 0.4272(0.6808) 0.4295(0.6801)

γ3 −0.2 −0.2133(0.5211) −0.2146(0.5208)

ANI 51.696 51.858
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