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Appendix A. Some useful lemmas

Cy which is defined in Condition A1 and A which is defined in Condition
A2 are two important notations in our proofs. Without loss of generality,

we assume that Cy < A. It means that

sup  B7YHE|Zi(s)|P}P < A (A1)

B>1,1<i<p
Thus, any fixed moment of Z,(s) can be bounded by a constant only de-
pending on A.
Let Z be the p x n matrix with (Z;(s1), -, Zi(s,)) = Z' as its i-th

TOoOw.
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Lemma A.1. Let conditions A1 and A2 hold, and p = o(n). Then there

erists Apaz depending only on A such that

max Ay < A < 00. (A.2)
1<g<p

Proof. For any g =1,--- ,p, (@) implies that
p

h = D BIE ST s )20 (s (A3)

n

= I SEL S il )20 Zus)P 4 1 S S fuls— ) Zg(s) 2yl

k
h=1 u#g 1,j=1 h=1 1,j=1

We consider the first part u # g for each h,

ZE Zh si— 8)Zy(80) Zul )]

u#g 1,5=1

= XI Zfﬁ—%m — 5)EZ,(5:) Zul57) Zy(53) Zu(53)]

U#Q zgzg 1

= Z Z Tu(si = 55) fu(s; Sj)E[Zg(Si)Zg(SZ)}E[ZU(SJ'>ZU(33)]

u#g i,y =1

< Ty . : g
- n? L IISZ — sl T+ sy = ssll e L+ flsi = sl L+ lsy — 14t

u#g iy,

The last inequality is from (M) and (M) This, together with p = o(n)

and ||s; — s;]| > A forall n > 2 and 1 <i # j < n, implies that

%ZZ Z Ful(si = 51) Zg(s:) Zu(5;)* = O(A'n""p) = o(1). (A.4)

h=1 u#g 1] 1

Thus we only need to consider E[+ > e fn(si 5;)Z4(5:)Zy(s;))?. Since
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29 = (Zy(s1)," -+, Zg(sn)) and

(Zg(sl)a e Zg(sn)) = 201, — n_llnxn]' (A.5)

We can rewrite it as E(+Z9I, — n 1yun)Th[Lly — n 10y (Z9)7)?, where
T, is a n X n matrix with the (¢, 7)th entry fi.(s; — s;)/2 + fa(s; — s:)/2.
Note that £ Z9[I,, = n™ 1) Th[In — 0 1,k (Z29) T is a quadratic form and
Zg4(s) is a sub-Gaussian process. () implies that ||T,| < C, where C
only depends on A. These, together with (), imply that there exists a
positive constant C} depending only on A such that

1 g S .

z ZE[E > Fulsi = 55)Z(s1) Zg(57))* < Ch.

h=1 ij=1

This, together with (@)— (@), implies that A\, < 2C,, for any 1 < g < p.

We complete the proof. O

Lemma A.2. Let conditions A1 and A2 hold. For any n X n non-random
symmetric matriz QQ with bounded ||Q||, there exists a constant C > 0

depending only on A and \,.. for which

n

1 _
g vorl 32 QuZ () Zs) S ClQP™. (A0)
INES

Here Q;; is the (i,7)—th entry of Q.

Proof. When g # u, from the independence between Z,(s;) and Z,(s;) we
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have

UCLT’[% Z Qij Zg(5i) Zu(s;)]

ij=1

= n’ Z Qirjy Qirja B Zg(5i,) Zu(8,) Z4(815) Zu(555)]

11,J1,12,j2=1

- n”? Z Qirjy Qinin E1Z4(5i) Z4 (85| B[ Zu(85,) Zu(5,)]
11,J1,82,J2=1
n
A A
< n=? Qi1 Qinj
ihjlﬂzm:h:l R 1+ Hsil - 8i2l|d+a 1+ ||8j1 - Sj2||d+a

