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S1 Generating 3-Source Hybrid Data

Assume that univariate functional data have finite Karhunen-Loéve expan-

sion:
M;
() = DG, 4 €T =12
m=1
Denote the residuals corresponding to functional data and high-dimensional

data in the objective function (2.2) as Egcj) (= C(j)V}j) — chj)) and E;Ll)
(= Z(I)VS) — Yg)), respectively, where chj) = [\/5Fs(j),, —MF} and
Vi — [ﬁl,—\/ﬁb@} for j = 1,2, YV = [\/th“)’,—mF]
and Vg) = [ValI,—v/1— avW]. Therefore, ¢V = (Y?)+E5£j))VSZ)/(V§Z)V§f)/)*1
(j=1,2),and ZW = (Y;Ll)+E;Ll))VELl)/(V,(ll)VS)I)’l. Once ¢ is obtained,

the corresponding functional data XU) can be generated.
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Assume Mi=Ms=M3= 25, M=10, and the sample size N = 300 and
600. The hybrid data (X, X® ZM) can be generated as follows.
Step 1. Generate a set of eigenimages {gbg),m =1,---,M;} formed by
tensor products of Fourier basis functions on 7; = [0, 1] x [0,0.5], M eigen-
functions ¢,(~,2L) by Legendre polynomials on 75 = [—1, 1] and Mj eigenvectors
of length 200. The observations are discretized using 100 x 50 equidistant
points for the eigenimages and 200 equidistant points for the eigencurves.
Step 2. Generate N x M component matrix F that follows the standard
multivariate normal distribution, and regularize it such that F'F/N = 1.
Step 3. Generate the coefficient matrices for the expansion of the load-
ing functions and the canonical weight functions. Let s((]l) = ﬁA(l),

S(()Q) = \/%A(z)v where T1,72 € (071)/71 + 7 < 1a A(l)aA(2) are M1 and

=5,

Ms-dimensional diagonal matrices with diagonal elements 4/exp(
respectively. Take the first M columns of sél) to be s and the first M
columns of 582) tobes?®. Let bél) = (s((]l)/sél)> - sél)/, béQ) = (s((f)/s((f)) - 582)/,
take the first M columns of b(()l) and b(()z) as b and b respectively.

Step 4. Generate loading vectors and canonical weight vectors for high-
dimensional data sources. hél) = T=7 — APV, Vgl) = (hél),hél))_l hél)/,

where A®) is the Mj-dimensional diagonal matrix with diagonal elements

exp(—241). Take the first M columns of h(()l) and V(()l) as h¥ and vV
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respectively.
Step 5. Generate error matrices Egcl), E;Q) and Eg) which follow multivari-
ate normal distribution with mean 0 and standard deviation o.

Step 6. Generate ¢V, j = 1,2 and ZM based on the above steps, thereby

generating functional data X (j = 1,2).

S2 Imputation Algorithm

We assume that the observed data (x1, 21),-- - , (zn, 2x5) can be divided into
G (G < 2P*% — 1) groups according to the missingness patterns, and there
is always a group of observations without missing values.

Denote the matrix consisting of all univariate principal component
scores by & = ( Efl),~~ ,£;P), 21) ,égQ)), where £§cj) (denoted by ¢V
in Section 2) and £§Lk) denote univariate principal component score ma-
trix of the jth functional data source and the kth high-dimensional data
source, respectively. & also can be written as (&), - ,&(, ,&())s
where ) = (fgig,ﬁ%, e ,€ES+Q)) denotes univariate principal compo-
nent score matrix of the rth missing pattern group. Obviously, £ can be
regarded as multi-source high-dimensional block-wise missing data, and has

the same missing pattern like that of original data.

Forr=1,--- G,5=1,--- P+ Q.
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Gy : the index set of subjects included in the rth missing group;
o(r) : the index set of observed data sources in the rth missing group;
m(r) : the index set of missing data sources in the rth missing group;
S(29) : the index set of subjects with observed data in the jth data source;
S(mi) : the index set of subjects with missing data in the jth data source;
5?8) : the matrix consisting of principal component scores {55]1)), j€o(r)};
52@ : the matrix consisting of principal component scores {& 8;, jem(r)};
52’15;) : the matrix consisting of principal component scores {&€ 83, jeo(r};
5?;@ : the matrix consisting of principal component scores {& 87 jem(r)}.
Block-wise Conditional Mean Imputation Algorithm (CMI)
The details of CMI are given below.
Step 1. Perform the univariate PCA for each data source.

