
Statistica Sinica: Supplement

Supplementary Material to “Simultaneous Change Point Detection

and Identification for High Dimensional Linear Models”

Bin Liu1, Xinsheng Zhang2 and Yufeng Liu3

1,2Department of Statistics and Data Science, School of Management at Fudan University

3Department of Statistics and Operations Research, Department of Genetics,

Department of Biostatistics, Carolina Center for Genome Sciences, Linberger

Comprehensive Cancer Center, University of North Carolina at Chapel Hill, U.S.A

The Appendix provides detailed proofs and additional results of the

main paper. In Section S1, we introduce some additional notations. In

Section S2, we provide the procedure for detecting multiple change points

using our method. In Section S3, we introduce some basic assumptions for

deriving the theoretical results. In Section S5, some additional numerical

results, including size, power as well as detecting multiple change points, are

provided. In Section S6, we apply our method to the Alzheimer’s disease

data analysis. In Section S7, some useful lemmas are provided. In Section

S8, we give the detailed proofs of theoretical results in the main paper. In

Sections S9 and S10, we prove the useful lemmas in Section S7 as well as

1



Proofs

the lemmas used in Section S8.

S1 Some notations

Under H0, we set β(0) := β(1) = β(2) and s(0) := s(1) = s(2). We set

s := s(1)∨s(2). For a given subgroup G, set ΠG = {j ∈ G : β
(1)
j −β

(2)
j ̸= 0} as

the subset of coordinates with a change point. For a vector v ∈ Rp, we set

M(v) as the number of non-zero elements of v, i.e. M(v) =
∑p

j=1 1{vj ̸=

0}. We denote J(v) = {1 ≤ j ≤ p : vj ̸= 0} as the set of non-zero elements

of v. For a set J and v ∈ Rp, denote vJ as the vector in Rp that has the

same coordinates as v on J and zero coordinates on the complement J c of

J . Denote X = {X,Y }. We use C1, C2, . . . to denote constants that may

vary from line to line.

S2 Extensions to multiple change points

So far, we have proposed new methods for detecting a single change

point as well as identifying its location using the argmax based estimator.

In this section, we aim to extend our new testing procedure for detecting

and identifying multiple change points for high dimensional linear models.

In particular, suppose there are m change points k1, . . . , km that divide the
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S2. EXTENSIONS TO MULTIPLE CHANGE POINTS

linear structures into m+ 1 segments with different regression coefficients:

Yi = X⊤
i β

(1) + ϵi, for i = 1, . . . , k1,

Yi = X⊤
i β

(2) + ϵi, for i = k1 + 1, . . . , k2,

...

Yi = X⊤
i β

(m) + ϵi, for i = km−1 + 1, . . . , km,

Yi = X⊤
i β

(m+1) + ϵi, for i = km + 1, . . . , n.

(S2.1)

Based on Model (S2.1), for any given subgroup G ⊂ {1, . . . , p}, in the case

of multiple change points, we consider the following hypothesis:

H′
0,G : β

(1)
s = β

(2)
s = · · · = β

(m)
s = β

(m+1)
s for all s ∈ G v.s.

H′
1,G : There exist s ∈ G and at least one j∗ ∈ {1, . . . ,m} s.t. β

(j∗)
s ̸= β

(j∗+1)
s .

(S2.2)

To solve Problem (S2.2), we combine our bootstrap-based new testing

procedure with the well-known binary segmentation technique (Vostrikova,

1981) to simultaneously detect and identify multiple change points. More

specifically, for each candidate search interval (s, e), we detect the existence

of a change point. If H0,G is rejected, we identify the new change point b

by taking the argmax in (2.18). Then the interval (s, e) is split into two

subintervals (s, b) and (b, e) and we conduct the above procedure on (s, b)

and (b, e) separately. This algorithm is stopped until no subinterval can de-

tect a change point. Algorithm S2.1 describes our bootstrap-based multiple

change point testing procedure. It is demonstrated by our numerical stud-
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ies that Algorithm S2.1 can automatically account for the data generating

mechanism and simultaneously detect and identify multiple change points,

which enjoys better performance than existing techniques.

Algorithm S2.1 : Bootstrap-based binary segmentation procedure for multiple change

point detection in high dimensional linear regression models.

Input: Given the data set {X,Y }, set the value for τ0, the number of bootstrap repli-

cations B, and the subset G.

Step 1: Initialize the set of change point pairs T = {0, 1}.

Step 2: For each pair {s, e} in T , detect the existence of a change point. If H0,G is

rejected, identify the new change point b by taking the argmax in (2.18). Then add

new pairs of nodes {s, b} and {b, e} to T and update T as T = T ∪ {s, b}∪ {b, e}.

Step 3: Repeat Step 2 until no more new pair of nodes can be added. Denote the

terminal set of change point pairs by Tfinal = ∪m̂+1
i=1 {t̂i−1, t̂i}.

Output: Algorithm S2.1 provides the change point estimator t̂ = (t̂0, ..., t̂m̂+1)
⊤, where

m̂ = #Tfinal − 1 and 0 = t̂0 < t̂1 < ... < t̂m̂ < t̂m̂+1 = 1, including the number and

locations.

S3 Basic assumptions

We introduce some basic assumptions for making change point inference

on high dimensional linear models. Assumption (A.1) is a basic require-
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S3. BASIC ASSUMPTIONS

ment for the change point location. Assumptions (A.1) – (A.3) impose

some regular conditions on the design matrix as well as the error terms.

Assumption (A.4) contains basic requirements on model parameters. As-

sumption (A.5) is a technical condition on the regularity parameters in

(2.5) and (2.9).

Before giving the assumptions, we introduce the concept of the re-

stricted eigenvalue (RE) and uniform restricted eigenvalue (URE) condi-

tions.

Definition 1. (Restricted eigenvalue RE(sj, 3)). For integers sj such that

1 ≤ sj ≤ p− 1, a set of indices J0 ⊂ {1, . . . , p− 1} with |J0| ≤ sj, define

R(j)(sj, 3) = min
J0⊂{1,...,p−1}

|J0|≤sj

min
δ ̸=0

∥δJc
0
∥1≤3∥δJ0∥1

∥X−jδ∥2√
n∥δJ0∥2

, with 1 ≤ j ≤ p, (S3.3)

where X−j ∈ Rn×(p−1) is a submatrix of X with the j-th column being

removed, and δJ0 is the vector that has the same coordinates as δ on J0

and zero coordinates on the complement J c
0 of J0.

Definition 2. (Uniform restricted eigenvalue URE(s, 3,T)). For integers

s such that 1 ≤ s ≤ p, a set of indices J0 ⊂ {1, . . . , p} with |J0| ≤ s, and

T = [τ0, 1− τ0], define
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R1(s, 3,T) = min
t∈T

min
J0⊂{1,...,p}

|J0|≤s

min
δ ̸=0

∥δJc
0
∥1≤3∥δJ0∥1

∥X(0,t)δ∥2√
⌊nt⌋∥δJ0∥2

. (S3.4)

and

R2(s, 3,T) = min
t∈T

min
J0⊂{1,...,p}

|J0|≤s

min
δ ̸=0

∥δJc
0
∥1≤3∥δJ0∥1

∥X(t,1)δ∥2√
⌊nt⌋∗∥δJ0∥2

. (S3.5)

Note that Definition 1 is similar to the RE conditions introduced in

Bickel et al. (2009) and is mainly used for the node-wise lasso estimators.

It is well-known that the RE conditions are among the weakest assumptions

on the design matrix and are important for deriving the estimation error

bounds of the lasso solutions. See Raskutti et al. (2010); Van De Geer

and Bühlmann (2009). Moreover, our testing procedure needs to calculate

β̂(0,t) and β̂(t,1) as in (2.9). For each search location t ∈ [τ0, 1 − τ0], to

guarantee β̂(0,t) and β̂(t,1) enjoy desirable properties toward their population

counterpart β(0,t) and β(t,1), we introduce the uniform restricted eigenvalue

condition as in Definition 3, which is an extension of the RE condition.

With the above two definitions, we are ready to introduce the assumptions,

which are summarized as follows:

Assumption (A.1) The design matrix X has i.i.d. rows following sub-

Gaussian distributions. In other words, there exists a positive constant K

such that supi,j E(exp(|Xi,j|2/K)) ≤ 1 holds.
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Assumption (A.2) The error terms {ϵi}ni=1 are i.i.d. sub-Gaussian with

finite variance σ2
ϵ . In other words, there exist positive constants K ′, cϵ and

Cϵ such that E(exp(|ϵi|2/K ′)) ≤ 1 and cϵ ≤ Var(ϵi) ≤ Cϵ hold. Furthermore,

ϵi is independent with Xi for i = 1, . . . , n.

Assumption (A.3) Assume that there are positive constants κ1 and κ2

such that maxj Σj,j < κ1 < ∞ and maxj ∥θj∥2 < κ2 < ∞ hold, where

θj is the j-th row of Θ = (θj,k) := Σ−1. Moreover, for the RE and URE

conditions, we require

min
1≤j≤p

R(j)(sj, 3) > κ3, min
(
R1(s, 3,T),R2(s, 3,T)

)
> κ4 (S3.6)

for some κ3, κ4 > 0, where sj := |{1 ≤ k ≤ p : θj,k ̸= 0, k ̸= j}|.

Assumption (A.4) For the change point model in (2.3), we assume the

following:

(a) Assume that log(pn) = O(⌊nτ0⌋ζ) holds for some 0 < ζ < 1/7;

(b)We assume⌊nτ0⌋ → ∞, max
1≤j≤p

sj
log(pn)√

n
→ 0 and s

√
n
log(pn)

⌊nτ0⌋
→ 0 as n, p → ∞,

where s := s(1) ∨ s(2);

(c) There exists some constant γ ∈ (0, 1] such that |G| = pγ.

Assumption (A.5) For the node-wise regression in (2.5), we require the

regularization parameter λ(j) ≍
√

log(p)/n uniformly in j. For the lasso-
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based estimators in (2.9), we require

λ1(t) ≍

√
log(p)

⌊nt⌋
, λ2(t) ≍

√
log(p)

⌊nt⌋∗
, for t ∈ [τ0, 1− τ0]. (S3.7)

Assumptions (A.1) – (A.3) are relatively weak conditions on the covari-

ates and error terms. In particular, they require that {Xi}ni=1 and {ϵi}ni=1

are sub-Gaussian distributed with “well-behaved” sample covariance matrix

and non-degenerate variances σ2
ϵ , which covers a wide broad of distribu-

tional patterns and has been commonly adopted in high dimensional data

analysis. Assumption (A.4) specifies the scaling relationships among pa-

rameters ({s, sj, n, p, |G|}) in Model (2.3). More specifically, (a) allows the

number of variables (p) can grow exponentially with the number of data ob-

servations (n) as long as log(pn) = O(⌊nτ0⌋ζ) holds; (b) allows the number

of active variables (s and sj) can go to infinity if max
1≤j≤p

sj
log(pn)√

n
→ 0 and

s
√
n
log(pn)

⌊nτ0⌋
→ 0 holds; (c) demonstrates that we can make change point

inference on any large scale subgroup G with |G| = pγ. Lastly, Assumption

(A.5) imposes some technical conditions on the regularity parameters of

lasso and node-wise lasso, which is important for deriving desirable estima-

tion error bounds of the corresponding estimators. It is worth mentioning

that (S3.7) automatically accounts for the heterogeneity of the ℓ1 regular-

ization problem (2.9) and is consistent with the classical conditions as in

Bickel et al. (2009) when the data are homogenous (e.g. β(1) = β(2)).

8



S3. BASIC ASSUMPTIONS

Lastly, the following Proposition 1 shows that the RE and URE condi-

tions in (S3.6) of Assumption (A.2) hold with high probabilities.

Proposition 1. (i) For integers sj such that 1 ≤ sj ≤ p − 1, a set of

indices J0 ⊂ {1, . . . , p− 1} with |J0| ≤ sj and sj
√
log(p)/n = o(1). Under

Assumption (A.1), if Σ satisfies

min
1≤j≤p

min
J0⊂{1,...,p−1}

|J0|≤sj

min
δ ̸=0

∥δJc
0
∥1≤3∥δJ0∥1

∥Σ−j,−jδ∥2
∥δJ0∥

≥ 2κ3, (S3.8)

for some κ3 > 0, then we have:

P( min
1≤j≤p

R(j)(sj, 3) > κ3) ≥ 1− C1(np)
−C2 ,

where Σ−j,−j := E[X−j(X−j)⊤/n] and C1, C2 are universal positive con-

stants not depending on n or p. (ii) Similarly, for integers s such that 1 ≤

s ≤ p, a set of indices J0 ⊂ {1, . . . , p} with |J0| ≤ s and s
√

log(p)/⌊nτ0⌋ =

o(1). Under Assumption (A.1), if Σ satisfies

min
J0⊂{1,...,p}

|J0|≤s

min
δ ̸=0

∥δJc
0
∥1≤3∥δJ0∥1

∥Σδ∥2
∥δJ0∥2

≥ 2κ4, (S3.9)

for some κ4 > 0, then we have

P(min
(
R1(s, 3,T),R2(s, 3,T)

)
> κ4) ≥ 1− C3(np)

−C4 ,

where C3, C4 > 0 are some universal constants not depending on n or p.

Remark 1. The proof of Proposition 1 is given in the Appendix. A suf-

ficient condition for both (S3.8) and (S3.9) hold is λmin(Σ) > c for some
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c > 0, where λmin(Σ) is the smallest eigenvalue of Σ. Note that the smallest

eigenvalue condition is easy to verify and has been widely used in the litera-

ture such as Kaul et al. (2019); Wang et al. (2021) for change point analysis

of high dimensional linear models. For example, many commonly used co-

variance matrices such as Toeplitz matrices, blocked diagonal matrices have

positive smallest eigenvalue values.

S4 Connection with the existing methods

In this section, we compare our proposed methodology and theorems

with several related papers. He et al. (2023) considered multiple testing

of local extrema for detection of change points in piecewise linear mod-

els. Note that He et al. (2023) essentially studied the change point for

the mean function of the univariate Gaussian process while we considered

high dimensional linear models. Wang et al. (2022) studied the theoretical

properties of the fused lasso procedure in the context of a linear regression

model in which the regression coefficients are totally ordered and assumed

to be sparse and piecewise constant. It is worth mentioning that although

Wang et al. (2022) also assumed that the regression coefficients are piece-

wise constants, the ’piecewise’ here refers to the values of the regression

coefficients being piecewise over the coordinate components, with the re-
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gression coefficients remaining constant as a whole throughout the entire

sample observation process. This is very different from the model we con-

sider, because we assume that the p-dimensional regression coefficients as

a whole are piecewise constants with respect to the observation time t.

Kaul et al. (2021); Xu et al. (2022) respectively considered the problem of

change point inference for ultra-high dimensional mean vector-based models

and linear regression models. However, both of these papers focus on con-

structing corresponding confidence intervals for the unknown change point

locations, rather than the problem of change point testing considered in

this paper. Lastly, Cho and Owens (2022); Bai and Safikhani (2023) re-

spectively constructed estimates for the location and number of multiple

change points in ultra-high-dimensional regression models based on meth-

ods of moving window and blocked fused lasso. Unlike these two methods,

this paper is primarily concerned with the change point testing problem in

regression models. Therefore, this paper needs to construct the debiased

lasso based testing statistics to adopt the Gaussian approximation method,

so that the testing procedure controls the type I error while maintaining

high detection power. It is worth mentioning that the signal-to-noise ra-

tio condition required for change point detection derived in this paper is

weaker than that required for the above-mentioned change point estimation
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methods. Specifically, according to the results of Cho and Owens (2022);

Bai and Safikhani (2023), to correctly identify the location of a change

point with desirable accuracy, the signal strength should at least satisfy

∥β(1) − β(2)∥∞ ≫
√

log(pn)/n. In contrast, our theorem shows that it is

sufficient to detect a change point if ∥β(1) −β(2)
∥∥
∞ ≥ C

√
log(pn)/n holds.

Hence, we need more stringent conditions for locating a change point than

detecting its existence. We believe that the aforementioned results should

be a noteworthy point in change point detection for high-dimensional linear

regression models.

S5 Additional numerical results

S5.1 Implementations of the existing techniques

Before reporting additional numerical results, we first demonstrate how

to implement the mentioned techniques in this paper.

Implementation of the existing methods: For Lee2016, we use

the package-glmnet to implement their proposed algorithm. Note that

Lee2016 involves a selection of the tuning parameter λ. For each replication,

we generate a sequence from 2−5 to 25 and select the “best” λ by 10-fold

cross-validation. For L&B, we use the binary segmentation-based method
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with parameters suggested by the authors using the package-glmnet.

Moreover, we use a three folded cross-validation procedure to select the tun-

ing parameters in L&B. For VPWBS, we implement the algorithm using the

codes provided by the authors at GitHub (https://github.com/darenwang/VPBS).

For SGL, we use the package-SGL with parameters in favor of their

method and use three folded cross-validation to select the tuning parame-

ters. Note that SGL solves the following optimization problem:

{β̂1, . . . , β̂n}

= argmin
β1,...,βn∈Rp

n∑
i=1

(Yi −X⊤
i βi)

2 + λnα
n∑

i=1

∥βi − βi−1∥2 + λn(1− α)
n∑

i=1

∥βi − βi−1∥1.

Based on the above optimization, SGL finds a change point at i∗ if β̂i∗ −

β̂i∗−1 ̸= 0. It is well-known that lasso tends to over select the variables. In

addition, SGL essentially solves a group lasso problem by calculating n× p

parameters using only n observations. As a result, SGL may yield false

alarms by identifying some {i : βi−βi−1 = 0p} as a change point. This can

be seen by our following empirical size performance in Section 4.1 as well

as the multiple change point detection results in Section S5.4. Moreover,

we note that this phenomenon was also observed by Wang et al. (2021).

Implementation of our method: As for our proposed method, we

use the package-hdi to obtain the node-wise lasso estimator Θ̂. Note

that the calculation of the lasso processes β̂(0,t) and β̂(t,1) with t ∈ [τ0, 1−
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τ0] involves the selection of tuning parameters λ1(t) and λ2(t) defined in

(2.9). We select the tuning parameters via three folded cross-validation.

Specifically, for each search location t ∈ [τ0, 1− τ0], we set

λ1(t) = C

√
log(p)

⌊nt⌋
, and λ2(t) = C

√
log(p)

⌊nt⌋∗
, with C ∈ {1, 2, . . . , 8}.

Then, we use the package-glmnet to select the best “C” via three folded

cross-validation, which enjoys satisfactory performance in change point de-

tection and identification.

S5.2 Additional size performance

In addition to N(0, 1), we also report the size performance under stan-

dardized Gamma(4, 1) (Table S5.1) and Student’s t5 (Table S5.2) distribu-

tions which have very similar performance to Table 1 of the main paper.

In this case, our proposed method can control the size under the nomi-

nal level. This suggests that the bootstrap null distribution is correctly

calibrated even for non-normal underlying errors.

S5.3 Additional power performance

Table S5.3 shows the power performance for Model 2 with banded co-

variance structures of X, which is similar to Table 2 in the main paper.
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S5.4 Multiple change point detection

So far, we have considered the numerical performance of single change

point detection and identification. Next, we investigate multiple change

points detection for Problem (S2.2). In this numerical study, we consider

two model settings:

Case 2: Alternatives with three change points. In this case, we set

n = 600 and p = 200 with three change points at k1 = 180, k2 = 300,

and k3 = 420, respectively. The above three change points divide the data

into four segments with different regression coefficients: β(1), β(2), β(3), and

β(4). We first generate β(1) and β(2). The generating mechanism for β(1)

and β(2) is the same as Case 1 in the single change point setting except that

we use a signal jump

δ′ = C

√
log(p)

n

(
24, 23, 22, 21, 20

)⊤
.

