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Supplementary Material

S1 Literature Review on Spatial Hole Effects

Spatial covariances with hole effects have been reported in different scientific

and engineering disciplines, including

• atmospheric science (Bleck, 1975; Thiébaux, 1976, 1985);

• soil science (Webster, 1977; Pierson and Wight, 1991; Ciollaro and

Romano, 1995; Guillobez and Arnaud, 1998; Sharifi et al., 2020);

• agronomy (San Mart́ın et al., 2018; Bosaz et al., 2019);

• ecology (Curran, 1988; Cohen et al., 1990; Pastor et al., 1998);
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• physics (Price and Kozlowski, 2021);

• manufacturing and materials science (Bonetto et al., 2002; Yang and

Shao, 2018; Everett et al., 2020);

• biology (Mary-Huard et al., 2004; Dong et al., 2015);

• image analysis (Balaguer et al., 2010; Balaguer-Beser et al., 2013);

• geotechnical engineering (Chang et al., 2021; Ching et al., 2023);

• geomorphology (Jordan, 2003);

• geodesy (Varbla and Ellmann, 2023);

• glaciology (Irvine-Fynn et al., 2022);

• hydrology (Fiori et al., 2003; Chen, 2005; Salamon et al., 2007);

• outcrop-based geology (Jennings et al., 2000; Budd et al., 2006; Ma-

tonti et al., 2015);

• subsurface geology (Journel and Froidevaux, 1982; Jones and Ma, 2001;

Lefranc et al., 2008; Parra and Emery, 2013; Emery and Parra, 2013;

Le Blévec et al., 2018).

Many of the above references have pointed out the importance of ac-

counting for hole effects for improved spatial predictions, uncertainty mod-

eling and decision-making.



S2. VISUAL ILLUSTRATIONS

S2 Visual Illustrations

S2.1 Basic Models

Figure S1 shows the following basic constructions in dimension d = 2:

I. 2 exp(−0.8h⊤Ah)− exp(−0.4h⊤Ah), with A =

 1 −0.5

−0.5 1

.

II. exp(−0.2 ∥h∥2) [3.41 exp(−0.8h2
2)− 2.41 exp(−0.4h2

2)].

III. exp(−0.5 ∥h∥)W(5|h2|), with W being the wave model.

The positive semidefiniteness of the first two models, where differences of

covariance functions are involved, is a consequence of Theorem 1(i) in Ma

(2005).

Figure S1: Basic models I-III (from left to right).
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S2.2 Proposed Models

We now illustrate the various shapes that can be achieved with the proposed

models in dimension d = 2. We consider the following scenarios:

I. The models in Corollary 3 with A1 = I2 and A2 = P diag(µ1, µ2)P
⊤,

with µ1, µ2 > 0 and

P =

cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)


being a rotation matrix. The conditions of Corollary 3 are satisfied if,

and only if, max(µ1, µ2) ≤ 1 and b1
√
µ1µ2 ≥ b2. Thus, we fix b1 = 2.5,

b2 = 1, µ1 = 0.2 and µ2 = 0.8.

II. The models in Corollary 4, with b1 = 2, b2 = 1, a1 = 0.8 and a2 = 0.4,

with a shift vector given by η = [1, 1]⊤.

III. The models in Corollary 5, with b1 = 1, b2 = 2, a1 = 1 and a2 = 0.5,

and the unit vector u = [1/
√
2, 1/

√
2]⊤.

Figure S2 shows the contour plots of the Matérn model with ν = 1.5,

the Cauchy model with δ = 1 and the Gauss hypergeometric model with

α = 3, β = 7/2 and γ = 6, after the application of the transformations

described in Corollaries 3-5 under scenarios I-III, respectively, together

with a normalization in order to obtain correlation functions. To improve
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the visualization of each individual model, we have chosen specific ranges

for plotting. We consider h = [h1, h2]
⊤ ∈ [−10, 10]2 for the first two models,

and h = [h1, h2]
⊤ ∈ [−2, 2]2 for the last model. All the covariance functions

have been designed to present a hole effect around the northeast direction.

Figure S3 shows T (3)
a1,a2,b1,b2,u

[W ] and T (3)
a1,a2,b1,b2,u

[M1/2,W ] in dimension

d = 2, with parameters a1 = a2 = b1 = 1, b2 = 2 and u = [1/
√
2, 1/

√
2]⊤.

