MINIMUM ABERRATION FACTORIAL DESIGNS

UNDER A MIXED PARAMETRIZATION

Guanzhou $Chen^1$ and $Boxin Tang^2$

¹Nankai University and ²Simon Fraser University

Supplementary Material

In this supplementary material, we present the proofs of theoretical results in the paper and minimum π_{B^-} and π -aberration designs of 8 and 12 runs.

S1 Proofs of the theoretical results

Proof of Part (ii) of Corollary 2. The arguments are similar to those used in Cheng (2014). Let $\xi = (\xi_{\phi}, \xi^{(1)T})^T$ and $X = (1_N, X_1)$. Then the model (2.4) can be written in matrix form as $Y = X\xi + \epsilon$. The information matrix for estimating main effects $\xi^{(1)}$ is given by

$$M_{\xi^{(1)}} = X^{\mathrm{T}} X - \frac{1}{N} X^{\mathrm{T}} J_{N \times N} X,$$

where $J_{N\times N}$ is an $N \times N$ matrix of all ones. On the other hand, let $\tilde{X} = (1_N, D)$ and $\beta = (\beta_{\phi}, \beta_1, \dots, \beta_m)^{\mathrm{T}}$. Then under the orthogonal parametrization, the model (2.4) can be written as $Y = \tilde{X}\beta + \epsilon$. The

information matrix for estimating the main effects $\beta^{(1)} = (\beta_1, \dots, \beta_m)^{\mathrm{T}}$ is given by

$$M_{\beta^{(1)}} = \tilde{X}^{\mathrm{T}} \tilde{X} - \frac{1}{N} \tilde{X}^{\mathrm{T}} J_{N \times N} \tilde{X}.$$

Let $\tilde{J} = (0_{N \times 1}, J_{N \times m_1}, 0_{N \times m_2})$, where $0_{N \times 1}, J_{N \times m_1}$ and $0_{N \times m_2}$ are, respectively, an $N \times 1$ matrix of all zeros, an $N \times m_1$ matrix of all ones and an $N \times m_2$ matrix of all zeros. Then the matrices X and \tilde{X} are related through $X = \tilde{X} + \tilde{J}$. By some simple algebra, it can be shown that

$$M_{\xi^{(1)}} = (\tilde{X} + \tilde{J})^{\mathrm{T}} (\tilde{X} + \tilde{J}) - \frac{1}{N} (\tilde{X} + \tilde{J})^{\mathrm{T}} J_{N \times N} (\tilde{X} + \tilde{J}) = M_{\beta^{(1)}}.$$

Since an $OA(N, 2^m, 2)$ is universally optimal for estimating $\beta^{(1)}$ (Cheng, 1980), it follows directly that an $OA(N, 2^m, 2)$ is also universally optimal for estimating $\xi^{(1)}$.

Proof of Theorem 1. The proof is similar to that of Theorem 1 in Sun and Tang (2022). Let τ , θ , β and $\tilde{\xi}$ collect all τ_u 's, θ_w 's, β_w 's and ξ_w 's in Yates order. Define $L_m = \otimes_{k=1}^m L$ and $H_m = \otimes_{k=1}^m H$ where

$$L = \begin{bmatrix} 1 & 0 \\ & \\ 1 & 2 \end{bmatrix}, \qquad H = \begin{bmatrix} 1 & -1 \\ & \\ 1 & 1 \end{bmatrix}$$

and $\otimes_{k=1}^{m}$ denotes *m*-fold Kronecker product. Then in matrix notation we have

$$\tau = H_m \beta, \quad \tau = L_m \theta, \quad \tau = H_{m_2} \otimes L_{m_1} \tilde{\xi}.$$
 (S1.1)

Then the results in Theorem 1 can be verified directly. For example, $\tilde{\xi} = \otimes_{k=1}^{m_2} (H^{-1}L) \otimes I_{2^{m_1}} \tilde{\theta}$ where $I_{2^{m_1}}$ is the identity matrix of order 2^{m_1} . \Box

