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Appendix A. Some useful lemmas

C0 which is defined in Condition A1 and A which is defined in Condition

A2 are two important notations in our proofs. Without loss of generality,

we assume that C0 ≤ A. It means that

sup
β≥1,1≤i≤p

β−1/2{E|Zi(s)|β}1/β ≤ A. (A.1)

Thus, any fixed moment of Zg(s) can be bounded by a constant only de-

pending on A.

Let Z be the p × n matrix with (Zi(s1), · · · , Zi(sn)) = Zi as its i-th

row.



Bo Zhang, Sixing Hao and Qiwei Yao

Lemma A.1. Let conditions A1 and A2 hold, and p = o(n). Then there

exists λmax depending only on A such that

max
1≤g≤p

λg ≤ λmax < ∞. (A.2)

Proof. For any g = 1, · · · , p, (2.6) implies that

λg =
1

k

k∑
h=1

p∑
u=1

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃u(sj)]
2 (A.3)

=
1

k

k∑
h=1

∑
u ̸=g

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃u(sj)]
2 +

1

k

k∑
h=1

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj)]
2.

We consider the first part u ̸= g for each h,

∑
u ̸=g

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃u(sj)]
2

=
∑
u ̸=g

1

n2

n∑
i,j,̃i,j̃=1

fh(si − sj)fh(sĩ − sj̃)E[Z̃g(si)Z̃u(sj)Z̃g(sĩ)Z̃u(sj̃)]

=
∑
u ̸=g

1

n2

n∑
i,j,̃i,j̃=1

fh(si − sj)fh(sĩ − sj̃)E[Z̃g(si)Z̃g(sĩ)]E[Z̃u(sj)Z̃u(sj̃)]

≤
∑
u ̸=g

1

n2

n∑
i,j,̃i,j̃=1

A

1 + ∥si − sj∥d+α

A

1 + ∥sĩ − sj̃∥d+α

A

1 + ∥si − sĩ∥d+α

A

1 + ∥sj − sj̃∥d+α
.

The last inequality is from (3.12) and (3.13). This, together with p = o(n)

and ∥si − sj∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n, implies that

1

k

k∑
h=1

∑
u ̸=g

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃u(sj)]
2 = O(A4n−1p) = o(1). (A.4)

Thus we only need to consider E[ 1
n

∑n
i,j=1 fh(si − sj)Z̃g(si)Z̃g(sj)]

2. Since
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Zg = (Zg(s1), · · · , Zg(sn)) and

(Z̃g(s1), · · · , Z̃g(sn)) = Zg[In − n−11n×n]. (A.5)

We can rewrite it as E( 1
n
Zg[In − n−11n×n]Th[In − n−11n×n](Z

g)⊤)2, where

Th is a n × n matrix with the (i, j)th entry fh(si − sj)/2 + fh(sj − si)/2.

Note that 1
n
Zg[In−n−11n×n]Th[In−n−11n×n](Z

g)⊤ is a quadratic form and

Zg(s) is a sub-Gaussian process. (3.13) implies that ∥Th∥ ≤ C̃, where C̃

only depends on A. These, together with (3.12), imply that there exists a

positive constant C̃1 depending only on A such that

1

k

k∑
h=1

E[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj)]
2 ≤ C̃1.

This, together with (A.3)- (A.4), implies that λg ≤ 2C̃1, for any 1 ≤ g ≤ p.

We complete the proof.

Lemma A.2. Let conditions A1 and A2 hold. For any n× n non-random

symmetric matrix Q with bounded ∥Q∥, there exists a constant C > 0

depending only on A and λmax for which

max
1≤g,u≤p

var[
1

n

n∑
i,j=1

QijZg(si)Zu(sj)] ≤ C∥Q∥2n−1. (A.6)

Here Qij is the (i, j)−th entry of Q.

Proof. When g ̸= u, from the independence between Zg(si) and Zu(sj) we
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have

var[
1

n

n∑
i,j=1

QijZg(si)Zu(sj)]

= n−2

n∑
i1,j1,i2,j2=1

Qi1j1Qi2j2E[Zg(si1)Zu(sj1)Zg(si2)Zu(sj2)]

= n−2

n∑
i1,j1,i2,j2=1

Qi1j1Qi2j2E[Zg(si1)Zg(si2)]E[Zu(sj1)Zu(sj2)]

≤ n−2

n∑
i1,j1,i2,j2=1

Qi1j1Qi2j2

A

1 + ∥si1 − si2∥d+α

A

1 + ∥sj1 − sj2∥d+α

≤ C∥Q∥2n−1.

The first inequality is from (3.12) and (3.13). The second inequality is from

∥si − sj∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n. When g = u, we note that

1
n

∑n
i,j=1 QijZg(si)Zg(sj) is a quadratic form and Zg(s) is a sub-Gaussian

process. This completes the proof.

Lemma A.3. Let conditions A1 and A2 hold, and p = o(n). Then there

exists a positive constant CA depending only on A such that

lim
n→∞

P (n−1∥Z∥2 ≤ CA) = 1. (A.7)

Proof. For any fixed 1 × n unit vector x = (x1, · · · , xn), we denote xZ⊤

by z(x) =
(
z1(x), · · · , zp(x)

)
. Since Z1(·), · · · , Zp(·) are independent, the

elements of z(x) are independent. (3.12) implies that max1≤j≤p Ez2j (x) ≤
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C̃A where C̃A only depends on A.

xZ⊤Zx⊤ =

p∑
j=1

[z2j (x)− Ez2j (x)] +

p∑
j=1

Ez2j (x) ≤
p∑

j=1

[z2j (x)− Ez2j (x)] + pC̃A.

