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Supplementary Material

The Supplementary Material contains practical implementations and three competing methods,

additional simulation results, several key lemmas, and the proofs of Theorems 1–4, which are

presented in Appendix S1, S2, S3, and S4, respectively.

S1 Practical Implementations and Three Competing

Methods

S1.1 Practical implementations

In this subsection, we discuss some issues for the implementation.

Discussion on computation complexity In our DTS procedure, we need to

recursively store Amj , β̂j,λ(tm), σ̂j,λ(tm) and γ̂j,λ(tm). With the help of the recur-

sive formulae, the computational complexity at each time point is linear in q and p

and does not depend on m. Although updating β̂j,λ(tm) from (2.2) requires a ma-

trix inverse calculation, we can alternatively apply the Plackett updating formula

in Harville (1998) to obtain a fast update of this inversion, as the perturbation

XmjX
⊤
mj in Amj is a rank-one matrix. Thus, the storage space required for our

procedure is of the order O(pqd2). We also note that the parameter estimation for



p datastreams can be independently carried out, which suggests the computation

burden may be further reduced with the help of parallel and distributed computing

platforms. The R codes that implement the proposed scheme are available upon

request.

Determination of π+r,tm −π−r,tm and Itm To find the quantile-based estimate of the

regression coefficient at tm, we provide an estimate of the difference in proportions

of positive and negative drifts (i.e., π+r,tm − π−r,tm). For a given component r and a

properly chosen λ, for j /∈ Or,tm , since β̂jr,λ(tm) is a weighted average that approxi-

mately centers around βr(tm), we might expect that {β̂jr,λ(tm)−βr(tm), j /∈ Or,tm}

tend to reside symmetrically on both side of 0, for r = 1, . . . , d. Then the set

{j : β̂jr,λ(tm) − βr,λ(tm−1) > 0, j = 1, · · · , p} approximately contains the half of

the regular subjects and the subjects with positive biases. As β̃r,λ(tm−1) is often

a good estimate of βr(tm), naturally, we may use #{β̂jr,λ(tm)− β̃r,λ(tm−1) > 0}/p

as an approximation of π
(0)
r,tm/2 + π+r,tm , and #{β̂jr,λ(tm)− β̃r,λ(tm−1) < 0}/p as an

approximation of π
(0)
r,tm/2+π

−
r,tm , with π

(0)
r,tm = 1−π+r,tm −π−r,tm . Therefore, our DTS

procedure estimates π+r,tm − π−r,tm for the rth direction through

#{β̂jr,λ(tm) > β̃r,λ(tm−1)}/p−#{β̂jr,λ(tm) < β̃r,λ(tm−1)}/p.

We provide the theoretical property of the above estimator in Proposition 1.

Proposition 1. Under assumptions 1-5 and an additional condition on signals that

|δjr(t)|/{log(p)/
√
mh} → ∞, and given that ∥β̃λ(tm−1)− β(tm−1)∥ = op(1), where

β̃λ(tm−1) is the estimated coefficient at tm−1 that incorporates the random quantile

π̂r,tm−1
, we have

1

p

p∑
j=1

{
I{β̂jr,λ(tm) > β̃r,λ(tm−1)} − I{β̂jr,λ(tm) < β̃r,λ(tm−1)}

}
= π+r,tm − π−r,tm + op(1).

Since Itm is required to contain as few outlying streams as possible, and should

be stochastically independent from the current observations updated at time tm
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from the proof of Theorem 3, motivated by the least trimmed squares in classical

outlier detection (Rousseeuw, 1984), we suggest to use Itm = {j : |γ̂
j,λ̂(tm−1)

(tm−1)| ≤

γ[p/2]}, where γ[p/2] is the [p/2]th smallest value in {|γ̂
j,λ̂(tm−1)

(tm−1)| : j = 1, . . . , p}.

In this case, we implicitly assume that Otm−1
and Otm do not differ too much, which

is usually reasonable in practice. As {γ̂
j,λ̂(tm−1)

(tm−1)} is a good measure to quan-

tify deviations of the jth stream from the regular pattern, we may expect that Itm
is a clean set without many irregular datastreams.

Implementation in the presence of substructures The model (1.1) assumes

that all the datastreams share a common varying coefficient structure before the

change occurs. This setup is commonly adopted in the literature of longitudi-

nal/functional data analysis in which the regression function is supposed to be the

same across the observed individuals; see Zhu et al. (2012) and Yao and Li (2013)

among many others. This assumption, however, could be violated in some appli-

cations, especially when the number of datastreams is extremely large. In a wide

range of cases, it may be more plausible to suppose that there are groups of individ-

uals who share the same regression function (or at least have very similar regression

curves). As a modelling strategy, we may thus assume that the observed streams can

be grouped into a number of classes whose members all share the same regression

function. If the group information can be known as a priori given some auxiliary

covariates (such as the age, professionals and some others in the IHS example),

the DTS procedure is directly applicable for each group individually. Otherwise,

we may employ some structure identification or classification methods developed

in recent literatures on the warming-up dataset. Please refer to James and Sugar

(2003) and Ke et al. (2016) for model-based clustering approaches, and Abraham

et al. (2003) and Vogt and Linton (2017) for some model-free methods.

Testing whether model (1.1) holds for all the streams or some given groups can

be viewed as the comparison of a large number of regression curves. This has been

the object of much work, see for instances, Neumeyer and Dette (2003), Wang et al.

(2017), and González-Manteiga and Crujeiras (2013) for a survey.



Individual-specific change-point model In some applications, we may also con-

sider the following individual-specific change-point model

yij=

X⊤
ijβj(ti) + σj(ti)εij , for ti ∈ (0, τj ],

X⊤
ij{βj(ti) + δj(ti)}+ σj(ti)εij , for ti > τj .

(S1.1)

That is, we assume that different datastreams have different coefficient functions

βj(·). The estimation procedure given in Equations (2.2)-(2.3) is still applicable

for this model. However, to make the screening procedure effective, we need to

impose additional conditions on δj(ti), say δj(ti) is discontinuous at τj ; otherwise

the change pattern cannot be identified since we are using the nonparametric ker-

nel smoothing approaches. In this way, the screening task can be reframed into an

on-line “jump” detection problem which is well investigated in a non-sequential set-

ting. For jump detection, most existing approaches start with a diagnostic statistic

computed from observations in a local neighborhood of a given point, such as the

difference between a right- and a left-sided kernel smoother. Then, a large value of

the diagnostic statistic would indicate a potential jump near the given point. See

Loader (1996) and Grégoire and Hamrouni (2002) for example. There is a need to

investigate how to adapt those methods to the present on-line environment.

S1.2 Competing testing procedures used in the simulation studies

We compare the DTS testing procedure with three other procedures.

First, we compare the proposed DTS with the nonparametric test of Zheng

(1996) customized to the dynamic environment. For the given time point tm, we

consider the following test statistics:

1

n(n− 1)

∑
tk ̸=ti,

ti,tk∈[tm−n+1,tm]

K

(
ti − tk
bn

)
z̃ij z̃kj , (S1.2)

where n is a given window size, bn is the bandwidth, andK(u) = 0.75(1−u2)+ is the

Epanechnikov kernel function for simplicity. After constructing the test statistics

and calculating the corresponding p-values by normal approximating, we adopt the
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Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to adjust for the

effect of multiple comparison. Such a method is referred to as moving-window-

based nonparametric test (MWNT). We showcase MWNT with n = 400 and bn ∈

{0.03N, 0.05N}, where N is the total number of time points.

As the between stream correlation structure can affect the asymptotic distri-

bution of the MWNT statistics defined in (S1.2), to present a fair comparison, we

employ the following decorrelation strategy under the assumption that the noise

variables are ω-dependent (i.e., cov(εi1j , εi2j) = 0 if ti1 − ti2 > ω for some constant

ω. The correlation, cov(εi1j , εi2j) for {(i1, i2) : ti′ − ti ≤ ω}, can be estimated

with the warm-up period observations. At a given time point tm, suppose LL⊤

is the Cholesky decomposition of the correlation matrix for (εij , . . . , εtmj) with

tm − ti ≤ ω. Then we can transform the data z̃j(tm) = (z̃ij , . . . , z̃mj)
⊤ by Lz̃j(tm)

whose elements can be used instead of z̃ij in (S1.2). In our simulation studies, as

the temporal correlation decreases exponentially fast as the time interval increases,

we set ω = 20.