Then, we set β(3) = β(1) and β(4) = β(2). In this case, we set C ∈ {1.5, 3}.

Case 3: Alternatives with four change points. In this case, we set

n = 1000 and p = 200 with four change points at k1 = 300, k2 = 450, k3 =

550, and k4 = 700, respectively. The above four change points divide the

data into five segments with different regression coefficients: β(1), . . . ,β(5).

We first generate β(1) and β(2) as introduced in Case 2. Then, we set
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β(3) = β(1), β(4) = β(2) and β(5) = β(1). In this case, we set C ∈ {2, 4}.

We use Algorithm S2.1 to detect and identify multiple change points

and compare our methods with SGL, L&B, and VPWBS. Note that Lee2016

is not applicable here because they only considered single change point

detection. Moreover, to evaluate their performance, we report the mean

for the number of identified change points (Mean) and the mean adjusted

Rand index between the identified change points and the true change points

(Adj.Rand) as well as its standard deviations (Sd.Adj.Rand). Note that the

adjusted Rand index with a value belonging to [−1, 1] is well adopted for

measuring the similarity between two data clusterings. The adjusted Rand

index with a value being one means that the data clusterings are exactly

the same. The results are reported in Table S5.4. For detecting the number

of multiple change points, SGL tends to overestimate the numbers across

all model settings. This is consistent with our numerical studies in the size

control in Section 4.1. For L&B, it has satisfactory performance when the

signal jump is strong with C = 3 or C = 4. However, L&B fails to detect

all relevant three or four change points when the signal-to-noise ratio is low

by setting C = 1.5 or C = 2. This suggests that L&B is not very sensitive

to weak signals and this observation is consistent with our previous power

analysis in Section 4.2. As for our proposed method, it can correctly detect
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S5. ADDITIONAL NUMERICAL RESULTS

the three (or four) change points on average even for a small signal jump.

For identifying the change point locations, VPWBS has better performance

than L&B when the signal is weak and L&B becomes very competitive as

the signal becomes stronger. In most cases, the Arg-max based methods

can estimate the locations with high accuracy and have better performance

than their competitors. This is supported by the high Adj.Rand. Finally,

we would like to point out that for all methods, their performance becomes

better when the model has a stronger signal jump.

In summary, as compared to the existing works, our bootstrap-assistant

method is more efficient and accurate for detecting and identifying multiple

change points. Moreover, it is able to detect the structural changes for any

given subgroup and is very flexible to use.

S5.5 Computational cost

In this section, we compare the computational cost of the existing meth-

ods. In theory, for detecting a single change point, the computational costs

for the existing methods are O(nLasso(n, p)) (Lee2016), O(nLasso(n, p))

(L&B), O(MnGroupLasso(n, p)) (VPWBS), O(GroupLasso(n, np)) (SGL),

and (B +1)O(nLasso(n, p)) (our proposed method), where Lasso(n, p) and

GroupLasso(n, p) denote the computational cost for solving lasso and group
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lasso problems with the sample size n and the data dimension p, M is the

number of random intervals in Wang et al. (2021), and B is the number of

bootstrap replications. Empirically, we implement the corresponding pro-

gram independently on a CPU (Linux) with 2.50GHz and 256G RAM and

report the average computational time (seconds) based on 5 replications.

Note that the computational cost for our proposed method mainly relies

on the bootstrap procedure which can be time-consuming. Since the B

bootstrap replications can be done separately, we can use parallel compu-

tation in modern computer techniques to further reduce the computational

time via implementing the B bootstrap replications in a parallel fashion on

different cores of the Linux server. Specifically, for our method, we report

the computational cost by using 8, 16, and 32 logical cores, respectively.

Figure S5.1 reports the computational time for the existing methods with

various n ∈ {200, 400, 600, 800, 1000} (upper) and p ∈ {100, 200, 300, 400}

(bottom). In general, Lee2016 and L&B are the most efficient and have

very close performance. The computational time for SGL is the most ex-

pensive among all methods. For our proposed algorithm, we can see that it

has a tolerable computational cost and can even be comparable to its com-

petitors using more cores. Lastly, Figure S5.1 shows that for all methods,

the computational time grows linearly with n and p, and it appears that
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the computational cost is more sensitive to the growth of the sample size n

than the data dimension p.
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Figure S5.1: Computational time (seconds) for the existing methods based on an

average of 5 replications. Upper: Computational time for p = 200 and n ∈

{200, 400, 600, 800, 1000} without the plot of SGL (left) and with SGL (right), respec-

tively. Bottom: Computational time for n = 200 and p ∈ {100, 200, 300, 400} without

the plot of SGL (left) and with SGL (right), respectively.
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Table S5.1: Empirical sizes for Models 1 and 2 under various combinations of (n, p, s).

The errors are generated from standardized Gamma(4,1) distributions. The results are

based on 2000 replications.

Empirical sizes (%) for Gamma(4,1) with (n, s) = (200, 5)

Model G p Boot-I (α = 1%) Boot-II (α = 1%) Boot-I (α = 5%) Boot-II (α = 5%) SGL L&B

Σ = I S 100 7.00 1.70 14.81 4.63 NA NA

200 8.64 1.29 17.70 4.32 NA NA

300 9.67 2.11 16.67 5.14 NA NA

400 13.99 1.80 23.66 5.14 NA NA

Sc 100 4.32 0.98 9.67 3.60 NA NA

200 6.38 1.23 15.02 3.81 NA NA

300 11.11 1.08 20.99 3.86 NA NA

400 13.58 1.80 24.90 4.27 NA NA

S ∪ Sc 100 6.17 1.49 15.43 4.73 56.67 0.00

200 9.05 1.54 17.28 3.96 43.33 0.00

300 10.91 1.44 23.25 4.22 40.00 0.00

400 18.31 2.11 30.66 4.94 40.00 0.00

Σ = Σ∗ S 100 4.94 1.92 11.73 4.87 NA NA

200 6.79 1.58 15.64 4.46 NA NA

300 8.23 2.12 17.90 5.81 NA NA

400 12.55 2.06 24.07 4.65 NA NA

Sc 100 3.91 1.44 10.08 4.03 NA NA

200 3.70 1.57 10.29 3.82 NA NA

300 7.61 1.30 14.61 3.69 NA NA

400 4.73 0.89 15.84 2.73 NA NA

S ∪ Sc 100 8.64 1.36 16.87 3.35 51.11 0.00

200 7.00 1.37 12.96 3.14 40.00 0.00

300 8.02 1.36 19.55 3.14 50.00 0.00

400 7.20 1.16 15.02 3.76 37.78 0.00
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Table S5.2: Empirical sizes for Models 1 and 2 under various combinations of (n, p, s).

The errors are generated from standardized Student’s t5 distributions. The results are

based on 2000 replications.

Empirical sizes (%) for Student’s t5 with (n, s) = (200, 5)

Model G p Boot-I (α = 1%) Boot-II (α = 1%) Boot-I (α = 5%) Boot-II (α = 5%) SGL L&B

Σ = I S 100 5.35 1.29 15.23 4.17 NA NA

200 9.26 1.95 21.40 5.61 NA NA

300 9.05 1.95 20.16 5.30 NA NA

400 14.40 2.37 22.84 6.43 NA NA

Sc 100 5.97 1.18 10.29 4.22 NA NA

200 9.67 1.59 20.99 4.42 NA NA

300 10.70 2.16 22.22 4.78 NA NA

400 11.93 1.85 21.60 4.48 NA NA

S ∪ Sc 100 7.20 1.65 16.05 4.63 61.11 0.00

200 10.29 1.80 20.78 4.68 45.56 0.00

300 12.76 1.75 26.13 5.20 50.00 0.00

400 16.46 2.42 30.45 5.04 54.44 0.00

Σ = Σ∗ S 100 6.17 1.33 13.58 3.90 NA NA

200 9.05 1.89 18.31 5.38 NA NA

300 9.05 2.72 18.31 5.78 NA NA

400 10.91 2.04 21.19 5.32 NA NA

Sc 100 4.53 1.48 10.29 4.35 NA NA

200 3.91 1.64 10.08 4.26 NA NA

300 6.79 1.44 14.40 3.65 NA NA

400 7.61 1.80 16.46 4.41 NA NA

S ∪ Sc 100 6.79 1.64 13.58 5.19 51.11 0.00

200 5.14 1.59 12.96 4.41 44.44 0.00

300 9.26 2.10 18.11 4.87 31.11 0.00

400 9.47 2.05 18.93 4.87 36.67 0.00
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Table S5.3: Empirical powers (%) for Case 1 under Model 2 with various dimensions,

candidate subgroups, and change point locations. The sample size is n = 200. The

significance level is α = 5%. The numerical results are based on 2000 replications.

Empirical powers (%) with δ = 0.5
√

log(p)/n × (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = Σ∗ S 200 49.33 NA 30.27 NA

400 45.33 NA 33.33 NA

Sc 200 1.67 NA 3.00 NA

400 2.67 NA 1.83 NA

S ∪ Sc 200 34.00 0.00 21.43 0.00

400 28.00 0.00 18.67 0.00

Empirical powers (%) with δ =
√

log(p)/n × (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = Σ∗ S 200 100.00 NA 99.18 NA

400 100.00 NA 99.18 NA

Sc 200 2.06 NA 2.67 NA

400 2.06 NA 1.65 NA

S ∪ Sc 200 99.59 60.42 97.53 40.63

400 99.18 57.29 95.68 47.92

Empirical powers (%) with δ = 2
√

log(p)/n × (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = Σ∗ S 200 100.00 NA 100.00 NA

400 100.00 NA 100.00 NA

Sc 200 2.67 NA 1.82 NA

400 2.26 NA 1.65 NA

S ∪ Sc 200 100.00 100.00 100.00 99.49

400 100.00 100.00 100.00 99.49
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Table S5.4: Multiple change point detection results for Models 1 and 2 under Case 2.

The significance level is α = 5%. The numerical results are based on 100 replications.

Multiple change points with (n, p) = (600, 200) and three change points at (180, 300, 420)

Σ = I Σ = Σ∗

C Method Mean Adj.Rand Sd.Adj.Rand Mean Adj.Rand Sd.Adj.Rand

G = S

C = 1.5 Arg-max 3.265 0.947 0.056 3.133 0.952 0.043

L&B NA NA NA NA NA NA

SGL NA NA NA NA NA NA

VPWBS NA NA NA NA NA NA

G = S ∪ Sc

Arg-max 3.177 0.950 0.048 2.983 0.940 0.045

L&B 1.000 0.398 0.013 1.133 0.439 0.148

SGL 4.000 0.722 0.111 5.417 0.753 0.083

VPWBS 2.857 0.899 0.133 2.949 0.918 0.086

G = S

C = 3 Arg-max 3.112 0.967 0.034 3.200 0.955 0.049

L&B NA NA NA NA NA NA

SGL NA NA NA NA NA NA

VPWBS NA NA NA NA NA NA

G = S ∪ Sc

Arg-max 3.104 0.968 0.032 3.250 0.951 0.035

L&B 3.000 0.991 0.006 3.000 0.992 0.007

SGL 7.000 0.767 0.093 8.000 0.873 0.118

VPWBS 2.878 0.945 0.066 2.898 0.944 0.060
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Table S5.5: Multiple change point detection results for Models 1 and 2 under Case 3.

The significance level is α = 5%. The numerical results are based on 100 replications.

Multiple change points with (n, p) = (1000, 200) and four change points at (300, 450, 550, 700)

Σ = I Σ = Σ∗

C Method Mean Adj.Rand Sd.Adj.Rand Mean Adj.Rand Sd.Adj.Rand

G = S

C = 2 Arg-max 4.100 0.967 0.047 4.183 0.968 0.036

L&B NA NA NA NA NA NA

SGL NA NA NA NA NA NA

VPWBS NA NA NA NA NA NA

G = S ∪ Sc

Arg-max 4.067 0.949 0.052 4.200 0.961 0.044

L&B 1.600 0.589 0.296 1.867 0.688 0.185

SGL 6.167 0.664 0.054 6.500 0.708 0.104

VPWBS 3.296 0.882 0.093 3.276 0.882 0.106

G = S

C = 4 Arg-max 4.150 0.971 0.031 4.067 0.968 0.029

L&B NA NA NA NA NA NA

SGL NA NA NA NA NA NA

VPWBS NA NA NA NA NA NA

G = S ∪ Sc

Arg-max 4.050 0.979 0.026 4.183 0.967 0.040

L&B 3.956 0.988 0.038 4.000 0.994 0.004

SGL 8.833 0.799 0.111 8.583 0.807 0.112

VPWBS 3.520 0.932 0.052 3.592 0.939 0.046
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S6 Application to Alzheimer’s Disease Data Analysis

In this section, we apply our proposed method to analyze data from

the Alzheimer’s Disease Neuroimaging Initiative (http://adni.loni.usc.

edu/). It is known that AD accounts for most forms of dementia charac-

terized by progressive cognitive and memory deficits. This makes it a very

important health issue which attracts a lot of scientific attentions in recent

years. To study AD, Mini-Mental State Examination (MMSE) (Folstein

et al., 1975) is a 30-point questionnaire that is commonly used to measure

cognitive impairment. According to MMSE, any score of 24 or more (out

of 30) indicates a normal cognition. Below this, scores can indicate se-

vere (≤9 points), moderate (10–18 points) or mild (19–23 points) cognitive

impairment. Because of the strong relationship between the MMSE score

and AD, it can be interesting and useful to predict the MMSE score using

some biomarkers for diagnosing the current disease status of AD as well as

to identify important predictive biomarkers. According to previous studies

(Yu and Liu, 2016; Yu et al., 2020), structural magnetic resonance imaging

(MRI) data are very useful for the prediction of the MMSE score. However,

these studies typically ignored the effect of other covariates such as ages,

education years, or genders on the linear models. Hence, an interesting

question is whether there is a change point in the linear structure between
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the MMSE score and MRI data due to some other covariates. If a change

point exists, we would like to identify the location of the change point. To

answer these questions, we use our proposed change point detection method

to address these issues. We focus on the covariate age which is of particular

interest in AD studies. We obtain the dataset for our analysis from the

ADNI database. After proper image preprocessing steps such as anterior

commissure posterior commissure correction and intensity inhomogeneity

correction, we obtain the final dataset with 410 subjects with 225 normal

controls and 185 AD patients. For each subject with known age, there is one

MMSE score and 93 MRI features corresponding to 93 manually labeled re-

gions of interest (ROI) (Zhang and Shen, 2012). We treat the MMSE score

as the response variable and MRI features as predictors in our model. The

dataset is first scaled to have mean 0 and variance 1 for the MMSE score

and each MRI feature. We are interested in detecting a change point in

the linear structure due to the change of ages. Considering potential effect

variations of different samples, we randomly select 370 subjects from the

whole 410 subjects according to the empirical distribution of ages shown in

Figure S6.1 (left) as the training data and use the remaining 40 subjects as

the testing data. Then, we sort the training subjects by the value of ages

and use our proposed method to detect and identify a change point in the
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covariate age. We repeat the above process for 50 times. As a comparison,

for each random split, we also use lasso to select variables on the training

data via 10-fold cross-validation. For this study, we set the significance level

at 5%. The number of bootstraps is 200.
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Figure S6.1: Left: Distribution of ages among the 410 subjects. Right: Empirical p-

values for change point detection out of 50 random data splits.

Figure S6.1 (right) shows the empirical p-values for the 50 random data

splits. Based on our results, 82% of the random splits with an estimated p-

value lower than 0.05 have detected a change point. This strongly suggests

that there is a change point in the linear structure due to the covariate age.

Moreover, for the above 82% random splits, we record the estimated change

points in Figure S6.2. We can see that in most cases, the argmax-based

estimator identify the change point at the age of 79. The above analysis
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indicates that the linear structure between the MMSE score and MRI may

be different before and after the age of 79. To see this more clearly, among

the random splits with a change point, Figure S6.3 reports the features

(with estimated coefficients bigger than 0.01) which are selected for more

than 80% times before and after the change point, respectively. There are

16 features selected before the change point and 6 features selected after

the change point. In other words, those 16 features shown in Figure S6.3

(left) are very predictive for the MMSE score for people with an age smaller

or equal to 79. Once the age exceeds 79, it is better to predict the MMSE

score using the other 6 features in Figure S6.3 (right). To verify this, for

those random splits with a change point, we calculate the mean squared

error for the corresponding testing data, based on the selected models using

the training data. Figure S6.4 shows the results of our proposed method

and lasso. We can see that our proposed method has better prediction

performance by segmenting the model by the covariate age, with about

5.34% lower averaged MSE than that of lasso.

Lastly, as for the selected variables, some interesting observations can

be made. For example, ROI 83 is predictive for the MMSE score across

all ages. ROIs 30 and 69 are only very predictive for the MMSE score

under the age of 79 and above 79, respectively. It is known that the 83th
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ROI corresponds to the amygdala region, and the 30th and 69th features

correspond to the hippocampal regions. According to many previous studies

(Zhang and Shen, 2012), those regions are known to be related to AD based

on group comparison methods. For these and other selected features, it

would be very interesting to investigate their relationship with AD by some

group comparison studies according to the segmentation of ages.

Figure S6.2: Estimated change points for the 82% random splits with change points

among the 50 replications.
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Figure S6.3: Frequency of features selected before the change point (left) and after the

change point (right) for the ADNI data out of 50 random splits. Red corresponds to the

features that are selected both before and after the change point.
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S7 Useful lemmas

Let Z1, . . . ,Zn be independent centered random vectors in Rp with

Zi = (Zi,1, . . . , Zi,p)
⊤ for i = 1, . . . , n. Let G1, . . . ,Gn be independent

centered Gaussian random vectors in Rp such that each Gi has the same

covariance matrix as Zi. We then require the following conditions:

(M1) There is a constant b > 0 such that inf1≤j≤p E(Zi,j)
2 ≥ b for i =

1, . . . , n.

(M2) There exists a constant K > 0 such that max
1≤j≤p

1

n

n∑
i=1

E|Zi,j|2+ℓ ≤ Kℓ

for ℓ = 1, 2.

(M3) There exists a constant K ′ > 0 such that E
(
exp(|Zi,j|/K ′)

)
≤ 2 for

j = 1, . . . , d and i = 1, . . . , n.

Lemma 1. (Liu et al. (2020)) Assume that log(pn) = O(⌊nτ0⌋ζ) holds for

some 0 < ζ < 1/7. Let

SZ(⌊nt⌋) = 1√
n

n∑
i=1

Zi

(
1(i ≤ ⌊nt⌋)−⌊nt⌋/n

)
, SG(⌊nt⌋) = 1√

n

n∑
i=1

Gi

(
1(i ≤ ⌊nt⌋)−⌊nt⌋/n

)
be the partial sum processes for (Zi)i≥1 and (Gi)i≥1, respectively. If Z1, . . . ,Zn

satisfy (M1), (M2) and (M3), then there is a constant ζ0 > 0 such that

sup
z∈(0,∞)

∣∣P( max
τ0≤t≤1−τ0

∥SZ(⌊nt⌋)∥∞ ≤ z
)
−P( sup

τ0≤t≤1−τ0

∥SG(⌊nt⌋)∥∞ ≤ z
)∣∣ ≤ Cn−ζ0 ,

(S7.10)
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where C is a constant only depending on b, K, and K ′.

Lemma 2 (Nazarovs inequality in Nazarov (2003)). Let W = (W1,W2, · · · ,Wp)
⊤ ∈

Rp be centered Gaussian random vector with inf1≤k≤p E(Wk)
2 ≥ b > 0. Then

for any x ∈ Rp and a > 0, we have

P(W ≤ x+ a)− P(W ≤ x) ≤ Ca
√

log p,

where C is a constant only depending on b.