By the sub-Gaussian property of Z(s), we can conclude that for any fixed

1 × p unit vector x and any c > 0 there exists C̃A,1 depending only on A

and c such that

P
(
∥xZ⊤∥2 > C̃A,1(n+ p)

)
≤ c exp(−5(n+ p)). (A.8)

As we know, the unit Euclidean sphere Sn−1 consists of all n-dimensional

unit vectors x. Unfortunately the cardinality of Sn−1 is uncountable car-

dinal number. We can’t use (A.8) to derive an upper bound of ∥Z∥2

directly. Thus we introduce a method based on nets to control ∥Z∥2.

The basic idea is as follows. We define a subset of Sn−1 as Sε satisfying

maxx∈Sn−1 miny∈Sε ∥x− y∥ ≤ ε. Sε is a so-called net of Sn−1 and the cardi-

nality of Sε is bounded by (1+2ε−1)n. Thus we can control maxy∈Sε ∥Zy⊤∥

in probability by (A.8). Finally, we can control the difference between

maxy∈Sε ∥Zy⊤∥ and maxx∈Sn−1 ∥Zx⊤∥.

Let Sε be a subset of Sn−1. For any x ∈ Sn−1, there exists x̃ ∈ Sε such

that ∥x̃−x∥ ≤ ε. This, together with (A.8) and |Sε| ≤ (1+ 2ε−1)n, implies

that

P
(
max
x̃∈S1/2

∥Zx̃⊤∥2 > C̃A,1(n+ p)
)
≤ c|S1/2| exp(−5n− 5p) ≤ c5n exp(−5n− 5p).(A.9)
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Then if ∥Zx⊤∥ = ∥Z∥, there exists x̃ ∈ Sε such that

∥Zx̃⊤∥ ≥ ∥Zx⊤∥ − ∥Z(x̃− x)⊤∥ ≥ ∥Z∥ − ε∥Z∥ = (1− ε)∥Z∥.

Let ε = 1/2,

∥Z∥2 ≤ 4 max
x̃∈S1/2

∥Zx̃⊤∥2.

This, together with (A.9), implies that

P
(
∥Z∥2 > 4C̃A,1(n+ p)

)
≤ c|S1/2| exp(−5n− 5p) ≤ c5n exp(−5n− 5p).(A.10)

Then (A.7) is implied by (A.10) and p = o(n).

Definition 1.

N̂ =
1

k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si−sj)Z̃(si)Z̃(sj)
⊤}{ 1

n

n∑
i,j=1

fh(si−sj)Z̃(si)Z̃(sj)
⊤}⊤

.

(A.11)

Lemma A.4. Let conditions A1 and A2 hold, and p = o(n). Let Mgu be

the (g, u)-th entry of N̂ −N . There exists a positive constant C1 depending

only on A such that

max
1≤g,u≤p

EM2
gu ≤ C1n

−1. (A.12)

Proof. Since N is diagonal, when g ̸= u,

Mgu =
1

k

k∑
h=1

p∑
ũ=1

[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃ũ(sj)][
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃ũ(sj)].
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Divide the term on the RHS of the above equation into three terms:

(i)ũ = g, (ii)ũ = u and (iii) ũ ̸= g, u. We control each term as follows.

When ũ = g,

E
(
[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj)][
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃g(sj)]
)
= 0.

var
(
[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj)][
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃g(sj)]
)

= E
(
[
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj)][
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃g(sj)]
)2

= E
(
n−4

n∑
i1,i2,i3,i4,j1,j2,j3,j4=1

fh(si1 − sj1)fh(si2 − sj2)fh(si3 − sj3)fh(si4 − sj4)

Z̃g(si1)Z̃g(si1)Z̃g(si1)Z̃g(si1)Z̃g(sj1)Z̃g(sj3)Z̃u(sj2)Z̃u(sj4)
)

≤ n−4

n∑
i1,i2,i3,i4,j1,j2,j3,j4=1

[
4∏

v=1

A

1 + ∥siv − sjv∥d+α
]

A

1 + ∥sj2 − sj4∥d+α
EZ6

g (s)

≤ C̃1n
−1,

where C̃1 only depends on A. The first inequality is from (3.12)-(3.13) and

the independence between Zg(·) and Zu(·). The second inequality is from

(3.11), C0 ≤ A and ∥si − sj∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n. Thus

we can control

(
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃g(sj))(
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃g(sj)).

When ũ = u, we can repeat the above method to control

(
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃u(sj))(
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃u(sj)).
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Let’s consider the third term

∑
ũ ̸=g,u

(
1

n

n∑
i,j=1

fh(si − sj)Z̃g(si)Z̃ũ(sj))(
1

n

n∑
i,j=1

fh(si − sj)Z̃u(si)Z̃ũ(sj)).

We can rewrite it as

1

n2

∑
ũ ̸=g,u

n∑
i,j,̃i,j̃=1

fh(si − sj)fh(sĩ − sj̃)Z̃g(si)Z̃u(sĩ)Z̃ũ(sj)Z̃ũ(sj̃)

=
1

n

n∑
i,̃i=1

( 1
n

n∑
j,j̃=1

fh(si − sj)fh(sĩ − sj̃)
∑
ũ ̸=g,u

Z̃ũ(sj)Z̃ũ(sj̃)
)
Z̃g(si)Z̃u(sĩ).