The second approach we compare with is based on estimating the long-run

covariance matrix via Andrews (1991). There, the author proposes a heteroskedas-

ticity and autocorrelation consistent (HAC) estimation of covariance matrices for

the estimated coefficients in linear models. In brief, we consider the following test

statistics for each stream j at time tm:

1
nHAC

∑
i:ti∈[tm−nHAC+1,tm] z̃ij

Ŝd
(

1
nHAC

∑
i:ti∈[tm−nHAC+1,tm] z̃ij

) , (S1.3)

where Ŝd
(

1
nHAC

∑
i:ti∈[tm−nHAC+1,tm] z̃ij

)
is the estimated standard deviation reported

by the R package sandwich, and nHAC is a user-specific window size and is set to

be 110 in our simulation study. Given this test statistics, we report the testing

results based on the Benjamini-Hochberg’s linear step up procedure (Benjamini and

Hochberg, 1995) and the local false discovery rate (Efron, 2004) as the screening

tool.

Lastly, we compare the performance of the DTS testing procedure based on the



naive pooled estimator β̂λ,pool(t) in (S2.1).

S2 Simulation results for dynamic estimation

Competing estimation procedures

We aim to compare the proposed DTS procedure with those reached by ignoring

the distribution shift of the process. In the traditional VC model, based on the

observed data up to a certain time point tm, the coefficient β(t) can be obtained

by minimizing a “pooled” local loss function

Qpool(tm) :=

p∑
j=1

m∑
i=1

(yij −X⊤
ijb)

2λtm−ti ,

and we obtain a naive pooled estimator

β̂λ,pool(tm) :=
{ p∑
j=1

m∑
i=1

wi(tm)XijX
⊤
ij

}−1
p∑
j=1

m∑
i=1

wi(tm)Xijyij . (S2.1)

Alternatively, once an estimator β̂j,λ(tm) is constructed for each stream in the

adaptive manner, we may simply take the average as a final estimate

β̂λ,mean(tm) :=
1

p

p∑
j=1

β̂j,λ(tm) =
1

p

p∑
j=1

{ m∑
i=1

wi(tm)XijX
⊤
ij

}−1
m∑
i=1

wi(tm)Xijyij .

Tuning parameter selection and RMSE comparison

As we discussed earlier, the choice of the tuning parameter λ is critical for any

smoothing-based procedures. To demonstrate the benefit of the proposed method

when the λ is adaptively chosen, we compare the performance of β̃
λ̂(t)

(t) with

β̂λ,pool(t), β̂λ,mean(t) and β̃λ(t), while λ is fixed across all time points. The av-

erage of 200 estimators β̃
λ̂(t)

(t) along with the 95% confidence band is presented

in Figure S1(c)-(d) when (N, p) = (4800, 800) and σ2(t) is either 1 or 8 for inde-

pendent streams (i.e., ρTempo = 0). The corresponding results for an adaptively

selected λ(t) are provided in Figure S1(a)-(b). We observe that the proposed one-

step-prediction-based method is capable of adapting the smoothness, and, at the
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Figure S1: For independent streams without temporal correlation (N, p) = (4800, 800) and σ2(t) ∈

{1, 8}: (a)-(b): the mean of the adaptively selected λ(t) (solid curve) along with the 95% confidence

band (shaded area); (c)-(d): the mean of the proposed estimator β̃λ̂(t)(t) (solid curve) along with

the 95% confidence band (shaded area).

same time, provides accurate estimates of the true underlying varying coefficients

β(t).

As an implication of the result in Figure S1, λ3 = exp(−0.3N−0.3) seems to be

a good choice for a fixed tuning parameter, which minimizes the average predictive

square error for the majority of the time points. Therefore, we proceed with re-

porting finite sample performances of the proposed estimator in comparison with

β̂λ,pool(t), β̂λ,mean(t) and β̃λ(t) when λ = λ3. The results, shown in Table S1, are

the averaged root-mean squared errors (RMSE) of the considered estimators over

Monte Carlo samples, defined as

1

200

200∑
iter=1

{ 1

N

N∑
i=1

∥β̂iter(ti)− β(ti)∥2
}1/2

.

We find that the proposed method β̃
λ̂(t)

(t) has the smallest RMSE among the

considered cases. The results also bear out the intuition of Theorem 2, suggesting



Table S1: Root-mean squared errors of the estimated β(t)

.

β̃λapt
(t) β̃λ(t) β̂λ,pool(t) β̂λ,mean(t)

Independent streams without temporal correlation

N = 2400 σ2(t) = 1 0.042(0.007) 0.027(0.008) 0.438(0.012) 0.440(0.012)

σ2(t) = 8 0.094(0.004) 0.072(0.002) 0.430(0.012) 0.432(0.012)

N = 3600 σ2(t) = 1 0.014(0.001) 0.024(0.001) 0.357(0.012) 0.360(0.012)

σ2(t) = 8 0.056(0.002) 0.054(0.001) 0.358(0.012) 0.358(0.012)

N = 4800 σ2(t) = 1 0.015(0.001) 0.023(0.001) 0.331(0.012) 0.333(0.012)

σ2(t) = 8 0.047(0.002) 0.045(0.001) 0.326(0.012) 0.327(0.012)

Dependent streams with ρBlock = 0.5, ρTempo = 0

N = 2400 σ2(t) = 1 0.043(0.004) 0.029(0.007) 0.443(0.012) 0.444(0.012)

σ2(t) = 8 0.136(0.006) 0.093(0.002) 0.466(0.012) 0.460(0.012)

N = 3600 σ2(t) = 1 0.017(0.001) 0.031(0.001) 0.359(0.012) 0.361(0.012)

σ2(t) = 8 0.077(0.003) 0.103(0.003) 0.372(0.012) 0.373(0.012)

N = 4800 σ2(t) = 1 0.016(0.002) 0.023(0.001) 0.324(0.009) 0.326(0.009)

σ2(t) = 8 0.058(0.002) 0.061(0.002) 0.326(0.012) 0.328(0.012)

Dependent streams with ρBlock = 0.5, ρTempo = 0.5

N = 2400 σ2(t) = 1 0.036(0.001) 0.032(0.001) 0.430(0.010) 0.432(0.010)

σ2(t) = 8 0.146(0.004) 0.150(0.003) 0.437(0.014) 0.438(0.015)

N = 3600 σ2(t) = 1 0.028(0.001) 0.029(0.001) 0.360(0.009) 0.361(0.010)

σ2(t) = 8 0.085(0.003) 0.094(0.002) 0.370(0.012) 0.369(0.012)

N = 4800 σ2(t) = 1 0.019(0.001) 0.027(0.001) 0.330(0.012) 0.332(0.012)

σ2(t) = 8 0.078(0.003) 0.067(0.002) 0.329(0.012) 0.332(0.012)
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that the RMSE of β̃
λ̂(t)

(t) decreases with the number of total time points m and

with the level of the noise σ2(t). Interestingly, we find that the difference between

β̂λ,pool(t) and β̂λ,mean(t) is nearly negligible. This can be understood by writing

down the difference between these two estimators at the given time point tm:

m

p

p∑
j=1

{( 1

mp

p∑
i=1

m∑
i=1

wi(tm)XijX
⊤
ij

)−1 −
( 1

m

m∑
i=1

wi(tm)XijX
⊤
ij

)−1
}
wi(tm)Xijyij ,

(S2.2)

that vanishes with a large m, as the difference between the two inverse sample

covariance matrices converges to zero. Lastly, by comparing the performances be-

tween β̃λ(t) and β̂λ,pool(t) shows that our quantile based procedure is more robust

against the presence of outlying datastreams.

S3 Notations and Useful Lemmas

Following the theoretical framework discussed in the main paper, we assume that,

without loss of generality, ti = i, for i = 1, · · · ,m and Γj is a diagonal matrix. Let

t′ = t/m be the scaled time points so that 0 < t′ ≤ 1. For brevity, assume that Xij

is bounded; it can be relaxed by the moment condition. Let t be any time point

that t∗ ≤ t ≤ tm and write Xij(ti) = Xij and εij(ti) = εij . Then, for stream j, our

estimations at time t can be written as

β̂j,λ(t) =

{
m∑
i=1

wi(t)Xij(ti)Xij(ti)
⊤

}−1{ m∑
i=1

wi(t)Xij(ti)yij(ti)

}
,

σ̂2j,λ(t) =

{
m∑
i=1

wi(t)

}−1{ m∑
i=1

wi(t)e
2
ij

}
,

where the weighting function wi(t) is a right-sided weight function wi(t) = λ(t−ti)×

I(ti ≤ t). Equivalently, wi(t) can be expressed as exp{− t−ti
mh }I(ti ≤ t) with h =

1/{−m log λ}. We only focus on the consistency of σ̂2j,λ(t) with eij replaced by its

true version σ(ti)εij , but its generalization can be readily extended once we have

obtained the uniform consistency of β̂j,λ(t).



