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This supplementary material includes the proofs for the propositions and theorems of the main

paper. Section S1 presents the proofs of Propositions 1 and 2. Section S2 provides the proofs

of Theorems 1 and 2. Additionally, Section S3 contains some technical lemmas. All notations

used in this supplementary material are consistent with those used in the main text.

S1 Proofs of Propositions 1 and 2

Proof of Proposition 1: Denote the “metric” induced by ω1(x) and ω2(B)

as

dweight(X1,X2) =

∫
x

∫
B

{
I(⟨B,X1⟩ ≤ x)− I(⟨B,X2⟩ ≤ x)

}2

ω1(x)ω2(B)(dB)(dx).
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Denote supp(ω) as the support of ω, then supp(ω2) = Rp×q. From the

form of dweight(X1,X2), symmetry, non-negativity and triangle inequality

hold trivially. In addition, if X1 = X2, dweight(X1,X2) = 0 is also obvious.

For the converse, if dweight(X1,X2) = 0, there exists some set A ⊆ Rp×q

with ω2(Ac) = 0, s.t. for any B ∈ A,
∫
x
{I(⟨B,X1⟩ ≤ x) − I(⟨B,X2⟩ ≤

x)}2 ω1(x)(dx) = 0. Assume X1 ̸= X2, the set B = {B ∈ Rp×q : ⟨B,X1⟩ =

⟨B,X2⟩} can only have measure of 0. Then for any B ∈ A \ B, where

ω2{(A \ B)c} = 0,
∫
x
{I(⟨B,X1⟩ ≤ x) − I(⟨B,X2⟩ ≤ x)}2 ω1(x)(dx) = 0.

However, for arbitrary B ∈ A\B, we can always find a set of x with positive

measure falling between ⟨B,X1⟩ and ⟨B,X2⟩, thus
∫
x
{I(⟨B,X1⟩ ≤ x) −

I(⟨B,X2⟩ ≤ x)}2 ω1(x)(dx) > 0, which implies a contradiction. Therefore,

(Rp×q, dweight) is a metric space.

Observe that

∫
x

∫
B

var {I(⟨B,X⟩ ≤ x)} ω1(x)ω2(B)(dB)(dx) = E{dweight(X1,X2)},

and

∫
x

∫
B

E [var {I(⟨B,X⟩ ≤ x) | Y }] ω1(x)ω2(B)(dB)(dx) = E{d̃weight(Y )},

provided E {dweight(X1,X2) | X1} < ∞ for some X1 ∈ Rp×q, from triangle

inequality of dweight(X1,X2) and Fubini’s lemma. Therefore, (2.1) can be
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represented as

Tweight(X | Y ) = 1− E{d̃weight(Y )}/E{dweight(X1,X2)}.

Next, we show its properties: Tweight(X | Y ) ∈ [0, 1] is obvious by

noting that

var {I(⟨B,X⟩ ≤ x)} = var [E {I(⟨B,X⟩ ≤ x) | Y }]

+E [var {I(⟨B,X⟩ ≤ x) | Y }]

≥ var [E {I(⟨B,X⟩ ≤ x) | Y }] ≥ 0.

Independence ⇒ Tweight(X | Y ) = 0 and complete dependence ⇒ Tweight(X |

Y ) = 1 follow directly from the form of Tweight(X | Y ). The converse of the

latter can be derived from non-negativity and identity of indiscernibles of

dweight(X1,X2). For the former, we know that

Tweight(X | Y ) = 0 ⇔
∫
x

∫
B

var [E {I(⟨B,X⟩ ≤ x) | Y }]

ω1(x)ω2(B)(dB)(dx) = 0.

Denote

Q1(B) =

∫
x

var[E{I(⟨B,X⟩ ≤ x) | Y }] ω1(x)(dx),

Q2(x,B) = var[E{I(⟨B,X⟩ ≤ x) | Y }].

Then there exists D ⊆ Rp×q with ω2(Dc) = 0, Q1(B) = 0 for any B ∈

D. Given B ∈ D, there exists T ⊆ R with ω1(T c) = 0, Q2(x,B) = 0
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for any x ∈ T . Since ω1(T c) = 0, T is a dense subset of R and has

itself a countable dense subset, denoted as Q. Thus the countability of

Q implies there exists a common set Y ⊆ supp(FY ) with FY (Yc) = 0 s.t.

F⟨B,X⟩|Y=y(x) = F⟨B,X⟩(x) for any x ∈ Q and any y ∈ Y . According to

Resnick (2019, Lemma 8.1.1) that a probability is determined on a dense

set (since Q is dense in R), we conclude that ⟨B,X⟩ and Y are independent

for any B ∈ D. Using the continuity of charateristic function, we can

deduce that ⟨B,X⟩ and Y are independent for any B ∈ Rp×q, thus X and

Y are independent.

