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Supplementary Material

A An Expectation-Maximization algorithm

The model fitting procedure for a mixed model containing random effect can be achieved by the

EM algorithm (Dempster et al., 1977), which is an iterated procedure, performing expectation

step (E-step) and maximization step (M-step) alternately.

To illustrate the procedure of the EM algorithm, we first assume the covariance matrices

Γ1 and Γ2 are known, then with Assumption 3, the joint distribution isvec(AT )

vec(Y T )

 ∼ N


 0

vec(α1T
n +BTXT +DTZT )

 ,

Ik ⊗ Γ1 ΨT ⊗ Γ1

Ψ⊗ Γ1 ΨΨT ⊗ Γ1 + In ⊗ Γ2


 .

Let V = var(vec(Y T )) = ΨΨT ⊗ Γ1 + In ⊗ Γ2, B = [α,BT ,DT ]T and X = [1n,X,Z],
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the standard estimator of vec(BT ) and vec(AT ) are the GLS estimator

vec(B̂T |Y ,Γ1,Γ2) =
[
(X T ⊗ Iq)V

−1(X ⊗ Iq)
]−1

(X T ⊗ Iq)V
−1vec(Y T ), (A.1)

and the posterior mean

E(vec(AT )|Y , B̂,Γ1,Γ2) = (ΨT ⊗ Γ1)V
−1(vec(Y T − B̂TX T )). (A.2)

Then, we will discuss the EM algorithm for the estimation of Γ1 and Γ2.

E-step. In the E-step, we aim to obtain the expectation of the complete log-likelihood,

that is,

Q(Γ1,Γ2;Γ
[m]
1 ,Γ

[m]
2 ) := E

Γ
[m]
1 ,Γ

[m]
2

(−2 logL(Γ1,Γ2)) (A.3)

=E
Γ
[m]
1 ,Γ

[m]
2

[
tr
{
(Y −XB[m+1] −ΨA[m+1])Γ−1

2 (Y −XB[m+1] −ΨA[m+1])T
}]

+

E
Γ
[m]
1 ,Γ

[m]
2

[
tr
{
A[m+1]Γ−1

1 A[m+1]T
}]

+ k log(det(Γ1)) + n log(det(Γ2)) + Const, (A.4)

where we first estimate B[m+1] according to (A.1) and vec(A[m+1]T ) = E(vec(AT )|Y ,B[m+1],

Γ
[m]
1 ,Γ

[m]
2 ) via (A.2).

M-step. In the M-step, we consider minimizing the negative log-likelihood (A.4). Then,

the maximum likelihood estimators of Γ1 and Γ2 are

Ik ⊗ Γ
[m+1]
1 = Ik ⊗ Γ

[m]
1 + vec(A[m+1]T )vec(A[m+1]T )T − (ΨT ⊗ Γ

[m]
1 )×{

V [m]−1

− V [m]−1

(X ⊗ Iq)
[
(X T ⊗ Iq)V

[m]−1

(X ⊗ Iq)
]−1

(X T ⊗ Iq)V
[m]−1

}
(Ψ⊗ Γ

[m]
1 ),

In ⊗ Γ
[m+1]
2 = In ⊗ Γ

[m]
2 + vec(E[m+1]T )vec(E[m+1]T )T − (In ⊗ Γ

[m]
2 )×{

V [m]−1

− V [m]−1

(X ⊗ Iq)
[
(X T ⊗ Iq)V

[m]−1

(X ⊗ Iq)
]−1

(X T ⊗ Iq)V
[m]−1

}
(In ⊗ Γ

[m]
2 ),

where vec(E[m+1]T ) = E(vec(ET )|Y ,B[m+1],Γ
[m]
1 ,Γ

[m]
2 ) = vec(Y T )− vec(B[m+1]TX T )− (Ψ⊗

Iq)vec(A
[m+1]T ). The final Γ

[m+1]
1 and Γ

[m+1]
2 can be calculated by taking the average of

the corresponding block diagonal matrices. Here we applied the restricted maximum likelihood
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(REML) estimates (Laird and Ware, 1982; Meng and Van Dyk, 1998), correcting the downwards

bias of ML variance estimators.

Combining the E-step and M-step, we get a complete iteration procedure. We stop the

EM iteration if the change in log-likelihood is small enough.

A.1 Considerations of dimensions

The derivation of EM algorithm involves a calculation of the inverse of a nq × nq dimensional

matrix V −1 = (ΨΨT ⊗ Γ1 + In ⊗ Γ2)
−1, which is computational infeasible in practice when n

is large. Fortunately, one can simplify the inversion through its special structure. Precisely, we

have

(ΨΨT ⊗ Γ1 + In ⊗ Γ2)
−1 = ((ΨΨT ⊗ Γ1Γ

−1
2 + Inq)(In ⊗ Γ2))

−1

= (In ⊗ Γ−1
2 )(ΨΨT ⊗ Γ1Γ

−1
2 + Inq)

−1.

Then, denote K = ΨΨT ⊗ Γ1Γ
−1
2 + Inq = (Ψ ⊗ Iq)(Ψ

T ⊗ Γ1Γ
−1
2 ) + Inq, using the Sher-

man–Morrison–Woodbury formula again, we can get

K−1 = Inq − (Ψ⊗ Iq)(Ikq + (ΨT ⊗ Γ1Γ
−1
2 )(Ψ⊗ Iq))

−1(ΨT ⊗ Γ1Γ
−1
2 ))

= Inq − (Ψ⊗ Iq)(Ikq +ΨTΨ⊗ Γ1Γ
−1
2 )−1(ΨT ⊗ Γ1Γ

−1
2 ).