Proof of Lemma 1. Note that the matrix B_2 , which contains the rows 2, ..., m_1+1 of the matrix $(X^TX)^{-1}X^TX_2$, can be written as $B_2 = (B_{2,B\times B}, B_{2,B\times O}, B_{2,O\times O})$, where the three submatrices correspond to the interactions of two B-factors, one B-factor and one O-factor, and two O-factors, respectively. Hence $\pi_2^B = \operatorname{tr}(B_2^TB_2) = \operatorname{tr}(B_{2,B\times B}^TB_{2,B\times B}) + \operatorname{tr}(B_{2,B\times O}^TB_{2,B\times O}) + \operatorname{tr}(B_{2,O\times O}^TB_{2,O\times O})$. Since D is an orthogonal array, it can be easily checked that

$$X^{\mathrm{T}}X = N \begin{bmatrix} 1 & 1_{m_{1}}^{\mathrm{T}} & 0 \\ 1_{m_{1}} & I_{m_{1}} + J_{m_{1}} & 0 \\ 0 & 0 & I_{m_{2}} \end{bmatrix}, \quad (X^{\mathrm{T}}X)^{-1} = \frac{1}{N} \begin{bmatrix} m_{1} + 1 & -1_{m_{1}}^{\mathrm{T}} & 0 \\ -1_{m_{1}} & I_{m_{1}} & 0 \\ 0 & 0 & I_{m_{2}} \end{bmatrix},$$

where J_{m_1} is an $m_1 \times m_1$ matrix of all ones. Through some tedious algebra, one can show that $\operatorname{tr}(B_{2,B\times B}^{\mathrm{T}}B_{2,B\times B}) = 3\sum_{i < j < k} J^2(b_i, b_j, b_k)/N^2 + m_1(m_1 - 1), \operatorname{tr}(B_{2,B\times O}^{\mathrm{T}}B_{2,B\times O}) = 2\sum_{i < j} \sum_k J^2(b_i, b_j, o_k)/N^2$ and $\operatorname{tr}(B_{2,O\times O}^{\mathrm{T}}B_{2,O\times O}) = \sum_i \sum_{j < k} J^2(b_i, o_j, o_k)/N^2$. This gives the expression of π_2^B in the Lemma. One can also define $O_{2,B\times B}$, $O_{2,B\times O}$ and $O_{2,O\times O}$ similarly and show that $\operatorname{tr}(O_{2,B\times B}^{\mathrm{T}}O_{2,B\times B}) = \sum_{i < j} \sum_k J^2(b_i, b_j, o_k)/N^2$, $\operatorname{tr}(O_{2,B\times O}^{\mathrm{T}}O_{2,B\times O}) = 2\sum_i \sum_{j < k} J^2(b_i, o_j, o_k)/N^2$, $J^2(b_i, o_j, o_k)/N^2 + m_1m_2$ and $\operatorname{tr}(O_{2,O\times O}^{\mathrm{T}}O_{2,O\times O}) = 3\sum_{i < j < k} J^2(o_i, o_j, o_k)/N^2$, leading to the expression of π_2^O in the Lemma. \Box Proof of Theorem 2. First, we do not assume that $D = (b_1, \ldots, b_{m_1}, o_1, \ldots, o_{m_2})$ is regular. Since D is an orthogonal array, there exists a set of $m_3 = N - 1 - m$ orthogonal real columns $E = (e_1, \ldots, e_{m_3})$ such that $e_j^{\mathrm{T}} e_j = N^2$ and e_j 's are orthogonal to columns of D and the column 1_N for $j = 1, \ldots, m_3$. Hence, for any $1 \le i \ne j \le m_1$, we have that $\sum_{k=1}^{m_1} J^2(b_i, b_j, b_k) + \sum_{k=1}^{m_2} J^2(b_i, b_j, o_k) + \sum_{k=1}^{m_3} J^2(b_i, b_j, e_k) = N^2$. Summing this equation over all (i, j)'s, one can show that

$$\sum_{i < j} \sum_{k} J^{2}(b_{i}, b_{j}, o_{k}) = -3 \sum_{i < j < k} J^{2}(b_{i}, b_{j}, b_{k}) - \sum_{i < j} \sum_{k} J^{2}(b_{i}, b_{j}, e_{k}) + C_{1}$$
(S1.2)

for some constant C_1 . Using similar arguments, we can express $\sum_i \sum_{j < k} J^2(b_i, o_j, o_k)$ and $\sum_{i < j < k} J^2(o_i, o_j, o_l)$ in terms of *J*-characteristics of columns not involving o_j 's. In particular, we have

$$\sum_{i} \sum_{j < k} J^{2}(b_{i}, o_{j}, o_{k}) = 3 \sum_{i < j < k} J^{2}(b_{i}, b_{j}, b_{k}) + 2 \sum_{i < j} \sum_{k} J^{2}(b_{i}, b_{j}, e_{k}) + \sum_{i} \sum_{j < k} J^{2}(b_{i}, e_{j}, e_{k}) + C_{2} \quad (S1.3)$$