< el

The first inequality is from (ﬁ) and (M) The second inequality is from

|si —s;]| > Aforalln >2and 1 <i# j <n. When g = u, we note that
%szzl QijZ4(si)Z4(s;) is a quadratic form and Z,(s) is a sub-Gaussian

process. This completes the proof. O

Lemma A.3. Let conditions Al and A2 hold, and p = o(n). Then there

exists a positive constant Cy depending only on A such that

lim P(n~Y|Z||? < Cy) = 1. (A7)
n—oo
Proof. For any fixed 1 x n unit vector z = (zy,--- ,,), we denote 7"

by z(z) = (zl(x), e ,zp(a:)>. Since Zy(-),- -, Z,(-) are independent, the

elements of z(z) are independent. () implies that max;<;<, E2}(x) <
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C4 where C4 only depends on A.

p

22" Za" = [ (x) — B2 ()] + Z Ez}(z) < Z[zf(x) — B22(2)] + pCa.

J=1

By the sub-Gaussian property of Z(s), we can conclude that for any fixed
1 x p unit vector z and any ¢ > 0 there exists C 41 depending only on A

and c such that
P(leZ7|2 > Canln +p)) < cexp(=5(n +p). (A.8)

As we know, the unit Euclidean sphere S™~! consists of all n-dimensional
unit vectors x. Unfortunately the cardinality of S®~! is uncountable car-
dinal number. We can’t use (@) to derive an upper bound of ||Z]?
directly. Thus we introduce a method based on nets to control ||Z]|%.
The basic idea is as follows. We define a subset of S"~! as S. satisfying
max,cgn-1 Mingeg. ||z —y|| <e. Seis a so-called net of S"~! and the cardi-
nality of S. is bounded by (1+2¢7!)". Thus we can control max,es. || Zy ||
in probability by (@) Finally, we can control the difference between
maxyes. | Zy"|| and max,cgn1 || Z2 7).

Let S. be a subset of S"!. For any x € S"!, there exists € S. such
that ||Z — z|| < e. This, together with (@) and [S.] < (14 2¢71)", implies

that

P( max [|Zz"|* > Cas(n —I—p)) < ¢[Si/2| exp(—5n — 5p) < 5" exp(—5n — 5pfA.9)

.’EESl/Q
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Then if | Zz || = || Z||, there exists & € S. such that

1ZzT|| = |Z2"]| = |Z(z — 2)"|| = | 2] = el Z] = 1 = &) || Z]I.
Let e = 1/2,

1Z]|* < 4 max ||Zz"|]%
5651/2

This, together with (@), implies that
p(uzn? > 4Ca1(n +p)) < ¢|S1ja] exp(—5n — 5p) < ¢5™ exp(—5n — 56).10)
Then (@) is implied by () and p = o(n). O

Definition 1.

Lemma A.4. Let conditions Al and A2 hold, and p = o(n). Let My, be
the (g, u)-th entry 0f]\7 — N. There exists a positive constant Cy depending
only on A such that

max EM?, < Cin~'. (A.12)

1<g,u<p

Proof. Since N is diagonal, when g # u,
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Divide the term on the RHS of the above equation into three terms:

(i)a = ¢, (ii)a = w and (iii) @ # g,u. We control each term as follows.

When u = g,

B Z fulsi — ) Zy(50) Zy s, th 5= 55)Zu(5)Z,(s)]) = 0.
var([- Z fulsi — ) Z,(50) Zy 3] th Zu()Z4(s))))

- Bl th )2y 2o, th s )2 >Zg<sj>1)2

= E<n_4 > Su(siy = 55) fu(Siz = 852) fu(siy — 855) fu(sis — $5)
11,82,13,14,71,72,73,J4a=1
Zg(sil)zg(sil)zg(‘sh)Z (Sll)Z (Sj1)29(8j3)2u(sj2)ZU(Sj4)>

n 4
A A
< n~4 EZS(s
- DB U Eon o i e o

11,12,13,14,71,J2,J3,Ja=1 v=1

S éln_la

where Cy only depends on A. The first inequality is from ()—() and
the independence between Z,(-) and Z,(-). The second inequality is from
(), Co < Aand |s; —s;|| > Aforalln >2and 1 <i# j <n. Thus

we can control

th i — 8 Z4(5:) Zy(55))( th 5;)Zu(5:) Zy(5,)).