In this expression, the inverse matrix K−1 only has dimension kq× kq, thus is fixed and would

not increase with the sample size. This is also the reason why we use k basis functions to

capture the heterogeneity structure of Y . As a result, we can rewrite (A.2) as

vec(ÂT ) = (ΨT ⊗ Γ1Γ
−1
2 )K−1(vec(Y T − α̂1T

n − B̂TXT − D̂TZT )). (A.5)

Other equations involve V −1 can be simplified analogically.
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B Technical development

Based on the Assumption 1, we first establish the GLS estimator.

Lemma B.1. With Assumption 1, the OLS estimators based on the training sample from

(2.3) are α̂ = Ȳ , B̂ = (XTMzX)−1XTMzY and D̂ = (ZTMxZ)−1ZTMxY , while S =

(Y − Ŷ )T (Y − Ŷ ) with Ŷ = 1nα̂
T +XB̂+ZD̂. By plugging the OLS estimators to (2.4) and

solving for ξ, we attain the GLS-type estimator

ξ̂gls = (B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′).

Compared with GLS, the reversed model for deriving (2.7) encounter the endogeneity issue.

To see this, we noticed that (2.3) admits an expression

X =Y BT (BBT )−1 − 1nα
TBT (BBT )−1 −ZDBT (BBT )−1 −EBT (BBT )−1

:=1nθ
T + Y Φ+ZΨ+Eir.

Since Y is correlated with E, Y also correlated with the transformed Eir, which leads to

endogeneity. As we have shown in Theorem 2, the inverse regression estimator is biased to

the prior mean of X, while the GLS estimator is a unbiased estimator with the true causal

direction. The endogeneity of ξ̂ir is not caused by some unobserved confounders, thus can not

be handled by the instrumental variable (IV) regression (Greene, 2008).

Moreover, let c = l−1 + n−1 + c3 − c4 + ˆ̄y′T
res(Ŷ

T
resŶres)

−1 ˆ̄y′
res, where c4 = ζTC1ζ and

ˆ̄y′
res = ȳ′ − α̂− B̂T ζ − D̂T z̄′, the following theorem derives the Bayes estimator.

Lemma B.2. With Assumptions 1 and 2, the posterior of ξ

P (ξ|ȳ′,Y ,X,Z,Z′) ∼ Tν−p+q

(
ξ̂bay, (ν − p+ q)−1c(C1 + B̂S−1B̂T )−1

)
and the Bayes estimator

ξ̂bay =
(
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1 ˆ̄y′
res + ζ. (B.1)
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The second part of Lemma B.2 is readily implied from the fact that the mean of the

multivariate t-distribution coincides with its mode.

We use a two-stage expression as the intermediate result to derive the equivalence in

Theorem 1 (i).

Lemma B.3. Given Assumption 1, the inverse regression estimator in (2.7) admits an expres-

sion

ξ̂ir =XT Ŷres(Ŷ
T
resŶres)

−1 ˆ̄y′
res + ζ, (B.2)

where Ŷres = Y − 1nα̂
T − PzXB̂ −ZD̂.

We note that (2.8) and (B.1) are formally equivalent.

Lemma B.4. With Assumption 1, we have (2.8) and (B.1) are formally equivalent, say

(I +Hir)
−1{ξ̂gls − ζ}+ ζ =

(
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1 ˆ̄y′
res + ζ.

The following lemma combines with Lemmas B.3 and B.4 directly lead to Theorem 1 (i).

Lemma B.5. With Assumption 1, we have

XT Ŷres(Ŷ
T
resŶres)

−1 ˆ̄y′
res + ζ =

(
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1 ˆ̄y′
res + ζ.

Combining the results from Lemmas B.2 to B.5, we finally obtain Theorem 1 (ii).

C Proof of Lemma B.1

Proof. The GLS solution is a classical estimator, obtained by first regressing Y on X and Z

using (2.3), and then solving ξ in (2.4) by the estimated parameters. By plug-in the estimated

parameters into equation (2.4), we obtain that

Y ′ = 1lα̂
T + 1lξ

T B̂ +Z′D̂ +E′,
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where in this equation, only ξ is unknown. The GLS considers the following optimization

problem,

argmin
ξ

tr
[
(Y ′ − 1lα̂

T − 1lξ
T B̂ −Z′D̂)S−1(Y ′ − 1lα̂

T − 1lξ
T B̂ −Z′D̂)T

]
,

which is also equivalent to a weighted least square problem with weighting matrix S−1. Using

the first order condition, one can obtain the GLS estimator ξ̂gls as described in (2.6).

D Proof of Lemma B.2

The proof of Lemma B.2 is decomposed into two parts. We first give the proof under the

additional condition XTZ = 0, and then generalize the proof without constraint.

We first give the following Lemma D.1, D.2 and D.3, which would be useful for further

derivations.

Lemma D.1. With the model defined by equation (2.3), (2.4) together with Assumption 2, we

have

P (ξ|ȳ′,Y ,X,Z,Z′) ∝ P (ξ|X,Z,Z′)P (ȳ′|Y , ξ,X,Z,Z′) := P (ξ|X,Z,Z′)L(ξ). (D.1)

Proof. We have the following steps:

P (ξ|ȳ′,Y ,X,Z,Z′)

∝P (ȳ′,Y |ξ,X,Z,Z′)P (ξ|X,Z,Z′)

=P (ξ|X,Z,Z′)P (Y |ξ,X,Z,Z′)P (ȳ′|Y , ξ,X,Z,Z′)

∝P (ξ|X,Z,Z′)P (ȳ′|Y , ξ,X,Z,Z′),

which shows the result, where the second equality uses the fact that ξ is independent of X.
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Now, the key problem is to construct the distribution of L(ξ). In order to do that, we

use the noninformative invariant Jefferys prior as stated in Assumption 2 (i). Then, under the

condition XTZ = 0, the distribution of L(ξ) will be the multivariate t distribution as follows.