Noting that when ω1(x) and ω2(B) are standard normal densities,

dweight(X1,X2) = pr (x− ⟨B,X1⟩ ≥ 0) + pr (x− ⟨B,X2⟩ ≥ 0)

−2pr (x− ⟨B,X1⟩ ≥ 0, x− ⟨B,X2⟩ ≥ 0)

= π−1dnormal(X1,X2),

where the last equality follows from Lemma 1 because (x − ⟨B,X1⟩) and

(x− ⟨B,X2⟩) are bivariate normal with mean zero and correlation

ρ = (1 + ⟨X1,X2⟩)
(
1 + ∥X1∥2

)−1/2 (
1 + ∥X2∥2

)−1/2
.

Proof of Proposition 2: When K(X1,X2) = ⟨Ψ(X1),Ψ(X2)⟩ but Ψ is

infinite-dimensional, to formulate T{Ψ(X) | Y } more rigorously, we follow
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van Zanten and van der Vaart (2008, Section 2.2) to introduce the notions

of Gaussian random element W on the Banach space (F , ∥ · ∥) and the

reproducing kernel Hilbert space (H, ⟨·, ·⟩H) attached to W . In our case,

F = C(X ), which is the space of all continuous functions from a compact

X ⊂ Rp×q to R, equipped with the uniform norm ∥f∥∞ = sup
X∈X

|f(X)|.

Since in this case for every kernel there exists a Gaussian process whose

covariance function equals the kernel, we can equivalently define the trace

correlation in the reproducing kernel Hilbert space as

T{Ψ(X) | Y } = EW,x (var [E {I(⟨W,Ψ(X)⟩H ≤ x) | Y }])
/

EW,x [var {I(⟨W,Ψ(X)⟩H ≤ x)}] ,

where W and x have respectively Gaussian distribution on C(X ) and stan-

dard Gaussian distribution on R, and K(X1,X2) and Ψ(X) = K(·,X) are

respectively the reproducing kernel and canonical feature map of H attached

to W .

Therefore, the only nontrivial part of Proposition 2 is T{Ψ(X) | Y } = 0

implies independence: define

Q(f) =

∫
x

var (E [I{f(X) ≤ x} | Y ]) ω1(x)(dx).

T{Ψ(X) | Y } = 0 implies Q(g) = 0 for any g ∈ E , where P{C(X )\E} = 0.

For any continuous function f ∈ C(X ), by the universality of K, H = C(X ),
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where H denotes the closure of H in C(X ) w.r.t. ∥ · ∥∞. Therefore, either

f ∈ E , then Q(f) = 0, or f ∈ C(X ) \ E . For the latter case, we claim

that there exists a sequence of functions {fn} ∈ E converging in ∥ · ∥∞ to f .

Otherwise, there exists some δ > 0, such that {h ∈ C(X ) : ∥h−f∥∞ < δ} ⊂

C(X )\E . However, the former set has positive probability according to van

Zanten and van der Vaart (2008, Lemma 5.1), then P{C(X ) \ E} = 0 will

be contradicted. More to the point, fn → f pointwisely, then Q(f) = 0 for

f ∈ C(X ) \ E due to Fubini’s lemma and dominated convergence theorem.

Then X and Y are independent according to Lemma 2. The equivalent form

of T{Ψ(X) | Y } can be derived similar to T(X | Y ), by applying Lemma

1 and the reproducing kernel formula (Da Prato and Zabczyk, 2014, Page

41):

∫
F
⟨h, x⟩H⟨g, x⟩H P (dx) = ⟨h, g⟩H, for h, g ∈ H.

S2 Proofs of Theorems 1 and 2

Proof of Theorem 1:

(1) T̂(X | Y )
p−→ T(X | Y ).

Recall that T2 =
∑H

h=1 d̃(h)ph, and T̂2 =
∑H

h=1 d̂(h)p̂h with p̂h = nh/n, and
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the quantity of interest can be written as

T(X | Y )− T̂(X | Y ) =
{(

T̂2 − T2

)
T1 −

(
T̂1 − T1

)
T2

}/(
T̂1 × T1

)
.

We have T̂1 − T1 = Op(n
−1/2) from standard U -statistic theory (Serfling,

2009, Theorem 5.5.1A). As for

T̂2 − T2 =
H∑

h=1

{
d̂(h)− d̃(h)

}
p̂h +

H∑
h=1

d̃(h)
(
p̂h − ph

)
= H1 +H2,

we have

E(H2) = 0, var(H2) = n−1var
{
d̃(Y )

}
= O(n−1),

and for some constant C > 0,

E(H1) = E{E(H1 | Fn)} = 0, var(H1) = E{var(H1 | Fn)}

≤ C · E
[ H∑

h=1

nh

n2
var{d(Xi,Xj)I(Yi = h)I(Yj = h) | Fn}

]
= O(n−1),

where Fn = σ(Y1, . . . , Yn). Therefore, T̂2 − T2 = Op(n
−1/2) by Chebyshev’s

inequality. We thus conclude that T̂(X | Y )
p−→ T(X | Y ).

