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Supplementary Material

In this supplementary material, we present the proofs of theoretical results in the paper and

minimum 7 - and 7-aberration designs of 8 and 12 runs.

S1 Proofs of the theoretical results

Proof of Part (ii) of Corollary 2. The arguments are similar to those used
in (Cheng (2014)). Let & = (£,4,£W™)" and X = (1y, X;). Then the model
(2.4) can be written in matrix form as Y = X{+e¢. The information matrix

for estimating main effects £ is given by
T 1 T
Moy = X" X — NX InNxn X,

where Jyyny is an N X N matrix of all ones. On the other hand, let

X = (Iy,D) and 8 = (By,S1,...,0m)". Then under the orthogonal

parametrization, the model (2.4) can be written as Y = X3 + e. The
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information matrix for estimating the main effects 3 = (By,...,Bn)" is
given by

-1 - -
My = XTX = =X Tyun X.

Let J = (Onx1, Jnsmys Onsmg ) Where Onwt, Jasm, and Oyxm, are, respec-
tively, an N x 1 matrix of all zeros, an N x m; matrix of all ones and an
N X ms matrix of all zeros. Then the matrices X and X are related through

X = X + J. By some simple algebra, it can be shown that

T T .
Mg(l):<X+J)T(X+J)—N(X—FJ)TJNX]V(X—FJ):M/B(l).

Since an OA(N,2™,2) is universally optimal for estimating () (Cheng,
1980)), it follows directly that an OA(N, 2™, 2) is also universally optimal for

estimating €. O

Proof of Theorem 1. The proof is similar to that of Theorem 1 in |Sun and
Tang (2022). Let 7, 0, 5 and ¢ collect all 7,’s, 6,s, By’s and &,’s in Yates

order. Define L,, = ®;* L and H,, = ®;'H where

and ®}]", denotes m-fold Kronecker product. Then in matrix notation we
have

T=HuB, T=1Lnl, 7=Hy ®Lpy¢E (S1.1)
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Then the results in Theorem 1 can be verified directly. For example, £ =

Q2 (H'L) ® Lm0 where Iym, is the identity matrix of order 2. O

Proof of Lemma 1. Note that the matrix By, which contains the rows 2, . . .,

my+1 of the matrix (X*X) ' X" X5, can be written as By = (Ba,px 5, B2.5x0,
Bs 0x0), where the three submatrices correspond to the interactions of
two B-factors, one B-factor and one O-factor, and two O-factors, respec-
tively. Hence nf = tr(Bj B;) = tr(B] 5, 3Basxs) + tr(B] g, 0B2sx0) +

tr(By.0x0B2,0x0)- Since D is an orthogonal array, it can be easily checked

that
R b1 11 0]
X'X=N 1, Ly +Jm 0|, XX)'= % Ly Ly 0|
0 0 Iy 0 0 I,

where J,,,, is an my X my matrix of all ones. Through some tedious algebra,
one can show that tv(B3 p, s Bapxs) = 33, I (bi, by, b) /N 4-my (my —

1), t2(B3 puoBasxo) = 23205 32 J2 (i, bj, 00) /N? and tr(B3 0.0 B2.ox0) =
>0 > ien J(biy 05, 08) /N?. This gives the expression of 73 in the Lemma.
One can also define O3 pxp, O2.5x0 and O; oxo similarly and show that
tr(03 gy 5O2,8x8) = Dicj 2k I iy bj, 0) /N?, 11(03 5 0O02,8x0) = 235,324,
J?(bi, 04, 0)/N?*+mims and tr(03,0x002,0x0) = 3 Zi<j<k J?(0;,04,01)/N?,

leading to the expression of 7$ in the Lemma. O
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Proof of Theorem 2. First, we do not assume that D = (by, ..., by, 01, ..,
Om,) 1s regular. Since D is an orthogonal array, there exists a set of mg3 =
N — 1 — m orthogonal real columns E = (ey,...,€y,;) such that eje; =
N? and e;’s are orthogonal to columns of D and the column 1y for j =
1,...,ms. Hence, for any 1 < i # j < my, we have that > ', J?(b;, b;, b)+
Sz T2 (b, by, or) + >0 J2(bi, by, e) = N?. Summing this equation over