Lemma D.2. Given Assumption 2, denote σ2(ξ) = 1/l+1/n+ξT (XTX)−1ξ+ z̄′T (ZTZ)−1z̄′

and ˆ̄y′(ξ) = α̂+ B̂T ξ + D̂T z̄′, we have that

L(ξ) ∼ Tν

(
ˆ̄y′(ξ),

1

ν
σ2(ξ)S

)
∝ (σ2(ξ))

ν
2

(σ2(ξ) + (ȳ′ − ˆ̄y′(ξ))TS−1(ȳ′ − ˆ̄y′(ξ)))
ν+q
2

(D.2)

Proof. The proof contains the following steps:

(ȳ′|Γ, ξ,X,Y ,Z,Z′) ∼ N(α̂+ B̂T ξ + D̂T z̄′, σ2(ξ)Γ), (D.3)

(Γ−1|ξ,X,Y ,Z,Z′) ∼ W−1(ν + q − 1,S−1), (D.4)

(ȳ′|ξ,X,Y ,Z,Z′) ∼ Tν(α̂+ B̂T ξ + D̂T z̄′, ν−1σ2(ξ)S), (D.5)

where W−1(ν′,S) is the inverse-Wishart distribution with degree of freedom ν′. When ȳ′ and

Γ−1 satisfy (D.3) and (D.4), we say the joint distribution of (ȳ′,Γ−1) has a normal-inverse-

Wishart distribution, whose marginal distribution over ȳ′ is a multivariate t-distribution, leads

to (D.5) and the result provides in (D.2).

Proof of (D.3):

We note that ȳ′ = α + BT ξ + DT z̄′ + Ē′, the proof of (D.3) can be divided into the

positerior distribution towards α, B, D and Ē′, respectively.

Since X is of column full rank, we can apply eigenvalue decomposition towards XTX/n.

Let P1 be an orthogonal p × p matrix of eigenvectors of XTX/n, Λ1 = diag(λ11, . . . , λ1p) be

the diagonal matrix of the corresponding eigenvalues, satisfying
∑p

i=1 λ1i = p. We have

P T
1 XTXP1 = nΛ1,

since tr(P T
1 XTXP1) = np = tr(nΛ1) due to X has been standardized. Similarly, we can find
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a p′ × p′ orthogonal matrix P2 such that

P T
2 ZTZP2 = nΛ2,

with Λ2 = diag(λ21, . . . , λ2p′) and
∑p′

i=1 λ2i = p′.

As the covariates X and Z is treated as fixed, one can find a n× n orthogonal matrix Q

to get the canonical form so that

QTY = QT1nα
T +QTXB +QTZD +QTE =



n1/2αT +ET
0

n1/2Λ
1/2
1 P T

1 B +E1

n1/2Λ
1/2
2 P T

2 D +E2

E3


:=



GT
0

G1

G2

G3


, (D.6)

where GT
0 ∈ R1×q, G1 ∈ Rp×q, G2 ∈ Rp′×q and G3 ∈ R(n−p−p′−1)×q. The canonical form can

be derived by the singular value decomposition (SVD) of X = [1,X,Z], such that

X = QΛV T ,

where

Λ = n1/2



1 0 0

0 Λ
1/2
1 0

0 0 Λ
1/2
2

...
...

...

0 0 0


,V =


1 0 0

0 P1 0

0 0 P2

 ,

ΛTΛ is diagonal, consists of eigenvalues of X TX .

The canonical form of (2.3) is

QTY = QTX


αT

B

D

+QTE,
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leading to (D.6).

Since Q is orthogonal and the row vectors of E are IID by N(0,Γ) , the newly generated

residuals ET
0 , E1, E2 and E3 have IID N(0,Γ) row vectors, too. To see this, let qi be the i-th

column of Q, eT
i be the i-th row of E. Then, the mean and variance of the i-th row of QTE

are

µ(ETqi) = 0 and var(ETqi) =

n∑
k=1

q2ikΓ = Γ,

and the independence follows from that

cov(ETqi,E
Tqj) = cov(

n∑
k=1

qikek,

n∑
l=1

qjlel) =

n∑
k=1

qikqjkΓ = 0, if i ̸= j.

Similarly, we can find a l × l orthogonal matrix Q′ for (2.4) such that

Q′TY ′ =Q′T1lα
T +Q′T1lξ

TB +Q′TZ′D +Q′TE′

=

l1/2(αT + ξTB + z̄′TD) +E′T
1

E′
2

 ≡

G′T
1

G′
2

 .

For example, the first column of Q′ is chosen to be 1√
l
1l, and the following columns are orthog-

onal towards the unit vector. Indeed, the residuals E′
1 and E′

2 are IID normal.

The least square estimators of α, B and D are given by

α̂ = n−1/2G0

P T
1 B̂ = n−1/2Λ

−1/2
1 G1

P T
2 D̂ = n−1/2Λ

−1/2
2 G2.

