
Statistica Sinica: Supplement

MINIMUM ABERRATION FACTORIAL DESIGNS

UNDER A MIXED PARAMETRIZATION

Guanzhou Chen1 and Boxin Tang2

1Nankai University and 2Simon Fraser University

Supplementary Material

In this supplementary material, we present the proofs of theoretical results in the paper and

minimum πB- and π-aberration designs of 8 and 12 runs.

S1 Proofs of the theoretical results

Proof of Part (ii) of Corollary 2. The arguments are similar to those used

in Cheng (2014). Let ξ = (ξφ, ξ
(1)T)T and X = (1N , X1). Then the model

(2.4) can be written in matrix form as Y = Xξ+ε. The information matrix

for estimating main effects ξ(1) is given by

Mξ(1) = XTX − 1

N
XTJN×NX,

where JN×N is an N × N matrix of all ones. On the other hand, let

X̃ = (1N , D) and β = (βφ, β1, . . . , βm)T. Then under the orthogonal

parametrization, the model (2.4) can be written as Y = X̃β + ε. The
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information matrix for estimating the main effects β(1) = (β1, . . . , βm)T is

given by

Mβ(1) = X̃TX̃ − 1

N
X̃TJN×NX̃.

Let J̃ = (0N×1, JN×m1 , 0N×m2), where 0N×1, JN×m1 and 0N×m2 are, respec-

tively, an N × 1 matrix of all zeros, an N ×m1 matrix of all ones and an

N×m2 matrix of all zeros. Then the matrices X and X̃ are related through

X = X̃ + J̃ . By some simple algebra, it can be shown that

Mξ(1) = (X̃ + J̃)T(X̃ + J̃)− 1

N
(X̃ + J̃)TJN×N(X̃ + J̃) = Mβ(1) .

Since an oa(N, 2m, 2) is universally optimal for estimating β(1) (Cheng,

1980), it follows directly that an oa(N, 2m, 2) is also universally optimal for

estimating ξ(1).

Proof of Theorem 1. The proof is similar to that of Theorem 1 in Sun and

Tang (2022). Let τ , θ, β and ξ̃ collect all τu’s, θw’s, βw’s and ξw’s in Yates

order. Define Lm = ⊗mk=1L and Hm = ⊗mk=1H where

L =

1 0

1 2

 , H =

1 −1

1 1


and ⊗mk=1 denotes m-fold Kronecker product. Then in matrix notation we

have

τ = Hmβ, τ = Lmθ, τ = Hm2 ⊗ Lm1 ξ̃. (S1.1)
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Then the results in Theorem 1 can be verified directly. For example, ξ̃ =

⊗m2
k=1(H

−1L)⊗ I2m1 θ̃ where I2m1 is the identity matrix of order 2m1 .

Proof of Lemma 1. Note that the matrixB2, which contains the rows 2, . . . ,

m1+1 of the matrix (XTX)−1XTX2, can be written asB2 = (B2,B×B, B2,B×O,

B2,O×O), where the three submatrices correspond to the interactions of

two B-factors, one B-factor and one O-factor, and two O-factors, respec-

tively. Hence πB2 = tr(BT
2B2) = tr(BT

2,B×BB2,B×B) + tr(BT
2,B×OB2,B×O) +

tr(BT
2,O×OB2,O×O). Since D is an orthogonal array, it can be easily checked

that

XTX = N


1 1T

m1
0

1m1 Im1 + Jm1 0

0 0 Im2

 , (XTX)−1 =
1

N


m1 + 1 −1T

m1
0

−1m1 Im1 0

0 0 Im2

 ,

where Jm1 is an m1×m1 matrix of all ones. Through some tedious algebra,

one can show that tr(BT
2,B×BB2,B×B) = 3

∑
i<j<k J

2(bi, bj, bk)/N
2+m1(m1−

1), tr(BT
2,B×OB2,B×O) = 2

∑
i<j

∑
k J

2(bi, bj, ok)/N
2 and tr(BT

2,O×OB2,O×O) =∑
i

∑
j<k J

2(bi, oj, ok)/N
2. This gives the expression of πB2 in the Lemma.