While certain structural oscillations from the cardinal sine model persist,

the proposed models exhibit a notably amplified hole effect in the u di-

rection. Observe that T (3)
a1,a2,b1,b2,u

[W ] exceeds the lower bound required for

isotropic models in R2.

S3 Simulation Study

We use simulated data to compare covariance models with or without hole

effect and anisotropy. Specifically, we consider d = 2 and the following

covariance structures, where Hα,β,γ stands for the radial part of the Gauss

hypergeometric model defined in (4.21):

• Model 1. σ2Hα,β,γ(
√
a∥h∥)

• Model 2. b1Hα,β,γ(
√
a1∥h∥)− b2Hα,β,γ(

√
a2∥h∥)
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Figure S2: Different combinations of anisotropies and hole-effects for the transformed

Matérn (top), the transformed Cauchy (middle) and the transformed Gauss hypergeo-

metric (bottom) models. From left to right we consider the transformations introduced

in Corollaries 3-5, respectively. The values of the parameters have been described in

scenarios I-III.
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Figure S3: Models T (3)
a1,a2,b1,b2,u

[W] (Left) and T (3)
a1,a2,b1,b2,u

[M1/2,W] (Right).

• Model 3. b1Hα,β,γ(
√
a1∥h∥)− b2

2

(
Hα,β,γ(

√
a2∥h−η∥)+Hα,β,γ(

√
a2∥h+

η∥)
)
.

As in Section S2.2, we fix α = 3, β = 7/2 and γ = 6, which cor-

responds to the well-known cubic model (see Emery and Alegŕıa, 2022).

Unlike Model 1, Models 2 and 3 can exhibit a hole effect. The hole effect in

Model 2 appears in all directions, whereas Model 3 is the only anisotropic

model and exhibits the hole effect in specific directions (it is a special case

of construction (3.15)). These models offer a range of increasing complex-

ity to make statistical comparisons, and further contribute to the ongoing

discussion in this manuscript regarding the model versatility.

Figure S4 displays realizations of Gaussian random fields with these co-

variance models over a regular grid with 80× 80 nodes in the square [0, 4]2.
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The simulation was performed by means of the Cholesky factorization of the

covariance matrix; the same seed for random number generation was con-

sidered for each realization. The values of the parameters were σ2 = 1 and

a = 1/2 for Model 1, and b1 = 2, b2 = 1, a1 = 1, a2 = 1/2 for Models 2 and

3. In addition, for Model 3, we used η =
[
1/
√
2, 1/

√
2
]⊤

. Note that these

values satisfy the admissibility condition (3.14). Although some distinction

emerges among these realizations, the presence or absence of hole effect or

anisotropy may be difficult to perceive with a naked eye. To explore this

aspect, we simulate 100 independent samples from each model, over a grid

with 20× 20 nodes in [0, 4]2, with the parametric setting explained above,

and calculate sample variograms across the northeast direction (parallel to

η) and the southeast direction (orthogonal to η). The results are reported

in Figure S5, together with the average sample variograms and the theoret-

ical underlying models. For the first model, there is no hole effect in either

direction. In the second model, a hole effect is observed along both direc-

tions. In the third model, a hole effect is observed in one direction but not

in the other. These observations align closely with the expected properties

of the underlying theoretical models, and serve as a reinforcement of their

main features.

Now, we conduct a study to quantify the difference in terms of good-
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Figure S4: Realizations of Gaussian random fields from Models 1, 2 and 3 (from left to

right), over a regular grid with 80× 80 nodes in the square [0, 4]2.

ness of fit of Model 3 with respect to the other models, when the inherent

correlation structure presents a hole effect in a specific direction.

Let us first establish an adequate parameterization. Note that the in-

tensity of the hole effect in Models 2 and 3 depends on the ratios b1/b2

and a1/a2 (see condition (3.14)). For instance, when b1/b2 decreases, not

exceeding its minimum admissible value a1/a2, the significance of the nega-

tive term in the covariance structure amplifies and the hole effect emerges.

Since only the ratios matter, allowing the parameters to vary freely could

give rise to identifiability issues. To circumvent this problem, we parame-

terize Model 2 in the following way:

σ2
(
bHα,β,γ(∥h∥)−Hα,β,γ(

√
a∥h∥)

)
,
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Figure S5: Sample directional variograms for 100 realizations (green lines), average of

sample directional variograms (black dots) and theoretical directional variograms (blue

solid lines). From the top, each row refers to Models 1, 2 and 3, respectively. Left

panels are associated to northeast direction, whereas right panels correspond to southeast

direction.
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and the validity condition (3.14) simplifies into b ≥ 1/a. A similar param-

eterization is used for Model 3. In addition, η is taken as a unit vector,

parameterized through an angle θ ∈ [0, 2π), i.e., η = (cos θ, sin θ)⊤. To sum

up, Model 1 is parameterized by (a, σ2), Model 2 by (b, a, σ2) and Model

3 by (b, a, θ, σ2). The parameters in Model 3 allow us to control the hole

effect, the correlation range, the predominant direction of the hole effect,

and the variance of the random field.