Let A1 = P T
1 B, A2 = P T

2 D, aT
1i and aT

2i be the row vectors of A1 and A2, and GT
1i and GT

2i

be the row vector of G1 and G2, we further have

â1i = n−1/2λ
−1/2
1i G1i, i = 1, . . . , p

â2i = n−1/2λ
−1/2
2i G2i, i = 1, . . . , p′.
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Since G0 ∼ N (n1/2α,Γ), G1i ∼ N (n1/2λ
1/2
1i a1i,Γ), G2i ∼ N (n1/2λ

1/2
2i a2i,Γ) and they are

independent, the distribution of LS estimators are α̂ ∼ N (α, n−1Γ), â1i ∼ N (a1i, n
−1λ−1

1i Γ),

â2i ∼ N (a2i, n
−1λ−1

2i Γ), while α̂, â11, ..., â1p, â21, ..., â2p′ are independent.

To obtain the posterior distribution of B, we note that condition on {X,Y ,Z,Γ}, {ξ,Z′}

and {α,B,D} are independent. Recall that X = [1,X,Z], let B = [α,BT ,DT ]T , the full log

likelihood associated with B is propotional to

− 1

2
tr((Y −XB)Γ−1(Y −XB)T )

=− 1

2
tr((Y −XB̂ + XB̂ − XB)Γ−1(Y −XB̂ + XB̂ − XB)T )

=− 1

2
[tr((Y −XB̂)Γ−1(Y −XB̂)T ) + tr((XB̂ − XB)Γ−1(XB̂ − XB)T )+

tr((Y −XB̂)Γ−1(XB̂ − XB)T ) + tr((XB̂ − XB)Γ−1(Y −XB̂)T )]

=− 1

2
[tr((Y −XB̂)Γ−1(Y −XB̂)T ) + tr((XB̂ − XB)Γ−1(XB̂ − XB)T )+

tr(X T (Y −XB̂)Γ−1(B̂ − B)T ) + tr((B̂ − B)Γ−1(Y −XB̂)TX )]

=− 1

2
[tr((Y −XB̂)Γ−1(Y −XB̂)T ) + tr((XB̂ − XB)Γ−1(XB̂ − XB)T )]. (D.7)

The last equality is due to X T (Y −XB̂) = 0 in OLS.

Moreover, condition on {Γ, ξ,X,Y ,Z,Z′}, B̂ provides no additional information. Thus,

(B|Γ, ξ,X,Y ,Z,Z′) = (B|Γ, ξ,X,Y ,Z,Z′, B̂), and with the noninformative invariant Jefferys

prior, the posterior distribution

logP (B|Γ, ξ,X,Y ,Z,Z′, B̂) ∝tr((XB̂ − XB)Γ−1(XB̂ − XB)T )

=tr(QΛV T (B̂ − B)Γ−1(B̂ − B)TV ΛQT )

=tr(Λ2(Â−A)Γ−1(Â−A)T ), (D.8)

where A = [α,AT
1 ,A

T
2 ]

T . One can easily check that this is a Gaussian core function.
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As a result, we have that

(α|Γ, ξ,X,Y ,Z,Z′) ∼ N (α̂, n−1Γ),

(BT ξ|Γ, ξ,X,Y ,Z,Z′) ∼ N (B̂T ξ, (n−1
p∑

i=1

(ξTP1i)
2/λ1i)Γ),

(DT z̄′|Γ, ξ,X,Y ,Z,Z′) ∼ N (D̂T z̄′, n−1(

p′∑
i=1

(z̄′TP2i)
2/λ2i)Γ),

(Ē′|Γ, ξ,X,Y ,Z,Z′) ∼ N (0, l−1Γ),

where P1i and P2i are the column vectors of P1 and P2, respectively. Since these four conditional

distributions are independent, we can derive that

(ȳ′|Γ, ξ,X,Y ,Z,Z′)

∼N
(
α̂+ B̂T ξ + D̂T z̄′,

{
l−1 + n−1 + ξT (XTX)−1ξ + z̄′T (ZTZ)−1z̄′

}
Γ
)
,

follows from ȳ′ = α+BT ξ +DT z̄′ + Ē′ and

1

n

p∑
i=1

(ξTP1i)
2/λ1i =

1

n
ξTP1Λ

−1
1 P T

1 ξ =
1

n
ξT (P1Λ1P

T
1 )−1ξ = ξT (XTX)−1ξ.

Proof of (D.4): It is well known that the sample covariance matrix (S|Γ, ξ,X,Y ,Z,Z′) ∼

W (ν + q − 1,Γ), that is,

P (S|Γ, ξ,X,Y ,Z,Z′) =
|S|

ν−2
2 exp(− 1

2
tr(Γ−1S))

2
(ν+q−1)q

2 |Γ|
ν+q−1

2 Γq(
ν+q−1

2
)
,

and Γq(·) is a multivariate gamma function. Similar to (D.8), condition on X, Y and Z, S pro-

vide no more information. Given the noninformative invariant Jefferys prior from Assumption

2(i), say, P (α,B,D,Γ) ∝ |Γ|−(q+1)/2, we have the corresponding posterior distribution

P (Γ|ξ,X,Y ,Z,Z′) ∝|Γ|−
ν+q−1

2 exp(−tr(Γ−1S)/2)× |Γ|−(q+1)/2

=|Γ|−
ν+2q

2 exp(−tr(Γ−1S)/2),

which is the core function of (D.4).
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Proof of (D.5): Following (D.3), (D.4), the joint distribution of (Ȳ ′,Γ−1) will have a

normal-inverse-Wishart distribution, whose marginal distribution over Ȳ ′ is a multivariate-t

distribution (Gelman et al., 2013) (p. 73). To be precise, we obtain

(ȳ′|ξ,X,Y ,Z,Z′) ∼ Tν(α̂+ B̂T ξ + D̂T z̄′, ν−1σ2(ξ)S).

Now we are ready to establish the theorem without the condition XTZ = 0.