One can also define O2,B×B, O2,B×O and O2,O×O similarly and show that

tr(OT
2,B×BO2,B×B) =

∑
i<j

∑
k J

2(bi, bj, ok)/N
2, tr(OT

2,B×OO2,B×O) = 2
∑

i

∑
j<k

J2(bi, oj, ok)/N
2+m1m2 and tr(OT

2,O×OO2,O×O) = 3
∑

i<j<k J
2(oi, oj, ok)/N

2,

leading to the expression of πO2 in the Lemma.
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Proof of Theorem 2. First, we do not assume that D = (b1, . . . , bm1 , o1, . . . ,

om2) is regular. Since D is an orthogonal array, there exists a set of m3 =

N − 1 − m orthogonal real columns E = (e1, . . . , em3) such that eTj ej =

N2 and ej’s are orthogonal to columns of D and the column 1N for j =

1, . . . ,m3. Hence, for any 1 ≤ i 6= j ≤ m1, we have that
∑m1

k=1 J
2(bi, bj, bk)+∑m2

k=1 J
2(bi, bj, ok) +

∑m3

k=1 J
2(bi, bj, ek) = N2. Summing this equation over

all (i, j)’s, one can show that

∑
i<j

∑
k

J2(bi, bj, ok) = −3
∑
i<j<k

J2(bi, bj, bk)−
∑
i<j

∑
k

J2(bi, bj, ek) + C1

(S1.2)

for some constant C1. Using similar arguments, we can express
∑

i

∑
j<k

J2(bi, oj, ok) and
∑

i<j<k J
2(oi, oj, ol) in terms of J-characteristics of columns

not involving oj’s. In particular, we have

∑
i

∑
j<k

J2(bi, oj, ok) = 3
∑
i<j<k

J2(bi, bj, bk) + 2
∑
i<j

∑
k

J2(bi, bj, ek)

+
∑
i

∑
j<k

J2(bi, ej, ek) + C2 (S1.3)

for some constant C2 and

∑
i<j<k

J2(oi, oj, ok) = −
∑
i<j<k

J2(bi, bj, bk)−
∑
i<j

∑
k

J2(bi, bj, ek)

−
∑
i

∑
j<k

J2(bi, ej, ek)− J2(ei, ej, ek) + C3 (S1.4)

for some constant C3. Combining (S1.2), (S1.3) and (S1.4), we have πB2 =
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i

∑
j<k J

2(bi, ej, ek)/N
2 + CB and πO2 = −

∑
i

∑
j<k J

2(bi, ej, ek)/N
2 −

3
∑

i<j<k J
2(ei, ej, ek)/N

2 + CO for some constants CB and CO. Therefore,

we have proved that sequentially minimizing πB2 and πO2 amounts to sequen-

tially minimizing
∑

i

∑
j<k J

2(bi, ej, ek) and −
∑

i<j<k J
2(ei, ej, ek).

Now suppose that columns of D are selected from a saturated regular

design as specified in Theorem 2. Then E can be taken as the complement

of D in the saturated regular design. Then we have that J2(bi, ej, ek) = N2

if bi, ej and ek forms a defining word and J2(bi, ej, ek) = 0 otherwise. It

can be verified that when the conditions in part (i) of the theorem are met,

bi must contain an independent column not contained in ej and ek, leading

to J2(bi, ej, ek) = 0. In addition, the results of Chen and Hedayat (1996)

imply that
∑

i<j<k J
2(ei, ej, ek) is maximized by design D among all regular

OA(2h, 2m, 2)’s, and in particular, among all OA(2h, 2m, 2)’s if m = 2h−2h1

for some integer h1. The results of Theorem 2 then follow.