1]1 z]l

When u = u, we can repeat the above method to control

Z fh - 5] 31 Z 3] Z fh Z )Zu(sj))

’le 'L]l
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Let’s consider the third term
1 & . . 1 _
> (ﬁ > nlsi = 55)Zy(s1) ﬂ<5j))(ﬁ > nlsi = 55) Zu(5:) Za(s;)).
U#£g,u 4,j=1 i,j=1

We can rewrite it as

Z Z Fu(si = s7) fu(s3 = 85) Zg(50) Zu(s7) Za(s5) Za(53)

“759Uzjz] 1

= Z ( Z fn(si — s5) fa(s; — s3 ) ~ﬂ(5j) ~a(53)>Zg(5i)Zu<5€)-

ii=1 7 j 1 UF£gu

Let H be a n x n symmetric matrix with (i,7)th entry

_th _ijh ZZ Sj

7 ] 1 UFEgu
Recalling (@) and (@), we define Q = (I, — n pyn ) H(Ly — n ).
Although @ is random, we can find that @) is independent of Z,(s) and

Zu(8). Tt’s easy to see

1 n
B > Qi Zy(si) Zu(s;) = 0.

ij=1

varl 37 Q20 Zu(s)] = L 37 Quildy(s0) ()

i,j=1 =1
1 n

= Y E(Qi;Qi5)ElZy(51) Zg(57)| B Zu(57) Zu(s;)]

7,]%,5:1

A A

< il E 1/2 E 1/2
>~ Z 1 Ql] < sz) + (Si _ Sz)d+a 1 + (S] _ 33)d+a

Za]:'Lv]:

z]l
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where C5 only depends on A and the first inequality is from () The
second inequality is from ||s; — 5| > A forallm > 2 and 1 < i # j < n.

Recalling the definition of @), we can rewrite it as

1
Q = E(In - n_llnxn)vh([n - n_llnxn)ZT Z—g,—u([n - n_llnxn)VhT<In - n_llan),

—g,—u

where V}, has the (¢, j)th entry f5(s; —s;) and Z_,_, is a (p —2) x n matrix

without Z9 and Z*. Then

—g,—u

.
QI < HW!“H—ZT Zgulle < Gill 2" 2|7,

where C5 only depends on A and the last inequality is from () More-

over,
B|~Z7 7|3 - EanZTH?
n F n F
p n
S S0 DEAE
g,u=1
=B Y Y AEAG Y Y 2
1<g#u<p i=1
— Y Y B A s+ S S BIZ )22
1<g#u<p ij*l g=1 i,7=1
p
D SN o + 3 B2
- 1+ HS — 5]
<g#u<p i,j=1
S C~’4pa

where C, only depends on A. The first inequality is from () The second
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equation is from (), Co <A, p=o(n)and ||s; — sj|]| > A for all n > 2

and 1 <i # j <n. Then we can conclude that

E|Q|% < Csp,

where C5 only depends on A. From p = o(n),

varl S Q2 (0 7u(s)] < 25 = oln ™)

ij=1
Thus we control the third term and prove () for g # u. When g = u,

the proof is similar. O

Definition 2. Let J; and .J, be two subsets of {1,---,p}. Let Ny s, be
the sub-matrix of N consisting of the rows with the indices in .J; and the

columns with the indices in J;. Write N g = N Ty

Lemma A.5. Under the conditions of Lemma @ and J, N Jy = 0, we
define the event By = {n~'||Z||* < Ca}. Then there exists a positive

constant Cy depending only on A, ¢ and v such that

P<HNJ1’J2H2 > C’gn’lv(|J1]+\J2|)‘BZ> < (51145121 exp (=511 Ju=5| 5 |v).
(A.13)

Here v > 0 can be finite or tending to infinite.