Lemma D.3. Given Assumption 2, denote σ2(ξ) = 1/l + 1/n+ ξTC1ξ − cT2 ξ + c3, where

C1 = (XTMzX)−1

c2 = ((XTMzX)−1XTZ(ZTZ)−1 + (XTX)−1XTZ(ZTMxZ)−1)z̄′

c3 = z̄′T (ZTMxZ)−1z̄′,

are the same as what in Assumption 2. Further let ˆ̄y′(ξ) = α̂+ B̂T ξ + D̂T z̄′, we have that

L(ξ) ∼ Tν

(
ˆ̄y′(ξ),

1

ν
σ2(ξ)S

)
∝ (σ2(ξ))

ν
2

(σ2(ξ) + (ȳ′ − ˆ̄y′(ξ))TS−1(ȳ′ − ˆ̄y′(ξ)))
ν+q
2

(D.9)

Proof. The derivations of (D.4) and (D.5) do not require the orthogonal assumption. We only

need to show that

(ȳ′|Γ, ξ,X,Y ,Z,Z′) ∼ N(α̂+ B̂T ξ + D̂T z̄′, σ2(ξ)Γ) (D.10)

holds when ZTX ̸= 0.

Denote W = [X,Z] and then apply eigenvalue decomposition towards W TW . Let P be

an orthogonal (p+ p′)× (p+ p′) matrix of eigenvectors of W TW , Λw = diag(λ1, . . . , λp+p′) be

the diagonal matrix of corresponding eigenvalues, satisfying
∑p+p′

i=1 λi = p+ p′. Then we have

P TW TWP = nΛw,
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noting that tr(P TW TWP ) = n(p+ p′) = tr(nΛw) due to W has been standardized.

Also let Θ = [BT ,DT ]T be the stacked parameters. As the covariate X is treated as fixed,

one can find a n× n orthogonal matrix Q to get the canonical form so that

QTY = QT1nα
T +QTXB +QTZD +QTE =


n1/2αT +ET

0

n1/2Λ
1/2
w P TΘ+E1

E2

 ≡


GT

0

G1

G2

 , (D.11)

where GT
0 ∈ R1×q, G1 ∈ R(p+p′)×q and G2 ∈ R(n−p−p′−1)×q. The canonical form can be derived

by the singular value decomposition (SVD) of [1,W ], such that

[1,W ] = QΛV T ,

where

Λ = n1/2



1 0

0 Λ
1/2
w

...
...

0 0


,V =

1 0

0 P

 ,

ΛTΛ is diagonal, consists of eigenvalues of [1,W ]T [1,W ]. The canonical form of (2.3) is

QTY = QT [1,W ]


αT

B

D

+QTE,

leading to (D.11).

Since Q is orthogonal and the row vectors of E are IID by N(0,Γ), the newly generated

residuals ET
0 , E1 and E2 have IID N(0,Γ) row vectors, too. Similarly, we can find a l × l

13



orthogonal matrix Q′ such that

Q′TY ′ =Q′T1lα
T +Q′T1lξ

TB +Q′T1lZ
′TD +Q′TE′

=

l1/2(αT + ξTB +Z′TD) +E′T
1

E′
2

 ≡

G′T
1

G′
2

 .

For example, the first column of Q′ is chosen to be 1√
l
1l, and the following columns are orthog-

onal towards the unit vector. Indeed, the residuals e′
1 and e′

2 are IID normal.

The least square estimators of α, B and D are given by

α̂ = n−1/2G0

P T Θ̂ = n−1/2Λ−1/2G1

Let A = P TΘ, aT
i be the row vector of A, and GT

i be the row vector of G, we further have

âi = n−1/2λ
−1/2
i Gi, i = 1, . . . , p+ p′

Since G0 ∼ N (n1/2α,Γ), Gi ∼ N (n1/2λ
1/2
i ai,Γ) and they are independent, the distribution

of OLS estimators are α̂ ∼ N (α, n−1Γ), âi ∼ N (ai, n
−1λ−1

i Γ), while α̂, â1, ..., âp+p′ are

independent.

The posterior distribution is derived via the same discussions in (D.7) and (D.8). As a

result, let w′ = [ξT ,Z′T ]T , we have that P (α+BT ξ+DTZ′|Γ, ξ,X,Y ,Z,Z′) ∼ N (α̂+B̂T ξ+

D̂TZ′, n−1Γ(1 +
∑p+p′

i=1 (w′TPi)
2/λi)), where Pi are the column vectors of P . Moreover, we

can derive that

(ȳ′|Γ, ξ,X,Y ,Z,Z′) ∼ N
(
α̂+ B̂T ξ + D̂T z̄′,

{
1

l
+

1

n
+w′T (W TW )−1w′

}
Γ

)
,

follows from ȳ′ = α+BT ξ +DT z̄′ + Ē′ and

1

n

p∑
i=1

(w′TPi)
2/λi =

1

n
w′TPΛ−1P Tw′ =

1

n
w′T (PΛP T )−1w′ = w′T (W TW )−1w′.

14



Adopting the matrix inversion of (W TW )−1, one can verify that w′T (W TW )−1w′ =

ξTC1ξ − cT2 ξ + c3, and we have the result in equation (D.10).

Proof of Lemma B.2.

Proof. First, from Assumption 2 (ii) and the definition of multivariate t-distribution, we note

that the prior P (ξ|X,Z,Z′) ∝ (σ2(ξ))−
ν
2 . Then from Lemma D.3, we see this prior will exactly

cancel the numerator of (D.9), which leads to

P (ξ|ȳ′,Y ,X,Z,Z′) = P (ξ|X,Z,Z′)L(ξ) ∝
(
σ2(ξ) + (ȳ′ − ˆ̄y′)TS−1(ȳ′ − ˆ̄y′)

)− ν+q
2

.