Proof of Lemma 2. We use similar notations to those in the proof of Lemma

1. For example, B3,B×B×B is the submatrix of (XTX)−1XTX3 correspond-

ing to contamination of interaction involving three B-factors on the main

effects of B-factors. Then we have

tr(BT

3,B×B×BB3,B×B×B) =
3

N2

∑
i<j<k

{J(bi, bj, bk) +N}2
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+
1

N2

∑
i<j<k

∑
l

{J(bi, bj, bk, bl) + J(bi, bj, bl) + J(bi, bk, bl) + J(bj, bk, bl)}2 ,

tr(BT

3,B×B×OB3,B×B×O) =
2

N2

∑
i<j

∑
k

J2(bi, bj, ok)

+
1

N2

∑
i<j

∑
k

∑
l

{J(bi, bj, bk, ol) + J(bi, bk, ol) + J(bj, bk, ol)}2 ,

tr(BT

3,B×O×OB3,B×O×O) =
1

N2

∑
i

∑
j<k

J2(bi, oj, ok) +
1

N2

∑
i 6=j

∑
k<l

{J(bi, bj, ok, ol) + J(bi, ok, ol)}2 ,

tr(BT

3,O×O×OB3,O×O×O) =
1

N2

∑
i

∑
j<k<l

J2(bi, oj, ok, ol),

tr(OT

3,B×B×BO3,B×B×B) =
1

N2

∑
i<j<k

∑
l

{J(bi, bj, bk, ol) + J(bi, bj, ol) + J(bi, bk, ol) + J(bj, bk, ol)}2 ,

tr(OT

3,B×B×OO3,B×B×O) =
2

N2

∑
i<j

∑
k<l

{J(bi, bj, ok, ol) + J(bi, ok, ol) + J(bj, ok, ol)}2 +
1

2
m1m2(m1 − 1),

tr(OT

3,B×O×OO3,B×O×O) =
3

N2

∑
i

∑
j<k<l

{J(bi, oj, ok, ol) + J(oj, ok, ol)}2 ,

tr(OT

3,O×O×OO3,O×O×O) =
4

N2

∑
i<j<k<l

J2(oi, oj, ok, ol).

Then π3 is obtained by taking the sum of all the terms above. Since any

two J-characteristics in the same curly bracket cannot be nonzero at the

same time, their product will be zero if we expand the square term. By

some tedious algebra, we have

π3 = 4A4+(3m1−6)A3+2πO2 +
6

N

∑
i<j<k

J(bi, bj, bk)+
1

2
m1(m1−1)(m1+m2−2).

(S1.5)

In the proof of Theorem 2, we have already obtained that πO2 = −
∑

i

∑
j<k
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J2(bi, ej, ek)/N
2 − 3

∑
i<j<k J

2(ei, ej, ek)/N
2 + CO for some constant CO,

where e1, . . . , eN−1−m are columns of the complement of D. Clearly, if

e1, . . . , eN−1−m takes the first 2h1−1 columns of a saturated regular design,

then the first three terms of π3 in (S1.5) are constant. Then the result of

the lemma follows.

Proof of Theorem 3. Since D is regular, the value of J(bi, bj, bk) is either 0

or ±N for any 1 ≤ i < j < k ≤ m1. Thus we have

π3 = c1N
∑
i<j<k

J(bi, bj, bk)/N + c0 ≥ −c1N
∑
i<j<k

J2(bi, bj, bk)/N
2 + c0

= −c1NA3(DB) + c0, (S1.6)

where A3(DB) is the A3 value of DB. By results of Chen and Hedayat

(1996), we have A3(DB) is maximized among all regular designs by the

choice of DB in the construction. In addition, since J(bi, bj, bk)/N =

−J2(bi, bj, bk)/N
2, we conclude the lower bound in (S1.6) is achieved. There-

fore, D = (DB, DO) sequentially minimizes π2 and π3 over all regular de-

signs.