Let H̃ be a n× n symmetric matrix with (i, ĩ)th entry

1

n

n∑
j,j̃=1

fh(si − sj)fh(sĩ − sj̃)
∑
ũ ̸=g,u

Z̃ũ(sj)Z̃ũ(sj̃).

Recalling (A.5) and (A.6), we define Q = (In − n−11n×n)H̃(In − n−11n×n).

Although Q is random, we can find that Q is independent of Zg(s) and

Zu(s). It’s easy to see

E
1

n

n∑
i,j=1

Qi,jZg(si)Zu(sj) = 0.

var[
1

n

n∑
i,j=1

Qi,jZg(si)Zu(sj)] = E[
1

n

n∑
i,j=1

Qi,jZg(si)Zu(sj)]
2

=
1

n2

n∑
i,j,̃i,j̃=1

E(Qi,jQĩ,j̃)E[Zg(si)Zg(sĩ)]E[Zu(sj)Zu(sj̃)]

≤ 1

n2

n∑
i,j,̃i,j̃=1

(EQ2
i,j)

1/2(EQ2
ĩ,j̃
)1/2

A

1 + (si − sĩ)
d+α

A

1 + (sj − sj̃)
d+α

≤ C̃2

n2

n∑
i,j=1

EQ2
i,j =

C̃2

n2
E∥Q∥2F ,
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where C̃2 only depends on A and the first inequality is from (3.12). The

second inequality is from ∥si − sj∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n.

Recalling the definition of Q, we can rewrite it as

Q =
1

n
(In − n−11n×n)Vh(In − n−11n×n)Z

⊤
−g,−uZ−g,−u(In − n−11n×n)V

⊤
h (In − n−11n×n),

where Vh has the (i, j)th entry fh(si−sj) and Z−g,−u is a (p−2)×n matrix

without Zg and Zu. Then

∥Q∥2F ≤ ∥Vh∥4∥
1

n
Z⊤

−g,−uZ−g,−u∥2F ≤ C̃3∥
1

n
Z⊤Z∥2F ,

where C̃3 only depends on A and the last inequality is from (3.13). More-

over,

E∥ 1
n
Z⊤Z∥2F = E∥ 1

n
ZZ⊤∥2F

= E

p∑
g,u=1

[n−1

n∑
i=1

Zg(si)Zu(si)]
2

= E
∑

1≤g ̸=u≤p

[n−1

n∑
i=1

Zg(si)Zu(si)]
2 + E

p∑
g=1

[n−1

n∑
i=1

Z2
g (si)]

2

=
∑

1≤g ̸=u≤p

n−2

n∑
i,j=1

E[Zg(si)Zg(sj)]E[Zu(si)Zu(sj)] +

p∑
g=1

n−2

n∑
i,j=1

E[Z2
g (si)Z

2
g (sj)]

≤
∑

1≤g ̸=u≤p

n−2

n∑
i,j=1

(
A

1 + ∥si − sj∥d+α
)2 +

p∑
g=1

EZ4
g (s)

≤ C̃4p,

where C̃4 only depends on A. The first inequality is from (3.12). The second
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equation is from (3.11), C0 ≤ A, p = o(n) and ∥si − sj∥ ≥ △ for all n ≥ 2

and 1 ≤ i ̸= j ≤ n. Then we can conclude that

E∥Q∥2F ≤ C̃5p,

where C̃5 only depends on A. From p = o(n),

var[
1

n

n∑
i,j=1

Qi,jZg(si)Zu(sj)] ≤
C̃2C̃5

n2
p = o(n−1).

Thus we control the third term and prove (A.12) for g ̸= u. When g = u,

the proof is similar.

Definition 2. Let J1 and J2 be two subsets of {1, · · · , p}. Let N̂J1,J2 be

the sub-matrix of N̂ consisting of the rows with the indices in J1 and the

columns with the indices in J2. Write N̂J1 = N̂J1,J1 .

Lemma A.5. Under the conditions of Lemma A.3 and J1 ∩ J2 = ∅, we

define the event BZ = {n−1∥Z∥2 ≤ CA}. Then there exists a positive

constant C2 depending only on A, c and v such that

P
(
∥N̂J1,J2∥2 > C2n

−1v(|J1|+|J2|)
∣∣∣BZ

)
≤ c(5|J1|+5|J2|) exp(−5|J1|v−5|J2|v).

(A.13)

Here v > 0 can be finite or tending to infinite.

Proof. Since k is finite, it’s sufficient to prove (A.13) on

n−2ZJ1(In−n−11n×n)Vh(In−n−11n×n)Z
⊤Z(In−n−11n×n)V

⊤
h (In−n−11n×n)Z

⊤
J2
,
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where ZJ1 is a sub-matrix of Z with ith row if and only if i ∈ J1. Vh

is a n × n matrix with the (i, j)th entry fh(si − sj). We define Ṽh =

(In − n−11n×n)Vh(In − n−11n×n).

ZJ1ṼhZ
⊤ZṼ ⊤

h Z⊤
J2

= ZJ1ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
+ ZJ1ṼhZ

⊤
J2
ZJ2Ṽ

⊤
h Z⊤

J2

+ ZJ1ṼhZ
⊤
J ZJ Ṽ

⊤
h Z⊤

J2
, (A.14)

where J is the complementary set of J1∪J2. At first we deal with ZJ1ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
.