(2) The Asymptotic Distributions.

Case (i) Assume X is independent of Y .

When H is fixed. Let dU(Xi,Xj) = d(Xi,Xj) − d1(Xi) − d1(Xj) + T1,
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then

T̂1 − T̂2 = {n(n− 1)}−1

n∑
i ̸=j

d(Xi,Xj)

−
H∑

h=1

n− 1

nh − 1
{n(n− 1)}−1

n∑
i ̸=j

d(Xi,Xj)I(Yi = h)I(Yj = h)

= {n(n− 1)}−1

n∑
i ̸=j

dU(Xi,Xj)

−
H∑

h=1

n− 1

nh − 1
{n(n− 1)}−1

n∑
i ̸=j

dU(Xi,Xj)I(Yi = h)I(Yj = h),

which we denote as U (0)
n −

∑H
h=1

n−1
nh−1

U
(h)
n . Thus it is sufficient to show that

n

(
U (0)
n −

H∑
h=1

n− 1

nh − 1
U (h)
n

)
d−→ (H − 1)T1(Q− 1),

where Q =
∑∞

i=1 λiZ
2
i , Zi

i.i.d∼ N (0, 1) and λi are positive constants with∑∞
i=1 λi = 1. The proof should be similar to that of Ke and Yin (2020,

Theorem 7). Therefore, we skip these details.

When H is divergent. Define the projection of T̂1 as T̃1, such that

T̃1 − T1 = (n/2)−1∑n
i=1 d̃1(Xi), where d̃1(Xi) = d1(Xi)− T1. From Serfling
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(2009, Theorem 5.3.2), T̂1 − T̃1 = Op(n
−1), we have that

T̂1 − T1 =
2

n

n∑
i=1

d̃1(Xi) +Op(n
−1)

=
H∑

h=1

p̂h{nh(nh − 1)}−1
∑

1≤i ̸=j≤nh{
d̃1(X(h,i)) + d̃1(X(h,j))

}
+Op(n

−1).

To apply Lemma 3, we denote (T̂2 − T2)T1 − (T̃1 − T1)T2 =
∑H

h=1 Gh,

and let sn = n−1/2 with c−1
n =

∑H
h=1 nh/{n(nh − 1)}, mn = H, Fn =

σ(Y1, . . . , Yn), and Xn,h = c
1/2
n Gh. Assumption (C1) holds by definition.

Assumption (C4) holds trivially since E
(
Xn,h | Fn

)
= (p̂h − ph)d̃(h)T1,

and we have s−1
n

∑mn

h=1 E (Xn,h | Fn) ≡ 0 by independence. Next, denote

X̃n,h = Xn,h − E (Xn,h | Fn), then

X̃n,h = c1/2n {nh(nh − 1)}−1T1

∑
1≤i ̸=j≤nh

p̂h{
d(X(h,i),X(h,j))− d1(X(h,i))− d1(X(h,j)) + T1

}
.

Consider Assumption (C2), denote σ2 = var{d(Xi,Xj)−d1(Xi)−d1(Xj)}.

We find that

E
(
X̃2

n,h | Fn

)
= 2cn

[
nh/{n2(nh − 1)}

]
σ2T 2

1 ,

then the left hand side of Assumption (C2) converges in probability to

2σ2T 2
1 . As for Assumption (C3), we note that by Serfling (2009, Lemma

5.2.2.B), there exits some constant C > 0, such that E
(
X̃4

n,h | Fn

)
≤
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Cn−4c2n. Therefore, by Cauchy-Schwarz inequality and Chebyshev’s in-

equality,

s−2
n

H∑
h=1

E
{
X̃2

n,hI
(∣∣X̃n,h

∣∣ > ϵsn
)
| Fn

}
≤ s−2

n

H∑
h=1

√
E
(
X̃4

n,h | Fn

)
pr
(∣∣X̃n,h

∣∣ > ϵsn | Fn

)
≤

√
2Cσ2T 2

1 (ncn)
3/2

H∑
h=1

√
nh/{n(nh − 1)}n−5/2/ϵ = O

(
H−1/2

)
→ 0

since H is divergent. By Lemma 3 and Slutsky’s lemma, (ncn)
1/2T̂(X |

Y )
d−→ N (0, 2σ2/T 2

1 ).

Case (ii) Assume X is dependent but not completely dependent

upon Y .