To simplify the notation, we write

β̂j,λ(t)− {β(t) + δj(t)} = Sj(t)
−1{Qj,B(t) +Qj,V (t)},

where

Sj(t) = (mh)−1
m∑
i=1

exp{− t− ti
mh

}I(ti ≤ t)Xij(ti)Xij(ti)
⊤,

Qj,B(t) = (mh)−1
m∑
i=1

exp{− t− ti
mh

}I(ti ≤ t)Xij(ti)
[
Xij(ti)

⊤{β(ti)− β(t) + δj(ti)− δj(t)}
]
,

Qj,V (t) = (mh)−1
m∑
i=1

exp{− t− ti
mh

}I(ti ≤ t)Xij(ti)σ(ti)εij(ti).

Note that Qj,B(t) captures the bias and Qj,V (t) is related to the variance of β̂j,λ(t).

Lemma 1. Suppose Assumptions 1 and 3-5 hold. It holds that

E{Sj(t)} − Γj = O(
1

− log λ
), (S3.1)

∥E{Qj,B(t)}∥ = O(A/{− log λ}), (S3.2)

2

− log λ
E{Q2

jr,V (t)} = ρjΓj,rrσ
2(t) +O(A/{− log λ}) + o(Am) +O(m−1), (S3.3)

where Qjr,V (t) is the rth coordinate of Qj,V (t), Γj,rr is the rth diagonal element of

Γj, and ρj = 1 + 2
∑∞

l=1 ρj(l).

Proof. We first derive the expectation of Sj(t), that is, by using Riemann sum

approximation,

E{Sj(t)} =(mh)−1
m∑
i=1

exp{− t− ti
mh

}I(ti ≤ t)E{Xij(ti)Xij(ti)
⊤}

=h−1
m∑
i=1

exp{− t− ti
mh

}I(ti ≤ t)m−1Γj

=

∫ t′

0
h−1 exp{−(t′ − s)/h}ds× Γj +O(

1

mh
)

=

∫ ∞

0
exp(−u)du× Γj +O(

1

mh
) → Γj .

Similarly, the result for Qj,B(t) can be obtained by showing that

E

[
m−1

m∑
i=1

h−1 exp{− t− ti
mh

}I(t ≤ ti)Xij(ti)Xij(ti)
⊤ ti − t

m

]
→ Γjh.
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For the variance term, let Zi = h−1 exp{− t−ti
mh }I(ti ≤ t)Xir,j(ti)σ(ti)εij(ti). As

a first step, we have

m−1
m∑
i=1

var(Zi) =m
−1

m∑
i=1

E
[
h−2 exp{−2(t− ti)

mh
}I(ti ≤ t)X2

ir,j(ti)σ
2(ti)ε

2
ij(ti)

]

=m−1
m∑
i=1

h−2 exp{−2(t− ti)

mh
}σ2(ti)I(ti ≤ t)Γj,rr

=

∫ t′

0
h−2 exp{−2(t′ − s)/h}{σ2(t) +O(Am(t′ − s))}dsΓj,rr +O(

1

mh
)

=
1

2h
σ2(t)Γj,rr +

1

2h
O(

A

− log λ
) +O

(
1

mh

)
.

By the strictly stationary and strongly ρ-mixing condition as in Assumption 1, we

note that

var

(
m−1

m∑
i=1

Zi

)
=

∑m
i=1 var(Zi)

m2
+

2

m

m−1∑
l=1

U(l)cov(Z1, Z l+1), (S3.4)

where U(l) = 1
m

∑
i−k=l h

−2 exp(− t−ti
mh ) exp(−

t−tk
mh )σ(ti)σ(tk) and Zi = Xir,j(ti)εij(ti).

The function U(l) is uniformly bounded by

U(l) =
[ 1
m

m∑
i=1

h−1 exp(−2(t− ti)

mh
)I(ti ≤ t)× h−1 exp(− l

mh
)σ2(ti)

]
{1 + o(Am)}

=
[{ ∫ ∞

0
exp(−2u)du× σ2(t) +O(

A

− log λ
) +O((mh)−1)

}
× h−1 exp(− l

mh
)
]
{1 + o(Am)},

where o(Am) in the first equation is due to the fact that if
∑∞

j=1 aj < ∞, then

lim
n→∞

∑n
j=1

j
naj = 0. By the ρ-mixing process, cov(Z1, Z l+1) = ρj(l)var(Z1). Hence

the second term of (S3.4) has the same order as the first term in the sense that

m−1
m−1∑
l=1

U(l)|cov(Z1, Z l+1)| =
1

2mh

∞∑
l=1

ρj(l)Γj,rrσ
2(t)+O(

1

mh
× A

− log λ
)+o(

Am

mh
),

implying that the variance of m−1
∑m

i=1 Zi goes to 1
2mhρjΓj,rrσ

2(t), where ρj =

1 + 2
∑∞

l=1 ρj(l).

Based on these results, we immediately obtain the point-wise consistent prop-

erties of our estimator.



Lemma 2. Suppose Assumptions 1 and 3-5 hold. Then ∀t ∈ [t∗, tm], we have

β̂j,λ(t)− {β(t) + δj(t)} = Op

(√
− log λ

2

)
+O(A/{− log λ}),

σ̂2j,λ(t)− σ2(t) = Op

(√
− log λ

2

)
+O(A/{− log λ}).

To adapt Lemma 2 to our quantile based approach, we provide the following

two lemmas regarding the Berry-Essen bound for random variables that are (i)

independent but not identically distributed (ii) ρ-mixing time series.

Lemma 3. (Berry-Essen bound: independent but not identically dis-

tributed case) Let X1, . . . , Xn be independent with E(Xi) = µi, var(Xi) = σ2i ,

and β3i = E|Xi−µi|3 <∞. Then there exists a universal constant C∗, not depend-

ing on n or the distribution of the Xi, such that

sup
x

∣∣∣∣∣∣Pr
Xn − E(Xn)√

var(Xn)
≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ C∗∑n
i=1 β3i

(
∑n

i=1 σ
2
i )

3/2
,

where Xn = n−1
∑n

i=1Xi.

Please refer to page 33 of Serfling (2009) for detailed proof.

Lemma 4. (Berry-Essen bound: ρ−mixing case) Under Assumptions 1 and

3-5, we have ∀t ∈ [t∗, tm]

sup
j=1,··· ,p

sup
x

∣∣∣∣∣Pr
(√

mh{β̂jr,λ(t)− βr(t)− δjr(t)}√
νjr

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C√
mh

,

where C is a positive constant and νjr = ρjσ
2(t)Γ−1

j,rr/2. Here h = 1/{−m log(λ)}.

Proof. The general derivations can be found in Mushtaq et al. (2023), but we im-

prove the rate from
√
r/m to

√
1/{mh}, where r =

√
mh/ log(m) is the large block

size. Specifically, we reset the large block size r =
√
mh/{log(m)ψ1−δ′

p,m } and small

block size s =
√
mh/ψ1+δ′

p,m , where ψp,m = (pm)1/(θ−δ) for some small δ > 0 and

δ′ > 0. As long as r → ∞, s→ ∞ and r/s→ ∞, the conclusions in Mushtaq et al.

(2023) remain correct. By design of r and s, we only need to show that s → ∞.
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This is achieved by assuming that h ≥ Cm−2/5 and θ > 20/3. Lastly, their upper

bound (r/m)2 for the fourth moment of B∗
ℓ,j can be improved by r/{m2h}. This

results in the classical rate 1/
√
mh, which does not depend on the block size.

We provide below an extended version of Hoeffding’s inequality to accommo-

date the block dependence structure among the data streams.

Lemma 5. Let {Xi, i = 1, . . . , n} be a series of random variables with mean zero

and each Xi ∈ [a, b]. Assume that they satisfy the block dependence structure in the

sense that there exists a partition {Xj,k, k = 1, · · · , nj , j = 1, · · · , J} such Xj1,k1

and Xj2,k2 are independent for j1 ̸= j2, and the maximal block size is of the order

O(N/J). Then it holds that

Pr

(∣∣∣n−1
n∑
i=1

Xi

∣∣∣ > t

)
≤ exp{− 2Jt2

(b− a)2
}.

With the results in Lemmas 1-5, we show the consistency of the quantile based

method for each give t.

Lemma 6. Suppose Assumptions 1-6 hold, we have, for any t ∈ [t∗, tm],

β̃λ(t)− β(t) = Op

(√
− log(λ)

2pζ

)
,

where ζ satisfies that pζ/{mh} → ∞, with h = 1/{−m log(λ)}.