Lemma 3. (Zhou et al. (2018)) Let W = (W1, . . . ,Wp)
⊤ be a random

vector with a marginal distribution N(0, σ2
i ) (1 ≤ i ≤ p). Suppose ∃A0 > 0

such that maxi σ
2
i ≤ A2

0. Then, for any t > 0, we have

E
(
max
1≤i≤p

|Wi|
)
≤ log(2p)

t
+

tA2
0

2
.

Lemma 4 (Van de Geer et al. (2014)). Suppose Assumptions (A.1) – (A.3)

hold. Assume additionally maxj
√
sj log(p)/n = o(1) holds. For the node-

wise regression in (2.5), choosing the tuning parameters λ(j) ≈
√
log(p)/n

uniformly over j, we have

∥Θ̂j −Θj∥q = Op

(
s
1/q
j

√
log(p)

n

)
, for q = 1, 2. (S7.11)

Lemma 5. Let Z1, . . . ,Zn be independent centered random vectors in Rp

with Zi = (Zi,1, . . . , Zi,p)
⊤ for i = 1, . . . , n. Assume that Zi follows the

sub-exponential distribution. Then, for any given subgroup G ⊂ {1, . . . , p},
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with probability at least 1− C1(pn)
−C2, we have

max
t∈[τ0,1−τ0]

max
j∈G

∣∣∣ 1√
n

( ⌊nt⌋∑
i=1

Zi,j −
⌊nt⌋
n

n∑
i=1

Zi,j

)∣∣∣ ≤ C3

√
log(|G|n), (S7.12)

where C1, C2, and C3 are universal positive constants not depending on p

or n.

We next provide some useful results for the lasso estimators from het-

erogeneous data observations. To this end, for each t ∈ [τ0, 1− τ0], define

A(t) =

{∥∥∥ 1

⌊nt⌋
(
X(0,t))

⊤(Y(0,t) −X(0,t)β
(0,t)

∥∥∥
∞

≤ λ(1)

}
,

B(t) =
{∥∥∥ 1

⌊nt⌋∗
(
X(t,1))

⊤(Y(t,1) −X(t,1)β
(t,1)

∥∥∥
∞

≤ λ(2)

}
,

(S7.13)

where λ(1) := K1

√
log(p)

⌊nt⌋
and λ(2) := K2

√
log(p)

⌊nt⌋∗
, and K1, . . . , K2 are some

universal positive constants not depending on n or p.

The following Lemma 6 provides a basic inequality for the lasso estima-

tors, which is important for deriving the precise estimation error bound as

well as prediction error bound (see Lemma 8 below). The proof of Lemma

6 is given in Section S10.2.

Lemma 6. Suppose Assumptions (A.1) – (A.3) hold. Assume ∥β(2) −

β(1)∥2 ≤ C∆ for some C∆ > 0. Recall β(0,t) and β(t,1) defined in (2.7). Let

β̂(0,t) and β̂(t,1) be the lasso estimators as defined in (2.9). Then, for each
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t ∈ [τ0, 1− τ0], under the event A(t) ∩ B(t), we have

∥∥X(0,t)

(
β̂(0,t) − β(0,t)

)∥∥2

2

⌊nt⌋
+λ1(t)

∥∥(β̂(0,t)−β(0,t))Jc(β(0,t))

∥∥
1
≤ 3λ1(t)

∥∥(β̂(0,t)−β(0,t))J(β(0,t))

∥∥
1
,

(S7.14)

and

∥∥X(t,1)

(
β̂(t,1) − β(t,1)

)∥∥2

2

⌊nt⌋∗
+λ2(t)

∥∥(β̂(t,1)−β(t,1))Jc(β(t,1))

∥∥
1
≤ 3λ2(t)

∥∥(β̂(t,1)−β(t,1))J(β(t,1))

∥∥
1
,

(S7.15)

where λ1(t) := 2λ(1), λ2(t) := 2λ(2).

The following Lemma 7 provides the estimation error bounds for the

lasso estimators β̂(0,t) and β̂(t,1) in terms of ℓq-norm. The proof of Lemma

7 is given in Section S10.3.

Lemma 7. Suppose Assumptions (A.1) – (A.3) hold. Assume ∥β(2) −

β(1)∥2 ≤ C∆ for some C∆ > 0. Recall β(0,t) and β(t,1) defined in (2.7).

Let β̂(0,t) and β̂(t,1) be the lasso estimators as defined in (2.9). For each

t ∈ [τ0, 1 − τ0], let s1(t) := M(β(0,t)) and s2(t) := M(β(t,1)). Then, under
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the event A(t) ∩ B(t), we have

∥∥β̂(0,t) − β(0,t)
∥∥
q
≤ C1(s1(t))

1
q

√
log p

⌊nt⌋
,

∥∥β̂(t,1) − β(t,1)
∥∥
q
≤ C2(s2(t))

1
q

√
log p

⌊nt⌋∗
, q = 1, 2,

∥∥X(0,t)

(
β̂(0,t) − β(0,t)

)∥∥2

2

⌊nt⌋
≤ C3s1(t)

log p

⌊nt⌋
,

∥∥X(t,1)

(
β̂(t,1) − β(t,1)

)∥∥2

2

⌊nt⌋∗
≤ C4s2(t)

log p

⌊nt⌋∗
,

M(β̂(0,t)) ≤ C5s1(t), M(β̂(t,1)) ≤ C6s2(t),

(S7.16)

where C1, . . . , C6 are some universal positive constants not depending on n

or p.

Lastly, as a by product of Lemma 7, the following Lemma 8 provides

the estimation error bounds for β̂(0,t)−β(1) and β̂(t,1)−β(2) in terms of the

ℓq-norm, which is frequently used in the proofs.

Lemma 8. Suppose Assumptions (A.1) – (A.3) hold. Assume ∥β(2) −

β(1)∥2 ≤ C∆ for some C∆ > 0. Recall s := s(1) ∨ s(2). Let β̂(0,t) and

β̂(t,1) be the lasso estimators as defined in (2.9). Then, under the event
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A(t) ∩ B(t), for each t ∈ [τ0, 1− τ0], we have∥∥β̂(0,t) − β(1)
∥∥
q
≤ C1max

{
s

1
q

√
log p

⌊nt⌋
,
⌊nt⌋ − ⌊nt0⌋

⌊nt⌋
∥∥β(2) − β(1)

∥∥
q
1{t ≥ t0}

}
, q = 1, 2,

∥∥β̂(t,1) − β(2)
∥∥
q
≤ C2max

{
s

1
q

√
log p

⌊nt⌋∗
,
⌊nt0⌋ − ⌊nt⌋

⌊nt⌋∗
∥∥β(2) − β(1)

∥∥
q
1{t ≤ t0}

}
, q = 1, 2,

∥∥X(0,t)

(
β̂(0,t) − β(1)

)∥∥2

2

⌊nt⌋
≤ C3max

{
s
log p

⌊nt⌋
,
(⌊nt⌋ − ⌊nt0⌋

⌊nt⌋
)2∥∥β(2) − β(1)

∥∥2

2
1{t ≥ t0}

}
,

∥∥X(t,1)

(
β̂(t,1) − β(2)

)∥∥2

2

⌊nt⌋∗
≤ C4max

{
s
log p

⌊nt⌋∗
,
(⌊nt0⌋ − ⌊nt⌋

⌊nt⌋∗
)2
∥∥β(2) − β(1)

∥∥2

2
1{t ≤ t0}

}
,

M(β̂(0,t)) ≤ C5s, M(β̂(t,1)) ≤ C6s,

(S7.17)

where C1, . . . , C6 are some universal positive constants not depending on n

or p.

The following Lemma 9 shows that the results in Lemmas 6 – 8 occur

uniformly over t ∈ [τ0, 1− τ0] with high probability. The proof of Lemma 9

is given in Section S10.4.

Lemma 9. Suppose Assumptions (A.1) – (A.3) hold. Assume ∥β(2) −

β(1)∥2 ≤ C∆ for some C∆ > 0. Then we have

P
( ⋂
t∈[τ0,1−τ0]

{
A(t) ∩ B(t)

})
≥ 1− C1(np)

−C2 , (S7.18)
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where C1, C2 are some big enough universal positive constants not depending

on n or p.

S8 Proof of main results

S8.1 Proof of Proposition 1

Proof. Note that the proof of Part (i) is easier than Part (ii). To save space,

we give the proof of Part (ii). Firstly, we consider R1(s, 3,T). The proof

proceeds in two steps.

Step 1: we prove supt∈[τ0,1−τ0] ∥Σ̂(0,t) − Σ∥∞ = Op(
√

log(p)/⌊nτ0⌋). For

any fixed t ∈ [τ0, 1 − τ0] and j, k ∈ {1, . . . , p}, by Assumption (A.1), using

exponential inequality, we have

P
(
| 1

⌊nt⌋

⌊nt⌋∑
i=1

(XijXik−E[XijXik])| ≥ x
)
≤ C1 exp(−C2⌊nt⌋x2) ≤ C1 exp(−C2⌊nτ0⌋x2).

Hence, taking x = C3

√
log(pn)/⌊nτ0⌋ for some big constant C3 > 0, we

have:

P
(
| 1

⌊nt⌋

⌊nt⌋∑
i=1

(XijXik − E[XijXik])| ≥ x
)
≤ C1(np)

−C3 .
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As a result, we have:

P( sup
t∈[τ0,1−τ0]

∥Σ̂(0,t) −Σ∥∞ ≥ x)

= P
(⋃

t

⋃
j,k

{
| 1

⌊nt⌋

⌊nt⌋∑
i=1

(XijXik − E[XijXik])| ≥ x
})

≤ np2maxt,j,k P
(
| 1

⌊nt⌋

⌊nt⌋∑
i=1

(XijXik − E[XijXik])| ≥ x
)

≤ C1(np)
−C4 ,

where C1−C4 are some big enough universal constants. This yields supt∈[τ0,1−τ0] ∥Σ̂(0,t)−

Σ∥∞ = Op(
√

log(p)/⌊nτ0⌋).

Step 2: For integers s such that 1 ≤ s ≤ p, a set of indices J0 ⊂ {1, . . . , p}

with |J0| ≤ s, and any vector δ satisfying ∥δJc
0
∥1 ≤ 3∥δJ0∥1, we have:

δ⊤Σ̂(0,t)δ

|δJ0 |22
=(1)

δ⊤Σδ

|δJ0|22
+

δ⊤(Σ− Σ̂(0,t))δ

|δJ0|22
,

≥(2)
δ⊤Σδ

|δJ0|22
−

supt∈[τ0,1−τ0] ∥Σ̂(0,t) −Σ∥∞
|δJ0|22

|δ|21,

≥(3)
δ⊤Σδ

|δJ0|22
−

supt∈[τ0,1−τ0] ∥Σ̂(0,t) −Σ∥∞
|δJ0|22

(1 + c0)
2|δJ0|21,

≥(4)
δ⊤Σδ

|δJ0|22
− sup

t∈[τ0,1−τ0]

∥Σ̂(0,t) −Σ∥∞(1 + c0)
2s.

≥(5) 4κ
4
4 − sOp(

√
log(p)/⌊nτ0⌋) ≥(6) κ

2
4,

(S8.19)

where (5) comes from Condition (S3.9) and the result in Step 1, (6) comes

from the assumption s
√

log(p)/⌊nτ0⌋ = o(1). Lastly, combining Steps 1

and 2, we finish the proof.
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S8.2 Proof of Theorem 1

Proof. Under H0, the change point t0 is not identifiable. Hence, to prove

Theorem 1, we need to prove the convergence of σ̂2
ϵ (t)ω̂j,k} to {σ2

ϵωj,k}

uniformly over τ0 ≤ t ≤ 1 − τ0 and 1 ≤ j, k ≤ p, where σ̂2
ϵ (t) is defined in

(2.17). Note that for each t, j and k,

|σ̂2
ϵ (t)ω̂j,k − σ2

ϵωj,k|

≤ |σ̂2
ϵ (t)ω̂j,k − σ2

ϵ ω̂j,k|+ σ2
ϵ |ω̂j,k − ωj,k|

≤ |σ̂2
ϵ (t)− σ2

ϵ ||ω̂j,k − ωj,k|+ |σ̂2
ϵ (t)− σ2

ϵ |ωj,k + σ2
ϵ |ω̂j,k − ωj,k|

≤ C(|σ̂2
ϵ (t)− σ2

ϵ |+ |ω̂j,k − ωj,k|),

(S8.20)

where the last inequality comes from Assumptions (A.2) and (A.3) and

C is a universal positive constant not depending on n or p. Hence, by

(S8.20), to prove Theorem 1, we need to bound maxt∈[τ0,1−τ0] |σ̂2
ϵ (t) − σ2

ϵ |

and max1≤j,k≤p |ω̂j,k − ωj,k|, respectively.

For bounding max
t∈[τ0,1−τ0]

|σ̂2
ϵ (t)− σ2

ϵ |, by the definition of σ̂2
ϵ (t) in (2.17),
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under H0, using some straightforward calculations, we have

σ̂2
ϵ (t)− σ2

ϵ

= n−1
(∥∥ϵ(0,t) +X(0,t)

(
β̂(0,t) − β(0)

)∥∥2

2

)
+
∥∥ϵ(t,1) +X(t,1)

(
β̂(t,1) − β(0)

)∥∥2

2

)
− σ2

ϵ ,

= n−1
∥∥X(0,t)

(
β̂(0,t) − β(0)

)∥∥2

2
+ 2

⌊nt⌋
n

(ϵ(0,t))
⊤X(0,t)

⌊nt⌋
(
β̂(0,t) − β(0)

)
+n−1

∥∥X(t,1)

(
β̂(t,1) − β(0)

)∥∥2

2
+ 2

⌊nt⌋∗

n

(ϵ(t,1))
⊤X(t,1)

⌊nt⌋∗
(
β̂(t,1) − β(0)

)
+n−1

n∑
i=1

(ϵ2i − σ2
ϵ ).

(S8.21)

By (S8.21), to bound maxt∈[τ0,1−τ0] |σ̂2
ϵ (t) − σ2

ϵ |, we need to consider the

five parts on the RHS of (S8.21), respectively. For the first four parts, by

Lemma 8, we have

1

n

∥∥X(0,t)

(
β̂(0,t) − β(0)

)∥∥2

2
≤ ⌊nt⌋

n
Op

(
s(0)

log(p)

⌊nt⌋

)
= Op

(
s(0)

log(p)

n

)
,

1

n

∥∥X(t,1)

(
β̂(t,1) − β(0)

)∥∥2

2
≤ ⌊nt⌋∗

n
Op

(
s(0)

log(p)

⌊nt⌋∗
)
= Op

(
s(0)

log(p)

n

)
,

∣∣∣2⌊nt⌋
n

(ϵ(0,t))
⊤X(0,t)

⌊nt⌋
(
β̂(0,t) − β(0)

)∣∣∣ ≤ Op

(
λ(1)

∥∥β̂(0,t) − β(0)
∥∥
1

)
≤ Op

(
s(0)

log(p)

⌊nt⌋

)
,

∣∣∣2⌊nt⌋∗
n

(ϵ(t,1))
⊤X(t,1)

⌊nt⌋∗
(
β̂(t,1) − β(0)

)∣∣∣ ≤ Op

(
λ(3)

∥∥β̂(t,1) − β(0)
∥∥
1

)
≤ Op

(
s(0)

log(p)

⌊nt⌋∗
)
.

(S8.22)

Note that ϵ2i−σ2
ϵ follows the sub-exponential distribution. For

n∑
i=1

(ϵ2i−σ2
ϵ )/n,
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under Assumption (A.2), using Bernstein’s inequalities, we can prove

n∑
i=1

(ϵ2i − σ2
ϵ )/n ≤ Op

(√ log(n)

n

)
. (S8.23)

Hence, combining (S8.21), (S8.22), and (S8.23), and using Assumptions

(A.1)− (A.3), we have

max
t∈[τ0,1−τ0]

|σ̂2
ϵ (t)− σ2

ϵ | ≤ Op

(√ log(n)

n

)
. (S8.24)

Next, we bound max1≤j,k≤p |ω̂j,k − ωj,k|. By Lemmas 5.3 and 5.4 in Van de

Geer et al. (2014), we have

max
1≤j,k≤p

|ω̂j,k − ωj,k| = max
1≤j,k≤p

|Θ̂⊤
j Σ̂Θ̂k −Θ⊤

j ΣΘk| = Op(max
j

λ(j)
√
sj).

(S8.25)

Finally, combining (S8.24) and (S8.25), we have

max
t∈[τ0,1−τ0]

max
1≤j,k≤p

|σ̂2
ϵ (t)ω̂j,k−σ2

ϵωj,k| ≤ Op

(√ log(n)

n
+max

j
λ(j)

√
sj

)
, (S8.26)

which completes the proof of Theorem 1.

S8.3 Proof of Theorem 2

Proof. In this section, we aim to prove

sup
z∈(0,∞)

∣∣P(TG ≤ z)− P(T b
G ≤ z|X )

∣∣ = op(1), as n, p → ∞. (S8.27)

The proof proceeds in four steps. In Steps 1 and 2, we decompose TG and

T b
G into a leading term and a residual term and show that the corresponding
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residual terms can be asymptotically negligible. In Step 3, we prove that it

is possible to approximate the leading term of TG by that of T b
G. In Step 4,

we combine the previous results to complete the proof.

Step 1 (Decomposition of TG). Note that under the null hypothesis of no

change point, we have β
(1)
s = β

(2)
s = β

(0)
s for 1 ≤ s ≤ p. By the definition of

the de-biased lasso estimators β̆(0,t) and β̆(t,1) in (2.15), we can write them

as follows:

β̆(0,t) = β(0) + Θ̂(X(0,t))
⊤ϵ(0,t)/⌊nt⌋+∆(0,t),

β̆(t,1) = β(0) + Θ̂(X(t,1))
⊤ϵ(t,1)/⌊nt⌋∗ +∆(t,1),

(S8.28)

where ∆(0,t) =
(
∆

(0,t)
1 , . . . ,∆

(0,t)
p

)⊤
and ∆(t,1) =

(
∆

(t,1)
1 , . . . ,∆

(t,1)
p

)⊤
are

defined as

∆(0,t) := −
(
Θ̂Σ̂(0,t) − I

)(
β̂(0,t) − β(0)

)
,

∆(t,1) := −
(
Θ̂Σ̂(t,1) − I

)(
β̂(t,1) − β(0)

)
,

(S8.29)

with Σ̂(0,t) := (X(0,t))
⊤X(0,t)/⌊nt⌋ and Σ̂(t,1) := (X(t,1))

⊤X(t,1)/⌊nt⌋∗. De-

note Θ̂i, X(0,t),i, X(t,1),i as the i-th row of Θ̂, X(0,t), and X(t,1), respectively.

Then, for each coordinate j at time point ⌊nt⌋, we can write each coordinate
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of the de-biased lasso estimator in the following form:

β̆
(0,t)
j = β

(0)
j +

1

⌊nt⌋

⌊nt⌋∑
i=1

Θ̂⊤
j Xiϵi +∆

(0,t)
j ,

β̆
(t,1)
j = β

(0)
j +

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ̂⊤
j Xiϵi +∆

(t,1)
j .

(S8.30)

For each t ∈ [τ0, 1 − τ0] and 1 ≤ j ≤ p, define the coordinate-wise process

as

Cj(⌊nt⌋) =
√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
β̆
(0,t)
j − β̆

(t,1)
j

)√
σ̂2
ϵ ω̂j,j

. (S8.31)

By the definition of TG in (2.20) , we have TG = max
t∈[τ0,1−τ0]

max
j∈G

|Cj(⌊nt⌋)|.