Proof. Since k is finite, it’s sufficient to prove () on

N Z 5 (L= Lasn) VL= o) Z T Z(Ln—n L)V, (L= 1yin) Z
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where Z; is a sub-matrix of Z with ith row if and only if « € J;. Vj
is a n x n matrix with the (i,7)th entry fu(s; — s;). We define V;, =
(I, — n s ) Vil — n7 ).
ALY APATNA
= ZyWZ 23V 2]+ 2y Vi 25 2V 7,
+  ZaWWZ;Z,V, 7], (A.14)
where J is the complementary set of J;UJy. At first we deal with 7, \N/thl 4y, \N/hTZL.
1Z Vi 2] Z5 Vi Z] |12
= NZpWWZ] ZsV\[ Z] 20 Vi 2] 20 Vi Z] ||
= | ZpHnnZ4,),
where
Hyy = Vi 2], 21V, 2] 23, Vi 2] 2, V)
is a n X n symmetric matrix with rank |.J;| at most. Since JyNJy = 0, Hy, 4,

and 7 are independent. Moreover, under the event By = {n~'||Z|]* <

CA}7
[ Hn | < WVl Z] 201> < IVAIMIZT Z)P < (IVal[*n®CE.
It follows that

lim P(||Hy | < n*Ca|By) =1, (A.15)
n—oo
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where C4 only depends on A. Now we recall the rank of H, h,J, is not larger

than |.J;]. For given Hj, j,, we can do eigen-decomposition on it as follows.
Hpg = Uy Mo Uy 5, (A.16)

where Uy, 5, is a n x |J;| matrix and Ay, 5, is a |J;| x |J;| diagonal matrix.

UhT’JthJl = I‘J1|. Then
123 Vi Z ] Zi Vi Z N1 <\ Z3Unor, P A -

Since || Ap,, || can be controlled by (), we only need to consider || Zz, Uy, j, ||*.
Let Y = Z;,Uy 5, be a |Jo| x |J;| matrix with the (4, j)th entry Y;;. The
independence between the rows of Z;, implies the independence between
the rows of Y. For any fixed 1 x |J;| unit vector x = (x1,---,2y,), We
define Y " as Y (z) = (y1(x), -+ ,y5|()). Then the elements of Y (x) are

independent.

| J2] | J2]
BTVl =3 (@) - Byj(@)]+ 3 Byj (@)

J=1

Ya© = Z,Up 52" and Uy g2 is an unit vector independent of Z;,. By

the sub-Gaussian property of Z(s), we have

|J2|
2YTY2" < [ (x) — Byl ()] + [ L]Cas.

J=1

where C'4 5 only depends on A. Moreover, we can also deal with E}ﬂ Y7 (x)—

Ey3(x)] with the sub-Gaussian property of Z(s). Thus, for any fixed 1 x|[.J;]
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unit vector x, any ¢ > 0 and v > 0, there exists C'4 3 depending only on A,

c and v such that
P(JaY I > Cagoll il + |2]) | Bz) < cexp(=5lhJv =5 J2Jv). (A17)

As we know, the unit Euclidean sphere S!”11=! consists of all |.J;|-dimensional
unit vectors z. Unfortunately, the cardinality of S!’1|~! are uncountable
cardinal number. We can’t use () to conclude the upper bound of
|Y']|? directly. Thus we use the method based on Nets to control ||Y]|?. Let
S. be a subset of S”1I=1. For any = € S1”11=1  there exists # € S. such that

|z — z|| <e. Thenif [|[Ya'| = ||Y]|, there exists & € S. such that
Yz > [[Ya'|| = [Y (@ —2) | > Y] - Y] =1 -o)Y].
Let e = 1/2,
|YV]|? < 4 max [|[YZ"|%
CCESl/Q
This, together with () and |S.| < (14 2e7HM1l implies that
P(IVIE > 4Ca0(1] + | ])| Bz) < 5 exp(=5|J1Jo = 5|.5[v).(A.18)

Recalling (), one can conclude that for any ¢ > 0, there exists Cy4
only depending on A and ¢ such that
P(In2 2, V325, 20V, Z3, 2 > ACaqon™ (1] + | )| B2 )

< 51l exp(=5|Ji v — 5| Ja|v). (A.19)
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Others term in () can be controlled by the same method. This com-

pletes the proof. O
Lemma A.6. Under conditions A1-A3 and p = o(n),

1Ny, — Ail| = Op(n~Y2¢}7%), (A.20)

7

where J; ={j € Z :pi_1 <j <p;}, Ny =diag(Ny, 11, -, Ap,), and \; are

specified in Condition AS.