When H is fixed. We have

(T̂1 − T1)T2 − (T̂2 − T2)T1

= T2(n/2)
−1

n∑
i=1

d̃1(Xi)− T1

H∑
h=1

[
ph

n− 1

nh − 1

1

n(n− 1)

n∑
i ̸=j

d(Xi,Xj)I(Yi = h)I(Yj = h)/ph − d̃(h)ph

]
= T2(n/2)

−1

n∑
i=1

d̃1(Xi)− T1

H∑
h=1

[
ph

n− 1

nh − 1

2

n

n∑
i=1

{d2(Xi, h)I(Yi = h)− d̃(h)ph}+ (ph
n− 1

nh − 1
− 1)d̃(h)ph

]
+Op(n

−1)

= n−1

n∑
i=1

[
2T2d̃1(Xi)− T1{2d2(Xi, Yi)− d̃(Yi)− T2}

]
+ op(n

−1/2),

where d̃1(Xi) = d1(Xi) − T1, d2(Xi, h) = E{d(Xi,Xj) | Xi, Yi = Yj =
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h}, the second equality follows from Serfling (2009, Theorem 5.3.2), and

the third equality follows from the delta method. Therefore, by Slutsky’s

lemma, n1/2{T̂(X | Y )− T(X | Y )} d−→ N (0, τ 2∗ /T
2
1 ), with τ 2∗ = var[2{1−

T(X | Y )}d1(X)− 2d2(X, Y ) + d̃(Y )].

When H is divergent. Recall that τ1 = var
[
d̃(Y )−2{1−T(X | Y )}d1(X)

]
,

τ2 = E{V2(Y )} − 2{1− T(X | Y )}E{V1(Y )} and τ 2 = τ1 + 4τ2. Following

the notations of Case (i) when H is divergent, we now let Xn,h = Gh/τ

instead, then:

mn∑
h=1

E (Xn,h | Fn) = T1

H∑
h=1

(p̂h − ph)d̃(h)
/
τ

−2T2n
−1

n∑
i=1

E
{
d̃1(Xi) | Yi

}/
τ

= n−1

n∑
i=1

[
T1{d̃(Yi)− T2} − 2T2E

{
d̃1(Xi) | Yi

}]/
τ.

Define Xn,i =
[
T1{d̃(Yi)−T2}− 2T2E

{
d̃1(Xi) | Yi

}]/(
τn1/2

)
. According to

Lindeberg-Feller CLT for triangular arrays (Resnick, 2019, Exercise 9.9.1),

since E(Xn,i) = 0,

n∑
i=1

E
(
X2

n,i

)
= var

[
T1d̃(Y )− 2T2E{d1(X) | Y }

]/
τ 2

→ lim
H→∞

var
[
T1d̃(Y )− 2T2E{d1(X) | Y }

]/
τ 2,

11



DELIN ZHAO AND LIPING ZHU

and by Cauchy-Schwarz inequality and Chebyshev’s inequality,
n∑

i=1

E
{
X2

n,iI(|Xn,i| > ϵ)
}

≤
n∑

i=1

E1/2
(
X4

n,i

)
pr1/2

(
|Xn,i| > ϵ

)
≤ Cn

/{(
τn1/2

)3
ϵ
}
→ 0,

as n,H → ∞, the left hand side of Assumption (C4) converges in distribu-

tion to a non-degenerate normal distribution:

s−1
n

mn∑
h=1

E (Xn,h | Fn)
d→ N

(
0, lim

H→∞
var
[
T1d̃(Y )− 2T2E{d1(X) | Y }

]/
τ 2
)
.

For the left hand side of Assumption (C2),
H∑

h=1

E
(
X̃2

n,h | Fn

)
∼= n−1

H∑
h=1

(
T 2
1

[
{n(nh − 1)/(2nh)}−1V0(h)

+4
nh(nh − 2)

n(nh − 1)
V2(h)

]
− 8T1T2 {(nh/n)V1(h)}

+4T 2
2 n

−1

nh∑
i=1

var{d1(X(h,i)) | Y(h,i)}
)/

τ 2,

where V0(h) = var(εi,j,h | Yi = Yj = h). We remark that for H = o(n),
H∑

h=1

nh

n(nh − 1)
V2(h) ≤ 2

H∑
h=1

n−1V2(h)

= O
(
H/n

)
= o(1), and

H∑
h=1

{(nh/n)− ph}V2(h) = n−1

n∑
i=1

[V2(Yi)− E{V2(Y )}]

= Op

(
n−1/2

)
= op(1),

where the second argument follows from Chebyshev’s inequality. Then
H∑

h=1

nh(nh − 2)

n(nh − 1)
V2(h)

p∼
H∑

h=1

V2(h)ph = E{V2(Y )} → lim
H→∞

E{V2(Y )}.
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Following similar arguments, we can derive that

H∑
h=1

(nh/n)V1(h)
p∼

H∑
h=1

V1(h)ph

= E{V1(Y )} → lim
H→∞

E{V1(Y )},
H∑

h=1

n−1

n∑
i=1

var{d1(Xi) | Yi}I(Yi = h)
p∼

H∑
h=1

var{d1(X) | Y = h}ph

= E[var{d1(X) | Y }]

→ lim
H→∞

E[var{d1(X) | Y }].