all (4,7)’s, one can show that

ZZJQ bz,bWOk ——3 Z J2 bz,bj,bk) ZZJ2(bi,bj,€k)+Cl

1<j i<j<k i<j k
(S1.2)

for some constant C. Using similar arguments, we can express » ;>

J2(biy 05,01) and 37, J*(04, 05, 01) in terms of J-characteristics of columns

not involving o;’s. In particular, we have

SN Pbioj00) =3 > J(bi by bi) +QZZJ2 bi, bj, ex)

i g<k 1<j<k 1<j

+> > Pliejen) +Ca (S13)

i g<k

for some constant Cy and

> Ton05,00) == Y JP(bibybe) — > Y TP(bis by, ex)

1<j<k 1<j<k i<j k
= P(bicejen) — Jleiejien) + Cs (S14)
v g<k

for some constant C3. Combining (S1.2)), (S1.3) and (S1.4), we have 7 =
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D> ien Jbisej ex) /N? + Cp and 7§ = =37, %7 J*(bi, ¢, e) [N? —
3> icjer J2(ei €5, ex) [N? 4 Co for some constants Cp and Co. Therefore,
we have proved that sequentially minimizing 72 and 7$ amounts to sequen-
tially minimizing 3, 3", J*(bi, €5, ex) and — 35, i J?(ei, e5, ex).

Now suppose that columns of D are selected from a saturated regular
design as specified in Theorem 2. Then E can be taken as the complement
of D in the saturated regular design. Then we have that J?(b;, e;, ex) = N?
if b;, e; and e, forms a defining word and J?(b;, e, ;) = 0 otherwise. It
can be verified that when the conditions in part (i) of the theorem are met,
b; must contain an independent column not contained in e; and ey, leading
to J%(b;,e;,ex) = 0. In addition, the results of |Chen and Hedayat (1996)
imply that Zi<j<k J?(e;, e;, ex) is maximized by design D among all regular
OA(2",2™,2)’s, and in particular, among all OA(2" 2™ 2)’s if m = 2" —2M

for some integer h;. The results of Theorem 2 then follow. m

Proof of Lemma 2. We use similar notations to those in the proof of Lemma
1. For example, B; pxpxp is the submatrix of (XX ) ' X" X3 correspond-
ing to contamination of interaction involving three B-factors on the main
effects of B-factors. Then we have

3
t0(Bs pxpxpBs.pxnxB) =555 > (i, by, b) + N

i<j<k
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1
3 D D (b0 by b o) + T (b, by br) o+ T (b b, br) + T (b, b b)Y

i<j<k 1
t1(B3 pxpxoB3,BxBx0) ZZJQ bi, b;, or)
1<J
ZZZ {J (b3, by b, 00) + T (b b, ) + T (b b o)}
1<J
tr(B3 pxoxoB3,Bx0x0) =2 Z Z J?( (b, 05, 01) m ZZ {J(bi, bj, 01, 00) + J(biaok,Ol)}2,
i j<k i#j k<l
1
tr(B3 oxox0B3,0x0x0) IWZ Z J?(bs, 05, 01, 01),
1 j<k<l
tr ( 3TB><B><BO3 B><B><B Z Z {J bz; b], bk,Ol) -+ J(bz,b],ol) + J(b“bk, ol) + (](bﬁ bkaol)} ,
z<]<k l
1
tr(O03 gy px003,BxBx0) =Nz Z Z {J(bi, b, 01, 01) + J(bi, 01, 01) + J(b;, 0k, ol)} + lemg(ml - 1),
1<j k<l
3
tr(O3 pxox003,8x0x0) Zmz > {J(bi 05,00, 01) + J(0j, 0, 0)}
1 j<k<l
(05 0 0x003.0x0x0) =75 >, J*(01,05, 01, 01).
z<]<k<l