For j =1,---,P + @, based on the observed values of the jth data
source, we can obtain the estimated principal component scores {éZ(JW)L} with
i€ SO m=1,--, M.

Step 2. Generate the initial regression equations.

For r = 2,--- |G, the univariate principal component scores for the

complete data group are used to generate the regression equations of 5?{;7)
m(r)

with respect to 5((’8“), that is, é(l) = ffg),@(r)-

Step 3. Predict missing univariate principal component scores in corre-
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sponding missing pattern groups.

G—1 equations in Step 2 are used to predict missing univariate principal
component scores 57(7;)(” in corresponding missing pattern group with E?fg)
as covariates, that is, é?:)(r) = 52@3(”‘

Step 4. Generate the regression equations again and predict.

We first combine all the imputed univariate principal component scores
(got from Step 3) and the computed univariate principal component scores
in Step 1 together as a new matrix é , then generate G' — 1 regression equa-
tions %m(r) = EO(T)B(T), hence 5?:57“) can be imputed by é(mr)(r) Y T;
Step 5. Repeat Step 4 until convergence.

Multiple Block-Wise Imputation Algorithm (MBI)

We introduce some excess notations not found in the CMI algorithm.

For r = 1,--- /G. G(r) denotes the index set of the missing pattern
groups in which the m(r) missing data sources and at least one of the o(r)
observable data sources are observed. If there are no missing values in the
rth group, let G(r) = {r}, a complete data group. We assume that G(r) is
nonempty containing M, = |G(r)| elements.

The details of the MBI algorithm are given below.

Step 1. Find the index set G(r) mentioned above.

Step 2. Establish regression equations and impute missing blocks EEZ@
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(i) Find the index sets J(r, k) and Z(r, k) for each k € G(r). For each
keg(r), J(r,k)=o(r)no(k) denotes the index set of data sources which
are observed in Groups r and k, and Z(r, k) = {j : J(r, k) C J(r,j),j €
G(r)} is the index set of missing pattern groups in which data sources
J(r,k) Um(r) can be observed.

(ii) Establish M, regression equations of 5?(%) with respect to 5‘17((::))
for the corresponding k € G(r).

(iii) Obtain M, imputed values of the missing EZL)(T) in the rth pattern
pattern group by using the regression equations in (ii) with S‘ggr’k) as co-
variates, denoted by {é:?,ir), k=1,--- M,}.

Step 3. Aggregate various imputation results {ET,ET), k=1,---,M,} toob-
tain the final imputed value for £Z,L)(T). Generally speaking, we can average

~m(r)

M, estimated {§,, ",k =1,---,M,} to obtain é(mrgr).

S3 Proof of Lemmas and Theorems

In order to obtain the asymptotic properties, we impose the following as-

sumptions in this paper.

Al. E||F||* < C < o0 and Zf\il F.F; 25 Sp for some M x M positive

definite matrix X p.
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A2.

A3.

A4.

A5.

Ai = (M, )L I € A < oo and ||[AA/T — S4|| — 0 for
some M x M positive definite matrix ¥, which ensures that each

factor has a nontrivial contribution to the variance of K,.

There exists a positive constant C' < oo such that for all 7" and N:
(1) E(eir) = 0,Elex|* < C
(2) E(ef'e;/T) = E(T™" Y1y eneje) = vr(i.j), |yr(i, 4)| < C for all 4,
and

T

L3S i)

i=1 j=1
(3) Eleiseit) = Tstq with |7g,| < |7g| for some 74 and for all . In
addition,
T T
DD Imal <
s=1 t=1
N N T T

(4) Eleiseje) = Trij and g Dimy D050y D emy 2oy | Totig) < C

(5) For every (t,s), E|\/%7 ST lewese — Eleae)]|* < C.

N[ =

T

N
1 1
(T glu\/ﬁgl et“)

There exists C' < oo such that for all N and T, and for every ¢« < N

and every t < T
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1) SN, (i, ) < C.

(2) o 7l < C.

AG6. There exists an C' < oo such that for all 7" and N:

(1) for each 1,

2

N T

1

Ell— Fk[esk’esi - E<€skesi)] < C;
VT %
(2)
;| NI 2
El|l|l—— Fi)\s'esi gC
T4
Component Model for Hybrid Data
Let
1 1 1 1

K= [g“)Dg})?, . ,C(P)D;P)Q,Z“)DE})Q, . 7z(Q)D§lQ)2] o (s3.)

then (2.4) in Section 2 can therefore be expressed as
KKK =TAT".