for some constant C_2 and

$$\sum_{i < j < k} J^2(o_i, o_j, o_k) = -\sum_{i < j < k} J^2(b_i, b_j, b_k) - \sum_{i < j} \sum_k J^2(b_i, b_j, e_k)$$
$$-\sum_i \sum_{j < k} J^2(b_i, e_j, e_k) - J^2(e_i, e_j, e_k) + C_3 \quad (S1.4)$$

for some constant C_3 . Combining (S1.2), (S1.3) and (S1.4), we have $\pi_2^B =$

 $\sum_{i} \sum_{j < k} J^{2}(b_{i}, e_{j}, e_{k})/N^{2} + C_{B} \text{ and } \pi_{2}^{O} = -\sum_{i} \sum_{j < k} J^{2}(b_{i}, e_{j}, e_{k})/N^{2} - 3\sum_{i < j < k} J^{2}(e_{i}, e_{j}, e_{k})/N^{2} + C_{O} \text{ for some constants } C_{B} \text{ and } C_{O}. \text{ Therefore,}$ we have proved that sequentially minimizing π_{2}^{B} and π_{2}^{O} amounts to sequentially minimizing $\sum_{i} \sum_{j < k} J^{2}(b_{i}, e_{j}, e_{k})$ and $-\sum_{i < j < k} J^{2}(e_{i}, e_{j}, e_{k}).$

Now suppose that columns of D are selected from a saturated regular design as specified in Theorem 2. Then E can be taken as the complement of D in the saturated regular design. Then we have that $J^2(b_i, e_j, e_k) = N^2$ if b_i , e_j and e_k forms a defining word and $J^2(b_i, e_j, e_k) = 0$ otherwise. It can be verified that when the conditions in part (i) of the theorem are met, b_i must contain an independent column not contained in e_j and e_k , leading to $J^2(b_i, e_j, e_k) = 0$. In addition, the results of Chen and Hedayat (1996) imply that $\sum_{i < j < k} J^2(e_i, e_j, e_k)$ is maximized by design D among all regular $OA(2^h, 2^m, 2)$'s, and in particular, among all $OA(2^h, 2^m, 2)$'s if $m = 2^h - 2^{h_1}$ for some integer h_1 . The results of Theorem 2 then follow.

Proof of Lemma 2. We use similar notations to those in the proof of Lemma 1. For example, $B_{3,B\times B\times B}$ is the submatrix of $(X^{T}X)^{-1}X^{T}X_{3}$ corresponding to contamination of interaction involving three B-factors on the main effects of B-factors. Then we have

$$tr(B_{3,B \times B \times B}^{T} B_{3,B \times B \times B}) = \frac{3}{N^2} \sum_{i < j < k} \{J(b_i, b_j, b_k) + N\}^2$$

$$\begin{split} &+ \frac{1}{N^2} \sum_{i < j < k} \sum_l \left\{ J(b_i, b_j, b_k, b_l) + J(b_i, b_j, b_l) + J(b_i, b_k, b_l) + J(b_j, b_k, b_l) \right\}^2, \\ & \operatorname{tr}(B_{3,B \times B \times O}^{\mathrm{T}} B_{3,B \times B \times O}) = \frac{2}{N^2} \sum_{i < j} \sum_k \sum_k J^2(b_i, b_j, o_k) \\ &\quad + \frac{1}{N^2} \sum_{i < j} \sum_k \sum_l \left\{ J(b_i, b_j, b_k, o_l) + J(b_i, b_k, o_l) + J(b_j, b_k, o_l) \right\}^2, \\ & \operatorname{tr}(B_{3,B \times O \times O}^{\mathrm{T}} B_{3,B \times O \times O}) = \frac{1}{N^2} \sum_i \sum_{j < k} J^2(b_i, o_j, o_k) + \frac{1}{N^2} \sum_{i \neq j} \sum_{k < l} \left\{ J(b_i, b_j, o_k, o_l) + J(b_i, b_k, o_l) + J(b_i, o_k, o_l) \right\}^2, \\ & \operatorname{tr}(B_{3,O \times O \times O}^{\mathrm{T}} B_{3,O \times O \times O}) = \frac{1}{N^2} \sum_i \sum_{j < k < l} J^2(b_i, o_j, o_k, o_l), \\ & \operatorname{tr}(O_{3,B \times B \times B}^{\mathrm{T}} O_{3,B \times B \times B}) = \frac{1}{N^2} \sum_{i < j < k} \sum_{l} \left\{ J(b_i, b_j, b_k, o_l) + J(b_i, b_j, o_l) + J(b_i, b_k, o_l) + J(b_j, b_k, o_l) \right\}^2, \\ & \operatorname{tr}(O_{3,B \times B \times O}^{\mathrm{T}} O_{3,B \times B \times O}) = \frac{2}{N^2} \sum_{i < j < k < l} \left\{ J(b_i, b_j, o_k, o_l) + J(b_i, o_k, o_l) + J(b_j, o_k, o_l) \right\}^2 + \frac{1}{2} m_1 m_2 (m_1 - 1), \\ & \operatorname{tr}(O_{3,B \times O \times O}^{\mathrm{T}} O_{3,B \times O \times O}) = \frac{3}{N^2} \sum_i \sum_{j < k < l} \left\{ J(b_i, o_j, o_k, o_l) + J(o_j, o_k, o_l) \right\}^2, \\ & \operatorname{tr}(O_{3,O \times O \times O}^{\mathrm{T}} O_{3,O \times O \times O}) = \frac{4}{N^2} \sum_i \sum_{i < j < k < l} J^2(o_i, o_j, o_k, o_l). \end{split}$$