∥ZJ1ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥2

= ∥ZJ2ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J1
ZJ1ṼhZ

⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥

= ∥ZJ2Hh,J1Z
⊤
J2
∥,

where

Hh,J1 = ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J1
ZJ1ṼhZ

⊤
J1
ZJ1Ṽ

⊤
h

is a n×n symmetric matrix with rank |J1| at most. Since J1∩J2 = ∅, Hh,J1

and Z⊤
J2

are independent. Moreover, under the event BZ = {n−1∥Z∥2 ≤

CA},

∥Hh,J1∥ ≤ ∥Ṽh∥4∥Z⊤
J1
ZJ1∥3 ≤ ∥Vh∥4∥Z⊤Z∥3 ≤ ∥Vh∥4n3C3

A.

It follows that

lim
n→∞

P (∥Hh,J1∥ ≤ n3C̃A|BZ) = 1, (A.15)



Bo Zhang, Sixing Hao and Qiwei Yao

where C̃A only depends on A. Now we recall the rank of Hh,J1 is not larger

than |J1|. For given Hh,J1 , we can do eigen-decomposition on it as follows.

Hh,J1 = Uh,J1Λh,J1U
⊤
h,J1

, (A.16)

where Uh,J1 is a n × |J1| matrix and Λh,J1 is a |J1| × |J1| diagonal matrix.

U⊤
h,J1

Uh,J1 = I|J1|. Then

∥ZJ1ṼhZ
⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥2 ≤ ∥ZJ2Uh,J1∥2∥Λh,J1∥.

Since ∥Λh,J1∥ can be controlled by (A.15), we only need to consider ∥ZJ2Uh,J1∥2.

Let Y = ZJ2Uh,J1 be a |J2| × |J1| matrix with the (i, j)th entry Yij. The

independence between the rows of ZJ2 implies the independence between

the rows of Y . For any fixed 1 × |J1| unit vector x = (x1, · · · , x|J1|), we

define xY ⊤ as Y (x) = (y1(x), · · · , y|J2|(x)). Then the elements of Y (x) are

independent.

xY ⊤Y x⊤ =

|J2|∑
j=1

[y2j (x)− Ey2j (x)] +

|J2|∑
j=1

Ey2j (x).

Y x⊤ = ZJ2Uh,J1x
⊤ and Uh,J1x

⊤ is an unit vector independent of ZJ2 . By

the sub-Gaussian property of Z(s), we have

xY ⊤Y x⊤ ≤
|J2|∑
j=1

[y2j (x)− Ey2j (x)] + |J2|C̃A,2,

where C̃A,2 only depends on A. Moreover, we can also deal with
∑|J2|

j=1[y
2
j (x)−

Ey2j (x)] with the sub-Gaussian property of Z(s). Thus, for any fixed 1×|J1|
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unit vector x, any c > 0 and v > 0, there exists CA,3 depending only on A,

c and v such that

P
(
∥xY ⊤∥2 > CA,3v(|J1|+ |J2|)

∣∣∣BZ

)
≤ c exp(−5|J1|v − 5|J2|v). (A.17)

As we know, the unit Euclidean sphere S|J1|−1 consists of all |J1|-dimensional

unit vectors x. Unfortunately, the cardinality of S|J1|−1 are uncountable

cardinal number. We can’t use (A.17) to conclude the upper bound of

∥Y ∥2 directly. Thus we use the method based on Nets to control ∥Y ∥2. Let

Sε be a subset of S|J1|−1. For any x ∈ S|J1|−1, there exists x̃ ∈ Sε such that

∥x̃− x∥ ≤ ε. Then if ∥Y x⊤∥ = ∥Y ∥, there exists x̃ ∈ Sε such that

∥Y x̃⊤∥ ≥ ∥Y x⊤∥ − ∥Y (x̃− x)⊤∥ ≥ ∥Y ∥ − ε∥Y ∥ = (1− ε)∥Y ∥.

Let ε = 1/2,

∥Y ∥2 ≤ 4 max
x̃∈S1/2

∥Y x̃⊤∥2.

This, together with (A.17) and |Sε| ≤ (1 + 2ε−1)|J1|, implies that

P
(
∥Y ∥2 > 4CA,3v(|J1|+ |J2|)

∣∣∣BZ

)
≤ c5|J1| exp(−5|J1|v − 5|J2|v).(A.18)

Recalling (A.15), one can conclude that for any c > 0, there exists CA,4

only depending on A and c such that

P
(
∥n−2ZJ1ṼhZ

⊤
J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥2 > 4CA,4vn

−1(|J1|+ |J2|)
∣∣∣BZ

)
≤ c5|J1| exp(−5|J1|v − 5|J2|v). (A.19)
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Others term in (A.14) can be controlled by the same method. This com-

pletes the proof.

Lemma A.6. Under conditions A1-A3 and p = o(n),

∥N̂Ji − Λi∥ = Op(n
−1/2q

1/2
i ), (A.20)

where Ji = {j ∈ Z : pi−1 < j ≤ pi}, Λi = diag(λpi−1+1, · · · , λpi), and λi are

specified in Condition A3.

Proof. We divide N̂Ji into two terms: (i) the diagonal term N̂Ji,d and (ii) the

off-diagonal term N̂Ji,o. Lemma A.4 ensures ∥N̂Ji,d − Λi∥ = Op(n
−1/2q

1/2
i ).