Proof of Lemma 3. The proof can be done by a direct verification. For ex-

ample, the contamination of k-factor interaction odj1 · · · djk−1
on the estima-

tion of main effect of djk , where o is an O-factor and dj1 , . . . , djk are either B-

factors or O-factors, will contribute a term (
∑N

i=1 oizi,j1zi,j2 · · · zi,jk−1
di,jk)2/N2,
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where zi,jl = di,jl if djl is an O-factor and zi,jl = di,jl + 1 if djl is a B-factor

for l = 1, . . . , k − 1, in πBk or πOk depending on whether djk is a B-factor or

an O-factor. One can see that replacing oi by −oi does not affect the value

of this term. Therefore, the conclude switching the signs of O-factors in an

OA(N, 2m, 2) does not affect its aberration.

Proof of Theorem 4. For the design D generated in the theorem, we study

the contamination of k-factor interaction bj1 · · · bjk1ol1 · · · olk2 (k1 + k2 = k)

on the estimation of the main effect of certain factor d0. Such a contamina-

tion will contribute a termQ = {
∑N

i=1(bi,j1+1) · · · (bi,jk1+1)oi,l1 · · · oi,lk2di,0}
2

/N2 in πk. Thus we have

Q =
1

N2

{
J(bj1 , . . . , bjk1 , ol1 , . . . , olk2 , d0) + · · ·+ J(ol1 , . . . , olk2 , d0)

}2

.

If we expand the square and average E over all possible sign switches of

B-factors, the cross-product terms will disappear and we will obtain

Q̃ =
1

N2

{
J2(bj1 , . . . , bjk1 , ol1 , . . . , olk2 , d0) + · · ·+ J2(ol1 , . . . , olk2 , d0)

}
.

If we further average Q̃ over all possible choices of B-factors in the or-

thogonal array, then one can show that the resulting term will be a linear

combination of Ak+1, Ak, . . . , Ak2−1 with positive coefficients. Then the re-

sult of the theorem follows by some tedious algebra.

Proof of Proposition 1. The result of Theorem 1 implies that there exist an
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(1+m+f)× (1+m+f) upper-triangular matrix P whose diagonal entries

are all one, such that ξF = PβF and XF = ZFP . Thus det(P ) = 1 and

det(XT
FXF) = det2(P ) det(ZT

FZF). The result of Proposition 1 then follows

immediately.

S2 Minimum πB- and π-aberration designs

We present minimum πB- and π-aberration designs of 8 and 12 runs in

Tables 2, 3, 4 and 5. All these designs are generated by selecting and

sign-switching columns of the saturated designs displayed in Table 1.
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Table 1: Two saturated designs of 8 and 12 runs

1 2 3 4 5 6 7

− − − − − − −

+ − + − + − +

− + + − − + +

+ + − − + + −

− − − + + + +

+ − + + − + −

− + + + + − −

+ + − + − − +

1 2 3 4 5 6 7 8 9 10 11

− − − − − − − − − − −

+ − + − − − + + + − +

+ + − + − − − + + + −

− + + − + − − − + + +

+ − + + − + − − − + +

+ + − + + − + − − − +

+ + + − + + − + − − −

− + + + − + + − + − −

− − + + + − + + − + −

− − − + + + − + + − +

+ − − − + + + − + + −

− + − − − + + + − + +
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Table 2: Minimum πB and π-aberration designs of 8 runs