Based on the K-L expansion of univariate functional data mgj ) (t;), ba-
sis expansions of loading functions {a%) (t;)} and canonical weight functions
{w) (t;)}, and multi-source component model xﬁj)(tj) =M fLma%) (t;)+
egj)(tj) in which egj)(tj) denotes the truncated error of :ng)(tj), we have

¢V = FsO)' + egcj) for j=1,---, P, where egcj) denotes the error matrix of



S3. PROOF OF LEMMAS AND THEOREMS

C(j). Similarly, we can get the expression 70 = Fh(j)/+e§f) fory=1,---.,Q
in which where el(lj) denotes the error matrix of Z). Substituting these ex-

pressions above into K can obtain the expression below,

IC =F S(l)’D?)%, . ’S(P)’D;P)%’ h(l)’Dg)%’ . ,h(Q)/DéQ);]

_|_

1 1 1 1
DV . ePDPE oIDDE . ’egQ)DngM]_

Denote

[NIES

A= [sUDPE L §PDPE pODME . @D ]

Y

i 1 1 1 1
e= |leWDW2 ... 7ech)Dchh7821)D21)2 ,egQ)DELQh],
then
I =FA +e. (S3.2)

(1S3.2)) is called the component model of hybrid data.
Consider the case without missing in hybrid data firstly. I and A
are defined as above, F is the real value of factor, F is the corresponding

estimator based on eigenanalysis. We have the following lemmas.

Lemma 1. Assume assumptions A1-Aj hold. As N, T — o0,

(i)
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(i)

FF (NA\ FF Py
N T N ’

where Vit is the M x M diagonal matrix of the first M largest eigenvalues
of (NT)"'ICK in decreasing order, V is the diagonal matriz consisting of

the eigenvalues of E}(?ZFZ}f.

Lemma 2. Let H = N%[,A’AI7”1~7’VNT_1 = A}A% Ve L. Under assump-

tions A1-A2 together with l~7/1~7'/N = I and Lemma|l|, we have
[ H]| = Op(1).
Lemma 3. Under assumptions A1-A4,
LA
or (N S - H*FZ-n?) -0,
i=1
where Syp = min{v/N,v/T}.

Proof of lemmas 1-3 is similar to Bai and Ng (2002).

Proof of Theorem 1.

From ([S3.2)) we have:
KK' = (FA +e) (FA +e) = FA'AF + eAF + FA'e +e€’.
Therefore, by the definition of eigenvectors and eigenvalues, we have

1
W’C’C/ = FVNTF/,
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or

1 ,
FFKKT =TVyr,

where I is the eigenvector.
Let F = /NT, then FF = NL Substituting F into the equations

above, we have

1 U
— F=FVyr.
NTK’C NT
Therefore,
F = L (K BVt
NT NT

1 _ 1 _ 1 . 1 .
= WFA’AF’FVNT’l + WeAF’FVNT*1 + WFA’e’FVNT’l + Wee’FVNT*1

214+, +1;+1,.

Donote
F/ e’ F,
F = ,e = JF =
Fy en’ Fy'
So,
F,/ F/A’'AF'FV !
I, :%FA’AF’FVNT‘I = % . | AAFFVy, !t = %

Fy' FAN'ANAFFV ypt
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1 _ 1
I, =——eAFFVyr ' = —
2=NT® NT = NT
1 . 1
Iy =—FANeFVy = —
BTNT NCEYNT TN
1 . 1
14 —WGGIFVNT ﬁ
So we can obtain
F/AAFFV !
.1 1
F=— —
NT tNT
FANANAFFV yp !
FllA/ fo\il eiF;VNTil
N 1
NT

FN/A/ Zf\il eiF;VNT_l

el’A Efil FiF;VNT_l

eN’A sz\il FiF;VNTil

FllA/ Zi\il eiFQVNT_l

FN/A/ Zi\il eif“gVNTil

N /T -1
Yoimiel'eF Vi

el’A sz\il FiF{iVNT_l

/ N " -1
en'AD i FiFiVr
N /. T -1
Zizl €1 eiFiVNT

NT

N 1. TV -1
Y en'eF Vyr
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Therefore, for j =1,--- , N,

N

1 . 1 -

F) =P/ NAFFV ™ + e/ Ay FiFVyr™
i=1

N N

1 ~ 1 ~
+ WFj/A/ E eZ‘F;VNTil + W E ej'eiF;VNTfl.
i=1 =1

Therefore we have:

N N N

- 1 - 1 ~ 1 ~

Fj — H/Fj = VNT_1 (W E FiF/A'ej —+ ﬁ E Fie/AFj + W E Fiei’ej> .
i—1 1 =1

The rest proof of the convergence rate of each term on the right side of
equation above is similar to the one of Lemma A.2. in Bai (2003), hence

we omit it.