Then π_3 is obtained by taking the sum of all the terms above. Since any two *J*-characteristics in the same curly bracket cannot be nonzero at the same time, their product will be zero if we expand the square term. By some tedious algebra, we have

$$\pi_3 = 4A_4 + (3m_1 - 6)A_3 + 2\pi_2^O + \frac{6}{N} \sum_{i < j < k} J(b_i, b_j, b_k) + \frac{1}{2}m_1(m_1 - 1)(m_1 + m_2 - 2).$$
(S1.5)

In the proof of Theorem 2, we have already obtained that $\pi_2^O = -\sum_i \sum_{j < k}$

 $J^{2}(b_{i}, e_{j}, e_{k})/N^{2} - 3\sum_{i < j < k} J^{2}(e_{i}, e_{j}, e_{k})/N^{2} + C_{O}$ for some constant C_{O} , where e_{1}, \ldots, e_{N-1-m} are columns of the complement of D. Clearly, if e_{1}, \ldots, e_{N-1-m} takes the first $2^{h_{1}} - 1$ columns of a saturated regular design, then the first three terms of π_{3} in (S1.5) are constant. Then the result of the lemma follows.

Proof of Theorem 3. Since D is regular, the value of $J(b_i, b_j, b_k)$ is either 0 or $\pm N$ for any $1 \le i < j < k \le m_1$. Thus we have

$$\pi_3 = c_1 N \sum_{i < j < k} J(b_i, b_j, b_k) / N + c_0 \ge -c_1 N \sum_{i < j < k} J^2(b_i, b_j, b_k) / N^2 + c_0$$
$$= -c_1 N A_3(D_B) + c_0, \quad (S1.6)$$

where $A_3(D_B)$ is the A_3 value of D_B . By results of Chen and Hedayat (1996), we have $A_3(D_B)$ is maximized among all regular designs by the choice of D_B in the construction. In addition, since $J(b_i, b_j, b_k)/N = -J^2(b_i, b_j, b_k)/N^2$, we conclude the lower bound in (S1.6) is achieved. Therefore, $D = (D_B, D_O)$ sequentially minimizes π_2 and π_3 over all regular designs.

Proof of Lemma 3. The proof can be done by a direct verification. For example, the contamination of k-factor interaction $od_{j_1} \cdots d_{j_{k-1}}$ on the estimation of main effect of d_{j_k} , where o is an O-factor and d_{j_1}, \ldots, d_{j_k} are either B-factors or O-factors, will contribute a term $(\sum_{i=1}^N o_i z_{i,j_1} z_{i,j_2} \cdots z_{i,j_{k-1}} d_{i,j_k})^2/N^2$,

where $z_{i,j_l} = d_{i,j_l}$ if d_{j_l} is an O-factor and $z_{i,j_l} = d_{i,j_l} + 1$ if d_{j_l} is a B-factor for l = 1, ..., k - 1, in π_k^B or π_k^O depending on whether d_{j_k} is a B-factor or an O-factor. One can see that replacing o_i by $-o_i$ does not affect the value of this term. Therefore, the conclude switching the signs of O-factors in an $OA(N, 2^m, 2)$ does not affect its aberration.