Moreover, we have

H∑
h=1

{n(nh − 1)/(2nh)}−1V0(h) ≤ 4
H∑

h=1

V0(h)/n = O
(
H/n

)
→ 0,

whenever H = o(n). As for Assumption (C3), we note that by Serfling

(2009, Lemma 5.2.2.A), given any r ≥ 2, there exists some constant C >

0, such that E
(∣∣X̃n,h

∣∣r | Fn

)
≤ Cn

r/2
h

/(
τ 2n
)r. Therefore, by Markov’s

inequality,

s−2
n

H∑
h=1

E
{
X̃2

n,hI
(∣∣X̃n,h

∣∣ > ϵsn
)
| Fn

}
≤ s−2

n

H∑
h=1

E1/2
(
X̃4

n,h | Fn

)
pr1/2

(∣∣X̃n,h

∣∣ > ϵsn | Fn

)
≤ C ′

H∑
h=1

(nh/n)
⌊r/4+1⌋/(τ r+4ϵr/2

)
.

Note that there exists some sufficiently large r and constant C > 0, such
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that

E
{ H∑

h=1

(nh/n)
⌊r/4+1⌋

}
≤ C

(
H/n+

H∑
h=1

p
⌊r/4+1⌋
h

)
≤ C

(
H/n+

H∑
h=1

n−⌊r/4+1⌋α
)
→ 0

by assumption. This implies

H∑
h=1

(nh/n)
⌊r/4+1⌋/(τ r+4ϵr/2

)
= op(1).

Therefore, by Slutsky’s lemma and Lemma 3, n1/2{T̂(X | Y ) − T(X |

Y )}(T1/τ)
d−→ N (0, 1).

The relationship between τ 2 and τ 2∗ .

τ 2∗ = var[2{1− T(X | Y )}d1(X)− 2d2(X, Y ) + d̃(Y )]

= var[d̃(Y )− 2{1− T(X | Y )}d1(X)]

+ 8{1− T(X | Y )}cov{d1(X), d̃(Y )}

− 8{1− T(X | Y )}[E{V1(Y )}+ cov{d1(X), d̃(Y )}]

+ 4[E{V2(Y )}+ var{d̃(Y )}]− 4var{d̃(Y )} = τ 2.

Case (iii) Assume X is completely dependent upon Y .

When X is completely dependent upon Y , there exists a matrix of functions
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G ∈ Rp×q such that pr{X = G(Y )} = 1. Therefore, with probability 1,

T̂2 =
H∑

h=1

{n(nh − 1)}−1
∑

1≤i ̸=j≤nh

d(X(h,i),X(h,j))

=
H∑

h=1

{n(nh − 1)}−1
∑

1≤i ̸=j≤nh

d
(
G(h),G(h)

)
= 0,

which implies pr{T̂(X | Y ) = 1} = 1.

(3) The Asymptotic Null Variance of (ncn/2)
1/2
(
T̂1 − T̂2

)/
σ.

Recall that dU(Xi,Xj) = d(Xi,Xj)−d1(Xi)−d1(Xj)+T1, Fn = σ(Y1, . . . , Yn),

and

T̂1 − T̂2 = {n(n− 1)}−1

n∑
i ̸=j

dU(Xi,Xj)

−
H∑

h=1

n− 1

nh − 1
{n(n− 1)}−1

n∑
i ̸=j

dU(Xi,Xj)I(Yi = h)I(Yj = h)

= U (0)
n −

H∑
h=1

n− 1

nh − 1
U (h)
n .

It’s easy to check that

E
(
T̂1 − T̂2 | Fn

)
= E

(
U (0)
n | Fn

)
−

H∑
h=1

n− 1

nh − 1
E
(
U (h)
n | Fn

)
= 0.

Moreover, var
(
U

(0)
n | Fn

)
= 2σ2/{n(n − 1)}, for h1 ̸= h2, cov

(
U

(h1)
n , U

(h2)
n |

Fn

)
= 0, and for h = 1, . . . , H ,

cov
(
U (0)
n , U (h)

n | Fn

)
=

2nh(nh − 1)σ2

{n(n− 1)}2
, var

(
U (h)
n | Fn

)
=

2nh(nh − 1)σ2

{n(n− 1)}2
.
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Therefore,

var
(
T̂1 − T̂2 | Fn

)
=

H∑
h=1

(n− 1)2

(nh − 1)2
2nh(nh − 1)σ2

{n(n− 1)}2
− 2σ2

n(n− 1)

= 2n−1{c−1
n − (n− 1)−1}σ2,

that is,

var
{
(ncn)

1/2
(
T̂1 − T̂2

)
| Fn

}
= 2{1− cn/(n− 1)}σ2.