For the convenience of description, we introduce the notations below firstly.

Ny @ the number of subjects in the rth missing pattern group, r =1,--- |G,

Ny =G ;
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N®) . the number of subjects who has the common missing data source with

the kth data source, k =1,--- , N, N®) = Ny when k € Gy;
M50 - the index set of missing variables for the ith subject, i =1,---, N.

2
Lemma 4. Under the assumptions A1-A6 and N > (ﬁ) where p is the

missing rate, we have

dU) _ eG) _ L)
£ —¢§ Op(\/N :

where é(j) represents the imputed value of €Y, j=1---,P4+Q.

Proof of Lemma 4.

We only prove the results for the CMI imputation method, the proof
on the MBI imputation method is similar.

Because the implementation of the CMI method involves iteration, we
will prove Lemma 4 following the CMI implementation steps.

Am(r)(o

)
Step 1. We first obtain the initial estimated value &, of E(mr)(r) (r =

2,--+, @) based on the following regression equation:
m(r) o(r) 3(0) (0)
S =& B tew
then

Am(r)(o) o(r) 2 (0)
" =& B
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where the superscript (0) represents the initial step, and the subscript (r)

represents the rth missing mode group; ,6 T) = (5?8" E?S > 5((;8)/ gggr),

Obviously, BES; —Bu =0y (ﬁ) Therefore,

ém(r)(o) £m(,’,) O < 1 ) 9 e
r - r - — |, =4 ,0.
(r) (r) P\ VN,

Step 2. Here, we consider the first iterative case. Let

Denote
o (P+Q))
) €0y
Hw (P+@)™
e 3 &)
(1w (P+@)™
3 £

Then, the following regression model is built to estimate £m(r) (r=2,---,G):
mr)® _ po(r)®
gmnt — gotn) 58§+e(1)7

where 50(7")(1),57”(7")(1) are the subsets consisting of the o(r) and m(r) data
sources in 5(1), respectively.

So we can obtain

Am(T)(l) o(r)(l) ~ (1)
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T

~ (1) oD oD\ " oot D ey (1)
whereﬁ():(gU go) ) go @ gmm™

We know from the definition of & M) that

(1) _ 1
R

ﬁ

A - Aipig

where A = : : denotes such a G x (P+ Q) block matrix,

Acr -+ Acprto

where the (r, j)th submatrix composes of 0 matrix if j € o(r), otherwise 1
matrix.
Denote A°" A™") as the subsets consisting of the rth row block and

the column blocks corresponding to the o(r) and m(r) data sources of A,

1)

r)’

respectively. Therefore, for the kth column of BE

Let
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Therefore,

(1) m(r)(l)

(1) & 1 po(rn)®’ 1 m(r)
By, =B 'S+ B¢ op< = ) A /N
-1 o(r)’ m(r)®) -1 o(r) (r)
+B OP(W)A & /N +B70, (M)A A N

ST+4+II+II41V.

Since,

! r)@ /!

L e e W41, (1)

I:BI k :Bl <€O(7") /3 te )
N N

o(r)(l)/ o(r)(M) 1 o(r)y(M” (1)
Sl ST
1
:ﬁ(r)k +Op (\/N) )

where B~! = O,(1).

=500 <W>Ak‘ 0N
1

1 oYV rm(r
:Op( NI)E() Ak()/N
1\ &0
<
SO (FM) N
9 ( 1 ) 1 g™’y
= —\/N,,
P \/Nl N ) N(T)
_o (2 N
P\ VM N
<o (Frefivi) <o ()
N-N VN VN
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The proof for III is the same as the proof for II, III = O, (\/Lﬁ)

1 /
= -1 e O(T) m(r) =
IV=8B"0, (N1> A* AL /N 0.

Combing the result of the four terms above can obtain

~ (1) 1
5(i) - B(r) = Op (\/_W) .

Therefore we have

£ (1) 1
f(i) - €(r) = Op (\/_N> :

Step 3. Repeating the process above until convergence can get the conclu-

sion.