Proof. We divide N, into two terms: (i) the diagonal term N, 4 and (i) the
off-diagonal term N ,. Lemma @ ensures || N 4 — Ag|| = O,(n~12¢"?).
Thus we only need to show ||Ny. || = O,(n~1/2¢}"*). If ¢; is finite, Lemma
@ can also ensure it. So we only need to consider the case ¢; tends to
infinity.

We can rewrite N , and control || N, || with the following idea.

Vit Vi Vie 0 0 Vi
NJi,o = = + = D1 + ‘/0’1.
Vor Vag 0 Vo Vo O
Each block is a ¢;/2 x ¢;/2 matrix. Note that V5 = V] and the norm of the
second term V,; (off-diagonal block) can be controlled by ||Vi2||. Moreover,

we can control ||Vis|| by Lemmas @ and @ In details, Lemma @

implies that

P(IVoull? > Covn™'g;

BZ> < (592 4 5%/2) exp(—5q;v). (A.21)
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For the first term, we can repeat the step on Vj; and Vs to get a new

matrix with off-diagonal blocks as follows:

Lemma @ implies that
P(IVaal? > Coon™'i/2|B7) < 26(5%/* + 5%/") exp(~5g,0/2).  (A.22)

Repeat the steps, we can find that V,; has 277! diagonal blocks and each
diagonal block has two 277 ¢; x 277¢; off-diagonal blocks. Lemma @ implies

that

P(|[Vosl? > 21 Con g

BZ> < 2 1e(5279 4 52779 exp(—bgw x 217,
(A.23)
We divide it into jy matrices: NJI.,O = §0:1 Vois 0=t < ¢ and j, =

O(log g;). For different j, we choose different v to control () When

log ¢; = 0(2'77¢;), we choose v = 1. Tt follows that

P(IVogl? > 2 Con ™"

Bz) < 277 e(52 945770 exp(—5g; x2' ) = o(log ! g;).

(A.24)
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Otherwise, we choose v = q? /5 log™" ¢;. It follows that

P([IVogl? > Congilog 2

Bz) (A.25)

= P<||Vo,j||2 > 2190y Pn g log L g

(2

BZ>

< PP 4 52 exp(—5q-9/5 log™'q; x 2179) = o(log ™" ¢;).

(A.24)-(A2d) and | N,

| < 327, [IVoyll imply that

P10l > 503212

BZ> = o(1). (A.26)

Lemma @ implies that lim, ., P(Bz) = 1. This, together with ()
and || N, 4 — Ag|| = O,(n~1/2¢}"*), completes the proof. O
Lemma A.7. Under conditions A1-A2 and p = o(n),

[97S710 - 1| = Oy(n~12p112) (A.27)

Proof. Since X (s;) = QZ(s;),

Q'sTo-I,= Q' ) X(s)X(s) ',
<j<

It suffices to prove

In™ > Z(s))Z(s;)" = L]l = Opn™2p'7).

1<j<n

Following the proof of Lemma @, one can verify the above equation. [
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Appendix B. Proofs of Theorems

Recalling (), write N = TAI'T as its spectral decomposition, i.e.

where 5\1 > e > 5\p > 0 are the eigenvalues of N , and the columns of

the orthogonal matrix [ are the corresponding eigenvectors. Recalling the

definition of 1 in (@)—(), we can find that

M(fa)M(fa)"

S

I
| =
M»

>
Il

1

{%th(si_sj)il/QX( )X (s;)TS12)