Furthermore, by (S8.30), we can decompose Cj(⌊nt⌋) into two parts:

Cj(⌊nt⌋) = CI
j(⌊nt⌋) + CII

j (⌊nt⌋), for t ∈ [τ0, 1− τ0], 1 ≤ j ≤ p, (S8.32)

with

CI
j(⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋
⌊nt⌋∑
i=1

Θ̂⊤
j Xiϵi −

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ̂⊤
j Xiϵi

)
√

σ̂2
ϵ ω̂j,j

,

CII
j (⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
∆

(0,t)
j −∆

(t,1)
j

)
√

σ̂2
ϵ ω̂j,j

, with 1 ≤ j ≤ p and t ∈ [τ0, 1− τ0].

(S8.33)

Note that we can regard CI
j(⌊nt⌋) as the leading term and CII

j (⌊nt⌋) as the

residual term of Cj(⌊nt⌋). Furthermore, by replacing σ̂2
ϵ , ω̂j,j, and Θ̂j by

their true values σ2
ϵ , ωj,j, and Θj, we can define the oracle leading term as
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follows:

C̃I
j(⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋

⌊nt⌋∑
i=1

Θ⊤
j Xiϵi −

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ⊤
j Xiϵi

)
√

σ2
ϵωj,j

.

(S8.34)

Based on (S8.31), (S8.33), and (S8.34), define the following four vector-

valued processes:

C(⌊nt⌋) =
(
C1(⌊nt⌋), . . . , Cp(⌊nt⌋)

)⊤
, CI(⌊nt⌋) =

(
CI

1(⌊nt⌋), . . . , CI
p(⌊nt⌋)

)⊤
,

CII(⌊nt⌋) =
(
CII

1 (⌊nt⌋), . . . , CII
p (⌊nt⌋)

)⊤
, C̃I(⌊nt⌋) =

(
C̃I

1(⌊nt⌋), . . . , C̃I
p(⌊nt⌋)

)⊤
.

(S8.35)

The following Lemma 10 shows that the residual term |CII
j | can be uniformly

negligible over t ∈ [τ0, 1 − τ0] and 1 ≤ j ≤ p. The proof of Lemma 10 is

provided in Section S9.1.

Lemma 10. Assume Assumptions (A.1) – (A.5) hold. Under H0, we have

P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)− C̃I(⌊nt⌋)
∥∥
G,∞ ≥ ϵ

)
= o(1), (S8.36)

where ϵ = Cmax(max
1≤j≤p

sj
log(pn)√

n
, s
√
n
log(pn)

⌊nτ0⌋
), and C is a universal con-

stant not depending on n or p.

Step 2 (Decomposition of T b
G). In this step, we analyze the bootstrap

version of the test statistic and decompose T b
G into a leading term and

a residual term. To this end, we need some additional notations. For

0 ≤ t1 ≤ t2 ≤ 1, define
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Y(t1,t2) = (Y⌊nt1⌋+1, . . . , Y⌊nt2⌋)
⊤, ϵ(t1,t2) = (ϵ⌊nt1⌋+1, . . . , ϵ⌊nt2⌋)

⊤,

X(t1,t2) = (X⌊nt1⌋+1, . . . ,X⌊nt2⌋)
⊤, Σ̂(t1,t2) =

(X(t1,t2))
⊤X(t1,t2)

⌊nt2⌋ − ⌊nt1⌋+ 1
.

Note that the decomposition for T b
G is different from that of TG. The main

difficulty is that the bootstrap based samples involve a change point esti-

mator t̂0,G and the data are split into two sub-samples (before and after t̂0,G

), which requires a careful discussion about the location. To analyze β̆b,(0,t)

and β̆b,(t,1) in (2.22), we need to consider the following cases:

Case 1 : The search location t at t ∈ [τ0, t̂0,G]. In this case, since β̆b,(0,t)

is constructed using homogeneous bootstrap samples, similar to Step 1, we

can decompose β̆b,(0,t) as:

β̆b,(0,t) = β̂(0,t̂0,G) +
Θ̂(X(0,t))

⊤ϵb,(0,t)

⌊nt⌋
+∆b,(0,t),I, (S8.37)

where ∆b,(0,t),I = (∆
b,(0,t),I
1 , . . . ,∆

b,(0,t),I
p )⊤ are defined as

∆b,(0,t),I := −
(
Θ̂Σ̂(0,t) − I

)(
β̂b,(0,t) − β̂(0,t̂0,G)

)
. (S8.38)

For β̆b,(t,1), since it is constructed using data both before ⌊nt̂0,G⌋ and after

⌊nt̂0,G⌋, using tedious calculations, we can decompose β̆b,(t,1) into

β̆b,(t,1) =
⌊nt̂0,G⌋ − ⌊nt⌋

⌊nt⌋∗
β̂(0,t̂0,G) +

n− ⌊nt̂0,G⌋
⌊nt⌋∗

β̂(t̂0,G ,1) +
Θ̂(X(t,1))

⊤ϵb(t,1)
⌊nt⌋∗

+∆b,(t,1),I,

(S8.39)
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where ∆b,(t,1),I = (∆
b,(t,1),I
1 , . . . ,∆

b,(t,1),I
p )⊤ are defined as

∆b,(t,1),I := −⌊nt̂0,G⌋ − ⌊nt⌋
⌊nt⌋∗

(
Θ̂Σ̂(t,t̂0,G)

− I
)(
β̂(t̂0,G ,1) − β̂(0,t̂0,G)

)
−
(
Θ̂Σ̂(t,1) − I

)(
β̂b,(t,1) − β̂(t̂0,G ,1)

)
.

(S8.40)

Case 2 : The search location t at t ∈ [t̂0,G, 1−τ0]. Similar to the analysis of

Case 1, using some basic calculations, we can decompose β̆b,(0,t) and β̆b,(t,1)

into

β̆b,(0,t) =
⌊nt̂0,G⌋
⌊nt⌋

β̂(0,t̂0,G) +
⌊nt⌋ − ⌊nt̂0,G⌋

⌊nt⌋
β̂(t̂0,G ,1) +

Θ̂(X(0,t))
⊤ϵb,(0,t)

⌊nt⌋
+∆b,(0,t),II,

β̆b,(t,1) = β̂(t̂0,G ,1) +
Θ̂(X(t,1))

⊤ϵb(t,1)
⌊nt⌋∗

+∆b,(t,1),II,

(S8.41)

where∆b,(0,t),II = (∆
b,(0,t),II
1 , . . . ,∆

b,(0,t),II
p )⊤ and∆b,(t,1),II = (∆

b,(t,1)II
1 , . . . ,∆

b,(t,1),II
p )⊤

are defined as

∆b,(0,t),II := −⌊nt⌋ − ⌊nt̂0,G⌋
⌊nt⌋

(
Θ̂Σ̂(t̂0,G ,t)

− I
)(
β̂(0,t̂0,G) − β̂(t̂0,G ,1)

)
−
(
Θ̂Σ̂(0,t) − I

)(
β̂b,(0,t) − β̂(0,t̂0,G)

)
,

∆b,(t,1),II := −
(
Θ̂Σ̂(t,1) − I

)(
β̂b,(t,1) − β̂(t̂0,G ,1)

)
.

(S8.42)

Based on the above decompositions, we next give a unified form of the de-

biased lasso estimator for the bootstrap-based samples. To this end, define
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δ̂(t) = (δ̂1(t), . . . , δ̂p(t))
⊤:

δ̂(t) :=



n− ⌊nt̂0,G⌋
n− ⌊nt⌋

(
β̂(0,t̂0,G) − β̂(t̂0,G ,1)

)
, for t ∈ [τ0, t̂0,G],

⌊nt̂0,G⌋
⌊nt⌋

(
β̂(0,t̂0,G) − β̂(t̂0,G ,1)

)
, for t ∈ [t̂0,G, 1− τ0].

(S8.43)

Let ∆b,(0,t) = (∆
b,(0,t)
1 , . . . ,∆

b,(0,t)
p )⊤ and ∆b,(t,1) = (∆

b,(t,1)
1 , . . . ,∆

b,(t,1)
p )⊤

with

∆b,(0,t) := ∆b,(0,t),I1
{
t ∈ [τ0, t̂0,G]

}
+∆b,(0,t),II1

{
t ∈ [t̂0,G, 1− τ0]

}
,

∆b,(t,1) := ∆b,(t,1),I1
{
t ∈ [τ0, t̂0,G]

}
+∆b,(t,1),II1

{
t ∈ [t̂0,G, 1− τ0]

}
.

(S8.44)

With above notations, we are ready to analyze T b
G. Similar to the analysis

of Step 1, for each coordinate j at time point ⌊nt⌋, we define the coordinate-

wise process as

Cb
j (⌊nt⌋) =

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
σ̂2
ϵ ω̂j,j

)−1/2(
β̆
b,(0,t)
j − β̆

b,(t,1)
j − δ̂j(t)

)
. (S8.45)

By the definition of T b
G in (2.23) , we have T b

G = max
t∈[τ0,1−τ0]

max
j∈G

|Cb
j (⌊nt⌋)|.

Furthermore, by (S8.37), (S8.39), (S8.41), and (S8.44), we can decompose

Cb
j (⌊nt⌋) into

Cb
j (⌊nt⌋) = Cb,I

j (⌊nt⌋) + Cb,II
j (⌊nt⌋), (S8.46)
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with

Cb,I
j (⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋
⌊nt⌋∑
i=1

Θ̂⊤
j Xiϵ

b
i −

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ̂⊤
j Xiϵ

b
i

)
√

σ̂2
ϵ ω̂j,j

,

Cb,II
j (⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
∆

b,(0,t)
j −∆

b,(t,1)
j

)√
σ̂2
ϵ ω̂j,j

, with 1 ≤ j ≤ p and t ∈ [τ0, 1− τ0].

(S8.47)

By replacing σ̂2
ϵ , ω̂j,j, and Θ̂j by their true values σ2

ϵ , ωj,j, and Θj, for the

bootstrap based process Cb,I
j (⌊nt⌋), we can define the oracle leading term

as follows:

C̃b,I
j (⌊nt⌋) :=

√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋

⌊nt⌋∑
i=1

Θ⊤
j Xiϵ

b
i −

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ⊤
j Xiϵ

b
i

)
√

σ2
ϵωj,j

.

(S8.48)

Based on (S8.46), (S8.47), and (S8.48), define the following four vector-

valued processes:

Cb(⌊nt⌋) =
(
Cb

1(⌊nt⌋), . . . , Cb
p(⌊nt⌋)

)⊤
, Cb,I(⌊nt⌋) =

(
Cb,I

1 (⌊nt⌋), . . . , Cb,I
p (⌊nt⌋)

)⊤
,

Cb,II(⌊nt⌋) =
(
Cb,II

1 (⌊nt⌋), . . . , Cb,II
p (⌊nt⌋)

)⊤
, C̃b,I(⌊nt⌋) =

(
C̃b,I

1 (⌊nt⌋), . . . , C̃b,I
p (⌊nt⌋)

)⊤
.

(S8.49)

The following Lemma 11 shows that the residual term Cb,II
j (⌊nt⌋) can be

uniformly negligible over t ∈ [τ0, 1−τ0] and 1 ≤ j ≤ p. The proof of Lemma

11 is given in Section S9.2.
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Lemma 11. Assume Assumptions (A.1) – (A.5) hold. Under H0, we have

P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)− C̃b,I(⌊nt⌋)
∥∥
G,∞ ≥ ϵ|X

)
= o(1), (S8.50)

where ϵ = Cmax(max
1≤j≤p

sj
log(pn)√

n
, s
√
n
log(pn)

⌊nτ0⌋
), and C is a universal con-

stant not depending on n or p.

Step 3 (Gaussian approximation). In Step 1, we have defined the oracle

leading term C̃I(⌊nt⌋). Let

V = diag
(
(ω1,1σ

2
ϵ )

− 1
2 , . . . , (ωp,pσ

2
ϵ )

− 1
2

)
. (S8.51)

By the definition of C̃I(⌊nt⌋) in (S8.35), we can rewrite it in the form of

partial sum process:

C̃I(⌊nt⌋) = 1√
n

n∑
i=1

V ·ΘXiϵi

(
1(i ≤ ⌊nt⌋)− ⌊nt⌋

n

)
, with τ0 ≤ t ≤ 1− τ0.

(S8.52)

In Step 2, we have introduced the oracle leading term C̃b,I(⌊nt⌋) in (S8.49)

for the bootstrap based test statistic. Similar to C̃I(⌊nt⌋), we can write

C̃b,I(⌊nt⌋) in the following form:

C̃b,I(⌊nt⌋) = 1√
n

n∑
i=1

V ·ΘXiϵ
b
i

(
1(i ≤ ⌊nt⌋)−⌊nt⌋/n

)
, with τ0 ≤ t ≤ 1−τ0.

(S8.53)

Let Zi = V · ΘXiϵi and Gi = V · ΘXiϵ
b
i for i = 1, . . . , n. Note that Gi

follows multivariate Gaussian distributions with mean zero and the same
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covariance matrix as Zi. We aim to use maxτ0≤t≤1−τ0 ∥C̃b,I(⌊nt⌋)∥G,∞ to

approximate maxτ0≤t≤1−τ0 ∥C̃I(⌊nt⌋)∥G,∞. Hence, it remains to verify that

the conditions of Lemma 1 hold. In fact, by Assumptions (A.1) and (A.2),

we can show that Assumptions (M1) - (M3) hold for V ·ΘXiϵi with 1 ≤

i ≤ n. Hence, by Lemma 1, we have

sup
z∈(0,∞)

∣∣P( max
τ0≤t≤1−τ0

∥C̃I(⌊nt⌋)∥G,∞ ≤ z
)
− P( max

τ0≤t≤1−τ0
∥C̃b,I(⌊nt⌋)∥G,∞ ≤ z

)∣∣ ≤ Cn−ζ0 .

(S8.54)

Step 4. In this step, we aim to combine the previous results to prove

sup
z∈(0,∞)

∣∣P(TG ≤ z)− P(T b
G ≤ z|X )

∣∣ = op(1), as n, p → ∞. (S8.55)

In particular, we need to obtain the upper and lower bounds of ρ0, where

ρ0 := P(TG > z)− P(T b
G > z|X ). (S8.56)

We first consider the upper bound. Note that TG = max
t∈[τ0,1−τ0]

∥C(⌊nt⌋)∥G,∞.

By plugging C̃I(⌊nt⌋) in TG and using the triangle inequality of ∥ · ∥G,∞, we

have

P(TG > z) ≤ P( max
t∈[τ0,1−τ0]

∥C̃I(⌊nt⌋)∥G,∞ > z − ϵ) + ρ1, (S8.57)

where ρ1 := P( max
t∈[τ0,1−τ0]

∥C(⌊nt⌋) − C̃I(⌊nt⌋)∥G,∞ > ϵ). By Lemma 10, we

have ρ1 = o(1). Recall C̃b,I(⌊nt⌋) defined in (S8.49). For P(maxt∈[τ0,1−τ0] ∥C̃I(⌊nt⌋)∥G,∞ >
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z − ϵ), we then have

P( max
t∈[τ0,1−τ0]

∥C̃I(⌊nt⌋)∥G,∞ > z−ϵ) ≤ P( max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ > z − ϵ|X )︸ ︷︷ ︸
ρ3

+ρ2,

(S8.58)

where

ρ2 := sup
x∈(0,∞)

|P( max
t∈[τ0,1−τ0]

∥C̃I(⌊nt⌋)∥G,∞ > x)−P( max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ > x|X )|.

By Step 3, we have proved ρ2 ≤ Cn−ζ0 holds. For ρ3, we have ρ3 = ρ4 + ρ5,

where

ρ4 := P(z − ϵ < max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ < z + ϵ|X ),

ρ5 := P( max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ > z + ϵ|X ).

(S8.59)

By Lemma 2, we have proved ρ4 = op(1). So far, we have proved that

P(TG > z) ≤ P( max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ > z + ϵ|X ) + op(1). (S8.60)

Note that T b
G := maxt∈[τ0,1−τ0] ∥Cb(⌊nt⌋)∥G,∞. By the triangle inequality,

we have

P( max
t∈[τ0,1−τ0]

∥C̃b,I(⌊nt⌋)∥G,∞ > z+ϵ|X ) ≤ P( max
t∈[τ0,1−τ0]

∥Cb(⌊nt⌋)∥G,∞ > z|X )+ρ6,

(S8.61)

where ρ6 := P(maxt∈[τ0,1−τ0] ∥Cb(⌊nt⌋)−C̃b,I(⌊nt⌋)∥G,∞ > ϵ|X ). By Lemma

11, we have proved ρ6 = op(1). Combining (S8.60) and (S8.61), we have

P(TG > z) ≤ P(T b
G > z|X ) + op(1). (S8.62)
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With a similar proof technique, we can also obtain the lower bound and

prove

|P(TG > z)− P(T b
G > z|X )| = op(1) (S8.63)

holds uniformly in z ∈ (0,∞), which finishes the proof of Theorem 2.

S8.4 Proof of Theorem 3

Proof. Without loss of generality, we assume δj := β
(1)
j −β

(2)
j ≥ 0. As a mild

technical assumption, throughout this section, we assume s
√
log(p)/nτ0∥δ∥∞/∥δ∥G,∞ = o(1).

For each t ∈ [τ0, 1− τ0], define Z(⌊nt⌋) =
(
Z1(⌊nt⌋), . . . , Zp(⌊nt⌋)

)⊤
with

Zj(⌊nt⌋) :=
√
n
⌊nt⌋
n

(
1− ⌊nt⌋

n

)
(β̆

(0,t)
j − β̆

(t,1)
j ), for 1 ≤ j ≤ p. (S8.64)

Note that there is no variance estimator in Zj(⌊nt⌋). By definition, we have

t̂0,G := argmax
t∈[τ0,1−τ0]

∥Z(⌊nt⌋)∥G,∞.

For notational simplicity, we abbreviate t̂0,G to t̂0. Moreover, we assume

t̂0 ∈ [t0, 1 − τ0]. To give the proof, we need to make decompositions on

Z(⌊nt⌋). We first define δ(t) = (δ1(t), . . . , δp(t))
⊤:

δ(t) :=
√
n
⌊nt⌋
n

⌊nt0⌋∗

n

(
β(1) − β(2)

)
1{t ∈ [τ0, t0]}

+
√
n
⌊nt0⌋
n

⌊nt⌋∗

n

(
β(1) − β(2)

)
1{t ∈ [t0, 1− τ0]},

(S8.65)
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and R(0,t) = (R
(0,t)
1 , . . . , R

(0,t)
p )⊤ and R(t,1) = (R

(t,1)
1 , . . . , R

(t,1)
p )⊤:

R(0,t) := R(0,t),I1
{
t ∈ [τ0, t0]

}
+R(0,t),II1

{
t ∈ [t0, 1− τ0]

}
,

R(t,1) := R(t,1),I1
{
t ∈ [τ0, t0]

}
+R(t,1),II1

{
t ∈ [t0, 1− τ0]

}
,

(S8.66)

where R(0,t),I −R(t,1),II are defined as

R(0,t),I := −
(
Θ̂Σ̂(0,t) − I

)(
β̂(0,t) − β(1)

)
,

R(0,t),II := −⌊nt⌋ − ⌊nt0⌋
⌊nt⌋

(
Θ̂Σ̂(t0,t) − I

)(
β(1) − β(2)

)
−
(
Θ̂Σ̂(0,t) − I

)(
β̂(0,t) − β(1)

)
,

R(t,1),I := −⌊nt0⌋ − ⌊nt⌋
⌊nt⌋∗

(
Θ̂Σ̂(t,t0) − I

)(
β(1) − β(2)

)
−
(
Θ̂Σ̂(t,1) − I

)(
β̂(t,1) − β(2)

)
,

R(t,1),II := −
(
Θ̂Σ̂(t,1) − I

)(
β̂(t,1) − β(2)

)
.