]

Proof of Theorem 2.

From the CMI and MBI imputation methods and the theory of regres-

co &0 JEolr)
sion, for r = 1,--- .G, let E(i)z for j =1,---,P and

Ay

).
Eqry, J€m(r)
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Now construct & in terms ofé and Z(j), ie.,

’AC:

X 1 ~ 1 1 . .
5(1)]35[1)2, L sk Z(l)D21)27,.. ,Z(Q)Dﬁfz)?]

(E“) +0, <\/LN) A<1>) D2 . (5“”’ +0, (VLN) A<P>) D",

(z<1> 10, (\/%) A<1>> DV? ... <Z(Q) Lo, (%) A(Q)) Dg@ﬁ] |

where A® is an N x M;(T}) matrix consisting of Os and 1s, and the elements

of the kth row of A® take the value 0 when the kth observation is not

missing, otherwise 1 . Therefore,

~

K =F

SUDYE . gP'DPE {0 DD

K=FA +M+e.
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So,

KK =(FAN +M+e) (FA'+M+e)

=FA’AF’ + eAF + FA'e + ee’ + MAF + MM’ + Me' + FA'M’ + eM'.

From the eigenanalysis of KT@I, we have

1 s
— KKF =FVyr.
NT NT
Therefore,
I (RK) V!
—NT NT

1 . 1 R 1 .
:WFA/AF’FVNT’l + ﬁeAF’FVNT’l + WFA'e’FVNT*1

1 . 1 . 1 .
+ ﬁee’FVNT_l + WMAF’FVNT‘l + WMMiS’FVNT‘l

1 . 1 . 1 .
+ ﬁMe’FVNT‘I + WFA’M’FVNT‘I + ﬁeM’FVNT—1

21 4 I+ I3+ Iy + 15 + I + 17 + Ig + 1o,

where the vector expression form of I, —I4 above can be derived by replacing
F with F as in the proof process of Theorem 1. And let M = (Mg, -+, My)/,

then I5 — Iy are be rewritten as follows.

M/ASY FF V!
1 . 1

I =—MAFFVy; ! = — :
5 NT NT NT : 9

My AN FFV
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S My MF V™!

1 R 1
It = MMFVyp ' = —— :
STNT NT NT ' ’
Zij\il MNIMZ'152\71\fo1
N / 'A/ -1
>ims Mi'eF; Vi
. 1
I7 _—Me’FVNT_ = W )
Zi\il MN/eiF;VNT_1
F/A SN M V™
1 R 1
Iy =—FA'MFVy, ! = N7 ,
FA'A SN MFV
SN e MEFV
i=1 "1 L'y VNT
. 1
[y =——eM'FVy; ' = —
" TNT NT = NT

N / s -1
Zi:l enN MiFiVNT

Let H = <M> (FI—F> V7!, then from Lemma 2 we know that H=



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

O,(1). Therefore,
, 1 & 1 &
Fo —HF, =Vyr | ==Y FF/Ae,+— Y Fe/AF
k k NT (NT ; e + NT ; e k

N N
> Belet % SORF/ AN, + Z B MM,
i=1 =1

EVar 'L+ L+ L+ L+ L+ I+ 1 +15).
According to Theorem 1, it can be seen that

1 .
11+I2+13:WZF ’A’ek+—ZFel’AFk+—ZFelek

As for 1y,
1 N
L =S FF/A'M
=N Y :
1 N / 1 / N
—— S (F,—H F) F/AM, + —H S F,F/A'M
NT ; ( CENT ; ;
_141 + 142
Due to
N
A'M,,
I — HS FF/AM, =H - FF/ -
4o — NT Z Zzl T )

~ : is As
where [[H]| = 0,(1), 2 XY F.F/ = 0,(1), and A%s — T8 Zupnien X
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Due to

> senrtmisn || As]]
= T (mis,k)

mZS A
HZSEM( 5 = OP<1)7

(mis,k)

therefore, I, = O, (T%Tk )> :

In addition,
N
L] = H Z ;—HF) F,
=1

(i) (s
57000 (T,

Combining T, and L, can get T, = O, (T

A'M;,
T

A

F,—HF

For I5,

where M (™59 1 [(misk) denotes the index set of intersection of the missing

variable in the ith row and the missing variable in the kth row, 7™k =

]M(mis’i) N M(mis’k)] is the size of M(misi) ) \p(misk)
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Note N Z G{M("”s J i) M (mis, k)#@}, then