Proof. Recall the empirical distribution function of β̂1r,λ(t), · · · , β̂pr,λ(t) at time t,

F̂p(βr, t) =
1

p

p∑
j=1

I(β̂jr,λ(t) ≤ βr).

Consider ∀K > 0,

Pr
(√

2pζmh|β̃r,λ(t)− βr(t)| > K
)

=Pr

(
F̂−1
p (τr,πt

, t) >
K√
2pζmh

+ βr(t)

)
+ Pr

(
F̂−1
p (τr,πt

, t) < βr(t)−
K√
2pζmh

)
=Ap(t) +Bp(t),



where

Ap(t) = Pr

1

p

p∑
j=1

[
I(β̂jr,λ(t) < βr(t) +

K√
2pζmh

)− τr,πt

]
< 0

 , (S3.5)

Bp(t) = Pr

1

p

p∑
j=1

[
I(β̂jr,λ(t) < βr(t)−

K√
2pζmh

)− τr,πt

]
≥ 0

 . (S3.6)

Consider the behavior of Ap(t),

Ap(t) =Pr

1

p

p∑
j=1

I
(√

2mh
(
β̂jr,λ(t)− βr(t)

)
< K/

√
pζ
)
< τr,πt


≤Pr

1

p

∑
j /∈Or,t

I
(√

2mh
(
β̂jr,λ(t)− βr(t)

)
≥ K/

√
pζ
)
>

1

2
(1− π+r,t − π−r,t)


+ Pr

 1

p1

∑
j∈O+

r,t

I
(√

2mh
(
β̂jr,λ(t)− βr(t)

)
≥ K/

√
pζ
)
< 1


+ Pr

 1

p2

∑
j∈O+

r,t

I
(√

2mh
(
β̂jr,λ(t)− βr(t)

)
≥ K/

√
pζ
)
> 0

 ,

where p1 = pπ+r,t and p2 = pπ−r,t. By Lemma 2 and the conditions for δj(t) that√
mhpζδjr(t) → ∞ for j ∈ O+

r,t and
√
mhpζδjr(t) → −∞ for j ∈ O−

r,t, the last two

terms equal zero when p is sufficiently large. For the first term, by Lemma 5 and

the block dependence on the data streams,

Ap(t) ≤ exp{−
pζ
(
1
2 − 1

p0

∑
j /∈Or,t

p
(a)
jr (t,K)

)2
16

},

where p
(a)
jr (t,K) = Pr

(√
2mh

(
β̂jr,λ(t)− βr(t)

)
≥ K/

√
pζ
)
and pζ is the number

of blocks. Following similar arguments,

Bp(t) ≤ exp{−
pζ
(
1
2 − 1

p0

∑
j /∈Or,t

p
(b)
jr (t,K)

)2
16

},

with p
(b)
jr (t,K) = Pr

(√
2mh

(
β̂jr,λ(t)− βr(t)

)
≤ −K/

√
pζ
)
. It suffices to prove

pζ

1

2
− 1

p0

∑
j /∈Or,t

p
(a)
jr (t,K)

2

→ ∞, pζ

1

2
− 1

p0

∑
j /∈Or,t

p
(b)
jr (t,K)

2

→ ∞,
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as p0 → ∞. As these two terms have similar structures, we focus on the first one.

By Lemma 4, it holds that

pζ

1

2
− 1

p0

∑
j /∈Or,t

p
(a)
jr (t,K)

2

≥ pζ

(
Φ(0)− Φ(

K√
pζ
√
νr

)

)2

∧ pζ C
mh

,

where the second term diverges to infinity by the condition that pζ/{mh} → ∞.

By the mean integral theorem, the first term is lower bounded by

pζ

(
Φ(0)− Φ(

K√
pζ
√
νr

)

)2

= pζ
K2

pζνr
{
∫ 1

0
ϕ(z

K√
pζ
√
νr

)dz}2 ≥ CK2.

By letting K large, Ap(t) goes to zero, which completes the proof.

The last lemma below is used to prove the uniform consistency results over the

time index t.

Lemma 7. Suppose that a series of random variables {Xi, i = 1, . . . , n} satisfy the

following conditions:

(1) E(Xi) = 0 and var(Xi) = O(1), and |Xi| = O(ψn), for some ψn → ∞.

(2) Xis are strictly stationary and strongly ρ-mixing with the coefficient ρ(l) de-

caying to zero at a sufficiently high polynomial rate.

(3) Assume that ψn × an → 0, where an =
√

log(n)/n.

Then for a sufficiently large C0, we have

Pr(
∣∣n−1

n∑
i=1

Xi

∣∣ > C0an) ≤ Cn−r, (S3.7)

where the constant r > 0 can be chosen arbitrarily large.

Using the standard small-block techniques used in Vogt and Linton (2017), the

conclusions can be verified.



S4 Proof of the theorems

Proof of Theorem 1 Following the same notation, we show that

sup
t∈[t∗,tm]

∥E{Qj,B(t)}∥ =O(
A

− log λ
), (S4.1)

sup
t∈[t∗,tm]

∥Qj,V (t)∥ =Op(am), (S4.2)

sup
t∈[t∗,tm]

∥Sj(t)− E{Sj(t)}∥ =Op(am), (S4.3)

sup
t∈[t∗,tm]

∥Qj,B(t)− E{Qj,B(t)}∥ =Op(am), (S4.4)

where am =
√

logm
mh and h = 1/{−m log λ}. Equations (S4.1) to (S4.4) complete

the proof of (3.1). To verify the result in (3.2), we need to verify the following two

uniformly convergence results:

sup
t∈[t∗,tm]

∣∣m−1
m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)− 1
∣∣ = O(1/{mh}) ==O(am), (S4.5)

sup
t∈[t∗,tm]

∣∣m−1
m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)σ2(ti)ε
2
ij(ti)− σ2(t)

∣∣ =Op(am). (S4.6)
Note that (S4.5) can be proved by approximation of Riemann integral. By replacing

the εij(ti) as in (S4.2) with ε2ij(ti)− 1, the conclusion in (S4.6) can be analogously

verified. This completes the proof of Theorem 1. The proof of (S4.1) can be found

in Lemma 1. To prove (S4.2) to (S4.4), we essentially follow the framework used in

Vogt and Linton (2017). As the proofs (S4.3) and (S4.4) are very similar to (S4.2),

we only sketch the steps for (S4.2). Recall that Qjr,V (t) = m−1
∑m

i=1 Zi, where Zi =

h−1 exp{− t−ti
mh }I(ti ≤ t)Xir,j(ti)σ(ti)εij(ti). By Lemma 1, for a given t, Qjr,V (t) =

Op(
√

1
mh). In what follows, we strengthen this result to supt∈[t∗,tm] |Qjr,V (t)| =

Op(

√
log(m)
mh ).

We truncate the error εij(ti) by a quantity ψm = (m)1/(θ−δ), for some small

positive number δ > 0. Moreover, define

ε≤ij(ti) =εij(ti)I(|εij(ti)| ≤ ψm),

ε>ij(ti) =εij(ti)I(|εij(ti)| > ψm).
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Thus, Qjr,V (t) can be rewritten as

Qjr,V (t) = m−1
m∑
i=1

Z≤
i (t) +m−1

m∑
i=1

Z>i (t),

where

Z≤
i (t) =h

−1 exp{− t− ti
mh

}I(ti ≤ t)Xir,j(ti)σ(ti)ε
≤
ij(ti)

− h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
≤
ij(ti)},

Z>i (t) =h
−1 exp{− t− ti

mh
}I(ti ≤ t)Xir,j(ti)σ(ti)ε

>
ij(ti)

− h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}.

We thus split Qjr,V (t) into the “interior part” m−1
∑m

i=1 Z
≤
i (t) and the “tail part”

m−1
∑m

i=1 Z
>
i (t).

Step I: Following similar arguments as in Lemma 4, for the tail part, we can show

that

max
t∈[t∗,tm]

∣∣m−1
m∑
i=1

Z>i (t)| = Op(am).

This can be achieved as follows:

Pr

(
sup

t∈[t∗,tm]

∣∣m−1
m∑
i=1

Z>i (t)
∣∣ > am

)

≤Pr

(
sup

t∈[t∗,tm]

∣∣m−1
m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)Xir,j(ti)σ(ti)ε
>
ij(ti)

∣∣ > am
2

)

+ Pr

(
sup

t∈[t∗,tm]

∣∣m−1
m∑
i=1

{h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣ > am
2

)
.

According to Assumption 3, the first part can be bounded by

Pr(|εij(ti)| > ψm, for some 1 ≤ i ≤ m) ≤ Cm/ψθm = C(m)1−
θ

θ−δ = o(1).