Then 73 is obtained by taking the sum of all the terms above. Since any
two J-characteristics in the same curly bracket cannot be nonzero at the
same time, their product will be zero if we expand the square term. By
some tedious algebra, we have
o 6 1
Ty = 4A4+(3m1—6)A3+27r2 +N Z J(bl, bj, bk)—|—§m1 (ml—l)(m1+m2—2)
i<j<k
(S1.5)

In the proof of Theorem 2, we have already obtained that 79 = — >, D ik
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J2 (b, e;,ex)/N?* — 3D icick J?(e;,ej,er)/N? + Co for some constant Cop,
where ey,...,eny_1_, are columns of the complement of D. Clearly, if
€1, ...,en_1-m takes the first 2 —1 columns of a saturated regular design,
then the first three terms of 73 in are constant. Then the result of

the lemma follows. O

Proof of Theorem 8. Since D is regular, the value of J(b;,b;, by) is either 0

or £N for any 1 <i < j < k <m;y. Thus we have
mg =N Y J(bi by be) /[N + o = —erN Y (b by, be) /N? + o

i<j<k i<j<k

= —c1NA3(Dp) + ¢y, (S1.6)

where A3(Dpg) is the Az value of Dp. By results of |(Chen and Hedayat

(1996), we have A3(Dp) is maximized among all regular designs by the

choice of Dp in the construction. In addition, since J(b;,b;,b;)/N =

—J%(b;, b, by) /N?, we conclude the lower bound in is achieved. There-

fore, D = (Dp, Do) sequentially minimizes w5 and 73 over all regular de-

signs. [

Proof of Lemma 3. The proof can be done by a direct verification. For ex-

ample, the contamination of k-factor interaction od;, - - - d;, , on the estima-

Jk—1
tion of main effect of d;,, where o is an O-factor and d;,, ..., d;, are either B-

Jk?

: . N 2 /772
factors or O-factors, will contribute a term (> ;" 0i%;j, 2ijo =+ * Zijp 1 dij )" /N7,
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where z; ;, = d, ;, if d;, is an O-factor and z; j, = d; ;, + 1 if d;, is a B-factor
forl=1,...,k—1,in 72 or 7 depending on whether d;, is a B-factor or
an O-factor. One can see that replacing o; by —o; does not affect the value
of this term. Therefore, the conclude switching the signs of O-factors in an

OA(N, 2™, 2) does not affect its aberration. O

Proof of Theorem /. For the design D generated in the theorem, we study
the contamination of k-factor interaction b, ---bj, oy, -~ oy,_ (k1 + ko = k)
on the estimation of the main effect of certain factor dy. Such a contamina-
tion will contribute a term @) = {Zij\il(bi7]~1+1) < (bigiy, F1)0ity - 0igy, dio}
/N? in ;. Thus we have

1

0=

2
{J(bjl,...,bjkl,oll,...,ole,do)+~-'+J(oll,...,olk2,d0)} .

If we expand the square and average E over all possible sign switches of

B-factors, the cross-product terms will disappear and we will obtain

-1
0= m{J?(bjl,...,bjkl,oll,...,olkz,do) +-~~+J2(oll,...,olk2,d0)}.

If we further average Q over all possible choices of B-factors in the or-
thogonal array, then one can show that the resulting term will be a linear
combination of Agiq1, Ag, ..., Ar,—1 with positive coefficients. Then the re-

sult of the theorem follows by some tedious algebra. O]

Proof of Proposition 1. The result of Theorem 1 implies that there exist an
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(1+m—+ f) x (1+m+ f) upper-triangular matrix P whose diagonal entries
are all one, such that £z = PSr and Xz = ZzP. Thus det(P) = 1 and

det(XEXz) = det?*(P) det(Z%Zz). The result of Proposition 1 then follows

immediately. O]