Then, we will show that the remaining denominator of (D.9) is the core function of the

multivariate t-distribution as shown in Lemma B.2. To see this,

(
σ2(ξ) + (ȳ′ − ˆ̄y′)TS−1(ȳ′ − ˆ̄y′)

)− ν+q
2

=
(
ξT (C1 + B̂S−1B̂T )ξ − (cT2 + 2(ȳ′ − α̂− D̂T z̄′)TS−1B̂T )ξ+

(ȳ′ − α̂− D̂T z̄′)TS−1(ȳ′ − α̂− D̂T z̄′) + l−1 + n−1 + c3
)− ν+q

2

=
(
(ξ − ξ̂bay)

T (C1 + B̂S−1B̂T )(ξ − ξ̂bay)− ξ̂T
bay(C1 + B̂S−1B̂T )ξ̂bay+

(ȳ′ − α̂− D̂T z̄′)TS−1(ȳ′ − α̂− D̂T z̄′) + l−1 + n−1 + c3
)− ν+q

2
.

In addition, we noticed that

(ȳ′ − α̂− D̂T z̄′)TS−1(ȳ′ − α̂− D̂T z̄′)− ξ̂T
bay(C1 + B̂S−1B̂T )ξ̂bay

=(ȳ′ − α̂− B̂T ζ − D̂T z̄′)T (S−1 − S−1B̂T (C1 + B̂S−1B̂T )−1B̂S−1)×

(ȳ′ − α̂− B̂T ζ − D̂T z̄′)− ζTC1ζ

=(ȳ′ − α̂− B̂T ζ − D̂T z̄′)T (S + B̂TC−1
1 B̂)−1(ȳ′ − α̂− B̂T ζ − D̂T z̄′)− c4

=(ȳ′ − α̂− B̂T ζ − D̂T z̄′)T (Ŷ T
resŶres)

−1(ȳ′ − α̂− B̂T ζ − D̂T z̄′)− c4,
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where the second equation is from the SMW formula, the last equation uses the fact that

Ŷ T
resŶres = (Y − 1nα̂

T − PzXB̂ −ZD̂)T (Y − 1nα̂
T − PzXB̂ −ZD̂) = B̂TC−1

1 B̂ + S.

Finally,

P (ξ|ȳ′,Y ,X,Z,Z′)

∝
(
(ξ − ξ̂bay)

T (C1 + B̂S−1B̂T )(ξ − ξ̂bay) + (ȳ′ − α̂− B̂T ζ − D̂T z̄′)T×

(Ŷ T
resŶres)

−1(ȳ′ − α̂− B̂T ζ − D̂T z̄′) + l−1 + n−1 + c3 − c4
)− ν+q

2

=((ξ − ξ̂bay)
T (C1 + B̂S−1B̂T )(ξ − ξ̂bay) + c)−

ν+q
2 ,

which is the core function of Tν−p+q

(
ξ̂bay,

1
ν−p+q

c(C1 + B̂S−1B̂T )−1
)
.

E Proof of Lemma B.3

To obtain the explicit formula of (2.7), recall that the inverse regression estimator is built un-

der the reversed models X = 1nθ
T + Y Φ + ZΨ + Ẽ, ξ = θ + ΦT ȳ′ + ΨT z̄′ + Ē′

ir. Let

Θ = [θ,ΦT ,ΨT ]T and Y = [1n,Y ,Z], based on the first model, the OLS estimators for

the parameters are Θ̂ = (YTY)−1YTX. The specific form of θ,Φ,Ψ are θ̂T = −(1T
n (I −

Y (Y TMzY )−1Y T )1n)
−11T

nY (Y TMzY )−1Y TMzX, Φ̂ = (Ỹ TMzỸ )−1Ỹ MzX
T and Ψ̂ =

(ZTMỹZ)−1ZMỹX, respectively, where Ỹ = M1Y , M1 = I − 1n(1
T
n1n)

−11T
n , Mz = I −

Z(ZTZ)−1ZT and Mỹ = I − Ỹ (Ỹ T Ỹ )−1Ỹ T . Substituting them to the second inverse regres-

sion model above to attain the inverse regression estimator

ξ̂ir = θ̂ + Φ̂T ȳ′ + Ψ̂T z̄′

Similar as before, we first give the proof of Lemma B.3 with the condition XTZ = 0 as

follows:

Lemma E.1. Given Assumption 1, when XTZ = 0, the inverse regression estimator (2.7)
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admits an expression

ξ̂ir = XT Ŷres(Ŷ
T
resŶres)

−1(ȳ′ − α̂− D̂T z̄′), (E.1)

where Ŷres = Y − 1nα̂
T −ZD̂.

Proof. The proof contains two parts. We first give the equivalence result by assuming that the

mean of Y is 0, and then we give the full proof with the intercept involved.