By dominated convergence theorem, we have var
{
(ncn)

1/2
(
T̂1− T̂2

)}
→ 2σ2

if H is divergent, and var
{
(ncn)

1/2
(
T̂1 − T̂2

)}
→ 2(1−H−1)σ2, cn → n/H

if H is fixed.

Proof of Theorem 2: Following the same paradigm as the proof of The-

orem 1, we now decompose T̂2 − T2 into three parts:

T̂2 − T2 =
H∑

h=1

{n(nh − 1)}−1
∑

1≤i ̸=j≤nh

{
d(X(h,i),X(h,j))−m(Y(h,i), Y(h,j))

}
+

H∑
h=1

{n(nh − 1)}−1
∑

1≤i ̸=j≤nh[{
m(Y(h,i), Y(h,i)) +m(Y(h,j), Y(h,j))

}
/2− T2

]
+

H∑
h=1

{n(nh − 1)}−1
∑

1≤i ̸=j≤nh

[
m(Y(h,i), Y(h,j))

−
{
m(Y(h,i), Y(h,i)) +m(Y(h,j), Y(h,j))

}
/2
]

= D1 +D2 +D3.

We have D2 = n−1
∑n

i=1

{
m(Yi, Yi)− T2

}
= Op

(
n−1/2

)
from classical CLT,

and D1 = Op

(
n−1/2

)
from Chebyshev’s inequality. If X is independent of

16
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Y , D3 = 0, and if X is dependent upon Y , D3 = op
(
n−1/2

)
from Lemma

5 under Condition (A1) and (A3). In addition, T̂1 − T1 = Op

(
n−1/2

)
from

standard U -statistic theory (Serfling, 2009, Theorem 5.5.1A). Therefore, we

conclude that T̂(X | Y )− T(X | Y ) = Op

(
n−1/2

)
.

Next we show the asymptotic normality:

Case (i) Assume X is independent of Y . Similarly, we consider the

projection T̃1 of U -statistic T1, where T̃1 − T1 = (n/2)−1∑n
i=1 d̃1(Xi), and

we have

T̂1 − T1 = (n/2)−1
n∑

i=1

d̃1(Xi) +Op(n
−1)

=
H∑

h=1

nh

n

1

nh(nh − 1)

∑
1≤i ̸=j≤nh

{
d̃1(X(h,i)) + d̃1(X(h,j))

}
+Op(n

−1).

Denote T1(D1 +D2)− T2(T̃1 − T1) =
∑H

h=1 Gh, we will again apply Lemma

3 with sn = (ncn)
−1/2, mn = H, Fn = σ(Y1, . . . , Yn), and Xn,h = Gh:

Assumption (C1) holds by definition. Assumption (C4) can be checked

because
∑mn

h=1 E (Xn,h | Fn) ≡ 0 by independence. Next, denote X̃n,h =

Xn,h − E (Xn,h | Fn). Now consider Assumption (C2): we have

X̃n,h = {n(nh − 1)}−1 T1

∑
1≤i ̸=j≤nh{

d(X(h,i),X(h,j))− d1(X(h,i))− d1(X(h,j)) + T1

}
.

Denote σ2 = var{d(Xi,Xj) − d1(Xi) − d1(Xj)}, then the left hand side of

17
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Assumption (C2) is 2σ2T 2
1 . We note again that

s−2
n

H∑
h=1

E
{
X̃2

n,hI
(∣∣X̃n,h

∣∣ > ϵsn
)
| Fn

}
≤ s−2

n

H∑
h=1

√
E
(
X̃4

n,h | Fn

)
pr
(∣∣X̃n,h

∣∣ > ϵsn | Fn

)
≤

√
2Cσ2T 2

1 (ncn)
3/2

H∑
h=1

√
nh/{n(nh − 1)}n−5/2/ϵ = O

(
H−1/2

)
→ 0,

which implies Assumption (C3). Since T(X | Y ) = 0, from Lemma 3 and

Slutsky’s lemma, (ncn)1/2T̂(X | Y )
d−→ N (0, 2σ2/T 2

1 ).

Case (ii) Assume X is dependent but not completely dependent

upon Y . We then apply Lemma 3 with sn = n−1/2, mn = H, Fn =

σ(Y1, . . . , Yn), and Xn,h = Gh instead: Assumption (C4) can be similarly

checked with

s−1
n

mn∑
h=1

E (Xn,h | Fn)
d→ N (0, T 2

1 var[m(Y, Y )

−2{1− T(X | Y )}E{d1(X) | Y }]).