Thus we only need to show ∥N̂Ji,o∥ = Op(n
−1/2q

1/2
i ). If qi is finite, Lemma

A.4 can also ensure it. So we only need to consider the case qi tends to

infinity.

We can rewrite N̂Ji,o and control ∥N̂Ji,o∥ with the following idea.

N̂Ji,o =

V11 V12

V21 V22

 =

V11 0

0 V22

+

 0 V12

V21 0

 = D1 + Vo,1.

Each block is a qi/2×qi/2 matrix. Note that V12 = V ⊤
21 and the norm of the

second term Vo,1 (off-diagonal block) can be controlled by ∥V12∥. Moreover,

we can control ∥V12∥ by Lemmas A.3 and A.5. In details, Lemma A.5

implies that

P
(
∥Vo,1∥2 > C2vn

−1qi

∣∣∣BZ

)
≤ c(5qi/2 + 5qi/2) exp(−5qiv). (A.21)
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For the first term, we can repeat the step on V11 and V22 to get a new

matrix with off-diagonal blocks as follows:

Vo,2 = diag
[ 0 V11,12

V11,21 0

 ,

 0 V22,12

V22,21 0

]
.

Lemma A.5 implies that

P
(
∥Vo,2∥2 > C2vn

−1qi/2
∣∣∣BZ

)
≤ 2c(5qi/4 + 5qi/4) exp(−5qiv/2). (A.22)

Repeat the steps, we can find that Vo,j has 2j−1 diagonal blocks and each

diagonal block has two 2−jqi×2−jqi off-diagonal blocks. Lemma A.5 implies

that

P
(
∥Vo,j∥2 > 21−jC2vn

−1qi

∣∣∣BZ

)
≤ 2j−1c(52

−jqi + 52
−jqi) exp(−5qiv × 21−j).

(A.23)

We divide it into j0 matrices: N̂Ji,o =
∑j0

j=1 Vo,j, 2j0−1 ≤ qi and j0 =

O(log qi). For different j, we choose different v to control (A.23). When

log qi = o(21−jqi), we choose v = 1. It follows that

P
(
∥Vo,j∥2 > 21−jC2n

−1qi

∣∣∣BZ

)
≤ 2j−1c(52

−jqi+52
−jqi) exp(−5qi×21−j) = o(log−1 qi).

(A.24)
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Otherwise, we choose v = q
4/5
i log−1 qi. It follows that

P
(
∥Vo,j∥2 > C2n

−1qi log
−2 qi

∣∣∣BZ

)
(A.25)

≤ P
(
∥Vo,j∥2 > 21−jC2q

4/5
i n−1qi log

−1 qi

∣∣∣BZ

)
≤ 2j−1c(52

−jqi + 52
−jqi) exp(−5q

9/5
i log−1 qi × 21−j) = o(log−1 qi).

(A.24)-(A.25) and ∥N̂Ji,o∥ ≤
∑j0

j=1 ∥Vo,j∥ imply that

P
(
∥N̂Ji,o∥ > 5C

1/2
2 n−1/2q

1/2
i

∣∣∣BZ

)
= o(1). (A.26)

Lemma A.3 implies that limn→∞ P (BZ) = 1. This, together with (A.26)

and ∥N̂Ji,d − Λi∥ = Op(n
−1/2q

1/2
i ), completes the proof.

Lemma A.7. Under conditions A1-A2 and p = o(n),

∥Ω⊤Σ̂−1Ω− Ip∥ = Op(n
−1/2p1/2). (A.27)

Proof. Since X̃(sj) = ΩZ̃(sj),

Ω⊤Σ̂−1Ω− Ip = Ω⊤[n−1
∑

1≤j≤n

X̃(sj)X̃(sj)
⊤]−1Ω− Ip

= [n−1
∑

1≤j≤n

Z̃(sj)Z̃(sj)
⊤]−1 − Ip.

It suffices to prove

∥n−1
∑

1≤j≤n

Z̃(sj)Z̃(sj)
⊤ − Ip∥ = Op(n

−1/2p1/2).

Following the proof of Lemma A.6, one can verify the above equation.
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Appendix B. Proofs of Theorems

Recalling (A.11), write N̂ = Γ̂Λ̂Γ̂⊤ as its spectral decomposition, i.e.

Λ̂ = diag(λ̂1, · · · , λ̂p),

where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the eigenvalues of N̂ , and the columns of

the orthogonal matrix Γ̂ are the corresponding eigenvectors. Recalling the

definition of Ŵ in (2.9)-(2.10), we can find that

Ŵ =
1

k

k∑
h=1

M̂(fh)M̂(fh)
⊤

=
1

k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Σ̂
−1/2X̃(si)X̃(sj)

⊤Σ̂−1/2
}

{ 1
n

n∑
i,j=1

fh(si − sj)Σ̂
−1/2X̃(si)X̃(sj)

⊤Σ̂−1/2
}⊤

=
1

k
Σ̂−1/2Ω

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}Ω⊤Σ̂−1Ω

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

Ω⊤Σ̂−1/2

=
1

k
Σ̂−1/2Ω

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}(Ω⊤Σ̂−1Ω− Ip)

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

Ω⊤Σ̂−1/2 + Σ̂−1/2ΩN̂Ω⊤Σ̂−1/2.
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Let Σ̂−1/2Ω = V̂ΩΛ̂ΩÛΩ where V̂ΩV̂
⊤
Ω = ÛΩÛ