Proof of Theorem 4. For the design D generated in the theorem, we study the contamination of k-factor interaction $b_{j_1} \cdots b_{j_{k_1}} o_{l_1} \cdots o_{l_{k_2}} (k_1 + k_2 = k)$ on the estimation of the main effect of certain factor d_0 . Such a contamination will contribute a term $Q = \{\sum_{i=1}^{N} (b_{i,j_1}+1) \cdots (b_{i,j_{k_1}}+1) o_{i,l_1} \cdots o_{i,l_{k_2}} d_{i,0}\}^2$ $/N^2$ in π_k . Thus we have

$$Q = \frac{1}{N^2} \left\{ J(b_{j_1}, \dots, b_{j_{k_1}}, o_{l_1}, \dots, o_{l_{k_2}}, d_0) + \dots + J(o_{l_1}, \dots, o_{l_{k_2}}, d_0) \right\}^2.$$

If we expand the square and average E over all possible sign switches of B-factors, the cross-product terms will disappear and we will obtain

$$\tilde{Q} = \frac{1}{N^2} \left\{ J^2(b_{j_1}, \dots, b_{j_{k_1}}, o_{l_1}, \dots, o_{l_{k_2}}, d_0) + \dots + J^2(o_{l_1}, \dots, o_{l_{k_2}}, d_0) \right\}.$$

If we further average \tilde{Q} over all possible choices of B-factors in the orthogonal array, then one can show that the resulting term will be a linear combination of $A_{k+1}, A_k, \ldots, A_{k_2-1}$ with positive coefficients. Then the result of the theorem follows by some tedious algebra.

Proof of Proposition 1. The result of Theorem 1 implies that there exist an

 $(1+m+f) \times (1+m+f)$ upper-triangular matrix P whose diagonal entries are all one, such that $\xi_{\mathcal{F}} = P\beta_{\mathcal{F}}$ and $X_{\mathcal{F}} = Z_{\mathcal{F}}P$. Thus $\det(P) = 1$ and $\det(X_{\mathcal{F}}^T X_{\mathcal{F}}) = \det^2(P) \det(Z_{\mathcal{F}}^T Z_{\mathcal{F}})$. The result of Proposition 1 then follows immediately.

S2 Minimum π_B - and π -aberration designs

We present minimum π_{B^-} and π -aberration designs of 8 and 12 runs in Tables 2, 3, 4 and 5. All these designs are generated by selecting and sign-switching columns of the saturated designs displayed in Table 1.

							1	2	3	4	5	6	7	8	9	10	11
							_	_	_	_	_	_	_	_	_	_	_
1	2	3	4	5	6	7	+	_	+	_	_	_	+	+	+	_	+
_	_	_	_	_	_	_	+	+	_	+	_	_	_	+	+	+	_
+	_	+	_	+	_	+	_	+	+	_	+	_	_	_	+	+	+
_	+	+	_	_	+	+	+	_	+	+	_	+	_	_	_	+	+
+	+	_	_	+	+	_	+	+	_	+	+	_	+	_	_	_	+
_	_	_	+	+	+	+	+	+	+	_	+	+	_	+	_	_	_
+	_	+	+	_	+	_	_	+	+	+	_	+	+	_	+	_	_
_	+	+	+	+	_	_	_	_	+	+	+	_	+	+	_	+	_
+	+	_	+	_	_	+	_	_	_	+	+	+	_	+	+	_	+
							+	_	_	_	+	+	+	_	+	+	_
							_	+	_	_	_	+	+	+	_	+	+