(S8.67)

Then, by the definitions of β̆(0,t) and β̆(t,1), similar to the analysis of Step

2 in Section S8.3, under H1, we can write Z(⌊nt⌋) as follows:

Z(⌊nt⌋) = δ(t)+
√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋

⌊nt⌋∑
i=1

ξ̂i−
1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

ξ̂i+R(0,t)−R(t,1)
)
,

(S8.68)

where ξ̂i := (ξ̂i,1, . . . , ξ̂i,p)
⊤ with ξ̂i,j = Θ̂⊤

j Xiϵi for i = 1, . . . , n and j =

1, . . . , p.
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In addition to the decomposition, let δ = β(1) − β(2) and we assume

∥δ∥G,∞ ≫
√

log(|G|n)
n

.

Let j∗ ∈ G such that Zj∗(⌊nt̂0⌋) = max
j∈G

Zj(⌊nt̂0⌋). The following Lemma 12

shows that lim infn→∞ δj∗/∥δ∥G,∞ ≥ 1. The proof of Lemma 12 is given in

Section S9.3.

Lemma 12. Suppose Assumptions (A.1) – (A.5) hold. Then, with proba-

bility tending to one, we have lim infn→∞ δj∗/∥δ∥G,∞ ≥ 1.

Furthermore, define the event

H1 =
{
maxj∈G Zj(⌊nt̂0⌋) = maxj∈G |Zj(⌊nt̂0⌋)| := ∥Z(⌊nt̂0⌋)∥G,∞

}
,

H2 =
{
Zj∗(⌊nt0⌋) = |Zj∗(⌊nt0⌋)|

}
.

(S8.69)

The following Lemma 13 shows that H1 ∩H2 occurs with high probability.

The proof of Lemma 13 is provided in Section S9.4.

Lemma 13. Suppose Assumptions (A.1) – (A.5) hold. Then we have

P(H1 ∩H2) ≥ 1− C1(np)
−C2 , (S8.70)

where C1 and C2 are universal positive constants not depending on n or p.

Using Lemmas 12 and 13, we are ready to give the proof. Specifically,
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by the above two lemmas, we have:

∥Z(⌊nt0⌋)∥G,∞ − ∥Z(⌊nt̂0⌋)∥G,∞ = ∥Z(⌊nt0⌋)∥G,∞ − Zj∗(⌊nt̂0⌋)

≥ Zj∗(⌊nt0⌋)− Zj∗(⌊nt̂0⌋).

Moreover, by the decomposition of Z(⌊nt⌋) in (S8.68), we have:

Zj∗(⌊nt0⌋)− Zj∗(⌊nt̂0⌋) ≥
√
n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nt0⌋
n

δj∗ + I − II, (S8.71)

where

I =
1√
n

( ⌊nt̂0⌋∑
i=⌊nt0⌋+1

ξ̂i,j −
⌊nt̂0⌋ − ⌊nt0⌋

n

n∑
i=1

ξ̂i,j
)
,

II =
√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n

(
∥R(0,t̂0),II∥∞ + ∥R(t̂0,1),II∥∞

)
+
√
n
⌊nt0⌋
n

⌊nt0⌋∗

n

(
∥R(0,t0),II∥∞ + ∥R(t0,1),II∥∞

)
.

(S8.72)

Note that by Assumptions (A.1) – (A.3), ξ̂i,j follows the sub-exponential

distribution. Using Bernstein’s inequalities, we can prove that:

max
t∈[t0,1−τ0]

max
j∈G

| 1√
n

( ⌊nt⌋∑
i=⌊nt0⌋+1

ξ̂i,j −
⌊nt⌋ − ⌊nt0⌋

n

n∑
i=1

ξ̂i,j
)
|

(⌊nt⌋ − ⌊nt0⌋)1/2
= Op(

√
log(|G|)

n
).

(S8.73)

Moreover, the following Lemma 14 shows that II can be decomposed into

three terms. The proof of Lemma 14 is given in Section S9.5.

Lemma 14. Suppose Assumptions (A.1) – (A.5) hold. For II in (S8.71),

with probability tending to 1, we have

II ≤ C1

√
log(|G|n)⌊nt̂0⌋ − ⌊nt0⌋

n
s∥δ∥∞+C2

√
ns

log(|G|n)
n

+o
(√

n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nt0⌋
n

∥δ∥G,∞
)
.
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where C1, C2 > 0 are some constants not depending on n or p.

Considering (S8.71) - (S8.73), by Lemmas 12 and 14, we have:

∥Z(⌊nt0⌋)∥G,∞ − ∥Z(⌊nt̂0⌋)∥G,∞

≥ Zj∗(⌊nt0⌋)− Zj∗(⌊nt̂0⌋)

≥
√
n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nt0⌋
n

∥δ∥G,∞ − C1

√
⌊nt̂0⌋ − ⌊nt0⌋ log(|G|)

n

−C2

√
log(|G|n)⌊nt̂0⌋ − ⌊nt0⌋

n
s∥δ∥∞ − C3

√
ns

log(|G|n)
n

− o
(√

n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nτ0⌋
n

∥δ∥G,∞
)
.

(S8.74)

Note that ∥Z(⌊nt0⌋)∥G,∞−∥Z(⌊nt̂0⌋)∥G,∞ ≤ 0. Hence, by (S8.73), we have:

1

2

√
n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nt0⌋
n

∥δ∥G,∞

≤ 3max
(
C1

√
⌊nt̂0⌋ − ⌊nt0⌋ log(|G|)

n
,C2

√
log(|G|n)⌊nt̂0⌋ − ⌊nt0⌋

n
s∥δ∥∞, C3

√
ns

log(|G|n)
n

)
.

This implies that with probability tending to 1, we must have

⌊nt̂0⌋ − ⌊nt0⌋
n

≤ C∗max
( log(|G|)
n∥δ∥2G,∞

,
log(|G|)s2∥δ∥2∞

n∥δ∥2G,∞
,
log(|G|)s∥δ∥∞

n∥δ∥2G,∞

)
≤ C∗ log(|G|)

n∥δ∥2G,∞
,

where the second inequality comes from Assumption (A.6), and C∗ is some

big enough constant not depending on n or p, which completes the proof of

Theorem 3.

S8.5 Proof of Theorem 4

Proof. Note that by (S8.25) in Theorem 1 and by Assumption (A.4), we

have shown that max1≤j,k≤p |ω̂j,k−ωj,k| = op(1). Hence, to prove Theorem 4,

it remains to prove that |σ̂2
ϵ −σ2

ϵ | = op(1), where σ̂
2
ϵ is the weighted variance
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estimator as defined in (2.19). Without loss of generality, we assume the

change point estimator t̂0,G ∈ [τ0, t0], where t̂0,G is obtained by (2.18). To

simplify notations, we denote t̂0,G by t̂0. Thoughout this section, we denote

ϵn :=
⌊nt0⌋ − ⌊nt̂0⌋

n
, and δ = β(1) − β(2).

Furthermore, by definition, we can write σ̂2
ϵ − σ2

ϵ as the following 8 parts:

σ̂2
ϵ − σ2

ϵ = I + II + III + IV + V + V I + V II + V III, (S8.75)

where I − V III are defined as

I =
1

n

n∑
i=1

(ϵ2i − σ2
ϵ ), II =

1

n

∥∥∥X(0,t̂0)

(
β̂(0,t̂0) − β(1)

)∥∥∥2

2
,

III =
2

n
(ϵ(0,t̂0))

⊤X(0,t̂0)

(
β(1) − β̂(0,t̂0)

)
, IV =

1

n

∥∥∥X(t̂0,1)

(
β̂(t̂0,1) − β(2)

)∥∥∥2

2
,

V =
2

n
(ϵ(t̂0,1))

⊤X(t̂0,1)

(
β(2) − β̂(t̂0,1)

)
, V I =

2

n
(ϵ(t̂0,t0))

⊤X(t̂0,t0)
(β(1) − β(2)),

V II =
1

n
(β(1) − β(2))⊤(X(t̂0,t0)

)⊤X(t̂0,t0)
(β(1) − β(2)),

V III =
1

n
(β(1) − β(2))⊤(X(t̂0,t0)

)⊤X(t̂0,t0)
(β(2) − β̂(t̂0,1)).

(S8.76)

By (S8.75), we need to bound the eight parts on the RHS of (S8.75), respec-

tively. For the rest of the proof, we assume the event ∩t∈[τ0,1−τ0]

{
A(t)∩B(t)

}
holds. For I, using (S8.23) in Theorem 1, we have I = o(1) as n, p → ∞.

For II, by Lemma 8, we have II ≤ Cs(1)
log(p)

n
= o(1) as n, p → ∞. For
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III, by Lemma 8 and Assumption (A.4), we have

III ≤ C
⌊nt̂0⌋
n

√
log(p)

⌊nt̂0⌋
∥β̂(0,t̂0) − β(1)∥1,

≤ Cs(1)
log(p)

⌊nt̂0⌋
≤ Cs(1)

log(p)

⌊nτ0⌋
= op(1).

Recall s = s(1)∨ s(2). For IV , by Lemma 8 and Assumption (A.4), we have

IV ≤ C
(⌊nt0⌋ − ⌊nt̂0⌋

⌊nt̂0⌋∗
)2∥∥β(2) − β(1)

∥∥2

2
,

≤ C
(⌊nt0⌋ − ⌊nt̂0⌋

n

)2∥∥β(2) − β(1)
∥∥2

2
= Op(ϵ

2
ns∥δ∥2∞).

For V , by Lemma 8 and Assumption (A.4), we have

|V | ≤ C
⌊nt̂0⌋∗

n

√
log(p)

⌊nt̂0⌋∗
∥∥β̂(t̂0,1) − β(2)

∥∥
1
,

≤ C
⌊nt̂0⌋∗

n

√
log(p)

⌊nt̂0⌋∗
× ⌊nt0⌋ − ⌊nt̂0⌋

⌊nt̂0⌋∗
∥∥β(2) − β(1)

∥∥
1
,

≤ C

√
log(p)

⌊nt̂0⌋∗
⌊nt0⌋ − ⌊nt̂0⌋

n

∥∥β(2) − β(1)
∥∥
1
= Op(ϵns

√
log(p)

n
∥δ∥∞).

For V I, by Assumptions (A.1) and (A.3), we have

|V I| ≤ C
⌊nt0⌋ − ⌊nt̂0⌋

n

√
log(p)

⌊nt0⌋ − ⌊nt̂0⌋
∥∥β(2) − β(1)

∥∥
1
,

≤ C

√
⌊nt0⌋ − ⌊nt̂0⌋

n

√
log(p)

n

∥∥β(2) − β(1)
∥∥
1
= Op(s

√
ϵn
log(p)

n
∥δ∥∞).
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For V II, using the fact that x⊤Ax ≤ ∥A∥∞∥x∥21, we have

V II =(1)
⌊nt0⌋ − ⌊nt̂0⌋

n
(β(1) − β(2))⊤Σ̂(t̂0,t0)

(β(1) − β(2))

=(2)
⌊nt0⌋ − ⌊nt̂0⌋

n
(β(1) − β(2))⊤(Σ̂(t̂0,t0)

−Σ)(β(1) − β(2))

+
⌊nt0⌋ − ⌊nt̂0⌋

n
(β(1) − β(2))⊤Σ(β(1) − β(2))

≤(3) C1

√
ϵn
log(p)

n
∥β(2) − β(1)

∥∥2

1
+ C2ϵn∥β(2) − β(1)

∥∥2

2

=(4) Op(s
2

√
ϵn
log(p)

n
∥δ∥2∞ + ϵns∥δ∥2∞),

where (3) comes from the concentration inequality for ∥Σ̂(t̂0,t0)
−Σ∥∞ and

by Assumption (A.3) that Σj,j = O(1). Lastly, for V III, by Lemma 8, and

similar to V II, we have

V III = Op(ϵ
2
ns

2∥δ∥2∞ + s2
√

ϵ3n
log(p)

n
∥δ∥2∞).

Combining the obtained upper bounds of I, . . . , V III, we have

|σ̂2
ϵ − σ2

ϵ | = op(1) +Op(ϵ
2
ns∥δ∥2∞) +Op(ϵns

√
log(p)

n
∥δ∥∞) +Op(s

√
ϵn
log(p)

n
∥δ∥∞)

+Op(ϵns∥δ∥2∞ + s2
√

ϵn
log(p)

n
∥δ∥2∞) +Op(ϵ

2
ns

2∥δ∥2∞ + s2
√
ϵ3n
log(p)

n
∥δ∥2∞).

(S8.77)

By (S8.77), to bound |σ̂2
ϵ − σ2

ϵ |, we consider the following two cases:

Case1 : The signal satisfies ∥δ∥∞ ≫
√

log(p)/n. In this case, by Theorem

3, we have ϵn = op(1). Moreover, by Assumption (A.6), we have s∥δ∥∞ =

O(1) and ∥δ∥∞ = o(1). Combining (S8.77), we have |σ̂2
ϵ − σ2

ϵ | = op(1).

Case2 : The signal satisfies ∥δ∥∞ = O(
√
log(p)/n). In this case, we can

not obtain a consistent change point estimator. In other words, we only
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have ϵn = Op(1). Moreover, we can show that

|σ̂2
ϵ − σ2

ϵ | = Op(s
2∥δ∥2∞). (S8.78)

Considering (S8.78), and by the assumption that s
√

log(p)/n = o(1), we

have |σ̂2
ϵ − σ2

ϵ | = op(1), which finishes the proof.

S8.6 Proof of Theorem 5

Proof. As a very mild technical assumption, throughout this section, we

assume

s
√
log(p)/nτ0∥δ∥∞/∥δ∥G,∞ = o(1).

The proof of Theorem 5 proceeds in two steps. In Step 1, we obtain the

upper bound of cT b
G
(1 − α), where cT b

G
(1 − α) is the 1 − α quantile of T b

G,

which is defined as

cT b
G
(1− α) := inf

{
t : P(T b

G ≤ t|X ) ≥ 1− α
}
. (S8.79)

In Step 2, using the obtained upper bound, we get the lower bound of

P
(
TG ≥ cT b

G
(1− α)

)
and prove

P
(
TG ≥ cT b

G
(1− α)

)
→ 1, as n, p → ∞. (S8.80)

Note that {ΦG,α = 1} ⇔ {TG ≥ ĉT b
G
(1− α)}, where

ĉT b
G
(1− α) := inf

{
t :

1

B + 1

B∑
b=1

1{T b
G ≤ t|X} ≥ 1− α

}
. (S8.81)

60



S8. PROOF OF MAIN RESULTS

Finally, using the fact that ĉT b
G
(1−α) is the estimation for cT b

G
(1−α) based

on the bootstrap samples, we complete the proof. Now, we consider the

two steps in detail.

Step 1: In this step, we aim to obtain the upper bound for cT b
G
(1 − α).

Define ξ̂bi,j = Θ̂⊤
j Xiϵ

b
i for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Recall Cb

j (⌊nt⌋) in

(S8.45) and the decomposition in (S8.47). By the definition of T b
G and using

the fact that
⌊nt⌋
n

⌊nt⌋∗

n
≤ 1 with t ∈ [τ0, 1− τ0], we have

T b
G ≤ max

t∈[τ0,1−τ0]
max
j∈G

|Cb,I
j (⌊nt⌋)|+ max

t∈[τ0,1−τ0]
max
j∈G

|Cb,II
j (⌊nt⌋)|

≤ W b
G + max

t∈[τ0,1−τ0]
max
j∈G

|Cb,II
j (⌊nt⌋)|,

(S8.82)

where

W b
G := max

t∈[τ0,1−τ0]
max
j∈G

√
n

√
⌊nt⌋
n

⌊nt⌋∗

n

∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

ξ̂bi,j −
1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

ξ̂bi,j

∣∣∣√
σ̂2
ϵ ω̂j,j︸ ︷︷ ︸

Db
j(⌊nt⌋)

.

(S8.83)

By (S8.82), we have cT b
G
(1 − α) ≤ cW b

G
(1 − α) + max

t∈[τ0,1−τ0]
max
j∈G

|Cb,II
j (⌊nt⌋)|,

where cW b
G
(1− α) is the 1− α quantile of W b

G. Hence, to obtain the upper

bound of cT b
G
(1 − α), it is sufficient to get the upper bound of cW b

G
(1 − α)

and max
t∈[τ0,1−τ0]

max
j∈G

|Cb,II
j (⌊nt⌋)|, respectively.

We first consider cW b
G
(1− α). By the definition of Db

j(⌊nt⌋) in (S8.83),
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conditional on X , some basic calculations show that

Db
j(⌊nt⌋) ∼ N(0, σ2

j (t)), with t ∈ [τ0, 1− τ0] and 1 ≤ j ≤ p, (S8.84)

where

σ2
j (t) :=

Θ̂⊤
j

(⌊nt⌋∗
n

⌊nt⌋∑
i=1

XiX
⊤
i +

⌊nt⌋
n

n∑
i=⌊nt⌋+1

XiX
⊤
i

)
Θ̂j

Θ̂⊤
j

( 1
n

n∑
i=1

XiX⊤
i

)
Θ̂j

. (S8.85)

Under Assumptions (A.1) - (A.5), we can prove that as n, p → ∞

max
t∈[τ0,1−τ0]

max
1≤j≤p

|σ2
j (t)− 1| = op(1). (S8.86)

Let q′ = |G|(n − 2⌊nτ0⌋ + 1). Combining (S8.84) and (S8.86), and using

Lemma 3, for any t > 0, we have

E
(

max
t∈[τ0,1−τ0]

max
j∈G

|Db
j(⌊nt⌋)|

)
≤ log(2p′)

t
+

tA2
0

2
, with A2

0 :=
3

2
. (S8.87)

Furthermore, taking t = A−1
0

√
2 log(q′) in (S8.87), we have

E
(

max
t∈[τ0,1−τ0]

max
j∈G

|Db
j(⌊nt⌋)|

)
≤ A0

√
2 log(q′)

(
1 +

1

2 log q′
)
. (S8.88)

By Theorem 5.8 in Boucheron et al. (2013), we have

P
(

max
τ0≤t≤1−τ0

j∈G

|Db
j(⌊nt⌋)| ≥ E

[
max

τ0≤t≤1−τ0
j∈G

|Db
j(⌊nt⌋)|

]
+ z

∣∣∣X)
≤ exp

(
− z2

2A2
0

)
.

(S8.89)

Based on (S8.88), and taking z = A0

√
2 log(α−1) in (S8.89), we have

cW b
G
(1− α) ≤ A0

√
2 log(q′)

(
1 +

1

2 log q′
)
+ A0

√
2 log(α−1). (S8.90)
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After obtaining the upper bound of cW b
G
(1−α) in (S8.90), we next consider

the upper bound of max
t∈[τ0,1−τ0]

max
j∈G

|Cb,II
j (⌊nt⌋)|. To this end, we define

E ′ =
{

min
1≤j≤p

σ̂2
ϵ ω̂j,j ≥ cϵκ

−1
1 /2, max

1≤j≤p
σ̂2
ϵ ω̂j,j ≤ 2Cϵκ2

}
. (S8.91)

By Theorem 4 and Assumptions (A.2) and (A.3), we have P(E ′) → 1 as

n, p → ∞. Under E ′, by the definition of Cb,II
j (⌊nt⌋) in (S8.47), we have

max
t∈[τ0,1−τ0]

max
j∈G

|Cb,II
j (⌊nt⌋)|

≤ C1 max
t∈[τ0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(0,t)∥G,∞︸ ︷︷ ︸

∆1

+C1 max
t∈[τ0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(t,1)∥G,∞︸ ︷︷ ︸

∆2

,

(S8.92)

where C1 :=
√

Cϵκ
−1
1 /2, ∆b,(0,t) and ∆b,(t,1) are defined in (S8.44). Next,

we consider ∆1 and ∆2, respectively. Without loss of generality, we assume

t̂0,G ∈ [τ0, t0].