S2 Minimum 7p- and m-aberration designs

We present minimum 7p- and m-aberration designs of 8 and 12 runs in
Tables [2 8] [4 and fl All these designs are generated by selecting and

sign-switching columns of the saturated designs displayed in Table [I}
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Table 1: Two saturated designs of 8 and 12 runs

1 2 3 4 5 6 7 10 11
5 6 7 -+ - - g
e T e + -
+ -+ -+ 4+ - + - - + 4
-+ + + - 4+ + - + - + o+
+ o+ -+ + -+ + -+ -+
+ + + o+ + + - + + - - -
-+ - o e - -
+ - - - -+ + 4+ - + + -
- -+ - - - + + + - -+

+ - - - 4+ + 4+ + -

-+ - - - + + + o+




S2. MINIMUM 7p- AND m-ABERRATION DESIGNS

Table 2: Minimum 7p and w-aberration designs of 8 runs

my1  mg Columns of Dp Columns of Do (7,79, 78 ©§) Criterion
1 2 -1 (2,4) (0,2,0,0) B,
2 1 (=1,-2) 4 (2,2,0,1) B, T
1 3 -1 (2,4,7) (0,3,1,3) T,
2 2 (-1,-2) (4,7) (2,4,2,4) B, T
3 1 (—1,-2,-4) 7 (6,3,6,4) TR,
1 4 -2 (1,3,4,5) (1,9,2,6) B