Table 1: Two saturated designs of 8 and 12 runs

	Table 2: Minimum π_B and π -aberration designs of 8 runs								
m	m_1	m_2	Columns of D_B	Columns of D_O	$(\pi^B_2,\pi^O_2,\pi^B_3,\pi^O_3)$	Criterion			
3	1	2	-1	(2, 4)	(0, 2, 0, 0)	π_B, π			
3	2	1	(-1, -2)	4	(2, 2, 0, 1)	π_B, π			
4	1	3	-1	(2, 4, 7)	(0,3,1,3)	π_B, π			
4	2	2	(-1, -2)	(4,7)	(2, 4, 2, 4)	π_B, π			
4	3	1	(-1, -2, -4)	7	(6, 3, 6, 4)	π_B, π			
5	1	4	-2	(1, 3, 4, 5)	(1, 9, 2, 6)	π_B			
5	1	4	-1	(2, 3, 4, 5)	(2, 8, 2, 4)	π			
5	2	3	(-2, -3)	(1, 4, 5)	(4, 10, 4, 11)	π_B			
5	2	3	(-1, -2)	(3, 4, 5)	(5,9,5,8)	π			
5	3	2	(-2, -3, -4)	(1, 5)	(9, 9, 13, 12)	π_B			
5	3	2	(1, -2, -3)	(4, 5)	(10, 8, 5, 12)	π			
5	4	1	(2, -3, -4, -5)	1	(16, 6, 28, 10)	π_B			
5	4	1	(1, -2, -3, -4)	5	(17, 5, 21, 9)	π			
6	1	5	-1	(2, 3, 4, 5, 6)	(2, 15, 4, 16)	π_B, π			
6	2	4	(-1, -2)	(3, 4, 5, 6)	(6, 16, 10, 22)	π_B			
6	2	4	(-1, -6)	(2, 3, 4, 5)	(6, 16, 12, 20)	π			
6	3	3	(1, -2, -3)	(4, 5, 6)	(12, 15, 15, 27)	π_B, π			
6	4	2	(1, -2, -3, -4)	(5, 6)	(20, 12, 36, 26)	π_B, π			
6	5	1	(1, -2, -3, -4, -5)	6	(30, 7, 62, 18)	π_B, π			
7	1	6	-1	$\left(2,3,4,5,6,7\right)$	(3, 24, 7, 36)	π_B, π			
7	2	5	(-1, -2)	$\left(3,4,5,6,7\right)$	(8, 25, 18, 45)	π_B, π			
7	3	4	(1, -2, -3)	(4, 5, 6, 7)	(15, 24, 30, 52)	π_B, π			
7	4	3	(1, -2, -3, -4)	(5, 6, 7)	(24, 21, 58, 54)	π_B, π			
7	5	2	(1, -2, -3, -4, -5)	(6,7)	(35, 16, 93, 48)	π_B, π			
7	6	1	(1, 2, 3, -4, -5, -6)	7	(48, 9, 138, 31)	π_B, π			

S2. MINIMUM π_B - AND π -ABERRATION DESIGNS

Table 3: Minimum π_B and π -aberration designs of 12 runs for $m = 3, \ldots, 7$ factors								
m	m_1	m_2	Columns of D_B	Columns of D_O	$(\pi^B_2,\pi^O_2,\pi^B_3,\pi^O_3)$	Criterion		
3	1	2	-1	(2, 3)	(0.11, 2.22, 0.11, 0)	π_B, π		
3	2	1	(-1, -2)	3	(2.22, 2.11, 0.22, 1)	π_B, π		
4	1	3	-1	(2, 3, 4)	(0.33, 4, 0.44, 0)	π_B, π		
4	2	2	(-1, -2)	(3, 4)	(2.67, 4.67, 0.67, 2.22)	π_B, π		
4	3	1	(-1, -2, 3)	4	(7, 3.33, 2.33, 3.44)	π_B, π		
5	1	4	-1	(2, 3, 4, 6)	(0.67, 6.67, 1.11, 0.44)	π_B, π		
5	2	3	(-1, -2)	(3, 4, 6)	(3.33, 8, 1.56, 3.67)	π_B		
5	2	3	(-1, -2)	(3, 4, 6)	(3.33, 8, 1.56, 3.67)	π		
5	3	2	(-1, -2, 3)	(4, 6)	(8, 7.33, 3.67, 7.56)	π_B, π		
5	4	1	(-1, -2, 3, -4)	6	(14.67, 4.67, 9.78, 7.78)	π_B, π		
6	1	5	-1	(2, 3, 4, 5, 6)	(1.11, 10.56, 2.22, 7.56)	π_B, π		
6	2	4	(-1, -2)	(3, 4, 5, 6)	(4.22, 12.44, 4.89, 12.89)	π_B, π		
6	3	3	(-1, -2, 3)	(4, 5, 6)	(9.33, 12.33, 10.11, 18.56)	π_B		
6	3	3	(1, -2, -3)	(4, 5, 10)	$\left(9.33, 12.33, 11, 16.33\right)$	π		
6	4	2	(-1, -2, 3, -4)	(5, 6)	(16.44, 10.22, 20, 20.44)	π_B, π		
6	5	1	(-1, -2, 3, -4, 6)	5	(25.56, 6.11, 36.67, 14.44)	π_B, π		
7	1	6	-2	$\left(1,3,4,5,6,7\right)$	(1.67, 16, 3.89, 17.33)	π_B, π		
7	2	5	(-1, 3)	(2, 4, 5, 6, 7)	(5.33, 18.33, 9.11, 29)	π_B		
7	2	5	(-1, -2)	(3, 4, 5, 6, 7)	(5.33, 18.33, 9.56, 25)	π		
7	3	4	(1, -2, -3)	(4, 5, 6, 7)	(11, 18.67, 18.44, 33.33)	π_B		
7	3	4	(-1, -3, 5)	(2, 4, 6, 7)	(11, 18.67, 19.33, 31.56)	π		
7	4	3	(-1, 3, -4, 6)	(2, 5, 7)	(18.67, 17, 32.89, 43.33)	π_B		
7	4	3	(1, 3, 4, 5)	(2, 6, 7)	(18.67, 17, 33.78, 37.11)	π		
7	5	2	(-1, -2, 3, -4, 6)	(5,7)	(28.33, 13.33, 55.22, 34.67)	π_B, π		
7	6	1	(-1, -2, 3, -4, -5, 6)	7	(40, 7.67, 99.78, 23.44)	π_B		
7	6	1	(-1, 3, 4, -5, -6, -7)	2	(40, 7.67, 100.67, 21.22)	π		