Control of ∆1. For ∆1, by the definition of ∆b,(0,t) in (S8.44), we have

∆1 ≤ C1

(
max

t∈[τ0,t̂0,G ]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(0,t),I∥G,∞︸ ︷︷ ︸

∆1,1

∨ max
t∈[t̂0,G ,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(0,t),II∥G,∞︸ ︷︷ ︸

∆1,2

)
.

(S8.93)

Control of ∆1,1. For ∆1,1, consider ∆b,(0,t),I in (S8.38) with t ∈

[τ0, t̂0,G]. Conditional on X , using concentration inequalities and by Lemma

63



Proofs

8, we have

∥∆b,(0,t),I∥G,∞

≤ C

√
log(pn)

⌊nt⌋
∥∥β̂b,(0,t) − β̂(0,t̂0,G)

∥∥
1

≤ Cs
(
β̂(0,t̂0,G)

) log(pn)
⌊nt⌋

,

≤ Cs(1)
log(pn)

⌊nt⌋
(by Lemma 8).

(S8.94)

Hence, by (S8.94), we have

∆1,1 = max
t∈[τ0,t̂0,G ]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(0,t),I∥G,∞,

≤ Cs
log(pn)√

n
= o

(√
log(|G|n)

)
,

(S8.95)

where the last equation of (S8.95) comes from the assumption that s
√
log(pn)/n = o(1)

with s := s(1) ∨ s(2) and |G| = pγ for γ ∈ (0, 1].

Control of ∆1,2. For ∆1,2, considering ∆b,(0,t),II in (S8.42) with t ∈

[t̂0,G, 1− τ0], we have

∥∆b,(0,t),II∥G,∞ ≤ ∥∆b,(0,t),II
1 ∥G,∞ + ∥∆b,(0,t),II

2 ∥G,∞, (S8.96)

where

∆
b,(0,t),II
1 = −

(
Θ̂Σ̂(0,t) − I

)(
β̂b,(0,t) − β̂(0,t̂0,G)

)
,

∆
b,(0,t),II
2 = −⌊nt⌋ − ⌊nt̂0,G⌋

⌊nt⌋
(
Θ̂Σ̂(t̂0,G ,t)

− I
)(
β̂(0,t̂0,G) − β̂(t̂0,G ,1)

)
.

(S8.97)

Hence, by (S8.97), we need to consider ∆
b,(0,t),II
1 and ∆

b,(0,t),II
2 , respectively.

Control of ∆
b,(0,t),II
1 . For ∆

b,(0,t),II
1 , using Lemma 8 for the bootstrap
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based samples, we have

∥∆b,(0,t),II
1 ∥G,∞

≤ C

√
log(pn)

⌊nt⌋
∥∥β̂b,(0,t) − β̂(0,t̂0,G)

∥∥
1
,

≤ C

√
log(pn)

⌊nt⌋
⌊nt⌋ − ⌊nt̂0,G⌋

⌊nt⌋
∥β̂(0,t̂0,G) − β̂(t̂0,G ,1)∥1,

≤ C

√
log(pn)

⌊nt⌋

(
∥β̂(0,t̂0,G) − β(1)∥1 + ∥β̂(t̂0,G ,1) − β(2)∥1 + ∥β(1) − β(2)∥1

)
.

(S8.98)

Note that we assume t̂0,G ∈ [τ0, t0]. Using Lemma 8, we have

∥β̂(0,t̂0,G)−β(1)∥1 ≤ Cs

√
log(p)

nτ0
, ∥β̂(t̂0,G ,1)−β(2)∥1 ≤ C

⌊nt0⌋ − ⌊nt̂0,G⌋
⌊nt̂0,G⌋∗

∥β(2)−β(1)∥1.

(S8.99)

Combining (S8.98) and (S8.99), and using the fact that ∥δ∥1 ≤ s∥δ∥∞, we

have

∥∆b,(0,t),II
1 ∥G,∞ ≤ C1s

log(pn)

⌊nτ0⌋
+ C2s

√
log(pn)

⌊nt⌋
∥δ∥∞, with t ∈ [t̂0,G, 1− τ0].

(S8.100)

Control of ∆
b,(0,t),II
2 . After bounding∆

b,(0,t),II
1 in (S8.100), we next con-

sider ∆
b,(0,t),II
2 . Using concentration inequalities and the trianlge inequality

65



Proofs

and by Lemma 8, we have

∥∆b,(0,t),II
2 ∥G,∞

≤ C

√
log(pn)

⌊nt⌋
∥∥β̂(0,t̂0,G) − β̂(t̂0,G ,1)

∥∥
1
,

≤ C

√
log(pn)

⌊nt⌋

(
∥β̂(0,t̂0,G) − β(1)∥1 + ∥β̂(t̂0,G ,1) − β(2)∥1 + ∥β(1) − β(2)∥1

)
,

≤ C

√
log(pn)

⌊nt⌋

(
s

√
log(p)

nτ0
+ ∥β(1) − β(2)∥1 + ∥β(1) − β(2)∥1

)
(Lemma 8),

≤ C1s
log(pn)

⌊nτ0⌋
+ C2s

√
log(p)

⌊nt⌋
∥δ∥∞.

(S8.101)

Combining (S8.96), (S8.100), and (S8.101), by Assumption (A.4), we have

∆1,2 = max
t∈[t̂0,G ,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥∆b,(0,t),II∥G,∞

≤ C1

√
ns

log(pn)

nτ0
+ C2

√
n
(
s

√
log(p)

nτ0
∥δ∥∞

)
,

≤ o
(√

log(|G|n)
)
+ C2

√
n
(
s

√
log(p)

nτ0
∥δ∥∞

)
.

(S8.102)

Combining (S8.93), (S8.95), and (S9.178), we have

∆1 ≤ o
(√

log(|G|n)
)
+ C1

√
n
(
s

√
log(p)

nτ0
∥δ∥∞

)
. (S8.103)

Control of ∆2. Similarly, we can obtain the upper bound for ∆2 as

∆2 ≤ o
(√

log(|G|n)
)
+ C2

√
n
(
s

√
log(p)

nτ0
∥δ∥∞

)
. (S8.104)

Combining (S8.92), (S8.103), and (S8.104), we have

max
t∈[τ0,1−τ0]

max
j∈G

|Cb,II
j (⌊nt⌋)| ≤ o

(√
log(|G|n)

)
+ C1

√
n
(
s

√
log(p)

nτ0
∥δ∥G,∞

)
.

(S8.105)
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Finally, using (S8.82), (S8.90), and (S8.105), we obtain an upper bound of

cT b
G
(1− α) as

cT b
G
(1− α) ≤ A0

√
2 log(q′)

(
1 +

1

2 log q′
)
+ A0

√
2 log(α−1) + o

(√
log(|G|n)

)
+C1

√
n
(
s

√
log(p)

nτ0
∥δ∥G,∞

)
.

(S8.106)

Step 2: In this step, we aim to prove that P
(
TG ≥ cT b

G
(1 − α)

)
→ 1 as

n, p → ∞. Let

cu
T b
G
(1− α) = A0

√
2 log(q′)

(
1 +

1

2 log q′
)
+ A0

√
2 log(α−1)

+o
(√

log(|G|n)
)
+ C1

√
n
(
s

√
log(p)

nτ0
∥δ∥G,∞

)
.

(S8.107)

Considering the upper bound obtained in (S8.106), it is sufficient to prove

H1 → 1, where

H1 = P
(
TG ≥ cuT b

G
(1− α)

)
. (S8.108)

By replacing σ̂ϵω̂j,j by its true values, we define the oracle testing statistics

as

T̃G = max
t∈[τ0,1−τ0]

max
j∈G

√
n
⌊nt⌋
n

(
1− ⌊nt⌋

n

)∣∣∣ β̆(0,t)
j − β̆

(t,1)
j√

σ2
ϵωj,j

∣∣∣. (S8.109)

Considering (S8.108) and (S8.109), it is sufficient to prove H2 → 1 as n, p →

∞, where

H2 = P
(
T̃G ≥ cuT b

G
(1− α) + |TG − T̃G|

)
. (S8.110)
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Proofs

Recall {Zj(⌊nt⌋), τ0 ≤ t ≤ 1 − τ0, 1 ≤ j ≤ p} defined in (S8.64). By

definition, we have

T̃G = max
t∈[τ0,1−τ0]

max
j∈G

|Zj(⌊nt⌋)|√
σ2
ϵωj,j

. (S8.111)

Let Z(⌊nt⌋) =
(
Z1(⌊nt⌋), . . . , Zp(⌊nt⌋)

)⊤
. Under H1, we have the following

decomposition:

Z(⌊nt⌋) = δ(t)+
√
n
⌊nt⌋
n

⌊nt⌋∗

n

( 1

⌊nt⌋

⌊nt⌋∑
i=1

ξ̂i−
1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

ξ̂i+R(0,t)−R(t,1)
)
,

(S8.112)

where ξ̂i := (ξ̂i,1, . . . , ξ̂i,p)
⊤ with ξ̂i,j = Θ̂⊤

j Xiϵi, δ(t) = (δ1(t), . . . , δp(t))
⊤ is

defined in (S8.65), R(0,t) and R(t,1) are defined in (S8.66). Using (S8.112),

under the event E ′, we have

T̃G ≥ max
t∈[τ0,1−τ0]

max
j∈G

δj(t)√
σ2
ϵωj,j

− (cϵκ
−1
2 /2)−1/2(R1 +R2 +R3), (S8.113)

with

R1 = max
t∈[τ0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

∥∥∥ 1

⌊nt⌋

⌊nt⌋∑
i=1

ξ̂i −
1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

ξ̂i

∥∥∥
G,∞

,

R2 = max
t∈[τ0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥R(0,t)∥G,∞,

R3 = max
t∈[τ0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n
∥R(t,1)∥G,∞.

(S8.114)

By (S8.110) and (S8.113), to prove H2 → 1, it is sufficient to prove H3 → 1,
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where

H3 = P
(

max
t∈[τ0,1−τ0]

max
j∈G

δj(t)√
σ2
ϵωj,j

≥ (cϵκ
−1
2 /2)−1/2(R1 +R2 +R3)

+cu
T b
G
(1− α) + |TG − T̃G|

)
.

(S8.115)

Next, we prove H3 → 1. To this end, we need to obtain the upper bound

of R1, R2, and R3, and |TG − T̃G|, respectively.

Control of R1. We first consider R1. By Assumptions (A.1) – (A.5),

using basic concentration inequalities, we can prove that with probability

at least 1− C1(np)
−C2 ,

R1 ≤ C2

√
log(|G|n). (S8.116)

Control of R2. We next bound R2. Considering R(0,t) in (S8.66), we

have

R2 ≤ max
t∈[τ0,t0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

∥∥R(0,t),I
∥∥
G,∞︸ ︷︷ ︸

R2,1

∨ max
t∈[t0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

∥∥R(0,t),II
∥∥
G,∞︸ ︷︷ ︸

R2,2

,

(S8.117)

where R(0,t),I and R(0,t),II are defined in (S8.67). Next, we bound R2,1 and

R2,2, respectively.

Control of R2,1. ForR2,1, using concentration inequalities and Lemma
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Proofs

8, we have

R2,1 ≤ C1 max
t∈[τ0,t0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

√
log(pn)

⌊nt⌋
∥∥β̂(0,t) − β(1)

∥∥
1
,

≤ C1s
log(pn)√

n
= o

(
log(|G|n)

)
,

(S8.118)

where the last equation of (S8.118) comes from the assumption that s
√
log(pn)/n =

o(1) and |G| = pγ with γ ∈ (0, 1].

Control of R2,2. For R2,2, by the decomposition in (S8.67), we have

R2,2 ≤ R2,2,1 +R2,2,2, (S8.119)

where R2,2,1 and R2,2,2 are defined as

R2,2,1 = max
t∈[t0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

⌊nt0⌋ − ⌊nt⌋
⌊nt⌋

∥∥(Θ̂Σ̂(t0,t) − I
)(
β(1) − β(2)

)
∥G,∞,

≤ C1

√
n

√
log(pn)

nτ0
∥β(1) − β(2)∥1,

≤ C1

√
ns

√
log(pn)

nτ0

∥∥δ∥∥∞,

(S8.120)

and

R2,2,2 = max
t∈[t0,1−τ0]

√
n
⌊nt⌋
n

⌊nt⌋∗

n

∥∥(Θ̂Σ̂(0,t) − I
)(
β̂(0,t) − β(1)

)∥∥
G,∞,

≤ max
t∈[t0,1−τ0]

C1

√
n

√
log(pn)

nτ0
∥β̂(0,t) − β(1)∥1,

≤ max
t∈[t0,1−τ0]

C1

√
n

√
log(pn)

nτ0

⌊nt⌋ − ⌊nt0⌋
⌊nt⌋

∥β(2) − β(1)∥1, (by Lemma 8)

≤ C1

√
ns

√
log(pn)

nτ0

∥∥δ∥∥∞.

(S8.121)
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Combining (S8.117), (S8.118), (S8.119), (S8.120), (S8.121), we have

R2 ≤ o
(
log(|G|n)

)
+ C1

√
ns

√
log(pn)

nτ0

∥∥δ∥∥∞. (S8.122)

Control of R3. With a similar proof, we can obtain the upper bound

of R3 as

R3 ≤ o
(
log(|G|n)

)
+ C1

√
ns

√
log(pn)

nτ0

∥∥δ∥∥∞. (S8.123)

Control of |TG − T̃G|. After bounding R1, R2, and R3 in (S8.116),

(S8.122), and (S8.123), we next bound |TG − T̃G|. Using the fact that

|maxi |ai| −maxi |bi|| ≤ maxi |ai − bi|, we have

|TG − T̃G|

=
∣∣∣ max
t∈[τ0,1−τ0]

max
j∈G

|Zj(⌊nt⌋)|√
σ̂2
ϵ ω̂j,j

− max
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j∈G

|Zj(⌊nt⌋)|√
σ2
ϵωj,j

∣∣∣,
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t∈[τ0,1−τ0]
max
j∈G

∣∣∣Zj(⌊nt⌋)√
σ̂2
ϵ ω̂j,j

− Zj(⌊nt⌋)√
σ2
ϵωj,j

∣∣∣,
≤ T̃G max

j∈G

∣∣∣√σ2
ϵωj,j√

σ̂2
ϵ ω̂j,j

− 1
∣∣∣.

(S8.124)

Note that conditional on the event E ′, using Theorem 4, we have

max
j∈G

∣∣∣√σ2
ϵωj,j√

σ̂2
ϵ ω̂j,j

− 1
∣∣∣ ≤ C1 max

1≤j≤p
|σ̂2

ϵ ω̂j,j − σ2
ϵωj,j|︸ ︷︷ ︸

ϵ′n

= op(1). (S8.125)

Considering (S8.124) and (S8.125), using the decomposition for TG in (S8.112),

we have

|TG − T̃G| ≤ C1ϵ
′
n max
t∈[τ0,1−τ0]

max
j∈G

δj(t)√
σ2
ϵωj,j

+ C2ϵ
′
n(R1 +R2 +R3). (S8.126)
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Proofs

Let ϵ′′n = s
√
log(pn)/nτ0∥δ∥∞/∥δ∥G,∞. By the definition of δ(t) in (S8.65),

we have

max
t∈[τ0,1−τ0]

max
j∈G

δj(t)√
σ2
ϵωj,j

=
√
n
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(2)
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(1)
j )

(σ2
ϵωj,j)1/2

∣∣∣+O(
1√
n
),

(S8.127)

where the last equation comes from the fact that |⌊nt⌋/n− t| = O(1/n) as

n → ∞.

Finally, for H3 in (S8.115), considering the upper bounds in (S8.107),

(S8.116), (S8.122), (S8.123), (S8.126), we have

H3 ≥ P
(√

nmax
j∈G

∣∣∣t0(1− t0)(β
(2)
j − β

(1)
j )

(σ2
ϵωj,j)1/2

∣∣∣ ≥ C1

√
2 log(|G|n) + C2

√
2 log(α−1)

+C3(ϵ
′
n ∨ ϵ′′n)(

√
n∥δ∥G,∞)

)
,

≥ P
(√

nmax
j∈G

∣∣Dj

∣∣ ≥ C4

(1− ϵ′n ∨ ϵ′′n)

(√
2 log(|G|n) +

√
2 log(α−1)

))
.

(S8.128)

Considering (S8.128), by choosing a large enough constant in (3.29), we

have H3 → 1, which completes the proof of Theorem 5.
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S9 Proofs of lemmas in Section S7

S9.1 Proof of Lemma 10

Proof. In this section, we aim to prove

P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)− C̃I(⌊nt⌋)
∥∥
G,∞ ≥ ϵ

)
= o(1). (S9.129)

Without loss of generality, we assume G = {1, . . . , p}. Using the triangle

inequality, we have

P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)− C̃I(⌊nt⌋)
∥∥
∞ ≥ ϵ

)
≤ D1 +D2, (S9.130)

where

D1 := P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)−CI(⌊nt⌋)
∥∥
∞ ≥ ϵ/2

)
,

D2 := P
(

max
τ0≤t≤1−τ0

∥∥CI(⌊nt⌋)− C̃I(⌊nt⌋)
∥∥
∞ ≥ ϵ/2

)
.

(S9.131)

Control of D1. By (S9.130), to prove (S9.129), we need to bound D1

and D2, respectively. We first consider D1. To this end, we define

E =
{

min
1≤j≤p

σ̂2
ϵ ω̂j,j > cϵκ

−1
1 /2

}
, (S9.132)

where κ2 and cϵ are defined in Assumptions (A.2) and (A.3). By introuduc-

ing E , we have

D1 ≤ P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)−CI(⌊nt⌋)
∥∥
∞ ≥ ϵ/2 ∩ E

)
+ P(Ec). (S9.133)
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Proofs

By Theorem 1, we have P(Ec) = o(1) as n, p → ∞. Under the event E , we

have

P
(

max
τ0≤t≤1−τ0

∥∥C(⌊nt⌋)−CI(⌊nt⌋)
∥∥
∞ ≥ ϵ/2 ∩ E

)
≤ P

(
max

t∈[τ0,1−τ0]
max
1≤j≤p

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
σ̂2
ϵ ω̂j,j

)−1/2|∆(0,t)
j −∆

(t,1)
j | ≥ ϵ/2

)
,

≤ P
(

max
t∈[τ0,1−τ0]

∥∆(0,t) −∆(t,1)∥∞ ≥ 1
2

√
cϵκ

−1
2 /2ϵn−1/2

)
,

≤ P
(

max
t∈[τ0,1−τ0]

∥∆(0,t)∥∞ ≥ C1ϵn
−1/2

)
+ P

(
max

t∈[τ0,1−τ0]
∥∆(t,1)∥∞ ≥ C2ϵn

−1/2
)
.

(S9.134)

By the definitions of ∆(0,t) and ∆(t,1) in (S8.29), we have

∥∆(0,t)∥∞ ≤
∥∥Θ̂Σ̂(0,t) − I

∥∥
∞

∥∥β̂(0,t) − β(0)
∥∥
1
. (S9.135)

To bound ∥∆(0,t)∥∞, we need to consider
∥∥Θ̂Σ̂(0,t)−I

∥∥
∞ and

∥∥β̂(0,t)−β(0)
∥∥
1
,

respectively. For
∥∥Θ̂Σ̂(0,t) − I

∥∥
∞, by the triangle inequality, we have

∥Θ̂Σ̂(0,t) − I
∥∥
∞

≤ ∥Θ̂Σ̂n − I
∥∥
∞ + ∥(Θ̂−Θ)(Σ̂n − Σ̂(0,t))

∥∥
∞ + ∥Θ(Σ̂n − Σ̂(0,t))

∥∥
∞,

≤ ∥Θ̂Σ̂n − I
∥∥
∞ + ∥(Θ̂−Θ)(Σ̂n − Σ̂(0,t))

∥∥
∞ + ∥ΘΣ̂n − I

∥∥
∞ + ∥ΘΣ̂(0,t) − I

∥∥
∞,

≤ ∥Θ̂Σ̂n − I
∥∥
∞ + max

1≤j≤p
∥Θ̂j −Θj∥1∥Σ̂n − Σ̂(0,t)∥∞ + ∥ΘΣ̂n − I

∥∥
∞ + ∥ΘΣ̂(0,t) − I

∥∥
∞.