m m1 m2 Columns of DB Columns of DO (πB
2 , π

O
2 , π

B
3 , π

O
3 ) Criterion

3 1 2 −1 (2, 4) (0, 2, 0, 0) πB , π

3 2 1 (−1,−2) 4 (2, 2, 0, 1) πB , π

4 1 3 −1 (2, 4, 7) (0, 3, 1, 3) πB , π

4 2 2 (−1,−2) (4, 7) (2, 4, 2, 4) πB , π

4 3 1 (−1,−2,−4) 7 (6, 3, 6, 4) πB , π

5 1 4 −2 (1, 3, 4, 5) (1, 9, 2, 6) πB

5 1 4 −1 (2, 3, 4, 5) (2, 8, 2, 4) π

5 2 3 (−2,−3) (1, 4, 5) (4, 10, 4, 11) πB

5 2 3 (−1,−2) (3, 4, 5) (5, 9, 5, 8) π

5 3 2 (−2,−3,−4) (1, 5) (9, 9, 13, 12) πB

5 3 2 (1,−2,−3) (4, 5) (10, 8, 5, 12) π

5 4 1 (2,−3,−4,−5) 1 (16, 6, 28, 10) πB

5 4 1 (1,−2,−3,−4) 5 (17, 5, 21, 9) π

6 1 5 −1 (2, 3, 4, 5, 6) (2, 15, 4, 16) πB , π

6 2 4 (−1,−2) (3, 4, 5, 6) (6, 16, 10, 22) πB

6 2 4 (−1,−6) (2, 3, 4, 5) (6, 16, 12, 20) π

6 3 3 (1,−2,−3) (4, 5, 6) (12, 15, 15, 27) πB , π

6 4 2 (1,−2,−3,−4) (5, 6) (20, 12, 36, 26) πB , π

6 5 1 (1,−2,−3,−4,−5) 6 (30, 7, 62, 18) πB , π

7 1 6 −1 (2, 3, 4, 5, 6, 7) (3, 24, 7, 36) πB , π

7 2 5 (−1,−2) (3, 4, 5, 6, 7) (8, 25, 18, 45) πB , π

7 3 4 (1,−2,−3) (4, 5, 6, 7) (15, 24, 30, 52) πB , π

7 4 3 (1,−2,−3,−4) (5, 6, 7) (24, 21, 58, 54) πB , π

7 5 2 (1,−2,−3,−4,−5) (6, 7) (35, 16, 93, 48) πB , π

7 6 1 (1, 2, 3,−4,−5,−6) 7 (48, 9, 138, 31) πB , π
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Table 3: Minimum πB and π-aberration designs of 12 runs for m = 3, . . . , 7 factors