Once again applying Assumption 3, it can be seen that∣∣∣E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣∣
≤E

[
|Xir,j(ti)|σ(ti)E

{
|εij(ti)|θ

ψθ−1
m

I(|εij(ti)| > ψm)
∣∣∣Xir,j(ti)

}]
≤ sup
ti∈[t∗,tm]

Cσ(ti)× (m)−
θ−1

θ−δ ≤ C(m)−
θ−1

θ−δ .



For the kernel function, it holds that

m−1
m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t) = 1 +O((mh)−1).

Since C(m)−
θ−1

θ−δ < am/2 as m are sufficiently large, we arrive at

Pr

(
sup

t∈[t∗,tm]

∣∣∣m−1
m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣∣ > am
2

)
= 0

for sufficiently large m. This yields that the tail part is Op(am).

Step II: We next bound the interior part. Let t∗ = x0 < x1 < · · · < xL = tm be

an equidistant grid of points covering the interval [t∗, tm] and set L = ψm/(amh
2).

By the Lipschitz continuity of the exponential function, standard derivations yield

that

sup
t∈[t∗,tm]

|m−1
m∑
i=1

Z≤
i (t)| ≤ max

1≤ℓ≤L
|m−1

m∑
i=1

Z≤
i (xℓ)|+ sup

t∈[t∗,tm]
Cσ(t)ψm × 1

Lh2
,

where the second term is O(am) by the design of L. As a result, we can replace the

supremum over t by a maximum over the grid point xℓ. By Bonferroni inequality,

Pr

(
max
ℓ=1...L

|m−1
m∑
i=1

Z≤
i (xℓ)| > C0am

)
≤

L∑
ℓ=1

Pr

(
|m−1

m∑
i=1

Z≤
i (xℓ)| > C0am

)
,

where C0 is a sufficiently large constant. By the results of Lemma 7, we can show

that for

Pr

(
|m−1

m∑
i=1

Z≤
i (xℓ)| > C0am

)
≤ Cm−r,

where the constant C and r are independent of xℓ and r > 0 can be chosen arbitrar-

ily large proved that C0 is sufficiently large. Thus, m−r will eventually dominate

L, leading to

Pr

(
max
ℓ=1...L

|m−1
m∑
i=1

Z≤
i (xℓ)| > C0am

)
→ 0,

which completes the proof.

Proof of Theorem 2 Let bm =
√

log(mp)
2pζmh and define {xl}Ll=1 as the equivalent grid

of points covering [t∗, tm] such that |xi−xi−1| ≤ m/L. Write γ̃r(t) = β̃r,λ(t)−βr(t).
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By straightforward calculations, our target can be bounded by

Pr

(
sup

t∈[t∗,tm]
|β̃r,λ(t)− βr(t)| > bmK

)
= Pr

(
max
1≤l≤L

sup
t∈[xl−1,xl]

|γ̃r(t)| > bmK

)

≤Pr

(
max
1≤l≤L

{ sup
t∈[xl−1,xl]

|γ̃r(t)− γ̃r(xl)|+ |γ̃r(xl)|} > bmK

)

≤Pr

(
max
1≤l≤L

|γ̃r(xl)| > bmK/2

)
+ Pr

(
max
1≤l≤L

sup
t∈[xl−1,xl]

|γ̃r(t)− γ̃r(xl)| > bmK/2

)

≤
L∑
l=1

Pr (|γ̃r(xl)| > bmK/2) +

L∑
l=1

Pr

(
sup

t∈[xl−1,xl]
|γ̃r(t)− γ̃r(xl)| > bmK/2

)
.

(S4.7)

By Lemma 6, the first term in (S4.7) is upper bounded by L× 1
exp(K2/4)mp , which

goes to zero as m→ ∞ and p ≤ O(m). We then focus on the second term. For any

t ∈ [xl−1, xl],

Pr (|γ̃r(t)− γ̃r(xl)| > bmK/2) = Pr (γ̃r(t)− γ̃r(xl) > bmK/2) + Pr (γ̃r(t)− γ̃r(xl) < −bmK/2) .

Let γ̂jr(t) = β̂jr,λ(t)−βr(t), ε = bmK/2, and define eventHpr = ∩j=1,··· ,p {γ̂jr(t) < γ̂jr(xl) + ε}.

For the first half, we have

Pr (γ̃r(t)− γ̃r(xl) > ε)

= Pr

1

2
−
π+r,t − π−r,t

2
>

1

p

p∑
j=1

I (γ̂jr(t) < γ̃r(xl) + ε)


≤ Pr

1

2
−
π+r,t − π−r,t

2
>

1

p

p∑
j=1

I (γ̂jr(t) < γ̃r(xl) + ε) | Hpr

Pr(Hpr) + Pr
(
Hc
pr

)
≤ pPr (γ̂jr(t)− γ̂jr(xl) > ε, j /∈ Or,t) + pPr (γ̂jr(t)− γ̂jr(xl) > ε, j ∈ Or,t) .

Because δjr(t) is Liptisiz continuous with a shrinking factor A, the signal dif-

ference δjr(t) − δjr(xl) when j ∈ Or,t is upper bounded by Am/L, which can

be further dominated by ε as long as Am/L = o(ε). Thus it suffices to bound

pPr (γ̂jr(t)− γ̂jr(xl) > ε, j /∈ Or,t). The second term Pr (γ̃r(t)− γ̃r(xl) < −ε) can

be analysed in a similar way. Till now, we obtain,

Pr (|γ̃r(t)− γ̃r(tl)| > ε) ≤ pPr (|γ̂jr(t)− γ̂jr(tl)| > ε, j ̸∈ Or,t) .



Recall that Zi(t) = h−1 exp{− t−ti
mh }I(ti ≤ t)Xir,j(ti)σ(ti)εij(ti) and the partition

εij(ti) into two parts as

ε≤ij(ti) = εij(ti)I(|εij(ti)| ≤ ψm), ε>ij(ti) = εij(ti)I(|εij(ti)| > ψm),

where

Z≤
i (t) =h

−1 exp{− t− ti
mh

}I(ti ≤ t)Xir,j(ti)σ(ti)ε
≤
ij(ti)

− h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
≤
ij(ti)},

Z>i (t) =h
−1 exp{− t− ti

mh
}I(ti ≤ t)Xir,j(ti)σ(ti)ε

>
ij(ti)

− h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}.

With these notations, for j /∈ Or,t, some derivations yield that

|γ̂jr(t)− γ̂jr(xl)| =

∣∣∣∣∣Γ−1
j,rr

1

m

m∑
i=1

(
Z>i (t) + Z≤

i (t)
)
− Γ−1

j,rr

1

m

m∑
i=1

(
Z>i (xl) + Z≤

i (xl)
)
+ rm

∣∣∣∣∣
≤

∣∣∣∣∣Γ−1
j,rr

1

m

m∑
i=1

Z>i (t)

∣∣∣∣∣+
∣∣∣∣∣Γ−1

j,rr

1

m

m∑
i=1

Z>i (xl)

∣∣∣∣∣
+

∣∣∣∣∣Γ−1
j,rr

1

m

m∑
i=1

Z≤
i (t)− Γ−1

j,rr

1

m

m∑
i=1

Z≤
i (xl)

∣∣∣∣∣+ |rm|,

(S4.8)

where rm is negligible compared with the main terms. We first bound the tail

probability in (S4.8) by

Pr

{∣∣∣ 1
m

m∑
i=1

Z>i (t)
∣∣∣ ≥ ε

3

}
≤ Pr

{∣∣∣ 1
m

m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)Xir,j(ti)σ(ti)ε
>
ij(ti)

∣∣∣ ≥ ε

6

}

+ Pr

{∣∣∣ 1
m

m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣∣ ≥ ε

6

}
.

(S4.9)

Note that we don’t need to consider |Γj,rr| in the tail part because it is lower

bounded away from zero. According to Assumption 3, the first part in (S4.9) can

be bounded by

Pr(|εij(ti)| > ψm, for some 1 ≤ i ≤ m) ≤ Cm/ψθm,
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which implies that the main effect on the tail part is of the order Lp ×m/ψθm =

C × (Lmp)−
δ

θ−δ if we choose ψm = (pmL)
1

θ−δ .

For the second term in (S4.9), once again applying Assumption 3, it can be

seen that∣∣∣E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣∣ ≤E
[
|Xir,j(ti)|σ(ti)E

[ |εij(ti)|θ
ψθ−1
m

I(|εij(ti)| > ψm)
]]

≤ sup
t∈[t∗,tm]

Cσ(t)× (Lmp)−
θ−1

θ−δ ≤ C(Lmp)−
θ−1

θ−δ .