(S9.136)

To bound ∥Θ̂Σ̂(0,t)−I
∥∥
∞, we consider the four parts on the RHS of (S9.136),

respectively.

For ∥Θ̂Σ̂n − I
∥∥
∞, by Van de Geer et al. (2014) and Assumption (A.5), we
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have

∥Θ̂Σ̂n − I
∥∥
∞ ≤ Op

(
max
1≤j≤p

λ(j)

)
= Op

(√ log(p)

n

)
. (S9.137)

For max
1≤j≤p

∥Θ̂j −Θj∥1∥Σ̂n − Σ̂(0,t)∥∞, by Lemma 4, we have

max
1≤j≤p

∥Θ̂j −Θj∥1 = Op

(
sj

√
log(p)

n

)
. (S9.138)

Note that we can write ∥Σ̂n − Σ̂(0,t)∥∞ into

∥Σ̂(0,t)−Σ̂n∥∞ = max
1≤j,k≤p

∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

(
Xi,jXi,k−E(Xi,jXi,k)

)
− 1

n

n∑
i=1

(
Xi,jXi,k−E(Xi,jXi,k)

)∣∣∣.
(S9.139)

Under Assumption (A.1), Xi,jXi,k −EXi,jXi,k follows sub-exponential dis-

tributions for 1 ≤ j, k ≤ p and 1 ≤ i ≤ n. By Bernstein’s inequality, with

probabilty tending to 1, we have

∥Σ̂(0,t) − Σ̂n∥∞ ≤ C3

√
log(pn)

⌊nt⌋
. (S9.140)

For ∥ΘΣ̂n − I
∥∥
∞ + ∥ΘΣ̂(0,t) − I

∥∥
∞, using concentration inequalities again,

we have

∥ΘΣ̂n − I
∥∥
∞ + ∥ΘΣ̂(0,t) − I

∥∥
∞ = Op

(√ log pn

⌊nt⌋

)
. (S9.141)

Combining the results in (S9.137) - (S9.141), we have

max
t∈[τ0,1−τ0]

∥∥Θ̂Σ̂(0,t) − I
∥∥
∞ ≤ Op

(√ log(pn)

⌊nτ0⌋

)
. (S9.142)
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Proofs

Note that by Lemma 8, underH0, sup
t∈[τ0,1−τ0]

∥∥β̂(0,t)−β(0)
∥∥
1
≤ s(0)

√
log(p)/⌊nτ0⌋

holds. Considering (S9.142), we have

max
t∈[τ0,1−τ0]

∥∆(0,t)∥∞ ≤ Op

(
s(0)

log(pn)

⌊nτ0⌋

)
. (S9.143)

With a similar proof technique , for max
t∈[τ0,1−τ0]

∥∆(t,1)∥∞, we can obtain

max
t∈[τ0,1−τ0]

∥∆(t,1)∥∞ ≤ Op

(
s(0)

log(pn)

⌊nτ0⌋

)
. (S9.144)

Note that

ϵ = Cmax(max
1≤j≤p

sj
log(pn)√

n
, s
√
n
log(pn)

⌊nτ0⌋
) (S9.145)

holds for some large enough constant C > 0. Considering (S9.134), (S9.143),

and (S9.144), as n, p → ∞, we have D1 = o(1).

Control of D2. After bounding D1, we next consider D2. By the

definitions of CI(⌊nt⌋) and C̃I(⌊nt⌋) in (S8.33) and (S8.34), and using the

triangle inequality, we have

max
t∈[τ0,1−τ0]

∥∥CI(⌊nt⌋)− C̃I(⌊nt⌋)
∥∥
∞ ≤ I + II + III, (S9.146)
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where I − III are defined as

I = max
t∈[τ0,1−τ0]

max
1≤j≤p

∣∣∣√σ2
ϵωj,j√
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Θ⊤
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)
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∣∣∣,
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(S9.147)

We next consider I, II, and III, respectively. For I, we have I ≤ I(1)+I(2),

where

I(1) = max
t∈[τ0,1−τ0]

max
1≤j≤p

∣∣∣√σ2
ϵωj,j√

σ̂2
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(S9.148)

To bound I(1), define

Ĩ(1) = max
t∈[τ0,1−τ0]

max
1≤j≤p

∣∣∣√σ̂2
ϵ ω̂j,j√

σ2
ϵωj,j

− 1
∣∣∣ = max

t∈[τ0,1−τ0]
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1≤j≤p

∣∣∣√σ̂2
ϵ ω̂j,j −

√
σ2
ϵωj,j√

σ2
ϵωj,j

∣∣∣.
(S9.149)
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Proofs

Using the fact that a2 − b2 = (a− b)(a+ b), we have

Ĩ(1) = max
t∈[τ0,1−τ0]

max
1≤j≤p

∣∣∣ σ̂2
ϵ ω̂j,j − σ2

ϵωj,j√
σ2
ϵωj,j(

√
σ̂2
ϵ ω̂j,j +

√
σ2
ϵωj,j)

∣∣∣,
≤ max

t∈[τ0,1−τ0]
max
1≤j≤p

∣∣∣ σ̂2
ϵ ω̂j,j − σ2

ϵωj,j

σ2
ϵωj,j

∣∣∣,
≤ C max

t∈[τ0,1−τ0]
max
1≤j≤p

∣∣σ̂2
ϵ ω̂j,j − σ2

ϵωj,j

∣∣(Assumptions (A.2) and (A.3)),

≤ Op

(√ log(n)

n
+maxj λ(j)

√
sj

)
,

(S9.150)

where the last inequality comes from Theorem 1. Using (S9.150), and by

Lemma C.1 in Zhou et al. (2018), we have

I(1) ≤ Op

(√ log(n)

n
+max

j
λ(j)

√
sj

)
. (S9.151)

For I(2), note that for two vectors x and y, we have ∥x⊤y∥∞ ≤ ∥x∥1∥y∥∞ .

By Assumptions (A.2) and (A.3), there exists a universal positive constant

C such that

I(2) ≤ C max
1≤j≤p

∥Θ̂⊤
j −Θ⊤

j ∥1 max
t∈[τ0,1−τ0]

∥∥∥ 1√
n

( ⌊nt⌋∑
i=1

Xiϵi −
⌊nt⌋
n

n∑
i=1

Xiϵi

)∥∥∥
∞
.

(S9.152)

By Lemma 4, we have max
1≤j≤p

∥Θ̂⊤
j −Θ⊤

j ∥1 ≤ Op

(
max
1≤j≤p

sj

√
log(p)

n

)
= op(1).

Note that Assumptions (A.1) and (A.2) imply that Xiϵi follows the sub-

exponential distribution. Using Lemma 5, we have

max
t∈[τ0,1−τ0]

∥∥∥ 1√
n

( ⌊nt⌋∑
i=1

Xiϵi −
⌊nt⌋
n

n∑
i=1

Xiϵi

)∥∥∥
∞

≤ Op

(√
log(pn)

)
. (S9.153)
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Combining (S9.151) and (S9.152), we have

I ≤ Op

(
max
1≤j≤p

sj
log3/2(pn)

n
+ max

1≤j≤p

(sj log(pn))
3/2

n

)
. (S9.154)

Similarly, for II and III, we can obtain their upper bounds as follows:

II ≤ ×Op

( log(pn)√
n

+ max
1≤j≤p

log(pn)
√
sj√

n

)
,

III ≤ Op

(
max
1≤j≤p

sj
log(pn)√

n

)
.

(S9.155)

Considering (S9.145), (S9.146), (S9.147), (S9.154), and (S9.155), as n, p →

∞, we have D2 → 0.

Finally, combining (S9.130), D1 → 0, and D2 → 0, we complete the

proof of Lemma 10.

S9.2 Proof of Lemma 11

Proof. In this section, we aim to prove

P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)− C̃b,I(⌊nt⌋)
∥∥
G,∞ ≥ ϵ|X

)
= o(1). (S9.156)

Without loss of generality, we assume G = {1, . . . , p}. Using the triangle

inequality, we have

P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)− C̃b,I(⌊nt⌋)
∥∥
∞ ≥ ϵ

)
≤ E1 + E2, (S9.157)
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where

E1 := P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)−Cb,I(⌊nt⌋)
∥∥
∞ ≥ ϵ/2|X

)
,

E2 := P
(

max
τ0≤t≤1−τ0

∥∥Cb,I(⌊nt⌋)− C̃b,I(⌊nt⌋)
∥∥
∞ ≥ ϵ/2|X

)
.

(S9.158)

Hence, to prove (S9.156), we need to prove E1 → 0 and E2 → 0, respec-

tively.

Control of E2. We first consider E2. Similar to the analysis in Section

S9.1, we can show that

max
τ0≤t≤1−τ0

∥∥Cb,I(⌊nt⌋)− C̃b,I(⌊nt⌋)
∥∥
∞ ≤ Op

(
max
1≤j≤p

sj
log(pn)√

n

)
. (S9.159)

Note that

ϵ := Cs(0) max
1≤j≤p

sj
log(pn)√
⌊nτ0⌋

. (S9.160)

By choosing a large enough constant C in ϵ, we have E2 → 0 as n, p → ∞.

Control of E1. Next, we consider E1. Recall E defined in (S9.132).

For E1, we have

E1 ≤ P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)−Cb,I(⌊nt⌋)
∥∥
∞ ≥ ϵ/2 ∩ E

)
+ P(Ec). (S9.161)
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By Theorem 1, we have P(Ec) = o(1) as n, p → ∞. By the definitions of

Cb(⌊nt⌋) and Cb,I(⌊nt⌋) in (S8.49), under the event E , we have

P
(

max
τ0≤t≤1−τ0

∥∥Cb(⌊nt⌋)−CI(⌊nt⌋)
∥∥
G,∞ ≥ ϵ/2 ∩ E|X

)
≤ P

(
max

t∈[τ0,1−τ0]
max
1≤j≤p

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
σ̂2
ϵ ω̂j,j

)−1/2|∆b,⌊nt⌋
j −∆

b,⌊nt⌋∗
j | ≥ ϵ/2|X

)
≤ P

(
max

t∈[τ0,1−τ0]
∥∆b,(0,t) −∆b,(t,1)∥∞ ≥ 1

2

√
cϵκ

−1
2 /2ϵn−1/2

)
≤ P

(
max

t∈[τ0,1−τ0]
∥∆b,(0,t)∥∞ ≥ C1ϵn

−1/2
)
+ P

(
max

t∈[τ0,1−τ0]
∥∆b,(t,1)∥∞ ≥ C2ϵn

−1/2
)
.

(S9.162)

To bound (S9.162), we need to obtain the upper bounds of max
t∈[τ0,1−τ0]

∥∆b,(0,t)∥∞

and max
t∈[τ0,1−τ0]

∥∆b,(t,1)∥∞.

Control of max
t∈[τ0,1−τ0]

∥∆b,(0,t)∥∞. We first obtain the upper bound of

max
t∈[τ0,1−τ0]

∥∆b,(0,t)∥∞. To this end, we consider two cases:

Case 1 : t ∈ [τ0, t̂0,G]. In this case, by the definition of ∆b,(0,t) in (S8.44), it

reduces to

∆b,(0,t),I = −
(
Θ̂Σ̂(0,t) − I

)(
β̂b,(0,t) − β̂(0,t̂0,G)

)
. (S9.163)

Using the fact that ∥Ax∥∞ ≤ ∥A∥∞∥x∥1, we have

∥∆b,(0,t),I∥∞ ≤
∥∥(Θ̂Σ̂(0,t) − I

)∥∥
∞

∥∥(β̂b,(0,t) − β̂(0,t̂0,G)
)∥∥

1
. (S9.164)

By (S9.142), we have

max
t∈[τ0,t̂0,G ]

∥∥(Θ̂Σ̂(0,t) − I
)∥∥

∞ ≤ Op

(√ log(pn)

⌊nτ0⌋

)
. (S9.165)
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Note that under H0, by Lemma 8, the lasso estimator β̂(0,t̂0,G) has the

following properties:

∥β̂(0,t̂0,G) − β(0)∥q ≤ Op

(
(s(0))

1
q

√
log(p)

⌊nt̂0,G⌋

)
, for q = 1, 2,

∥β̂(t̂0,G ,1) − β(0)∥q ≤ Op

(
(s(0))

1
q

√
log(p)

⌊nt̂0,G⌋∗
)
, for q = 1, 2,

and ŝ(1), ŝ(2) ≤ Op(s
(0)),

(S9.166)

where ŝ(1) := |Ŝ(1)| with Ŝ(1) := {1 ≤ j ≤ p : β̂
(0,t̂0,G)
j ̸= 0} and ŝ(2) = |Ŝ(2)|

with Ŝ(2) = {1 ≤ j ≤ p : β̂
(t̂0,G ,1)
j ̸= 0}. Given X , using Lemma 8 again, for

q = 1, 2, we have

∥β̂b,(0,t) − β̂(0,t̂0,G)∥q ≤ Op

((
ŝ(1)

) 1
q

√
log(p)

⌊nt⌋

)
≤ Op

(
(s(0))

1
q

√
log(p)

⌊nτ0⌋

)
.

(S9.167)

Combining (S9.165) and (S9.167), conditional on X , for the case of t ∈

[τ0, t̂0,G], we have

max
t∈[τ0,t̂0,G ]

∥∆b,(0,t),I∥∞ ≤ Op

(
s(0)

log(pn)

⌊nτ0⌋

)
. (S9.168)

Case 2 : t ∈ [t̂0,G, 1−τ0]. In this case, ∆b,(0,t) reduces to∆b,(0,t),II in (S8.42).

By its definition, we can decompose ∆b,(0,t),II into the following two terms:

∆b,(0,t),II = ∆
b,(0,t),II
1 +∆

b,(0,t),II
2 , (S9.169)
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where

∆
b,(0,t),II
1 = −

(
Θ̂Σ̂(0,t) − I

)(
β̂b,(0,t) − β̂(0,t̂0,G)

)
,

∆
b,(0,t),II
2 = −⌊nt⌋ − ⌊nt̂0,G⌋

⌊nt⌋
(
Θ̂Σ̂(t̂0,G ,t)

− I
)(
β̂(0,t̂0,G) − β̂(t̂0,G ,1)

)
,

Σ̂(t̂0,G ,t)
:=

(X(t̂0,G ,t)
)⊤X(t̂0,G ,t)

⌊nt⌋ − ⌊nt̂0,G⌋+ 1
.

(S9.170)

By (S9.169), for controlling ∆b,(0,t),II, we need to consider ∆
b,(0,t),II
1 and

∆
b,(0,t),II
2 , respectively.

Control of ∆
b,(0,t),II
1 . We first consider∆

b,(0,t),II
1 . Similar to the analysis

of (S9.136) - (S9.142), we can prove that

max
t∈[t̂0,G ,1−τ0]

∥∥∥(Θ̂Σ̂(0,t) − I
)∥∥∥

∞
≤ Op

(√ log(pn)

⌊nτ̂0,G⌋

)
≤ Op

(√ log(pn)

⌊nτ0⌋

)
.

(S9.171)

Note that β̂b,(0,t) is constructed using data both before ⌊nτ̂0,G⌋ and after

⌊nτ̂0,G⌋. By Lemma 8, conditional on X , we have

∥β̂b,(0,t) − β̂(0,t̂0,G)∥1

≤ C1max
(
ŝ(1)

√
log p

n
,
⌊nt⌋ − ⌊nt̂0,G⌋

⌊nt⌋
∥β̂(0,t̂0,G) − β̂(t̂0,G ,1)∥1

)
,

≤ C2s
(0)max

(√ log(p)

⌊nt̂0,G⌋
,

√
log(p)

⌊nt̂0,G⌋∗
)(

by (S9.166)
)
,

≤ C3s
(0)

√
log(p)

⌊nτ0⌋
.

(S9.172)

Combining (S9.171) and (S9.172), we have

max
t∈[t̂0,G ,1−τ0]

∥∆b,(0,t),II
1 ∥∞ ≤ Op

(
s(0)

log(p)

⌊nτ0⌋

)
. (S9.173)
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Control of ∆
b,(0,t),II
2 . After bounding maxt∈[t̂0,G ,1−τ0]

∥∆b,(0,t),II
1 ∥∞, we

next consider maxt∈[t̂0,G ,1−τ0]
∥∆b,(0,t),II

2 ∥∞. Similar to the analysis of (S9.136)

- (S9.142), we have

max
t∈[t̂0,G ,1−τ0]

∥∥∥⌊nt⌋ − ⌊nt̂0,G⌋
⌊nt⌋

(
Θ̂Σ̂(t̂0,G ,t)

− I
)∥∥∥

∞
≤ Op

(√ log(pn)

⌊nt̂0,G⌋

)
. (S9.174)

By (S9.166), we have

∥β̂(0,t̂0,G) − β̂(t̂0,G ,1)∥1

≤ ∥β̂(0,t̂0,G) − β(0)∥1 + ∥β̂(t̂0,G ,1) − β(0)∥1,

≤ C1s
(0) max

(√ log(p)

⌊nt̂0,G⌋
,

√
log(p)

⌊nt̂0,G⌋∗
)
,

≤ C2s
(0)
√

log(p)/⌊nτ0⌋.

(S9.175)

Combining (S9.174) and (S9.175), we have

max
t∈[t̂0,G ,1−τ0]

∥∆b,(0,t),II
2 ∥∞ ≤ Op

(
s(0)

log(p)

⌊nτ0⌋

)
. (S9.176)

Considering (S9.168), (S9.169), (S9.173), and (S9.176), we obtain

max
t∈[τ0,1−τ0]

∥∆b,(0,t)∥∞ ≤ Op

(
s(0)

log(pn)

⌊nτ0⌋

)
. (S9.177)

Control of maxt∈[τ0,1−τ0] ∥∆b,(t,1)∥∞. After bounding maxt∈[τ0,1−τ0] ∥∆b,(0,t)∥∞,

we next consider maxt∈[τ0,1−τ0] ∥∆b,(t,1)∥∞. Using a similar proof technique,

we can obtain

max
t∈[τ0,1−τ0]

∥∆b,(t,1)∥∞ ≤ Op

(
s(0)

log(pn)

⌊nτ0⌋

)
. (S9.178)
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Finally, considering (S9.160), (S9.162), (S9.177), and (S9.178), by choos-

ing a large enough constant C in ϵ, we have E1 → 0, which completes the

proof of Lemma 11.

S9.3 Proof of Lemma 12

Proof. We give the proof by contradiction. Suppose there is a constant

c < 1 such that

δj∗ ≤ c∥δ∥G,∞.

On one hand, by the decomposition of Z(⌊nt⌋) in (S8.68), at time point t̂0,

we have:

∥Z(⌊nt̂0⌋)∥G,∞ := Zj∗(⌊nt̂0⌋)

≤
√
n
⌊nt0⌋
n

⌊nt̂0⌋∗

n
δj∗ + C2

√
log(|G|⌊nτ0⌋) + op

(√
n∥δ∥G,∞

)
≤

√
n
⌊nt0⌋
n

⌊nt̂0⌋∗

n
c(1 + op(1))∥δ∥G,∞.