The left hand side of Assumption (C2) under Condition (A2)-(A3) and

18
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Lemma 5 is

n

H∑
h=1

{n(nh − 1)}−2
[
T 2
1

{
2

∑
1≤i ̸=j≤nh

V0(Y(h,i), Y(h,j))

+4

nh∑
[i,j,k]

V4(Y(h,i), Y(h,j), Y(h,k))
}
− 8T1T2(nh − 1)

nh∑
[i,j]

V3(Y(h,i), Y(h,j))

+4T 2
2 (nh − 1)2

nh∑
i=1

var{d1(X(h,i)) | Y(h,i)}
]

p−→ 4T 2
1E{V4(Y, Y, Y )} − 8T1T2E{V3(Y, Y )}+ 4T 2

2E[var{d1(X) | Y }],

since H = o(n) implies for some C > 0,

H∑
h=1

n−1(nh − 1)−1

nh∑
i=1

V4(Y(h,i), Y(h,i), Y(h,i))

≤ C
H∑

h=1

nh

n(nh − 1)
= O

(
H/n

)
= o(1), and

H∑
h=1

{n(nh − 1)2}−1
∑

1≤i ̸=j≤nh

V0(Y(h,l), Y(h,j)) = Op(H/n) = op(1),

where V0(Yi, Yj) = var(εi,j | Yi, Yj). Denote τ3 = var
[
m(Y, Y ) − 2{1 −

T(X | Y )}d1(X)
]
, τ4 = E{V4(Y, Y, Y )}− 2{1−T(X | Y )}E{V3(Y, Y )} and

τ 2s = τ 23 + 4τ 24 . Assumption (C3) holds since under Condition (A3),

s−2
n

H∑
h=1

E
{
X̃2

n,hI
(∣∣X̃n,h

∣∣ > ϵsn
)
| Fn

}
≤ s−2

n

H∑
h=1

E1/2
(
X̃4

n,h | Fn

)
pr1/2

(∣∣X̃n,h

∣∣ > ϵsn | Fn

)
≤ C

H∑
h=1

(nh/n)
⌊r/4+1⌋/ϵr/2 ≤ C ′

H∑
h=1

n−⌊r/4+1⌋(1−α)
/
ϵr/2 → 0,
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for some sufficiently large r. Therefore, we will eventually have by Slutsky’s

lemma and Lemma 3 that n1/2{T̂(X | Y )− T(X | Y )} d−→ N (0, τ 2s /T
2
1 ).

Case (iii) Assume X is completely dependent upon Y . Now T2 = 0,

D1 = 0, D2 = 0 and D3 = op
(
max

h
nh

/
n1−γ

)
under Condition (A3). There-

fore, T̂2 − T2 = op
(
max

h
nh

/
n1−γ

)
, and T̂(X | Y )− 1 = op

(
max

h
nh

/
n1−γ

)
.

S3 Technical Lemmas

Lemma 1. (Gupta, 1963, Page 793) Let (Z1, Z2)
T be bivariate normally

distribution with mean zero, and correlation ρ, then

pr(Z1 ≥ 0, Z2 ≥ 0) = 4−1 + (2π)−1 arcsin(ρ).

Lemma 2. Let (X, Y ) be random variables on X × R, then they are inde-

pendent if and only if

∫
x

var (E [I{f(X) ≤ x} | Y ]) ω1(x)(dx) = 0

for any bounded, continuous function f(·).

Proof of Lemma 2: The “only if” part is obvious. For the converse,

we have f(X) and Y are independent for any bounded, continuous func-

tion f(·) following similar arguments in the proof of Proposition 1. Thus

20



S3. TECHNICAL LEMMAS

E{f(X)g(Y )} = E{f(X)}E{g(Y )} for each pair (f, g) of bounded, contin-

uous functions, to which we apply Jacod and Protter (2012, Theorem 10.1)

to conclude X and Y are independent.

Lemma 3. (Hsing and Carroll, 1992, Theorem A.4) Let {sn} be a sequence

of positive constants, {Xn,k} a triangular array of random variables for

k = 1, . . . ,mn and n = 1, 2, 3, . . . , and Fn a sequence of σ-fields. Define

X̃n,k = Xn,k − E (Xn,k | Fn). Finally, assume that

(C1) Xn,1, . . . , Xn,mn are conditionally independent given Fn.

(C2) s−2
n

∑mn

k=1 E
(
X̃2

n,k | Fn

)
p−→ σ2.

(C3) for every c > 0, s−2
n

∑mn

k=1 E
{
X̃2

n,kI
(∣∣∣X̃n,k

∣∣∣ > csn

)
| Fn

}
p−→ 0.