⊤
Ω = Ip and Λ̂Ω is a diagonal

matrix. Then

Ŵ = V̂ΩÛΩΓ̂Λ̂Γ̂
⊤Û⊤

Ω V̂
⊤
Ω +

1

k
Σ̂−1/2Ω

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}

Û⊤
Ω (Λ̂

2
Ω − Ip)ÛΩ

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

Ω⊤Σ̂−1/2

+V̂Ω(Λ̂Ω − Ip)ÛΩΓ̂Λ̂Γ̂
⊤Û⊤

Ω V̂
⊤
Ω + V̂ΩΛ̂ΩÛΩΓ̂Λ̂Γ̂

⊤Û⊤
Ω (Λ̂Ω − Ip)V̂

⊤
Ω .

It follows that

Û⊤
Ω V̂

⊤
Ω Ŵ V̂ΩÛΩ = Γ̂Λ̂Γ̂⊤ +

1

k
Û⊤
Ω Λ̂ΩÛΩ

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}

Û⊤
Ω (Λ̂

2
Ω − Ip)ÛΩ

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

Û⊤
Ω Λ̂ΩÛΩ

+Û⊤
Ω (Λ̂Ω − Ip)ÛΩΓ̂Λ̂Γ̂

⊤ + Û⊤
Ω Λ̂ΩÛΩΓ̂Λ̂Γ̂

⊤Û⊤
Ω (Λ̂Ω − Ip)ÛΩ.

Then

∥Û⊤
Ω V̂

⊤
Ω Ŵ V̂ΩÛΩ − Γ̂Λ̂Γ̂⊤∥ = O{∥Λ̂Ω − Ip∥∥Λ̂∥(1 + ∥Λ̂Ω∥)3}. (B.28)

(A.27) implies that ∥Λ̂Ω − Ip∥ = Op(n
−1/2p1/2) and ∥Λ̂Ω∥ = Op(1).

Recalling Σ̂−1/2Ω = V̂ΩΛ̂ΩÛΩ,

∥Û⊤
W Σ̂−1/2Ω− Û⊤

W V̂ΩÛΩ∥ ≤ ∥Û⊤
W V̂ ⊤

Ω (Λ̂Ω − Ip)UΩ∥ = Op(n
−1/2p1/2).(B.29)

(B.29) implies that the leading term of Γ̂Ω = Û⊤
W Σ̂−1/2Ω is Û⊤

W V̂ΩÛΩ.

(B.28) implies that Û⊤
W Σ̂−1/2Ω is close to Γ̂⊤.
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Thus, the asymptotic properties of Γ̂⊤ is the key point. We will prove

the following theorem for Γ̂ and Λ̂.

Put qi = pi − pi−1 for i = 1, · · · ,m (see Condition A3), and

Γ̂ =


Γ̂11 · · · Γ̂1m

· · · · · · · · ·

Γ̂m1 · · · Γ̂mm

 , Λ̂ = diag(Λ̂1, · · · , Λ̂m), (B.30)

where submatrix Γ̂ij is of the size qi×qj, and Λ̂i is a qi×qi diagonal matrix.

Theorem B.1. Let Conditions A1-A3 hold. As n → ∞ and p = o(n), it

holds that

∥Γ̂ij∥ = Op{n−1/2(qi + qj)
1/2 + n−1p}, 1 ≤ i ̸= j ≤ m, and (B.31)

∥Λ̂i − Λi∥ = Op(n
−1/2q

1/2
i + n−1p), 1 ≤ i ≤ m, (B.32)

where Λi = diag(λpi−1+1, · · · , λpi), and λi are specified in Condition A3.

(B.28), (B.29), (A.27) and Theorem B.1 can conclude Theorem 1. Thus,

we now need to prove Theorem B.1.

Proof of Theorem B.1. (3.15) and (A.2) show that m is bounded. Let Ji =

{j ∈ Z : pi−1 < j ≤ pi}. At first we prove (B.32). We only need to prove

it when i = 1 and other cases can be concluded by a permutation. Define
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J c
1 be the complementary set of J1, then we can rewrite det(λIp − N̂) = 0

as follows.

0 = det(λIp − N̂) = det

λIp1 − N̂J1 −N̂J1,Jc
1

−N̂Jc
1 ,J1

λIp−p1 − N̂Jc
1

 . (B.33)

Lemmas A.3 and A.5 conclude ∥N̂Jc
1 ,J1

∥ = Op(n
−1/2p1/2) = op(1). Lemmas

A.3-A.6 and the condition A3 imply that there exists a positive constant

C̃N such that

lim
n→∞

P (∥λlIp−p1 − N̂Jc
1
∥min > C̃N) = 1 (B.34)

for any 1 ≤ l ≤ p1. Lemma A.6 also implies that

lim
n→∞

P
(
λp1 − C̃N/2 < ∥N̂J1∥min ≤ ∥N̂J1∥ < λ1 + C̃N/2

)
= 1. (B.35)

If λ ∈ (λp1 − C̃N/2, λ1 + C̃N/2) is a solution of (B.33), it is also (with

probability 1) a solution of

0 = det
(
λIp1 − N̂J1 − N̂J1,Jc

1
(λIp−p1 − N̂Jc

1
)−1N̂Jc

1 ,J1

)
. (B.36)

Lemma A.5 and (B.34) imply that

∥N̂J1,Jc
1
(λIp−p1 − N̂Jc

1
)−1N̂Jc

1 ,J1
∥ = Op(n

−1p). (B.37)

Let λ̃1 ≥ · · · ≥ λ̃p1 be the eigenvalues of N̂J1 , (B.36)-(B.37) conclude that

λ̃l − λ̂l = Op(n
−1p) (B.38)
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for any 1 ≤ l ≤ p1. This, together with (A.20), concludes (B.32).