=1 i,j=1

i fh(Si_Sg)E 1/2X( )X(sj Ti—l/z}'r
i,j=1

Il
x| =
]~

3"_‘ >

{
- 1/292{ th si—81)2(s:)Z(s;) " }QTETIQ

7,7=1
Z falsi = 5)2(s) 2(s;) T} QTS
’L] 1
_ 1 WQZ{ th si— 5)2(s)Z(s;) THQTETIQ — 1)
z] 1

th si— ;) Z(s)Z(s;) T} QTR L T2QNQTEY2,

zgl



Bo Zhang, Sixing Hao and Qiwei Yao

Let $712Q = VoAoUq where VoVl = Uglg = I, and Ag is a diagonal
matrix. Then

o 1~ - -
W= VoUolATTUJV, + kz 1/292{ Z Fulsi —s))Z(s:)Z(s;) "}

h=1 1]1

Ul (A2 — UQ{ th si—5;)2(5:) Z(s;) T} QTS

7,]1

+Va(Aq — L)YUTAT UL VY 4 VahqUol' ATT UG (A — 1)V, -
It follows that

UV WVl = DAL + kUQ AaUq Z { Z fn(si—s5)Z (SZ)Z(SJ)T}

h=1 131

UQ A2 UQ{ Z fh — 8] Z 81 (Sj)T}T(A]g/A\QUQ
z] 1

+Uq (Aq — L)YUUATT + Uy AqUoTAT U (Aq — 1)Uy,
Then
UG Ve WVaUq — TATT || = Of[|Aq — LIIIAI(L + [[Aal)®}.  (B.28)

(A.27) implies that ||[Aq — || = O,(n~Y2p1/2) and ||Ag| = O,(1).

Recalling D120 = VQAQUQ,
10357720 = U Valal| < 1|0y Vg (Aq — I,)Usl|l = Op(n™"/?p'/?)(B.29)

(B.29) implies that the leading term of g = UVTVi_l/QQ is US{/VQZ?Q

() implies that U},%~/2Q is close to I'T.
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Thus, the asymptotic properties of [T is the key point. We will prove
the following theorem for [ and A.

Put ¢; = p; — pi—y fori =1,--- ,m (see Condition A3), and

where submatrix fij is of the size ¢; x ¢;, and A, isa ¢; X q; diagonal matrix.

Theorem B.1. Let Conditions A1-A3 hold. As n — oo and p = o(n), it

holds that

D1l = Op{n (g + ¢;))* +n7'p}, 1<i#j<m, and (B.31)

JAi = Al = Op(n™ g +n7'p), 1<i<m,  (B32)

where A; = diag(A\p, 141, , Ap;), and X; are specified in Condition AS.

(IB.QQ), (IB2d), (|A27|) and Theorem @ can conclude Theorem m Thus,

we now need to prove Theorem @

Proof of Theorem @ () and (@) show that m is bounded. Let J; =
{j € Z:pi1 <j<p;}. At first we prove () We only need to prove

it when ¢ = 1 and other cases can be concluded by a permutation. Define
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A

Ji be the complementary set of J;, then we can rewrite det(Al, — N) =0

as follows.

. Ay, — NJl _leva
0 = det(Al, — N) = det : (B.33)

~Nyga, Mpp = Nig
Lemmas @ and @ conclude ||]§7ch7{]1 | = O,(n"1/2p*/?) = 0,(1). Lemmas
@—@ and the condition A3 imply that there exists a positive constant

C’N such that
Tim P(|[ Ny, — Nyellmin > Cn) =1 (B.34)
for any 1 <1 < p;. Lemma @ also implies that
nlggoPQm —Cn/2 < [Nl < [N ]| < Ar + éN/z) —1. (B.35)

If A€ (A, — Cn/2, M + Cn/2) is a solution of (), it is also (with

probability 1) a solution of
0 = det <)\Ip1 — Ny = Ny oMy, — NJIC)*NJIC,JI). (B.36)
Lemma @ and () imply that
1Nt My = Nog) ™ Nog gy | = Op(n ). (B.37)
Let Ay > --- > A, be the eigenvalues of Ny, (B.36)-(B.37) conclude that