We simulate independent samples from Model 3, considering the fol-

lowing scenarios: 1. (a, θ) = (1/2, π/4), 2. (a, θ) = (3/4, π/4), 3. (a, θ) =

(1/2, 3π/4) and 4. (a, θ) = (3/4, 3π/4). For each scenario, b = 1/a, i.e., we

use its minimum admissible value, and σ2 = 1. To understand the scenarios

covered, let us analyze Model 2, as Model 3 inherits similar characteristics

from it. Normalizing Model 2 to obtain a correlation structure, we find

numerically that, for scenarios 2 and 4, its minimum value is −0.170 at a

distance of 0.64. In contrast, for scenarios 1 and 3, the minimum value is

−0.158 at a distance of 0.70. These scenarios also encompass two distinct

directions regarding the presence of the hole effect.

For each scenario, we simulate 100 independent realizations from Model

3, fit each model through maximum likelihood and assess their performance

through the Akaike Information Criterion (AIC), which inherently penalizes
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the number of parameters. The results are summarized in Table S1. Model

3 consistently shows smaller AIC averages in each of the scenarios, as ex-

pected. This improvement is more pronounced in scenarios 2 and 4, where

the hole effect is more marked and the correlation range is smaller. Model 2

exhibits slightly better performance than Model 1 in all scenarios, yet both

models demonstrate suboptimal results due to the misspecification. Figure

S6 displays a more comprehensive panorama of the AIC values for Model 1

in comparison to those of Model 3, depicted through their ratios across 100

realizations. As AIC values are negative, a ratio less than one indicates su-

perior performance of Model 3. While most values fall below one; it is worth

noting that many of them are considerably smaller than one (it is common

to observe improvements of 10% to 20%), providing further support for

the superiority of Model 3. For completeness, Figure S7 displays centered

boxplots for the maximum likelihood estimates of Model 3 involved in this

experiment. These plots reveal unbiased estimates, emphasizing that the

selected parameterization yields models with statistically meaningful and

identifiable parameters.
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Figure S6: Ratios between AIC values for Models 1 and 3 across 100 realizations, for

each scenario.
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Figure S7: Centered boxplots of the maximum likelihood estimates of Model 3 for sce-

narios 1 to 4.
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Table S1: Summary statistics of AIC values from fitting each model on 100 independent

realizations.

a = 0.50 a = 0.75

Q1 Median Q3 Mean Q1 Median Q3 Mean

θ = π/4 Model 1 −165.4 −147.8 −126.0 −146.5 −330.0 −313.1 −296.2 −313.4

Model 2 −167.0 −151.5 −129.3 −148.9 −334.2 −313.6 −296.1 −314.8

Model 3 −173.6 −157.0 −136.9 −155.1 −349.4 −336.1 −316.9 −336.0

θ = 3π/4 Model 1 −166.8 −146.1 −125.8 −147.4 −331.7 −310.4 −294.3 −311.2

Model 2 −165.5 −146.8 −126.3 −147.7 −332.9 −313.1 −293.6 −312.1

Model 3 −172.2 −150.2 −132.4 −154.5 −356.6 −336.8 −314.2 −337.3
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Thiébaux, H. (1985). On approximation to geopotential and windfield cor-

relation structures. Tellus A: Dynamic Meteorology and Oceanography,

37(2):126––131.

Varbla, S. and Ellmann, A. (2023). Iterative data assimilation approach

for the refinement of marine geoid models using sea surface height and

dynamic topography datasets. Journal of Geodesy, 97(3):24.

Webster, R. (1977). Spectral analysis of gilgai soil. Australian Journal of

Soil Research, 15(3):191–204.

Yang, Y. and Shao, C. (2018). Spatial interpolation for periodic surfaces

in manufacturing using a Bessel additive variogram model. Journal of

Manufacturing Science and Engineering, 140(6):061001.


	Literature Review on Spatial Hole Effects
	Visual Illustrations
	Basic Models
	Proposed Models

	Simulation Study