(i). When ȳ = 0, then we have α̂ = θ̂ = 0 and Ỹ = Y . Since D̂ = (ZTZ)−1ZTY ,

Ŷres = Y −ZD̂ = MzY , our goal is to proof that

ξ̂ir =XTMzY (Y TMzY )−1ȳ′ +XTMyZ(ZTMyZ)−1z̄′

=XT Ŷres(Ŷ
T
resŶres)

−1(ȳ′ − D̂T z̄′),

or

XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′ = −XTMyZ(ZTMyZ)−1z̄′. (E.2)

The right-hand side of (E.2) can be denoted as

−XTMyZ(ZTMyZ)−1z̄′

=−XTMyZ((ZTZ)−1 + (ZTZ)−1ZTY (Y TY − Y TZ(ZTZ)−1ZTY )−1Y TZ(ZTZ)−1)z̄′

=−XTMyZ((ZTZ)−1 + (ZTZ)−1ZTY (Y TMzY )−1Y TZ(ZTZ)−1)z̄′

=−XTMy(I + PzY (Y TMzY )−1Y T )Z(ZTZ)−1z̄′

=−XTMy(I −MzY (Y TMzY )−1Y T )Z(ZTZ)−1z̄′

=−XTMyZ(ZTZ)−1z̄′ +XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′ −XTPyZ(ZTZ)−1z̄′

=− ζ +XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′

=XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′,
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where Pz = Z(ZTZ)−1ZT and the first equivalence used the Sherman–Morrison–Woodbury

(SMW) formula. Since it is equivalent to the left hand side of (E.2), thus we finished our proof

without intercept.

(ii). To study the effect of the intercept, recall that Ỹ = M1Y and P1 = 1n(1
T
n1n)

−11T
n ,

we first give some useful results as below:

MzP1 =P1

Ŷres =Y − 1nα̂
T −ZD̂ = MzY − 1

n
1n1

T
nY = MzY − 1n(1

T
n1n)

−11T
nY

=MzY − P1Y = MzY −MzP1Y = MzỸ

Then, our goal is to prove that

−XTMzY (Y TMzY )−1Y T1n(1
T
n (I − Y (Y TMzY )−1Y T )1n)

−1+

XTMzỸ (Ỹ TMzỸ )−1ȳ′ +XTMỹZ(ZTMỹZ)−1z̄′

=XTMzỸ (Ỹ TMzỸ )−1(ȳ′ − α̂− D̂T z̄′).

We note the equivalence in part (i) still holds, say, XTMzỸ (Ỹ TMzỸ )−1ȳ′ +

XTMỹZ(ZTMỹZ)−1z̄′ = XTMzỸ (Ỹ TMzỸ )−1(ȳ′ − D̂T z̄′). We only need to show that

XTMzY (Y TMzY )−1Y T1n(1
T
n (I − Y (Y TMzY )−1Y T )1n)

−1

=XTMzỸ (Ỹ TMzỸ )−1ȳ. (E.3)

Denote 1T
nY (Ỹ MzỸ )−1Y T1n = cy, using the SMW formula,

(Y TMzY )−1 = ((Ỹ + P1Y )TMz(Ỹ + P1Y ))−1

=(Ỹ MzỸ )−1 − (Ỹ MzỸ )−1Y T1n(1
T
n1n + 1T

nY (Ỹ MzỸ )−1Y T1n)
−11T

nY (Ỹ MzỸ )−1

=(Ỹ MzỸ )−1 − 1

n+ cy
(Ỹ MzỸ )−1Y T1n1

T
nY (Ỹ MzỸ )−1,
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and

(1T
n (I − Y (Y TMzY )−1Y T )1n)

−1 =
1

n
− 1

n
1T
nY (−Y TMzY + Y TP1Y )−1Y T1n

1

n

=
1

n
+

1

n
1T
nY (Ỹ MzỸ )−1Y T1n

1

n

=
1

n
(1 +

cy
n
)

Using these results, the left hand side of (E.3) is

LHS =XTMzỸ
{
(Ỹ MzỸ )−1 − 1

n+ cy
(Ỹ MzỸ )−1Y T1n1

T
nY (Ỹ MzỸ )−1

}
ȳ(1 +

cy
n
)

=XTMzỸ (Ỹ MzỸ )−1ȳ(1 +
cy
n
)− 1

n
XTMzỸ (Ỹ MzỸ )−1Y T1n1

T
nY (Ỹ MzỸ )−1ȳ

=XTMzỸ (Ỹ MzỸ )−1ȳ(1 +
cy
n
)− cy

n
XTMzỸ (Ỹ MzỸ )−1ȳ

=XTMzỸ (Ỹ MzỸ )−1ȳ = RHS

Thus, we have finished our proof.

Proof of Lemma B.3.

For the general case without the additional constraint XTZ = 0, we follow the similar

proof steps as illustrated in Lemma E.1

Proof. Without loss of generality, we assume that the mean of Y is 0, that is to say α̂ = 0, and

we aim to prove:

XT Ŷres(Ŷ
T
resŶres)

−1(ȳ′ − B̂T ζ − D̂T z̄′) + ζ

=XTMzY (Y TMzY )−1ȳ′ +XTMyZ(ZTMyZ)−1z̄′ (E.4)

Denote Ly
z = Z(ZTMyZ)−1ZT for simplicity and Lz

x,L
x
z ,L

y
z similarly. From definition,

we can directly get Ly
zMyPz = Pz and Ly

zPz = Ly
z along with their counterparts for Lx

z ,L
z
x and

Lz
y by simple algebra.
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Moreover, consider the SMW formula on (ZTMyZ)−1, we have:

Ly
z = Z(ZT (I − Py)Z)−1ZT

= Z((ZTZ)−1 + (ZTZ)−1ZTLz
yZ(ZTZ)−1)ZT

= Pz + PzL
z
yPz.

Equations for Lz
x,L

x
z ,L

z
y by SMW formula can be calculated similarly.