(C4) s−1
n

∑mn

k=1 E (Xn,k | Fn) converges in distribution to some distribution

G.

Then the limiting distribution of s−1
n

∑mn

k=1 Xn,k is the convolution of G and

N (0, σ2).

Lemma 4. (Hsing and Carroll, 1992, Lemma A.1) Suppose that Z1, . . . , Zn

are an i.i.d. sample and r is a positive constant. Let Z(i) be the ith order

statistic. Then

n−r
(∣∣Z(n)

∣∣+ ∣∣Z(1)

∣∣) = op(1),
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if and only if x1/rP{|Z| > x} → 0 as x → ∞.

Lemma 5. Under Condition (A1)-(A3), let c1 = max
h

nh,

n−γ

H∑
h=1

1

nh − 1

∑
1≤i ̸=j≤nh

{
m(Y(h,i), Y(h,j))−m(Y(h,i), Y(h,i))

}
= op(c1),

n−ξ

H∑
h=1

1

nh − 1

∑
1≤i ̸=j≤nh

{
V4(Y(h,i), Y(h,j))− V4(Y(h,i), Y(h,i))

}
= op(c1),

n−ξ

H∑
h=1

1

(nh − 1)2

∑
1≤i ̸=j ̸=k≤nh{

V3(Y(h,i), Y(h,j), Y(h,k))− V3(Y(h,i), Y(h,i), Y(h,i))
}
= op(c1).

This lemma is analogous to Hsing and Carroll (1992, LEMMA A.3).

Proof of Lemma 5: In what follows, we only prove the first argument

because the others can be proved in a similar way. Let

Dh =
1

nh − 1

∑
1≤i ̸=j≤nh

|m(Y(h,i), Y(h,j))−m(Y(h,i), Y(h,i))|.

Step 1. If Y is boundedly supported, under the assumptions,

n−γ

H∑
h=1

Dh ≤ n−γ

H∑
h=1

1

nh − 1

∑
1≤i ̸=j≤nh

∣∣M(Y(h,i))−M(Y(h,j))
∣∣

≤ n−γ

H∑
h=1

nh

nh−1∑
i=1

∣∣M(Y(h,i+1))−M(Y(h,i))
∣∣

≤ c1n
−γ

n−1∑
j=1

∣∣M(Y(j+1))−M(Y(j))
∣∣ = o(c1),

where the last equality follows from the definition of total variation (c.f.

Zhu and Ng, 1995, Page 729). If the support of Y is unbounded, it suffices
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to show that

c−1
1 n−γ

[H(1−δ)]∑
h=[Hδ]

Dh
p−→ 0, (S3.1)

and, for t > 0,

lim
δ→0

lim sup
n→∞

[
pr
{
c−1
1 n−γ

[Hδ]∑
h=1

Dh > t
}

(S3.2)

+pr
{
c−1
1 n−γ

H∑
h=[H(1−δ)]

Dh > t
}]

= 0.

Step 2. We now show (S3.1). Fix δ ∈ (0, 1/2). Let FY denote the dis-

tribution function of Y and F−1
Y the left-continuous inverse of FY . De-

fine An = I
{
Y([nδ]) > F−1

Y (β)
}

and Bn = I
{
Y([n(1−δ)]) < F−1

Y (1− β)
}

for

0 < β < δ. Given any such β, we have An
p−→ 1 and Bn

p−→ 1. Thus (S3.1)

follows from

c−1
1 n−γ

[H(1−δ)]∑
[Hδ]

DhAnBn −→ 0,

which, in turn, follows from a similar procedure to Step 1 by noting that

under the event {An = 1, Bn = 1}, the Y ’s in the summation are boundedly

supported.

Step 3. Then we show (S3.2). Choose δ > 0 small enough so that Cn
p−→ 1,

where Cn = I
{
Y([nδ]) < −B0

}
. Under the non-expansive condition, we have
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that

c−1
1 n−γ

[Hδ]∑
h=1

DhCn ≤ n−γ

[nδ]−1∑
j=1

∣∣M(Y(j+1))−M(Y(j))
∣∣Cn

≤ n−γ
∣∣M(Y([nδ]))−M(Y(1))

∣∣
≤ n−γ

{∣∣M(Y )([nδ])
∣∣+ ∣∣M(Y )(1)

∣∣} = op(1).

where the two equalities follow from Lemma 4 and that, under the event

{Cn = 1}, M(Y ) is non-decreasing, respectively. Together with Cn
p−→ 1,

we have

c−1
1 n−γ

[Hδ]∑
h=1

Dh
p−→ 0,

and the other tail can be handled similarly. Thus n−γ
∑H

h=1 Dh = op(c1).
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