Since C(pmL)−
θ−1

θ−δ < ε/6 as m, p are sufficiently large and that the average of the

kernel function converges to one, we arrive at

Pr(
∣∣m−1

m∑
i=1

h−1 exp{− t− ti
mh

}I(ti ≤ t)E{Xir,j(ti)σ(ti)ε
>
ij(ti)}

∣∣ > ε

12
) = 0

for sufficiently large m, p. Thus, the tail part can be controlled.

Next, we consider the interior part.∣∣∣∣∣Γ−1
j,rr

1

m

m∑
i=1

Z≤
i (t)− Γ−1

j,rr

1

m

m∑
i=1

Z≤
i (xl)

∣∣∣∣∣ ≤ 1

Γj,rr

∣∣∣∣∣ 1m
m∑
i=1

Z≤
i (t)−

1

m

m∑
i=1

Z≤
i (xl)

∣∣∣∣∣ ,
which is bounded by

1

Γj,rr

1

Lh2
sup
t
Cσ(t)ψm +Am

1

Lh
.

By choosing L that satisfies L > c ψm

bmh2K for some c > 0, we have

Pr

(∣∣∣∣∣Γ−1
j,rr

1

m

m∑
i=1

Z≤
i (t)− Γ−1

j,rr

1

m

m∑
i=1

Z≤
i (xl)

∣∣∣∣∣ > ε

6

)
= 0.

Combing the above results, we have the second term in (S4.7) goes to zero, which

completes the proof.



Proof of Proposition 1

We focus on the nonsparse case where π+r,tm > 0 and π−r,tm < 0, while the conclusion

for the sparse scenario follows by a simpler way. Our goal is to prove

1

p

p∑
j=1

I{β̂jr,λ(tm) > β̃r(tm−1)} −
1

p

p∑
j=1

I{β̂jr,λ(tm) < β̃r(tm−1)} = π+r,tm − π−r,tm + op(1).

We complete the proof by showing that

1

p

p∑
j=1

I{β̂jr,λ(tm) > βr(tm)} −
1

p

p∑
j=1

I{β̂jr,λ(tm) < βr(tm)} = π+r,tm − π−r,tm + op(1),

(S4.10)

1

p

p∑
j=1

I{β̂jr,λ(tm) > β̃r(tm−1)} −
1

p

p∑
j=1

I{β̂jr,λ(tm) > βr(tm)} = op(1). (S4.11)

For a positive constant K, define an event HK := {ω : maxj |β̂jr,λ(tm) − βr(tm) −

δjr(tm)| >
√

log(p)/{mh}K}. Similar to the derivation of Theorem 1, we have

Pr (HK) → 0 as m, p→ ∞, for a sufficiently large K. The left hand side of (S4.10)

can be written as

1

p

p∑
j=1

I{β̂jr,λ(tm) > βr(tm)} −
1

p

p∑
j=1

I{β̂jr,λ(tm) < βr(tm)} (S4.12)

=
1

p

∑
j∈O+

r,tm

I(β̂jr,λ(tm)− βr(tm) > 0) +
1

p

∑
j∈O−

r,tm

I(β̂jr,λ(tm)− βr(tm) > 0)

−1

p

∑
j∈O+

r,tm

I(β̂jr,λ(tm)− βr(tm) < 0)− 1

p

∑
j∈O−

r,tm

I(β̂jr,λ(tm)− βr(tm) < 0)

+
1

p

∑
j /∈Or,tm

{
I(β̂jr,λ(tm)− βr(tm) > 0)− I(β̂jr,λ(tm)− βr(tm) < 0)

}
.
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Next, by Lemma 2 and the conditions on δjr(t), for j ∈ O+
r,tm , the first part of

(S4.12) can be bounded by

1− 1

p1

∑
j∈O+

r,tm

I(β̂jr,λ(tm)− βr(tm) > 0)

=
1

p1

∑
j∈O+

r,tm

Pr(β̂jr,λ(tm)− βr(tm) ≤ 0) +Op(1/
√
pζπ+r,tm)

=
1

p1

∑
j∈O+

r,tm

Pr(β̂jr,λ(tm)− βr(tm)− δjr(tm) ≤ −δjr(tm)) +Op(1/
√
pζπ+r,tm)

=
1

p1

∑
j∈O+

r,tm

Pr(β̂jr,λ(tm)− βr(tm)− δjr(tm) ≤ −δjr(tm) | Hc
K) Pr(Hc

K)

+
1

p1

∑
j∈O+

r,tm

Pr(β̂jr,λ(tm)− βr(tm)− δjr(tm) ≤ −δjr(tm) | HK) Pr(HK) +Op(1/
√
pζπ+r,tm)

=
1

p1

∑
j∈O+

r,tm

Pr(β̂jr,λ(tm)− βr(tm)− δjr(tm) ≤ −δjr(tm),Hc
K) + o(1) +Op(1/

√
pζπ+r,tm)

≤ 1

p1

∑
j∈O+

r,tm

Pr(δjr(tm) ≤
√

log(p1)/{mh}K) + o(1) +Op(1/
√
pζπ+r,tm).

The third part of (S4.12) can be bounded similarly, given that the signal condition

on δjr(tm) for j ∈ O−
r,tm . That is,

1− 1

p2

∑
j∈O−

r,tm

I(β̂jr,λ(tm)− βr(tm) < 0)

≤ − 1

p2

∑
j∈O−

r,tm

Pr(−δjr(tm) ≤
√

log(p2)/{mh}K) + o(1) +Op(1/
√
pζπ−r,tm).

The second and fourth part can be analyzed analogously.

The last part of (S4.12) can be written as

1

p0

∑
j /∈Or,tm

{
I(β̂jr,λ(tm)− βr(tm) > 0)− I(β̂jr,λ(tm)− βr(tm) < 0)

}
=

1

p0

∑
j /∈Or,tm

{
2I(β̂jr,λ(tm)− βr(tm) > 0)− 1

}
,



then following the notation in Lemma 6,

Pr

 1

p0

∑
j /∈Or,tm

{
2I(β̂jr,λ(tm)− βr(tm) > 0)− 1

}
> ε


=Pr

 1

p0

∑
j /∈Or,tm

I(β̂jr,λ(tm)− βr(tm) > 0) > (ε+ 1)/2


≤ exp

−pζ0

1 + ε

2
− 1

p0

∑
j /∈Or,tm

p
(a)
jr (tm, 0)

2

/8

→ 0.

The convergence in the last step is obtained by

pζ0

1 + ε

2
− 1

p0

∑
j /∈Or,tm

p
(a)
jr (tm, 0)

2

≥ pζ0{ε/2 + o(1)}2 → ∞,

where Lemma 4 is used to bound the approximation error of the distribution of

β̂jr,λ(tm).

Therefore the right hand side of (S4.12) is upper bounded by

1

p

p∑
j=1

I{β̂jr,λ(tm) > βr(tm)} −
1

p

p∑
j=1

I{β̂jr,λ(tm) < βr(tm)}

=(π+r,tm − π−r,tm) +
π+r,tm
p1

∑
j∈O+

r,tm

Pr(δjr(tm) ≤
√

log(p1)/{mh}K)

−
π−r,tm
p2

∑
j∈O−

r,tm

Pr(−δjr(tm) ≤
√

log(p2)/{mh}K) +Op(1/
√
pζ) + op(1)

= (π+r,tm − π−r,tm) +Op(1/
√
pζ) + op(1).

Given that ||β̃λ(tm−1) − β(tm−1)|| = op(1), (S4.11) can be proved similarly and

thus is omitted here.

Proof of Theorem 3

For ease of presentation, we abbreviate λ̂(tm) as λ̂. We show that the one-step

prediction algorithm for choosing the tuning parameter λ is consistent in the sense
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that

APSE
λ̂
(tm) → π

(0)
tm σ

2(tm) (S4.13)

in probability, where π
(0)
tm is the proportion of the null streams at time tm. Recall

that we minimize the averaged predictive squared error (APSE) over an estimated

null set, which is designed to be stochastically independent from the observations

updated at present time tm. Moreover, the number of datastream indices in Otm

that are allowed to contaminated in the estimated null set is negligible relative to

p. Without loss of generality, the APSE function can be defined as:

APSEλ(tm) = p−1
∑
j /∈Otm

{y∗mj −X⊤
mjβ̃λ(tm)}2

and the one-step prediction aims to find the minimizer of an estimate of the APSE

function for h = 1/{−m log λ} ∈ [Cm−1/2+δ,∞), that is,

λ̂(tm) = argmin
λ

ÂPSEλ(tm),

where ÂPSEλ(tm) = p−1
∑

j /∈Otm
{ymj −X⊤

mjβ̃λ(tm−1)}2.