GUANZHOU CHEN AND BOXIN TANG

Table 4: Minimum π_B and π -aberration designs of 12 runs for m = 8, 9 factors

m	m_1	m_2	Columns of D_B	Columns of D_O	$(\pi^B_2,\pi^O_2,\pi^B_3,\pi^O_3)$	Criterion
8	1	7	1	$\left(2,3,4,5,6,7,8\right)$	(2.33, 23.33, 6.22, 38.22)	π_B, π
8	2	6	(-1,3)	$\left(2,4,5,6,7,8\right)$	(6.67, 26, 14.44, 53.33)	π_B
8	2	6	(1, -2)	$\left(3,4,5,6,7,8\right)$	(6.67, 26, 15.33, 48)	π
8	3	5	(1, -2, 4)	$\left(3,5,6,7,8\right)$	(13, 26.67, 28.11, 60.78)	π_B
8	3	5	(1, -2, -7)	$\left(3,4,5,6,8\right)$	(13, 26.67, 29, 56.78)	π
8	4	4	(1, -2, -3, 8)	(4, 5, 6, 7)	(21.33, 25.33, 48.89, 64.44)	π_B, π
8	5	3	(-1, -2, 3, -4, 6)	(5, 7, 8)	(31.67, 22, 78.44, 64.67)	π_B
8	5	3	(-1, -2, 3, -4, 6)	(5, 7, 8)	(31.67, 22, 78.44, 64.67)	π
8	6	2	(1, -2, -3, -4, -7, 8)	(5, 6)	(44, 16.67, 127.33, 56.44)	π_B, π
8	7	1	(1, -2, 3, 4, 5, -6, -7)	8	(58.33, 9.33, 194.11, 35.22)	π_B, π
9	1	8	-1	$\left(2,3,4,5,6,7,8,9\right)$	(3.11, 32.89, 9.33, 68.44)	π_B
9	1	8	-1	$\left(2,3,4,5,6,7,8,9\right)$	(3.11, 32.89, 9.33, 68.44)	π
9	2	7	(1, -2)	$\left(3,4,5,6,7,8,9\right)$	(8.22, 35.78, 22.89, 84.11)	π_B
9	2	7	(-1, -2)	$\left(3,4,5,6,7,8,9\right)$	(8.22, 35.78, 23.33, 82.78)	π
9	3	6	(1, -2, 4)	$\left(3,5,6,7,8,9\right)$	(15.33, 36.67, 40.33, 101.33)	π_B
9	3	6	(-1, -2, -4)	$\left(3,5,6,7,8,9\right)$	(15.33, 36.67, 43.89, 96)	π
9	4	5	(-1, 2, -3, 5)	$\left(4,6,7,8,9\right)$	(24.44, 35.56, 68.44, 107.78)	π_B, π
9	5	4	(-1, -2, 3, -4, 6)	(5, 7, 8, 9)	(35.56, 32.44, 106.89, 108.89)	π_B, π
9	6	3	(-1, -2, -3, 4, 7, -8)	(5,6,9)	(48.67, 27.33, 167.78, 107.44)	π_B
9	6	3	(-1, -2, 3, -4, 5, 6)	(7, 8, 9)	(48.67, 27.33, 169.11, 102.11)	π
9	7	2	(-1, -2, 3, -4, 5, 6, 7)	(8,9)	(63.78, 20.22, 242.33, 85.78)	π_B, π
9	8	1	(1, 2, -3, -4, -5, 6, -7, -8)	9	(80.89, 11.11, 336, 52)	π_B, π