:\l — 5\1 - Op(n_lp) (B38>



Spatial Blind Source Separation

for any 1 <[ < p;. This, together with (), concludes ()
Now we consider (B.31). We only need to prove it when 7 = 1 and

7 > 1. Other cases can be concluded by a permutation. From N =TDATT

and (), we can find that

Z?; NJl,Jifil IA‘11 f11A1
=N|...|=] ... | (B.39)
221 ij:Jifil f‘ml f‘mlAl

Define Uu = NJth, U12 = NJl’ch, U21 = Nch’Jl and U22 = Nchch. Similarly,

define TJ, = (I'J;,--- , I’ )T. Then we can rewrite (B.39) as
Unfn + U12f21 fllAl
= ) (B.40)
Uail'1 + U’y a1 Ay

TorAy = Toi(Ay — MiIp,) + Ml
Then the second line of () is equivalent to
(Us2 — MIp—p )Ty = Doy (Ay — M I,,) — UsiDyy.
Recalling (), Usz — M1,—,, is invertible with probability 1 as n tends
to infinity.
Ty = (Usy — )\ljp—pl)_lf‘Ql([\l —Mlp,) — (U — Allp—pl)_lUQIf‘ll'

()—() and Lemmas @—@ imply that ||A; — M, || = 0,(1) and

[(Uzz = MIp_p)) 7| = O,(1). Then (A1, ,, — Us) 'Us Ty is the leading
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term of I'y;. Moreover, ||[I';1]] = O(1). Thus we only need to consider

(/\1]17—171 — UQQ)_1U21. We rewrite (Allp—pl — Ugg)_l as
-1

Mlp, — Nypgy o —Nym Vao
= (Mlpp—Un) ™" =
— Nyt v M, — Ny, Vina
(B.14)-(B.13) and Lemma [A.d ensure || (A1), — N, ;)Y = Op(1) for 2 < i <
m. Lemma @ ensures | Ny, 5, || = Op(n=/2p"/?) = 0,(1) for 2 < i #t < m.
Since m is finite, we can find ||Vj;|| = O,(1) and ||[Vi|| = O,(n~'/?p!/?) for

2 <i#t<m. Recall that |[N; 5, || = Op(n=2(q1 + ¢:)"/?) for 2 <i <m

and
‘/22 e ‘/Zm NJQ,Jl
(Allp—pl - U22)_1U21 =
VmQ e me NJm,J1

It follows that [[ViiNy, 1, || = Op(n™2(q1 + ¢:)/?) and |32, VielNy, || =

O,(n~'p). We complete the proof of () O

Now we prove Theorem E By the same idea, we give the following

result for N.

Theorem B.2. Let conditions A1, A2 and A4 hold. Denote by 7,; the

(1,7)-th entry of matriz L in ) Then as n,p — oo, it holds that

fij = Op(n 2oz blj —i] ™) for 1<i#j<p, and (B.41)

Vom

me
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Vi =1+ Op(n_lvg_ai) for i =1,---,p. (B.42)
Moreover,
1A = Al = O, (n~Y2p1/2). (B.43)

Proof of Theorem @ Following the proof of Lemma @, one can verify
that |[A — N|| = O,(n~"/2p"/?). This, together with A4, implies (B.43).

From NI = IAUA\, we can find that

I'A— NI = (N — N)L. (B.44)
() implies that
R p
B (A = ) = MiA, (B.45)
s=1

where M;, is defined in Lemma @ The condition A4 and HA — N|| =
O, (n~?p'/?) can control (A; — \;). Then we can divide the right hand of
the above equation into two part.

p
> Midy =Y MiAs; + Mgy, (B.46)
s=1 s#j

() implies that F|M;;4;;|*> < E|M;;]* < Cin~'. Thus we only need to
consider the order of Zs# M;s7s;. Define v = maxq<;<, max;; | Zs;ﬁj M5