To show the consistency, we first look at the structure of APSEλ(tm), that is,

APSEλ(tm) = ERR(tm, λ)+p
−1

∑
j /∈Otm

σ2(tm)ε
∗2
mj−2[β̃λ(tm)−β(tm)]

⊤{p−1
∑
j /∈Otm

Xmjσ(tm)ε
∗
mj},

where ERR(tm, λ) = [β̃λ(tm)− β(tm)]
⊤{p−1

∑
j /∈Otm

XmjX
⊤
mj}[β̃λ(tm)− β(tm)] is

the average squared error loss for β̃λ(tm). The second term converges to π
(0)
tm σ

2(tm)

in probability due to the block dependence among the datastreams. Analogously,

ÂPSEλ(tm) can be decomposed into three terms:

ÂPSEλ(tm) = ẼRR(tm, λ) + p−1
∑
j /∈Otm

σ2(tm)ε
2
mj − g(m,λ),

where ẼRR(tm, λ) = [β̃λ(tm−1)−β(tm)]
⊤{p−1

∑
j /∈Otm

XmjX
⊤
mj}[β̃λ(tm−1)−β(tm)]

and g(m,λ) = 2[β̃λ(tm−1)−β(tm)]
⊤{p−1

∑
j /∈Otm

Xmjσ(tm)εmj} is the cross term.



To prove the result, we decompose the main term APSE
λ̂
(tm)− π

(0)
tm σ

2(tm) as∣∣APSE
λ̂
(tm)− π

(0)
tm σ

2(tm)
∣∣

≤ERR(tm, λ̂) + |p−1
∑
j /∈Otm

σ2(tm)ε
∗2
mj − π

(0)
tm σ

2(tm)|

+ 2|[β̃
λ̂
(tm)− β(tm)]

⊤{p−1
∑
j /∈Otm

Xmjσ(tm)ε
∗
mj}|

=ERR(tm, λ̂) + 2|[β̃
λ̂
(tm)− β(tm)]

⊤{p−1
∑
j /∈Otm

Xmjσ(tm)ε
∗
mj}|+Op(p

−ζ/2).(S4.14)

Note that the second term can be expressed as g(m+1, λ̂) +Op(A× p−ζ/2). Thus,

it remains to bound ERR(tm, λ̂) and g(m, λ̂).

According to Theorem 1, there exists a sequence of λm satisfying Assumption 5

that ẼRR(tm, λm) = Op{(Amhm)2 +1/(mhm) +A2}, where hm = 1/{−m log λm}.

By definition of λ̂, for this sequence λm, we have

ÂPSE
λ̂
(tm) ≤ ÂPSEλm

(tm),

which yields that

ẼRR(tm, λ̂) ≤ ẼRR(tm, λm) + g(m,λm)− g(m, λ̂)

Consequently, the first term in (S4.14) can be further bounded by

ERR(tm, λ̂) ≤ |ERR(tm, λ̂)− ẼRR(tm, λ̂)|+ ẼRR(tm, λ̂)

≤EE +Op{(Amhm)2 + 1/(mhm) +A2}+ g(m,λm)− g(m, λ̂),

where EE is the difference between ERR and ẼRR using the data-driven estimator

λ̂. To derive this specific order, we notice that the difference between β̂
j,λ̂

(tm) and

β̂
j,λ̂

(tm−1) for j /∈ Otm is closely related to the ÂPSE
λ̂
(tm), that is,

β̂
j,λ̂

(tm−1)− β̂
j,λ̂

(tm) =

{
m∑
i=1

λ̂tm−tiXijX
⊤
ij

}−1

Xmj{ymj −X⊤
mjβ̂j,λ̂(tm−1)}.

(S4.15)

To obtain that EE = op(1), we first notice that, for any ε > 0,

Pr(∥β̃
λ̂
(tm)− β̃

λ̂
(tm−1)∥2 > ε) ≤ dPr(∥β̃

r,λ̂
(tm)− β̃

r,λ̂
(tm−1)∥2 > ε/d)
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≤ dPr(β̃
r,λ̂

(tm)− β̃
r,λ̂

(tm−1) >
√
ε/d) + dPr(β̃

r,λ̂
(tm)− β̃

r,λ̂
(tm−1) < −

√
ε/d),

where d is the dimension of β(tm). As both terms have similar structures, we only

analyze the first term. For any ε > 0, similar techniques for median operators yield

that

Pr
(
β̃
r,λ̂

(tm)− β̃
r,λ̂

(tm−1) > ε
)

≤Pr
{
∩j∈E0

[
|β̂
jr,λ̂

(tm)− β̂
jr,λ̂

(tm−1)| > ε
]}

, (S4.16)

where E0 is a subset of the null data streams that Card(E0)/p→ τ > 0.

Before proceeding, we first obtain the lower bound of
∑m

i=1 λ̂
tm−tiI(ti ≤ tm)XijX

⊤
ij .

To this end, for each fixed λ, the orders of its mean and variance are calculated as

1

mh

m∑
i=1

λtm−tiI(ti ≤ tm)E{XijX
⊤
ij} = Γj + o(1)

and

var

{
1

mh

m∑
i=1

λtm−tiI(ti ≤ tm)XijX
⊤
ij

}
≤ C[1/{mh}+ 1/{mh2}],

where h = 1/{−m log(λ)}. As h = 1/{−m log λ} is lower bounded by Cm−1/2+δ,

mĥ and mĥ2 go to infinity with probability one. Thus, with probability tending

to one,
∑m

i=1 λ
tm−tiI(ti ≤ tm)XijX

⊤
ij ≥ Cmh, with C = minr Γj,rr − γ, for some

small γ > 0. By the assumption that minr Γj,rr is lower bounded a positive con-

stant and h ∈ [Cm−1/2+δ, 1], we conclude that with probability tending to one,∑m
i=1 λ̂

tm−tiI(ti ≤ tm)XijX
⊤
ij ≥ Cmĥ, with C = minr Γj,rr/2. Similarly, we can

obtain that with probability tending to one,
∑m

i=1 λ̂
tm−tiI(ti ≤ tm)XijX

⊤
ij ≤ Cmĥ,

with C = 2maxr Γj,rr. This together with Equation (S4.15) implies that the prob-

ability in (S4.16) can be further bounded by

Pr

p−1
∑
j /∈Otm

[ymj −X⊤
mjβ̃λ̂(tm−1)]

2 ≥ τπ
(0)
tm ε

2 × {mĥ}2
+ o(1)

=Pr
{
ÂPSE(tm, λ̂) ≥ τπ

(0)
tm ε

2 × {mĥ}2
}
+ o(1)

≤Pr
{
ÂPSE(tm, λ̂) ≥ τπ

(0)
tm ε

2 × {mĥ}2,mĥ > C
}
+ Pr{mĥ < C}+ o(1)



which converges to zero as mĥ → ∞ almost surely and ÂPSE
λ̂
(tm) is bounded in

probability. Combing the above results, we obtain that EE = op(1).

Combing the above results, |APSE
λ̂
(tm)− π

(0)
tm σ

2(tm)| is bounded by

g(m,λm)−g(m, λ̂)+g(m+1, λ̂)+op(1)+Op((Amhm)
2+1/(mhm)+A

2)+Op(p
−ζ/2).

To control the first three terms simultaneously, we need to check that g(m,λ)

converges to zero in probability uniformly for h ∈ [Cm−1/2+δ, 1], for some δ > 0.

This can be achieved by noting that

g(m,λ) ≤
{
|β̃
λ̂
(tm−1)− β(tm−1)|+ |β(tm−1)− β(tm)|

}⊤
× |p−1

∑
j /∈Otm

Xmjσ(tm)εmj | ≤ Op(Ap
−ζ/2).

This completes the proof of Theorem 3.