m	m_1	m_2	Columns of D_B	Columns of D_O	$(\pi^B_2,\pi^O_2,\pi^B_3,\pi^O_3)$	Criterion
10	1	9	-1	(2, 3, 4, 5, 6, 7, 8, 9, 10)	(4, 45, 13.33, 112)	π_B, π
10	2	8	(-1, -2)	(3, 4, 5, 6, 7, 8, 9, 10)	(10, 48, 32.89, 132.44)	π_B
10	2	8	(-1, -2)	(3, 4, 5, 6, 7, 8, 9, 10)	(10, 48, 32.89, 132.44)	π
10	3	7	(-1, 2, -3)	(4, 5, 6, 7, 8, 9, 10)	(18, 49, 59, 152.33)	π_B
10	3	7	(1, -2, -3)	(4, 5, 6, 7, 8, 9, 10)	(18, 49, 59.89, 151.44)	π
10	4	6	(-1, 2, -3, 5)	(4, 6, 7, 8, 9, 10)	(28, 48, 92, 169.33)	π_B
10	4	6	(-1, -2, 3, -4)	(5, 6, 7, 8, 9, 10)	(28, 48, 95.56, 165.78)	π
10	5	5	(-1, -2, 3, -4, 6)	(5, 7, 8, 9, 10)	(40, 45, 141.11, 172.22)	π_B
10	5	5	(-1, -2, 3, -4, 6)	(5, 7, 8, 9, 10)	(40, 45, 141.11, 172.22)	π
10	6	4	(-1, -2, 3, -4, -5, 6)	(7, 8, 9, 10)	(54, 40, 215.11, 170.22)	π_B
10	6	4	(-1, -2, 3, -4, -5, 6)	(7, 8, 9, 10)	(54, 40, 215.11, 170.22)	π
10	7	3	(1, -2, -3, -4, 5, -6, -7)	(8, 9, 10)	(70, 33, 302.78, 156.56)	π_B
10	7	3	(1, -2, 3, 4, 5, -6, -7)	(8, 9, 10)	(70, 33, 305.44, 153.89)	π
10	8	2	(1, 2, -3, -4, -5, 6, -7, -8)	(9, 10)	(88, 24, 410.67, 122.67)	π_B, π
10	9	1	(-1, 2, -3, 4, 5, 6, -7, -8, -9)	10	(108, 13, 540, 73.33)	π_B, π
11	1	10	-1	(2, 3, 4, 5, 6, 7, 8, 9, 10, 11)	(5, 60, 18.33, 173.33)	π_B, π
11	2	9	(-1, -2)	$\left(3,4,5,6,7,8,9,10,11\right)$	(12, 63, 44.67, 201)	π_B, π
11	3	8	(1, -2, -3)	(4, 5, 6, 7, 8, 9, 10, 11)	(21, 64, 80, 226.67)	π_B, π
11	4	7	(-1, -2, 3, -4)	(5, 6, 7, 8, 9, 10, 11)	(32, 63, 125.33, 247.33)	π_B, π
11	5	6	(-1, -2, 3, -4, 6)	(5, 7, 8, 9, 10, 11)	(45, 60, 181.67, 260)	π_B, π
11	6	5	(-1, -2, 3, -4, -5, 6)	(7, 8, 9, 10, 11)	(60, 55, 270, 261.67)	π_B, π
11	7	4	(1, -2, -3, -4, 5, -6, -7)	(8, 9, 10, 11)	(77, 48, 375.33, 249.33)	π_B
11	7	4	(1, -2, -3, -4, 5, -6, -7)	(8, 9, 10, 11)	(77, 48, 375.33, 249.33)	π
11	8	3	(1, 2, -3, -4, -5, 6, -7, -8)	(9, 10, 11)	(96, 39, 498.67, 220)	π_B, π
11	9	2	(-1, 2, -3, 4, 5, 6, -7, -8, -9)	(10, 11)	(117, 28, 649, 170.67)	π_B, π
11	10	1	(-1, -2, 3, -4, 5, 6, 7, -8, -9, -10)	11	(140, 15, 823.33, 98.33)	π_B, π

Table 5: Minimum π_B and π -aberration designs of 12 runs for m = 10, 11 factors

References

- Chen, H. and A. S. Hedayat (1996). 2^{n-l} designs with weak minimum aberration. Ann. Statist. 24 (6), 2536–2548.
- Cheng, C. S. (1980). Orthogonal arrays with variable numbers of symbols. Ann. Statist. 8(2), 447–453.
- Cheng, C.-S. (2014). Optimal biased weighing designs and two-level main-effect plans. J. Stat. Theory Pract. 8(1), 83–99.
- Sun, C.-Y. and B. Tang (2022). Relationship between orthogonal and baseline parameterizations and its applications to design constructions. *Statist. Sinica* 32(1), 239–250.