Then for any j # 1, () implies that

i | < (i = jlvgap — 1A = N )7 (v + |My))
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and
| Mida| < 1M 451
oy oy
< Y IMil(Is = dlvgay — 1A = NI v + [My))
oy
< oY IMl(|s = dlvgay — A = NI ) [Mi| Mgl (|s = lvgay — |A = N[~
oy oy

The condition A4, |A — N|| = O,(n""/?p"/?) and (A.19) conclude that

Z | Mis|(Is — jlvgap — H[\ —N|)~ = O(Ug_alp logp maxp | Mis|) = o0p(1)

’ 1<i,5<
5#J
and

S IMil| Mol (15 = Glvgap — 1A = NI = 0, (n"12).
s#j
This, together with the definition of v, implies that v = o,(n~1/2).

il < (1 = jlvgap — 1A = NI~ o (n172) + [My]].
This, together with (), concludes ()
Vi =1-) 45 2 1= (li=jlogap=lIA=NI) > (v+Myy])* = 140, (0™ ).

J#1 J#i
We complete the proof. O

(B.29) and (A.27) imply that

DT Ug Vg WVoUql' — Al = O, (n~Y?p/?).

This and Theorem @ can conclude the asymptotic properties of UVLVQ Uql.

Then we can prove Theorem E by () and Theorem @
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Appendix C. An Additional Example for Numerical

Results

In this section, we further present the usefulness of Multiple Ring Kernels
by constructing a special example. In this example, Ring Kernel 1 is no
longer the best single kernel. We achieve this goal by generating latent fields
in a mixing way. To generate data, we split the map of sample locations
into 10 rows according to their y coordinates, and all rows have equal width.
For each row, let the sample points within be independent from adjacent
rows. In order to achieve this, for each of the p latent fields, we generate
3 independent candidate random fields using same set of coordinates and
covariance function parameters. The process for generating each candidate
random field is the same as described before. The coordinates belong to the
1%t 4t 7t and 10** row would take values from the first candidate random
field, those belong to the 2", 5" 8 row would take values from the second
candidate random field, and the rest of the sample points will take values
from the third candidate random field. In this way, the samples from most
adjacent rows are independent to each other, and the effectiveness of Ring

Kernel 1 is weakened.
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We performed simulation using latent random fields constructed from

the method above. Dimension of latent field p = 3. The sample size, sam-

pling method of coordinates, setting of mixing matrix, and use of matern

covariance function is identical to the description of simulation setting in

numerical illustration section. The boxplot of D(Q, ) obtained from 1000

replications is presented in figure, and median of D(£2, Q) is presented in

table.

As the figure shows, kernel 1 is no longer the best-performing single

kernel, while multiple kernel remains very close to the best single kernel,

and outperforming most other single kernels. Yet as sample size increases,

D(Q, Q) did not improve, which might due to the artificial nature of this

special example. More detailed data is presented in Table @

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple Multiple Original
n=100 0.2642 0.2218 0.2718 0.2098 0.2583 0.2663 0.2710 0.2448 0.2510 0.2462 0.2123 0.2242
n=500 0.2218 0.1739 0.1583 0.1335 0.2614 0.1974 0.2489 0.1642 0.2582 0.2348 0.1480 0.1045
n=1000 0.2091 0.1712 0.1627 0.1452 0.2500 0.1813 0.2463 0.1544 0.2638 0.2346 0.1535 0.8800
n=2000 0.2190 0.1763 0.1548 0.1474 0.2455 0.1807 0.2703 0.1590 0.2631 0.2442 0.1506 0.0752

Table C.1: Median of D(Q,Q) from the proposed method using the 10 single kernels, or multiple ker-

nel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel (original) in a

simulation with 1000 replications for the mixed random fields. The number of observations n is 100, 500, 1000

or 2000 , and the dimension of random fields is p = 3.
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Figure C.1: Boxplots of D(Q,Q) for the proposed method using the 10 single kernels, or multiple ker-
nel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel (original) in a
simulation with 1000 replications for the mix Gaussian random fields. The number of observations n is 100,
500, 1000 or 2000 (from top to bottom), and the dimension of random fields is p = 3. Latent field is generated

in a mixing approach as described.