1
_ (mis,i,k)
el = || o Aw
} }
NF 1 2 1 is,i,k)2
<WHHH NG > [1F: ]| NE > Tmissk)
ie{kf("”s’i)(“IM("”“”");UZ} iE{NI(1n’iS,i)mM(m‘is,k)#g}
k mis
o (N0
R N2T '
And
S ' ( ®)
I mis,i
IILs, 1] = HN2T So(Fi-HF)T
i=1
3 3
N®) 1 PO 2 1 o
<37 T ‘ B — H/F7 ~ T(mts,z,k)Q
ie{M(mis,i)qpp(mis,k) 2oy ie {M(mis,i)qpg(mis,k) 2oy

N(k)T(mis,i,k) 1
=0, | ————  —— | .
P N2T SnT

: _ N (k)p(mis,i,k)
Combine I5, and I5,, then Iy = O, (T) .

1 N
- - /
Ig _W ; Fie; My,
1 N
:WZ <F HF)eZ’M,mL—H ZF e/M
i=1 ;
N N
1 1 1 1
\/NN_ X_: ( ) (ZleMﬁnisvk) €il> + \/NWH ; Fi (ZIGM(mis,k) e”)
_161 + 162
Since

2
E ZZEMmz‘s,k) G\ 0 E ZlEM(mis,k) €il —E ZZGM(mis,k) ZmeM(mis,k) €il€im < C
\/ T'(mis,k) - T (mis,k) o T (mis,k) ’
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Zle]\l(miswk) €4l
So W = Op(l) Therefore,

VT (mi 1 — ) 1
116, || < fT (NZHFH) (NZ

=1
[T, || < Lo Z ZZGM(”“S k) €il
a \/_T N T(mzs k

Combine Ig, and Ig,, then Is = O, < T\/(%Tk ) .

ZZEM("”S k) €il

mzs k

2\ 2 O \/ T'(mis,k) .
P WNT )T

2\ 2 O T (mis,k) 1
-7 VNT ont |

As for Iy,

1 & 1 Y
:—§ M/AFy = — Y F.M/AF
=57 - FTONT A

i=N1+1

N
1 1
o Y (F—HF)M’AFkJr— § H'F,M,/AF,
i=N1+

i=N1+1
21, + 1,
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S4 Description of ADNI Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The overarching aim of the
ADNI study has been realized in informing the design of therapeutic trials
in AD. ADNI3 continues the previously funded ADNI1, ADNI-GO, and
ADNI2 studies that have combined public/private collaborations between
academia and industry to determine the relationships between the clini-

cal, cognitive, imaging, genetic and biochemical biomarker characteristics
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of the entire spectrum of sporadic late onset Alzheimer’s disease (AD).
The strategy is based on the concept that AD can be characterized by the
accumulation of A and phosphorylated tau, synaptic loss and neurodegen-
eration, leading to cognitive decline. Clinical/cognitive measures lack both
sensitivity and specificity to detect AD pathology. Instead, biomarkers are
more reliably used to identify participants at risk for cognitive decline and
to measure disease progression. This project will collect MRI (structural,
diffusion weighted imaging, perfusion, and resting state sequences); amyloid
PET using florbetapir F18 (florbetapir) or florbetaben F18 (florbetaben);
18F-FDG-PET (FDG-PET); CSF for A, tau, phosphorylated tau (AKA
phosphotau), and other proteins; AV-1451 PET; and genetic and autopsy
data to determine the relationship of these biomarkers to baseline clinical
status and cognitive decline.

In our study, we choose four important indicators from ADNI as data
sources. MRI images we selected come from the MP-RAGE category with
size 160 x 160 x 96. PET images are from AV-45 type with size 176 x 240 x
256. We first reduce the data of PET and MRI by sub-sampling by 2 at all
three dimensions to obtain PET data of size 80 x 80 x 48 and MRI data of
88 x 120 x 128 to reduce computational complexity. There are 49386 genes

in GENE data and 3 biomarkers in CSF. MMSE is a 30-point question-



S4. DESCRIPTION OF ADNI DATA

naire that is used extensively in clinical and research settings to measure
cognitive impairment. The subjects were divided into 4 groups according to
the MMSE score: normal cognitive function group (CN), early mild cogni-
tive impairment group (EMCI), advanced mild cognitive impairment group

(LMCI) and elderly dementia group (AD).
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