1 4 -1 (2,3,4,5) (2,8,2,4) ™

2 3 (—2,-3) (1,4,5) (4,10,4,11) TR

2 3 (-1,-2) (3,4,5) (5,9,5,8) ™

3 2 (—2,-3,—-4) (1,5) (9,9,13,12) TR

3 2 (1,-2,-3) (4,5) (10,8,5,12) ™

4 1 (2,-3,—4,-5) 1 (16,6,28,10) TB

4 1 (1,-2,-3,—4) 5 (17,5,21,9) ™

1 5 -1 (2,3,4,5,6) (2,15,4,16) T,
2 4 (—1,-2) (3,4,5,6) (6,16,10,22) TB

2 4 (—1,-6) (2,3,4,5) (6,16, 12,20) ™

3 3 (1,-2,-3) (4,5,6) (12,15,15,27) TR,
4 2 (1,-2,-3,—4) (5,6) (20,12, 36, 26) TB, T
5 1 (1,-2,-3,-4,-5) 6 (30,7,62,18) T,
1 6 -1 (2,3,4,5,6,7) (3,24,7,36) T,
2 5 (—1,-2) (3,4,5,6,7) (8,25,18,45) T,
3 4 (1,-2,-3) (4,5,6,7) (15,24, 30, 52) TR, T
4 3 (1,-2,-3,—4) (5,6,7) (24,21, 58, 54) T,
5 2 (1,-2,-3,—-4,-5) (6,7) (35,16, 93,48) B,
6 1 (1,2,3,—4,-5,-6) 7 (48,9, 138,31) TB, T
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Table 3: Minimum 7p and w-aberration designs of 12 runs for m = 3,...,7 factors
mi  mg Columns of Dp Columns of Do (78,79, 78, 79) Criterion
1 2 -1 (2,3) (0.11,2.22,0.11, 0) T,
2 1 (-1,-2) 3 (2.22,2.11,0.22,1) BT
1 3 1 (2,3,4) (0.33,4,0.44, 0) B, T
2 2 (-1,-2) (3,4) (2.67,4.67,0.67,2.22) TE,
31 (-1,-2,3) 4 (7,3.33,2.33, 3.44) TR, T
1 4 1 (2,3,4,6) (0.67,6.67,1.11,0.44) BT
2 3 (-1,-2) (3,4,6) (3.33,8,1.56,3.67) 5
2 3 (-1,-2) (3,4,6) (3.33,8, 1.56, 3.67) T
3 2 (-1,-2,3) (4,6) (8,7.33,3.67,7.56) Tp, T
41 (=1,-2,3,-4) 6 (14.67,4.67,9.78,7.78) BT
1 5 -1 (2,3,4,5,6) (1.11,10.56,2.22, 7.56) B, T
2 4 (-1,-2) (3,4,5,6) (4.22,12.44,4.89,12.89)  7p, 7
33 (-1,-2,3) (4,5,6) (9.33,12.33,10.11,18.56) 75
33 (1,-2,-3) (4,5,10) (9.33,12.33,11,16.33) 7
4 2 (-1,-2,3,-4) (5,6) (16.44,10.22, 20, 20.44) B, T
5 1 (—1,-2,3,-4,6) 5 (25.56,6.11,36.67,14.44)  7p, 7
1 6 -2 (1,3,4,5,6,7)  (1.67,16,3.89,17.33) Tp,T
2 5 (1,3 (2,4,5,6,7) (5.33,18.33,9.11, 29) B
2 5  (-1,-2) (3,4,5,6,7) (5.33,18.33, 9.56, 25) 7
34 (1,-2,-3) (4,5,6,7) (11,18.67,18.44,33.33)  np
3 4 (-1,-3,5) (2,4,6,7) (11,18.67,19.33,31.56) T
4 3 (~1,3,-4,6) (2,5,7) (18.67,17,32.80,43.33) 75
4 3 (1,3,4,5) (2,6,7) (18.67,17,33.78,37.11) r
5 2 (=1,-2,3,-4,6) (5,7) (28.33,13.33,55.22,34.67) 7p, 7
6 1 (-1,-2,3,-4,-5,6) 7 (40,7.67,99.78,23.44) B
6 1 (-1,3,4,-5-6,—-7) 2 (40,7.67,100.67, 21.22) T
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Table 4: Minimum 7p and m-aberration designs of 12 runs for m = 8,9 factors

m  my my Columns of Dp Columns of Do (o8B, 7,78 79) Criterion
8 1 7 1 (2,3,4,5,6,7,8) (2.33,23.33,6.22, 38.22) B, T
8 2 6 (-1,3) (2,4,5,6,7,8) (6.67,26,14.44, 53.33) B

8 2 6 (1,-2) (3,4,5,6,7,8) (6.67,26,15.33,48) 7r

8 3 5 (1,-2,4) (3,5,6,7,8) (13,26.67,28.11,60.78) B

8 3 5 (1,-2,-7) (3,4,5,6,8) (13,26.67,29,56.78) T

8 4 4 (1,-2,-3,8) (4,5,6,7) (21.33,25.33,48.89,64.44) TR,
8 5 3 (-1,-2,3,—4,6) (5,7,8) (31.67,22,78.44, 64.67) B

8 5 3 (—1,-2,3,—4,6) (5,7,8) (31.67,22,78.44, 64.67) ™

8 6 2 (1,-2,-3,-4,-7,8) (5,6) (44,16.67,127.33,56.44) TB, T
8 7 1  (1,-2,3,4,5,—6,—7) 8 (58.33,9.33,194.11,35.22) 7,7
9 1 8 -1 (2,3,4,5,6,7,8,9) (3.11,32.89,9.33,68.44) B

9 1 8 -1 (2,3,4,5,6,7,8,9) (3.11,32.89,9.33,68.44) ™

9 2 7 (1,-2) (3,4,5,6,7,8,9) (8.22,35.78,22.89,84.11) B

9 2 7 (—1,-2) (3,4,5,6,7,8,9) (8.22,35.78, 23.33,82.78) ™

9 3 6 (1,-2,4) (3,5,6,7,8,9) (15.33,36.67,40.33,101.33)  7p

9 3 6 (—1,-2,-4) (3,5,6,7,8,9) (15.33,36.67,43.89, 96) Tl'