m m1 m2 Columns of DB Columns of DO (πB
2 , π

O
2 , π

B
3 , π

O
3 ) Criterion

3 1 2 −1 (2, 3) (0.11, 2.22, 0.11, 0) πB , π

3 2 1 (−1,−2) 3 (2.22, 2.11, 0.22, 1) πB , π

4 1 3 −1 (2, 3, 4) (0.33, 4, 0.44, 0) πB , π

4 2 2 (−1,−2) (3, 4) (2.67, 4.67, 0.67, 2.22) πB , π

4 3 1 (−1,−2, 3) 4 (7, 3.33, 2.33, 3.44) πB , π

5 1 4 −1 (2, 3, 4, 6) (0.67, 6.67, 1.11, 0.44) πB , π

5 2 3 (−1,−2) (3, 4, 6) (3.33, 8, 1.56, 3.67) πB

5 2 3 (−1,−2) (3, 4, 6) (3.33, 8, 1.56, 3.67) π

5 3 2 (−1,−2, 3) (4, 6) (8, 7.33, 3.67, 7.56) πB , π

5 4 1 (−1,−2, 3,−4) 6 (14.67, 4.67, 9.78, 7.78) πB , π

6 1 5 −1 (2, 3, 4, 5, 6) (1.11, 10.56, 2.22, 7.56) πB , π

6 2 4 (−1,−2) (3, 4, 5, 6) (4.22, 12.44, 4.89, 12.89) πB , π

6 3 3 (−1,−2, 3) (4, 5, 6) (9.33, 12.33, 10.11, 18.56) πB

6 3 3 (1,−2,−3) (4, 5, 10) (9.33, 12.33, 11, 16.33) π

6 4 2 (−1,−2, 3,−4) (5, 6) (16.44, 10.22, 20, 20.44) πB , π

6 5 1 (−1,−2, 3,−4, 6) 5 (25.56, 6.11, 36.67, 14.44) πB , π

7 1 6 −2 (1, 3, 4, 5, 6, 7) (1.67, 16, 3.89, 17.33) πB , π

7 2 5 (−1, 3) (2, 4, 5, 6, 7) (5.33, 18.33, 9.11, 29) πB

7 2 5 (−1,−2) (3, 4, 5, 6, 7) (5.33, 18.33, 9.56, 25) π

7 3 4 (1,−2,−3) (4, 5, 6, 7) (11, 18.67, 18.44, 33.33) πB

7 3 4 (−1,−3, 5) (2, 4, 6, 7) (11, 18.67, 19.33, 31.56) π

7 4 3 (−1, 3,−4, 6) (2, 5, 7) (18.67, 17, 32.89, 43.33) πB

7 4 3 (1, 3, 4, 5) (2, 6, 7) (18.67, 17, 33.78, 37.11) π

7 5 2 (−1,−2, 3,−4, 6) (5, 7) (28.33, 13.33, 55.22, 34.67) πB , π

7 6 1 (−1,−2, 3,−4,−5, 6) 7 (40, 7.67, 99.78, 23.44) πB

7 6 1 (−1, 3, 4,−5,−6,−7) 2 (40, 7.67, 100.67, 21.22) π
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Table 4: Minimum πB and π-aberration designs of 12 runs for m = 8, 9 factors