Proof of Theorem 4

Recall that we use the t-type statistic to implement the multiple testing procedure,

with the test statistic defined as

γ̂j,λ(tm) =

√
2mh

∑m
i=1wi(tm)ỹij∑m

i=1wi(tm)
,

where h = 1/{−m log(λ)}. For notational brevity, let Tj := γ̂j,λ(tm). To estimate

the number of false rejections, we can use a ‘warm up’ sample to construct a series of

null test statistics, defined as T̃j , j = 1, · · · , p. The formal procedure is implemented

by rejecting H0
mj if |Tj | ≥ L, where L is a data-driven threshold given by

L = inf

{
u :

#{j : T̃j ≥ u}
#{j : Tj ≥ u} ∨ 1

≤ α

}
. (S4.17)

for a desired FDR level α. We will prove that the expected FDP with the data-

driven threshold L is controlled at the level α, where the FDP is defined as

FDP(L) :=
#{j : Tj ≥ L, j ∈ H0

mj}
#{j : Tj ≥ L} ∨ 1

Decompose Tj as

Tj =

√
2mh

∑m
i=1wi(tm)εijbi∑m

i=1wi(tm)
+

√
2mh

∑m
i=1wi(tm)aijbi/σ(ti)∑m
i=1wi(tm)

,
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where aij = X⊤
ij{β(ti)− β̃λ(ti)} and bi = σ(ti)/σ̃λ(ti). Denote

T j =

√
2mh

∑m
i=1wi(tm)εij∑m

i=1wi(tm)
.

To prove Theorem 4, we first provide three useful lemmas.

Lemma 8. Assume ρj(n) = O{exp(−an)} for some a > 0 and any j. Then for

0 ≤ u ≤ {(θ − 2) log(mh)}1/2, we have

Pr
(
|T j | ≥ u

)
= 2Φ(u/

√
ρj){1 + o(1)}, (S4.18)

where o(1) holds uniformly in 1 ≤ j ≤ p.

This lemma is a direct corollary of Babu and Singh (1978) which establishes

moderate deviations for some stationary mixing processes.

The next lemma shows that the empirical distribution of T j converges to a sum

of normal distributions uniformly.

Lemma 9. Suppose conditions 1-5 hold. Then, for any bp satisfying p1−ζ/bp → 0

and bp = o(p),

sup
0≤u≤G−1(bp/p)

∣∣∣∣∣
∑

j∈H0
I{|T j | > u}
p0G(u)

− 1

∣∣∣∣∣→ 0 (S4.19)

in probability. Here G(x) = p−1
0

∑
j∈H0

2Φ(x/
√
ρj) and Φ(x) = 1− Φ(x).

Proof. To prove this Lemma, let 0 < z0 < z1 < · · · < zdp ≤ 1 and ui = G−1(zi),

where z0 = bp/p, zi = bp/p + cpe
iδ/p, dp = [log(p − bp)/cp]

1/δ with cp/bp → 0, and

0 < δ < 1. Note thatG(ui)/G(ui+1) = 1+o(1) uniformly in i, and minj
√
ρj+o(1) ≤

u0/
√

2 log(p/bp) ≤ maxj
√
ρj+o(1). Then, to prove (S4.19), it suffices to show that

sup
0≤i≤dp

∣∣∣∣∣
∑

j∈H0
I{|T j | > ui}
p0G(ui)

− 1

∣∣∣∣∣→ 0

in probability.



By Markov inequality, for any ε > 0 and a large m, we have

dp∑
i=0

Pr

(∣∣∣∣∣
∑

j∈H0
I{|T j | > ui}
p0G(ui)

− 1

∣∣∣∣∣ > ε

)

≤
dp∑
i=0

Pr

(∣∣∣∣∣
∑

j∈H0
{I{|T j | > ui} − Pr(|T j > ui|)}

p0G(ui)

∣∣∣∣∣ > ε/2

)

≤ 4

ε2

dp∑
i=0

∑
j1∈H0

∑
j2∈§j1

Pr(|T j1 | > ui, |T j2 | > ui)

p20{G(ui)}2

≤ 4

ε2

dp∑
i=0

|Sj1 |p0G(ui)
p20{G(ui)}2

+ o(1) ≤ 4

ε2
p1−ξ

dp∑
i=0

1

p0G(ui)
+ o(1),

where Sj contains indices that are in the same block as j, and |Sj | = O(p1−ζ). The

sum can be upper bounded by

dp∑
i=0

1

p0G(ui)
≤ b−1

p +

dp∑
i=1

1

bp + cpei
δ ≤ b−1

p + c−1
p

dp∑
i=1

1

1 + eiδ
= O(c−1

p )

Because cp can be made arbitrarily large as long as cp/bp → 0, we have

sup
0≤i≤dp

∣∣∣∣∣
∑

j∈H0
I{|T j | > ui}
p0G(ui)

− 1

∣∣∣∣∣ = Op(p
1−ζ/bp).

The difference between Tj and T j when j ∈ H0 is characterized in the following

result.

Lemma 10. For any M > 0, it holds that

sup
M≤u≤{(θ−2) log(mh)}1/2

∣∣∣∣∣
∑

j I(Tj ≥ u)∑
j I(T j ≥ u)

− 1

∣∣∣∣∣ = op(1).

Proof. Denote cn =
√

log(pm)/(pζmh). According to Theorem 2, maxi,j aij =

Op(cn) and maxi |bi − 1| = Op(cn). As a result, Tj = T j{1 + Op(cn)} + Op(cn)
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uniformly in j. Therefore, with probability tending to one,∣∣∣∣∣∣
∑
j

I(Tj ≥ u)−
∑
j

I(T j ≥ u)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j

{
I(T j ≥ u+ ln)− I(T j ≥ u)

}∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j

{
I(T j ≥ u− ln)− I(T j ≥ u)

}∣∣∣∣∣∣
:= ∆1 +∆2,

where ln/cn → ∞. We will deal with ∆1 only and the part of ∆2 is similar.

Note that

E(∆1) = E

∑
j

I(u ≤ T j ≤ u+ ln)

 ≤
∑
j∈H0

Pr(u ≤ T j ≤ u+ ln)

Then, by Lemma 8,∣∣∣∣Pr(T j ≥ u+ ln)

Pr(T j ≥ u)
− 1

∣∣∣∣ ≤ lnf(u)

Pr(T j ≥ u)
≲
ϕ(u/

√
ρj)/

√
ρjln

Φ(u/
√
ρj)

≤
ϕ(u/

√
ρj)/

√
ρjln

ϕ(u/
√
ρj)/(u/

√
ρj +

√
ρj/u)

≲ ln,

where f(x) is the density function of T j , and we use the fact

x

x2 + 1
ϕ(x) < Φ(x), for all x > 0.

Then by Lemma 9, the assertion holds.

Now we prove the main results. It can be proceeded in two steps.

Step I: Show that L ≤ G−1(αbp/p) for some bp → ∞ and bp = o(p). By the

continuity of the function Φ(x), the monotonicity of the indicator function, and

Lemma 9, it is easy to see that

pG(L)

#{j : Tj ≥ L} ∨ 1
= α.

LetM be a subset of {1, 2, . . . , p} satisfyingM ⊂
{
j :

√
2mh|γj(tm)| > (max

√
ρj + 1)

√
2 log(p)

}
and Card(M) ≥ bp. By Theorem 1, there exist some c > max

√
ρj ×

√
2 and some

bp → ∞, such that

Pr

 p∑
j=1

I{|Tj | ≥ c
√

log(p)} ≥ bp

→ 1.



This implies that Pr
(
L ≤ G−1(αbp/p)

)
→ 1.

Step II: Control the FDR with the data-driven threshold at the desired level. This

is achieved by the following derivations:

FDP(L) =
#{j : Tj ≥ L, j ∈ H0

mj}
#{j : Tj ≥ L} ∨ 1

=
#{j : T̃j ≥ L}

#{j : Tj ≥ L} ∨ 1
×

#{j : Tj ≥ L, j ∈ H0
mj}

#{j : T̃j ≥ L}

≤ #{j : T̃j ≥ L}
#{j : Tj ≥ L} ∨ 1

×
#{j : Tj ≥ L, j ∈ H0

mj}
#{j : T̃j ≥ L, j ∈ H0

mj}
≤ α×

#{j : Tj ≥ L, j ∈ H0
mj}

#{j : T̃j ≥ L, j ∈ H0
mj}

Denote R(L) :=
#{j:Tj≥L,j∈H0

mj}
#{j:T̃j≥L,j∈H0

mj}
. By Lemma 9, Lemma 10 and the range for L in

Step I, we obtain that∣∣∣∣∣#{j : Tj ≥ L, j ∈ H0
mj}∑

j∈H0
2Φ(L/

√
ρj)

− 1

∣∣∣∣∣ = op(1),

where Φ(x) = 1− Φ(x).

Due to the fact that the process is stationary and the assumption that the

‘warm-up’ sample does not contain signals, it holds that R(L) converges to 1 in

probability. Thus lim supp,m FDP(L) ≤ α. Then, for any ϵ > 0,

FDR(L) ≤ (1 + ϵ)αE{R(L)}+ Pr(FDP(L) ≥ (1 + ϵ)R(L)),

from which the FDR is controlled at the significance level α.
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