9 4 5 (-1,2,-3,5) (4,6,7,8,9) (24.44,35.56,68.44,107.78)  mg, 7
9 5 4 (-1,-2,3,-4,6) (5,7,8,9) (35.56,32.44,106.89,108.89) mpg, T
9 6 3 (-1,-2,-3,4,7,-8) (5,6,9) (48.67,27.33,167.78,107.44) mp

9 6 3 (—1,-2,3,—4,5,6) (7,8,9) (48.67,27.33,169.11,102.11)

9 7 2 (-1,-2,3,—4,5,6,7) (8,9) (63.78,20.22,242.33,85.78)  wp,m

9 8 1 (1,2,-3,-4,-5,6,-7,-8) 9 (80.89,11.11, 336, 52) T,
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Table 5: Minimum 7p and w-aberration designs of 12 runs for m = 10, 11 factors

m mq my Columns of Dp Columns of Do (78, 70,78, 7§) Criterion
0 1 9 -1 (2,3,4,5,6,7,8,9,10) (4,45,13.33,112) g,
0 2 8 (-1,-2) (3,4,5,6,7,8,9,10) (10,48,32.89,132.44) 75
0 2 8 (-1,-2) (3,4,5,6,7,8,9,10) (10,48,32.89,132.44) 7

10 3 7 (-1,2,-3) (4,5,6,7,8,9,10) (18,49, 59, 152.33) B
10 3 7 (1,-2,-3) (4,5,6,7,8,9,10) (18,49,59.89,151.44) =

10 4 6 (-1,2,-3,5) (4,6,7,8,9,10) (28,48,92,169.33) B
10 4 6 (~1,-2,3,-4) (5,6,7,8,9,10) (28,48,95.56,165.78) 7

10 5 5 (—1,-2,3,—4,6) (5,7,8,9,10) (40,45,141.11,172.22) 7p
10 5 5  (=1,-2,3,-4,6) (5,7,8,9,10) (40,45,141.11,172.22) 7

10 6 4 (=1,-2,3,-4,-5,6) (7,8,9,10) (54,40,215.11,170.22) 75
10 6 4 (—1,-2,3,—-4,-5,6) (7,8,9,10) (54,40,215.11,170.22) 7

10 7 3 (1,-2,-3,-4,5—6,-7) (8,9,10) (70,33,302.78,156.56) 75
10 7 3 (1,-2,3,4,5-6,—7) (8,9,10) (70,33,305.44,153.89) 7

10 8 2 (1,2,-3,-4,-56,—-7,-8) (9,10) (88,24,410.67,122.67) 7,7
10 9 1 (-1,2,-3,4,5,6,—-7,—-8,-9) 10 (108,13, 540,73.33) TR, T
1 1 10 -1 (2,3,4,5,6,7,8,9,10,11) (5,60, 18.33,173.33) TR, T
12 9  (=1,-2 (3,4,5,6,7,8,9,10,11)  (12,63,44.67,201) BT
113 8 (1,-2,-3) (4,5,6,7,8,9,10,11) (21, 64, 80, 226.67) g,
11 4 7 (-1,-2,3,-4) (5,6,7,8,9,10,11) (32,63,125.33,247.33) 7,7
1 5 6 (—1,-2,3,-4,6) (5,7,8,9,10,11) (45,60, 181.67,260) TR, T
116 5  (-1,-2,3,-4,-5,6) (7,8,9,10,11) (60, 55, 270, 261.67) BT
11 7 4 (1,-2,-3,-4,5-6,-7) (8,9,10,11) (77,48,375.33,249.33) 75
11 7 4 (1,-2,-3,-4,5-6,-7) (8,9,10,11) (77,48,375.33,249.33) 7

1 8 3 (1,2,-3,-4,-5,6,-7,-8) (9,10,11) (96, 39,498.67, 220) TR, T
119 2 (=1,2,-3,4,5,6,—7,-8,—9) (10,11) (117,28,649,170.67)  7p, 7

11 10 1 (-1,-2,3,-4,5,6,7,—8,-9,-10) 11 (140,15,823.33,98.33) 7,7
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