m m1 m2 Columns of DB Columns of DO (πB
2 , π

O
2 , π

B
3 , π

O
3 ) Criterion

8 1 7 1 (2, 3, 4, 5, 6, 7, 8) (2.33, 23.33, 6.22, 38.22) πB , π

8 2 6 (−1, 3) (2, 4, 5, 6, 7, 8) (6.67, 26, 14.44, 53.33) πB

8 2 6 (1,−2) (3, 4, 5, 6, 7, 8) (6.67, 26, 15.33, 48) π

8 3 5 (1,−2, 4) (3, 5, 6, 7, 8) (13, 26.67, 28.11, 60.78) πB

8 3 5 (1,−2,−7) (3, 4, 5, 6, 8) (13, 26.67, 29, 56.78) π

8 4 4 (1,−2,−3, 8) (4, 5, 6, 7) (21.33, 25.33, 48.89, 64.44) πB , π

8 5 3 (−1,−2, 3,−4, 6) (5, 7, 8) (31.67, 22, 78.44, 64.67) πB

8 5 3 (−1,−2, 3,−4, 6) (5, 7, 8) (31.67, 22, 78.44, 64.67) π

8 6 2 (1,−2,−3,−4,−7, 8) (5, 6) (44, 16.67, 127.33, 56.44) πB , π

8 7 1 (1,−2, 3, 4, 5,−6,−7) 8 (58.33, 9.33, 194.11, 35.22) πB , π

9 1 8 −1 (2, 3, 4, 5, 6, 7, 8, 9) (3.11, 32.89, 9.33, 68.44) πB

9 1 8 −1 (2, 3, 4, 5, 6, 7, 8, 9) (3.11, 32.89, 9.33, 68.44) π

9 2 7 (1,−2) (3, 4, 5, 6, 7, 8, 9) (8.22, 35.78, 22.89, 84.11) πB

9 2 7 (−1,−2) (3, 4, 5, 6, 7, 8, 9) (8.22, 35.78, 23.33, 82.78) π

9 3 6 (1,−2, 4) (3, 5, 6, 7, 8, 9) (15.33, 36.67, 40.33, 101.33) πB

9 3 6 (−1,−2,−4) (3, 5, 6, 7, 8, 9) (15.33, 36.67, 43.89, 96) π

9 4 5 (−1, 2,−3, 5) (4, 6, 7, 8, 9) (24.44, 35.56, 68.44, 107.78) πB , π

9 5 4 (−1,−2, 3,−4, 6) (5, 7, 8, 9) (35.56, 32.44, 106.89, 108.89) πB , π

9 6 3 (−1,−2,−3, 4, 7,−8) (5, 6, 9) (48.67, 27.33, 167.78, 107.44) πB

9 6 3 (−1,−2, 3,−4, 5, 6) (7, 8, 9) (48.67, 27.33, 169.11, 102.11) π

9 7 2 (−1,−2, 3,−4, 5, 6, 7) (8, 9) (63.78, 20.22, 242.33, 85.78) πB , π

9 8 1 (1, 2,−3,−4,−5, 6,−7,−8) 9 (80.89, 11.11, 336, 52) πB , π
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Table 5: Minimum πB and π-aberration designs of 12 runs for m = 10, 11 factors

m m1 m2 Columns of DB Columns of DO (πB
2 , π

O
2 , π

B
3 , π

O
3 ) Criterion

10 1 9 −1 (2, 3, 4, 5, 6, 7, 8, 9, 10) (4, 45, 13.33, 112) πB , π

10 2 8 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10) (10, 48, 32.89, 132.44) πB

10 2 8 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10) (10, 48, 32.89, 132.44) π

10 3 7 (−1, 2,−3) (4, 5, 6, 7, 8, 9, 10) (18, 49, 59, 152.33) πB

10 3 7 (1,−2,−3) (4, 5, 6, 7, 8, 9, 10) (18, 49, 59.89, 151.44) π

10 4 6 (−1, 2,−3, 5) (4, 6, 7, 8, 9, 10) (28, 48, 92, 169.33) πB

10 4 6 (−1,−2, 3,−4) (5, 6, 7, 8, 9, 10) (28, 48, 95.56, 165.78) π

10 5 5 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10) (40, 45, 141.11, 172.22) πB

10 5 5 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10) (40, 45, 141.11, 172.22) π

10 6 4 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10) (54, 40, 215.11, 170.22) πB

10 6 4 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10) (54, 40, 215.11, 170.22) π

10 7 3 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10) (70, 33, 302.78, 156.56) πB

10 7 3 (1,−2, 3, 4, 5,−6,−7) (8, 9, 10) (70, 33, 305.44, 153.89) π

10 8 2 (1, 2,−3,−4,−5, 6,−7,−8) (9, 10) (88, 24, 410.67, 122.67) πB , π

10 9 1 (−1, 2,−3, 4, 5, 6,−7,−8,−9) 10 (108, 13, 540, 73.33) πB , π

11 1 10 −1 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11) (5, 60, 18.33, 173.33) πB , π

11 2 9 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10, 11) (12, 63, 44.67, 201) πB , π

11 3 8 (1,−2,−3) (4, 5, 6, 7, 8, 9, 10, 11) (21, 64, 80, 226.67) πB , π

11 4 7 (−1,−2, 3,−4) (5, 6, 7, 8, 9, 10, 11) (32, 63, 125.33, 247.33) πB , π

11 5 6 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10, 11) (45, 60, 181.67, 260) πB , π

11 6 5 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10, 11) (60, 55, 270, 261.67) πB , π

11 7 4 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10, 11) (77, 48, 375.33, 249.33) πB

11 7 4 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10, 11) (77, 48, 375.33, 249.33) π

11 8 3 (1, 2,−3,−4,−5, 6,−7,−8) (9, 10, 11) (96, 39, 498.67, 220) πB , π

11 9 2 (−1, 2,−3, 4, 5, 6,−7,−8,−9) (10, 11) (117, 28, 649, 170.67) πB , π

11 10 1 (−1,−2, 3,−4, 5, 6, 7,−8,−9,−10) 11 (140, 15, 823.33, 98.33) πB , π
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