Now we consider (B.31). We only need to prove it when j = 1 and

i > 1. Other cases can be concluded by a permutation. From N̂ = Γ̂Λ̂Γ̂⊤

and (B.30), we can find that
∑m

i=1 N̂J1,JiΓ̂i1

· · ·∑m
i=1 N̂Jm,JiΓ̂i1

 = N̂


Γ̂11

· · ·

Γ̂m1

 =


Γ̂11Λ̂1

· · ·

Γ̂m1Λ̂1

 . (B.39)

Define U11 = N̂J1,J1 , U12 = N̂J1,Jc
1
, U21 = N̂Jc

1 ,J1
and U22 = N̂Jc

1 ,J
c
1
. Similarly,

define Γ̃⊤
21 = (Γ̂⊤

21, · · · , Γ̂⊤
m1)

⊤. Then we can rewrite (B.39) asU11Γ̂11 + U12Γ̃21

U21Γ̂11 + U22Γ̃21

 =

Γ̂11Λ̂1

Γ̃21Λ̂1

 . (B.40)

Γ̃21Λ̂1 = Γ̃21(Λ̂1 − λ1Ip1) + λ1Γ̃21.

Then the second line of (B.40) is equivalent to

(U22 − λ1Ip−p1)Γ̃21 = Γ̃21(Λ̂1 − λ1Ip1)− U21Γ̂11.

Recalling (B.34), U22 − λ1Ip−p1 is invertible with probability 1 as n tends

to infinity.

Γ̃21 = (U22 − λ1Ip−p1)
−1Γ̃21(Λ̂1 − λ1Ip1)− (U22 − λ1Ip−p1)

−1U21Γ̂11.

(3.14)-(3.15) and Lemmas A.3-A.6 imply that ∥Λ̂1 − λ1Ip1∥ = op(1) and

∥(U22 − λ1Ip−p1)
−1∥ = Op(1). Then (λ1Ip−p1 − U22)

−1U21Γ̂11 is the leading
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term of Γ̃21. Moreover, ∥Γ̂11∥ = O(1). Thus we only need to consider

(λ1Ip−p1 − U22)
−1U21. We rewrite (λ1Ip−p1 − U22)

−1 as
λ1Ip2 − N̂J2,J2 · · · −N̂J2,Jm

· · · · · · · · ·

−N̂Jm,J2 · · · λ1Ipm − N̂Jm,Jm



−1

= (λ1Ip−p1−U22)
−1 =


V22 · · · V2m

· · · · · · · · ·

Vm2 · · · Vmm

 .

(3.14)-(3.15) and Lemma A.6 ensure ∥(λ1Ipi−N̂Ji,Ji)
−1∥ = Op(1) for 2 ≤ i ≤

m. Lemma A.5 ensures ∥N̂Ji,Jt∥ = Op(n
−1/2p1/2) = op(1) for 2 ≤ i ̸= t ≤ m.

Since m is finite, we can find ∥Vii∥ = Op(1) and ∥Vit∥ = Op(n
−1/2p1/2) for

2 ≤ i ̸= t ≤ m. Recall that ∥N̂Ji,J1∥ = Op(n
−1/2(q1 + qi)

1/2) for 2 ≤ i ≤ m

and

(λ1Ip−p1 − U22)
−1U21 =


V22 · · · V2m

· · · · · · · · ·

Vm2 · · · Vmm




N̂J2,J1

· · ·

N̂Jm,J1

 .

It follows that ∥ViiN̂Ji,J1∥ = Op(n
−1/2(q1 + qi)

1/2) and ∥
∑

t ̸=i VitN̂Jt,J1∥ =

Op(n
−1p). We complete the proof of (B.31).

Now we prove Theorem 2. By the same idea, we give the following

result for N̂ .

Theorem B.2. Let conditions A1, A2 and A4 hold. Denote by γ̂ij the

(i, j)-th entry of matrix Γ̂ in (B.30). Then as n, p → ∞, it holds that

γ̂ij = Op(n
−1/2v−1

gap|j − i|−1) for 1 ≤ i ̸= j ≤ p, and (B.41)
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γ̂ii = 1 +Op(n
−1v−2

gap) for i = 1, · · · , p. (B.42)

Moreover,

∥Λ̂− Λ∥ = Op(n
−1/2p1/2). (B.43)

Proof of Theorem B.2. Following the proof of Lemma A.6, one can verify

that ∥Λ̂ − N∥ = Op(n
−1/2p1/2). This, together with A4, implies (B.43).