On the other hand, at time point t0, we have:

∥Z(⌊nt0⌋)∥G,∞ = maxj∈G |Zj(⌊nt0⌋)|

≥
√
n
⌊nt0⌋
n

⌊nt0⌋∗

n
∥δ∥G,∞ − C2

√
log(|G|⌊nτ0⌋)− op

(√
n∥δ∥G,∞

)
≥

√
n
⌊nt0⌋
n

⌊nt̂0⌋∗

n
(1− op(1))∥δ∥G,∞.

Considering the above results, we have: P(∥Z(⌊nt0⌋)∥G,∞ > ∥Z(⌊nt̂0⌋)∥G,∞) →

1, which is contradicted to the fact that t̂0 is the maximizer of ∥Z(⌊nt⌋)∥G,∞.
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S9.4 Proof of Lemma 13

Proof of H1. Without loss of generality, we assume t̂0 ∈ [t0, 1 − τ0].

The proof proceeds in two steps. In Step 1, we prove that

∣∣max
j∈G

Zj(⌊nt̂0⌋)
∣∣ ≥ ∣∣min

j∈G
Zj(⌊nt̂0⌋)

∣∣. (S9.179)

By noting that

max
j∈G

|Zj(⌊nt̂0⌋)| = |max
j∈G

Zj(⌊nt̂0⌋)| ∨ |min
j∈G

Zj(⌊nt̂0⌋)|,

we have max
j∈G

|Zj(⌊nt̂0⌋)| = |max
j∈G

Zj(⌊nt̂0⌋)
∣∣. In Step 2, we prove max

j∈G
Zj(⌊nt̂0⌋) ≥

0. Note that Zj∗(⌊nt̂0⌋) = max
j∈G

Zj(⌊nt̂0⌋). Combining Steps 1 and 2, we

complete the proof.

Now, we consider the two steps, respectively. By the decomposition of

Z(⌊nt⌋) in (S8.68), at time point t̂0, we have

Z(⌊nt̂0⌋)− δ(t̂0)

=
√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n

( 1

⌊nt̂0⌋

⌊nt̂0⌋∑
i=1

ξ̂i −
1

⌊nt̂0⌋∗
n∑

i=⌊nt̂0⌋+1

ξ̂i +R(0,t̂0),II −R(t̂0,1),II
)
.

(S9.180)

By Assumptions (A.1) – (A.3), using concentration inequalities, we can

prove that with probability at least 1− (np)−C1 ,∥∥∥√n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n

( 1

⌊nt̂0⌋

⌊nt̂0⌋∑
i=1

ξ̂i−
1

⌊nt̂0⌋∗

n∑
i=⌊nt̂0⌋+1

ξ̂i

)∥∥∥
G,∞

≤ C2

√
log(|G|⌊nτ0⌋).

(S9.181)

Next, we consider the control of ∥R(0,t̂0),II∥G,∞ and ∥R(t̂0,1),II∥G,∞.
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Control of ∥R(0,t̂0),II∥G,∞. By the definition of R(0,t̂0),II in (S8.67),

using the triangle inequality, we have

∥∥R(0,t̂0),II
∥∥
G,∞ ≤

∥∥R(0,t̂0),II
1

∥∥
∞ +

∥∥R(0,t̂0),II
2

∥∥
∞, (S9.182)

where R
(0,t̂0),II
1 and R

(0,t̂0),II
2 are defined as

R
(0,t̂0),II
1 := −⌊nt̂0⌋ − ⌊nt0⌋

⌊nt̂0⌋
(
Θ̂Σ̂(t0,t̂0)

− I
)(
β(1) − β(2)

)
,

R
(0,t̂0),II
2 := −

(
Θ̂Σ̂(0,t̂0)

− I
)(
β̂(0,t̂0) − β(1)

)
.

(S9.183)

Using the fact that ∥Ax∥∞ ≤ ∥A∥∞∥x∥1 and by concentration inequalities,

we have,

∥R(0,t̂0),II
1 ∥∞ ≤ C1

√
log(p)

⌊nt̂0⌋
∥β(1) − β(2)∥1 ≤ C1s

√
log(p)

⌊nt̂0⌋
∥β(1) − β(2)∥∞ = o(∥δ∥G,∞),

where the last equation comes from the assumption that s
√

log(pn)/nτ0∥δ∥∞/∥δ∥G,∞ =

o(1). For ∥R(0,t̂0),II
2 ∥∞, using Lemma 8 and concentration inequalities, we

have

∥R(0,t̂0),II
2 ∥∞ ≤ C1

√
log(pn)

⌊nt̂0⌋

(⌊nt̂0⌋ − ⌊nt0⌋
⌊nt̂0⌋

∥∥β(2) − β(1)
∥∥
1

)
,

≤ C2

√
log(pn)

nτ0
s
∥∥β(1) − β(2)

∥∥
∞ := o(∥δ∥G,∞).

(S9.184)

Control of ∥R(t̂0,1),II∥G,∞. By the definition of R(t̂0,1),II in (S8.67),

and using Lemma 8, we have

∥R(t̂0,1)∥G,∞ ≤ ∥R(t̂0,1)∥∞ ≤ Op

(√ log(pn)

⌊nt̂0⌋∗
)∥∥∥β̂(t̂0,1) − β(2)

∥∥∥
1
≤ Op

(
s(2)

log(pn)

⌊nt̂0⌋∗
)
.

(S9.185)
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Note that we assume s
√

log(pn)/nτ0 = o(1) with s := s(1)∨s(2) and |G| = pγ

with γ ∈ (0, 1]. Considering the above results, we have

√
n∥R(0,t̂0)∥G,∞ ≤ op

(√
n∥δ∥G,∞

)
,

√
n∥R(t̂0,1)∥G,∞ ≤ op

(
log(|G|n)

)
.

(S9.186)

Combining (S9.180) – (S9.186), with probability at least 1 − (np)−C1 , we

have

∥Z(⌊nt̂0⌋)− δ(t̂0)∥G,∞ := max
j∈G

|Zj(⌊nt̂0⌋)− δj(t̂0)| ≤ K∗, (S9.187)

where K∗ := C2

√
log(|G|n) + o

(√
n∥δ∥G,∞

)
. Note that

δj(t̂0) :=
√
n
⌊nt0⌋
n

⌊nt̂0⌋∗

n
(β

(1)
j − β

(2)
j ) ≥ 0.

By (S9.187), using the fact |maxi ai − maxi bi| ≤ maxi |ai − bi| for two

sequences {ai} and {bi}, we have

min
j∈G

Zj(⌊nt̂0⌋) ≥ −K∗,

max
j∈G

Zj(⌊nt̂0⌋) ≥ max
j∈G

δj(⌊nt̂0⌋)−K∗ ≥ K∗,

(S9.188)

where the last inequality in (S9.188) comes from the assumption ∥δ∥G,∞ ≫√
log(pn)/nτ0. By (S9.188), we have |max

j∈G
Zj(⌊nt̂0⌋)

∣∣ ≥
∣∣min

j∈G
Zj(⌊nt̂0⌋)|

and max
j∈G

Zj(⌊nt̂0⌋) ≥ 0, which finishes the proof of H1 in Lemma 13.

Proof of H2. Note that the proof of H2 is similar and easier, to save

space, we omit the details.
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S9.5 Proof of Lemma 14

Proof. We first bound R(0,t̂0),II. By its definition in (S8.67), we have

√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n
∥R(0,t̂0),II∥G,∞ ≤

√
n
⌊nt̂0⌋ − ⌊nt0⌋

n

∥∥(Θ̂Σ̂(t0,t̂0)
− I

)(
β(1) − β(2)

)∥∥
∞︸ ︷︷ ︸

I

+
√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n

∥∥(Θ̂Σ̂(0,t̂0)
− I

)(
β̂(0,t̂0) − β(1)

)∥∥
∞︸ ︷︷ ︸

II

.

(S9.189)

For I, using concentration inequalities, we have

I ≤ C1

√
n
⌊nt̂0⌋ − ⌊nt0⌋

n

√
log(pn)

⌊nt̂0⌋ − ⌊nt0⌋
∥δ∥1,

≤ C1

√
log(|G|n)⌊nt̂0⌋ − ⌊nt0⌋

n
s∥δ∥∞.

(S9.190)

For II, using concentration inequalities and by Lemma 8, we have

II ≤ C2

√
n

√
log(pn)

⌊nt̂0⌋
∥∥β̂(0,t̂0) − β(1)

∥∥
1

≤ C2

√
n

√
log(pn)

⌊nt̂0⌋
⌊nt̂0⌋ − ⌊nt0⌋

n
s
∥∥δ∥∥∞,

≤ C2

√
n
⌊nt̂0⌋ − ⌊nt0⌋

n

√
log(pn)

nτ0
s∥δ∥∞

= o
(√

n
⌊nt0⌋
n

⌊nt̂0⌋ − ⌊nt0⌋
n

∥δ∥G,∞
)
.

(S9.191)

After boundingR(0,t̂0),II in (S9.190) and (S9.191), we next considerR(t̂0,1),II.

Using concentration inequalities and the upper bound of estimation error

of β̂(t̂0,1) for β(2), we have

√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n
∥R(t̂0,1),II∥G,∞ ≤

√
n
⌊nt̂0⌋
n

⌊nt̂0⌋∗

n
∥R(t̂0,1),II∥∞ ≤ C

√
ns

log(|G|n)
n

,

(S9.192)
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Proofs

where the last inequality comes from the assumption that |G| = pγ with

γ ∈ (0, 1].

We next consider R(0,t0),II and R(t0,1),II. Using concentration inequal-

ities and the upper bounds of estimation errors of β̂(0,t0) and β̂(t0,1) (see

Lemma 8), we have

√
n
⌊nt0⌋
n

⌊nt0⌋∗

n

(
∥R(0,t0),II∥G,∞ ∨ ∥R(t0,1),II∥G,∞

)
≤ C

√
ns

log(|G|n)
n

.

(S9.193)

Finally, combining (S9.190) – (S9.193), we complete the proof.

S10 Proofs of useful lemmas

S10.1 Proof of Lemma 5

Proof. The result of Lemma 5 can be obtained by using Bernstein’s inequal-

ity for sub-exponential distributions. To save space, we omit the details

here.
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S10.2 Proof of Lemma 6

Proof. We only consider the proof of (S7.14). The proof of (S7.15) is similar.

Using some straightforward calculations, we have

1

2⌊nt⌋
∥∥Y(0,t) −X(0,t)β̂

(0,t)
∥∥2

2
− 1

2⌊nt⌋
∥∥Y(0,t) −X(0,t)β

(0,t)
∥∥2

2
,

=
1

2⌊nt⌋
∥∥X(0,t)(β

(0,t) − β̂(0,t))
∥∥2

2
− 1

⌊nt⌋
(β̂(0,t) − β(0,t))⊤X⊤

(0,t)(Y(0,t) −X(0,t)β
(0,t)).

(S10.194)

By noting that β̂(0,t) is the minimizer of (2.9), we have

1

2⌊nt⌋
∥∥Y(0,t) −X(0,t)β̂

(0,t)
∥∥2

2
− 1

2⌊nt⌋
∥∥Y(0,t) −X(0,t)β

(0,t)
∥∥2

2
≤ λ1(t)∥β(0,t)∥1 − λ1(t)∥β̂(0,t)∥1.

(S10.195)

Note that |x⊤y| ≤ ∥x∥∞∥y∥1 for two vectors x and y. Combining (S10.194)

and (S10.195), under the event A(1)(t), taking λ1(t) = 2λ(1) as defined in

(S7.13) , we have

1

2⌊nt⌋
∥∥X(0,t)(β

(0,t) − β̂(0,t))
∥∥2

2

≤ λ1(t)
∥∥β(0,t)

∥∥
1
− λ1(t)

∥∥β̂(0,t)
∥∥
1
+

λ1(t)

2

∥∥β(0,t) − β̂(0,t)
∥∥
1
,

≤ λ1(t)
∥∥β(0,t)

∥∥
1
− λ1(t)

∥∥β̂(0,t)
∥∥
1
+

λ1(t)

2

∥∥β(0,t) − β̂(0,t)
∥∥
1
.

(S10.196)

Note that

|β(0,t)
j | − |β̂(0,t)

j |+ |β(0,t)
j − β̂

(0,t)
j | = 0, if j ∈ J c(β(0,t)). (S10.197)
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Proofs

Adding 2−1∥β(0,t) − β̂(0,t)∥1 on both sides of (S10.196), and considering

(S10.197), we have

1

2⌊nt⌋
∥∥X(0,t)(β

(0,t) − β̂(0,t))
∥∥2

2
+

λ1(t)

2

∥∥β(0,t) − β̂(0,t)
∥∥
1
,

≤ λ1(t)
∥∥β(1)

J(β(0,t))

∥∥
1
− λ1(t)

∥∥β̂(0,t)

J(β(1))

∥∥
1
+ λ1(t)

∥∥(β(0,t) − β̂(0,t))J(β(0,t))

∥∥
1
,

≤ 2λ1(t)
∥∥(β(0,t) − β̂(0,t))J(β(0,t))

∥∥
1
,

(S10.198)

which completes the proof of (S7.14).

S10.3 Proof of Lemma 7

Proof. Note that by Lemma 6, and the URE conditions in Assumption

(A.3), under the event {A(t) ∩ B(t)}, using standard analysis of lasso esti-

mation (see Pages 1728 – 1729 in Bickel et al. (2009)), one can prove that

(S7.17) holds. To save space, we omit the details.

S10.4 Proof of Lemma 9

Proof. By definitions of A(t) and B(t), to prove (S7.18), we need to bound

P(Ac(t)) and P(Bc(t)), respectively. We first consider P(Ac(t)). Before

that, we need some notations. We denote βi as the regression coefficients

for the i-th observation. By definition, we have

βi = β(1)1{i ≤ ⌊nt0⌋}+ β(2)1{i > ⌊nt0⌋}.
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Recall β(0,t) as β(0,t) = argmin
β∈Rp

E
∥∥Y(0,t) − X(0,t)β

∥∥2

2
. By the first order

condition, we have:

E
[
X⊤

(0,t)(Y(0,t) −X(0,t)β
(0,t))

]
= E

[ ⌊nt⌋∑
i=1

Xi(Yi −X⊤
i β

(0,t))
]
= 0.

Hence, by the first order condition, we have:

∥∥∥ 1

⌊nt⌋
(
X(0,t))

⊤(Y(0,t)−X(0,t)β
(0,t)

)∥∥∥
∞

=
∥∥∥ 1

⌊nt⌋

⌊nt⌋∑
i=1

(
Xi(Yi−X⊤

i β
(0,t))−E[Xi(Yi−X⊤

i β
(0,t))]

)∥∥∥
∞
.

By noting that Yi = X⊤
i βi + ϵi, Eϵi = 0, and the independence between ϵi

and Xi, we have:

1

⌊nt⌋
(
X(0,t))

⊤(Y(0,t) −X(0,t)β
(0,t))

=
1

⌊nt⌋

⌊nt⌋∑
i=1

Xiϵi +
1

⌊nt⌋

⌊nt⌋∑
i=1

(
XiX

⊤
i (βi − β(0,t))− E[XiX

⊤
i (βi − β(0,t))]

)
.

Based on the above decomposition, we have:

∥∥∥ 1

⌊nt⌋
(
X(0,t))

⊤(Y(0,t) −X(0,t)β
(0,t)

)∥∥∥
∞

≤ I + II,

where

I =
∥∥∥ 1

⌊nt⌋
ϵ⊤(0,t)X(0,t)

∥∥∥
∞
, II =

∥∥∥ 1

⌊nt⌋

⌊nt⌋∑
i=1

(
XiX

⊤
i (βi − β(0,t))− E[XiX

⊤
i (βi − β(0,t))]

)∥∥∥
∞
.

Control of I. We first consider I. By Assumptions (A.1) and (A.2),

for 1 ≤ i ≤ n and 1 ≤ j ≤ p, ϵiXi,j follows the sub-exponential distribution.
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Proofs

By Bernstein’s inequality, for each x > 0, we have

P
(∥∥ 1

⌊nt⌋
ϵ⊤(0,t)X(0,t)

∥∥
∞ ≥ x

)
= P

( ⋃
1≤j≤p

∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

ϵiXi,j

∣∣∣ ≥ x
)
,

≤ p max
1≤j≤p

P
(∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

ϵiXi,j

∣∣∣ ≥ x
)
,

≤ C1p exp(−C2⌊nt⌋x2).

(S10.199)

By (S10.199), taking λ(1) = K1

√
log(pn)/⌊nt⌋ for some big enough constant

K1 > 0, we have

P
(∥∥ 1

⌊nt⌋
ϵ(0,t))

⊤X(0,t)

∥∥
∞ ≥ λ(1)

)
≤ C3(pn)

−C4 , (S10.200)

where C3 and C4 are some big enough constants.

Control of II. Next, we consider II. Note that for t ∈ [τ0, t0], II = 0.

Hence, in what follows, we consider the non-trivial case that t ∈ [t0, 1− τ0].

Let

Zi = X⊤
i (βi − β(0,t))/∥βi − β(0,t)∥2, Wi = ∥βi − β(0,t)∥2.

By Assumption (A.1), Zi follows the sub-Gaussian distributions. Moreover,

By Assumptions (A.1) and (A.2), for 1 ≤ i ≤ n and 1 ≤ j ≤ p, ZiXi,j

follows the sub-exponential distribution. Hence, for II, we have∥∥∥ 1

⌊nt⌋

⌊nt⌋∑
i=1

(
XiX

⊤
i (βi − β(0,t))− E[XiX

⊤
i (βi − β(0,t))]

)∥∥∥
∞

= max
j

∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

Wi

(
Xi,jZi − E[Xi,jZi]

)∣∣∣.
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For each fixed j, using concentration inequality for weighted sub-exponential

sums, we have:

P(maxj |
1

⌊nt⌋

⌊nt⌋∑
i=1

Wi

(
Xi,jZi − E[Xi,jZi]

)
| ≥ x)

≤ pmaxj P(|
1

⌊nt⌋

⌊nt⌋∑
i=1

Wi

(
Xi,jZi − E[Xi,jZi]

)
| ≥ x)

≤ 2p exp(
−C1⌊nt⌋2x2

∥W ∥2
).

Note that by definition, we have ∥W ∥ =
√

⌊nt0⌋(1− ⌊nt0⌋/⌊nt⌋)∥β(2) −

β(1)∥2 ≤
√

⌊nt0⌋C∆. Hence, taking λ(1) = K2

√
log(p)∥W ∥/⌊nt⌋ = K ′

2

√
log(pn)/⌊nt⌋,

we have:

P
{∥∥∥ 1

⌊nt⌋

⌊nt⌋∑
i=1

(
XiX

⊤
i (βi−β(0,t))−E[XiX

⊤
i (βi−β(0,t))]

)∥∥∥
∞

≥ λ(1)
}
≤ C3(p)

−C4 .

for some big enough C3, C4 > 0. Combining the above two cases, taking

λ(1) = K1

√
log(pn)/⌊nt⌋ for some big enough constant K1 > 0, we have:

P
{∥∥ 1

⌊nt⌋
(
X(0,t))

⊤(Y(0,t) −X(0,t)β
(0,t)

∥∥
∞ ≥ λ(1)

}
≤ C3(pn)

−C4 .

With similar arguments as above, we can also prove that

P
(
Bc(t)

)
≤ C3(np)

−C4 . (S10.201)
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Proofs

Finally, combining (S10.200) and (S10.201), and noting that

P
( ⋂
t∈[τ0,1−τ0]

{
A(t) ∩ B(t)

}
= 1− P

( ⋃
t∈[τ0,1−τ0]

{
Ac(t) ∪ Bc(t)

}
,

≥ 1−
∑

t∈[τ0,1−τ0]

(
P(Ac(t)) + P(Bc(t))

)
,

≥ 1− C1(np)
−C2 ,

(S10.202)

we complete the proof of Lemma 9.
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