From N̂ Γ̂ = Γ̂Λ̂, we can find that

Γ̂Λ̂−N Γ̂ = (N̂ −N)Γ̂. (B.44)

(B.44) implies that

γ̂ij(λ̂j − λi) =

p∑
s=1

Misγ̂sj, (B.45)

where Mis is defined in Lemma A.4. The condition A4 and ∥Λ̂ − N∥ =

Op(n
−1/2p1/2) can control (λ̂j − λi). Then we can divide the right hand of

the above equation into two part.
p∑

s=1

Misγ̂sj =
∑
s ̸=j

Misγ̂sj +Mij γ̂jj . (B.46)

(A.12) implies that E|Mij γ̂jj|2 ≤ E|Mij|2 ≤ C1n
−1. Thus we only need to

consider the order of
∑

s ̸=j Misγ̂sj. Define v = max1≤i≤p maxj ̸=i |
∑

s ̸=j Misγ̂sj|.

Then for any j ̸= i, (B.45) implies that

|γ̂ij| ≤ (|i− j|vgap − ∥Λ̂−N∥)−1(v + |Mij|)
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and

|
∑
s ̸=j

Misγ̂sj| ≤
∑
s ̸=j

|Mis||γ̂sj|

≤
∑
s ̸=j

|Mis|(|s− j|vgap − ∥Λ̂−N∥)−1(v + |Msj|)

≤ v
∑
s ̸=j

|Mis|(|s− j|vgap − ∥Λ̂−N∥)−1 +
∑
s ̸=j

|Mis||Msj|(|s− j|vgap − ∥Λ̂−N∥)−1.

The condition A4, ∥Λ̂−N∥ = Op(n
−1/2p1/2) and (A.12) conclude that

∑
s ̸=j

|Mis|(|s− j|vgap − ∥Λ̂−N∥)−1 = O(v−1
gap log p max

1≤i,s≤p
|Mis|) = op(1)

and ∑
s ̸=j

|Mis||Msj|(|s− j|vgap − ∥Λ̂−N∥)−1 = op(n
−1/2).

This, together with the definition of v, implies that v = op(n
−1/2).

|γ̂ij| ≤ (|i− j|vgap − ∥Λ̂−N∥)−1[op(n
−1/2) + |Mij|].

This, together with (A.12), concludes (B.41).

γ̂2
ii = 1−

∑
j ̸=i

γ̂2
ij ≥ 1−

∑
j ̸=i

(|i−j|vgap−∥Λ̂−N∥)−2(v+|Mij|)2 = 1+Op(n
−1v−2

gap).

We complete the proof.

(B.28) and (A.27) imply that

∥Γ̂⊤Û⊤
Ω V̂

⊤
Ω Ŵ V̂ΩÛΩΓ̂− Λ̂∥ = Op(n

−1/2p1/2).

This and Theorem B.2 can conclude the asymptotic properties of Û⊤
W V̂ΩÛΩΓ̂.

Then we can prove Theorem 2 by (B.29) and Theorem B.2.



Spatial Blind Source Separation

Appendix C. An Additional Example for Numerical

Results

In this section, we further present the usefulness of Multiple Ring Kernels

by constructing a special example. In this example, Ring Kernel 1 is no

longer the best single kernel. We achieve this goal by generating latent fields

in a mixing way. To generate data, we split the map of sample locations

into 10 rows according to their y coordinates, and all rows have equal width.

For each row, let the sample points within be independent from adjacent

rows. In order to achieve this, for each of the p latent fields, we generate

3 independent candidate random fields using same set of coordinates and

covariance function parameters. The process for generating each candidate

random field is the same as described before. The coordinates belong to the

1st, 4th, 7th and 10th row would take values from the first candidate random

field, those belong to the 2nd, 5th, 8th row would take values from the second

candidate random field, and the rest of the sample points will take values

from the third candidate random field. In this way, the samples from most

adjacent rows are independent to each other, and the effectiveness of Ring

Kernel 1 is weakened.
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We performed simulation using latent random fields constructed from

the method above. Dimension of latent field p = 3. The sample size, sam-

pling method of coordinates, setting of mixing matrix, and use of matern

covariance function is identical to the description of simulation setting in

numerical illustration section. The boxplot of D(Ω, Ω̂) obtained from 1000

replications is presented in figure, and median of D(Ω, Ω̂) is presented in

table.

As the figure shows, kernel 1 is no longer the best-performing single

kernel, while multiple kernel remains very close to the best single kernel,

and outperforming most other single kernels. Yet as sample size increases,

D(Ω, Ω̂) did not improve, which might due to the artificial nature of this

special example. More detailed data is presented in Table C.1.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple Multiple Original

n=100 0.2642 0.2218 0.2718 0.2098 0.2583 0.2663 0.2710 0.2448 0.2510 0.2462 0.2123 0.2242

n=500 0.2218 0.1739 0.1583 0.1335 0.2614 0.1974 0.2489 0.1642 0.2582 0.2348 0.1480 0.1045

n=1000 0.2091 0.1712 0.1627 0.1452 0.2500 0.1813 0.2463 0.1544 0.2638 0.2346 0.1535 0.8800

n=2000 0.2190 0.1763 0.1548 0.1474 0.2455 0.1807 0.2703 0.1590 0.2631 0.2442 0.1506 0.0752

Table C.1: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or multiple ker-

nel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel (original) in a

simulation with 1000 replications for the mixed random fields. The number of observations n is 100, 500, 1000

or 2000 , and the dimension of random fields is p = 3.



Spatial Blind Source Separation

Figure C.1: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 single kernels, or multiple ker-

nel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel (original) in a

simulation with 1000 replications for the mix Gaussian random fields. The number of observations n is 100,

500, 1000 or 2000 (from top to bottom), and the dimension of random fields is p = 3. Latent field is generated

in a mixing approach as described.