Now we start our proof from observing that Ŷres = MzY here (without XTZ = 0). To

show this, recall that B̂ = (XTMzX)−1XTMzY and D̂ = (ZTMxZ)−1ZTMxY , we have

Ŷres = Y − PzXB̂ −ZD̂

= (I − PzL
z
xMz −Lx

zMx)Y

= (I − PzL
z
xMz − (Pz + PzL

z
xPz)Mx)Y

= (I − PzL
z
xMz − PzMx − PzL

z
xPzMx)Y

= (I − PzL
z
xMz − PzMx − Pz(−Lz

xMz + Px))Y

= (I − PzMx − PzPx)Y

= (I − Pz)Y

= MzY . (E.5)

Also, note that in the proof of (E.2), we have

XTMyZ(ZTMyZ)−1z̄′

=ζ −XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′ (E.6)

still holds true without the assumption XTZ = 0. Combining (E.5) and (E.6) with (E.4), we
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can simplify our target to proof

XTMzY (Y TMzY )−1(−B̂T ζ − D̂T z̄′)

=−XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′

For the left-hand side,

XTMzY (Y TMzY )−1(−B̂T ζ − D̂T z̄′)

=−XTMzY (Y TMzY )−1(Y TMzX(XTMzX)−1XTZ(ZTZ)−1+

Y TMxZ(ZTMxZ)−1)z̄′

=−XTMzL
z
y(MzL

z
xZ(ZTZ)−1 +MxZ(ZTMxZ)−1)z̄′

=−XTMzL
z
y

(
MzL

z
xZ +MxZ(I + (ZTZ)−1ZTLz

xZ)
)
(ZTZ)−1z̄′

=−XTMzL
z
y

(
MzL

z
x +Mx +MxPzL

z
x

)
Z(ZTZ)−1z̄′

=−XTMzL
z
y

(
MzL

z
x +Mx +MxL

z
x −MxMzL

z
x

)
Z(ZTZ)−1z̄′

=−XTMzL
z
y

(
MzL

z
x +Mx + 0 + Px −MzL

z
x

)
Z(ZTZ)−1z̄′

=−XTMzY (Y TMzY )−1Y TZ(ZTZ)−1z̄′,

match with the right-hand side, thus we finish the proof.
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F Proof of Lemma B.4

Proof.

(I +Hir)
−1(ξ̂gls − ζ) + ζ

=(I + (B̂S−1B̂T )−1(XTMZX)−1)−1((B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′)−XTZ(ZTZ)−1z̄′)+

XTZ(ZTZ)−1z̄′

=(B̂S−1B̂T + (XTMZX)−1)−1(B̂S−1(ȳ′ − α̂− D̂T z̄′)− B̂S−1B̂TXTZ(ZTZ)−1z̄′)+

XTZ(ZTZ)−1z̄′

=
(
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1 ˆ̄y′
res + ζ

G Proof of Lemma B.5

Proof. By the SMW formula, we have

((XTMzX)−1 + B̂S−1B̂T )−1

=XTMzX −XTMzXB̂(S + B̂TXTMzXB̂)−1B̂TXTMzX.
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Since (Y − 1nα̂
T − PzXB̂ −ZD̂)T (Y − 1nα̂

T − PzXB̂ −ZD̂) = B̂TXTMzXB̂ + S, which

gives

S−1B̂T ((XTMzX)−1 + B̂S−1B̂T )−1

=S−1B̂T (XTMzX −XTMzXB̂(S + B̂TXTMzXB̂)−1B̂TXTMzX)

=S−1(I − B̂TXTMzXB̂(S + B̂TXTMzXB̂)−1)B̂TXTMzX

=S−1(I − (B̂TXTMzXB̂ + S − S)(S + B̂TXTMzXB̂)−1)B̂TXTMzX

=(S + B̂TXTMzXB̂)−1B̂TXTMzX

=(Ŷ T
resŶres)

−1Ŷ T
resX.

Combining these results, we finished with

ξ̂bay =XT Ŷres(Ŷ
T
resŶres)

−1(ȳ′ − α̂− B̂TXTZ(ZTZ)−1Z′ − D̂TZ′) +XTZ(ZTZ)−1Z′.

H Proof of Theorem 1

Proof. Theorem 1 (i) follows immediately from Lemmas B.3 to B.5. And Theorem 1 (ii) is

already established by Lemmas B.2 and B.4.
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I Proof of Theorem 2

Proof. Given Assumption 1, when n → ∞, we have the following results:

α̂ = Ȳ = α+ Ē
p−→ α

B̂ = (XTMzX)−1XTMzY = B + (XTMzX)−1XTMzE
p−→ B

D̂ = (ZTMxZ)−1ZTMxY = D + (ZTMxZ)−1ZTMxE
p−→ D

ηS−1 ∼ W−1(η, ηΓ−1)
p−→ Γ−1,

where η = n− p− p′ − 1. Denote ej follows the distribution F (0,Γ), then ȳ′ ∼

F
(
α+BT ξ +DT z̄′, l−1Γ

)
. By the Slutsky’s theorem, we have that

lim
n→∞

ξ̂gls = lim
n→∞

(B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′)
d−→ F

(
ξ,

1

l
(BΓ−1BT )−1

)
. (I.1)

Then, the asymptotic mean and variance of ξ̂gls are

lim
n→∞

E(ξ̂gls) = ξ and lim
n→∞

Var(ξ̂gls) = l−1(BΓ−1BT )−1.

Since we have assumed E||ei||2+δ
2 = E||ej ||2+δ

2 < ∞ for a δ > 0 by Assumption 1. (i), the

uniform integrability of E||e||22 is satisfied, which leads to the moment convergence as given

above.

Furthermore, as n → ∞,

E(ξ̂ − ξ) =((I +H)−1Eξ̂gls − ξ − {(I +H)−1 − I}ζ)

→{(I +H)−1 − I}ξ − {(I +H)−1 − I}ζ)

={(I +H)−1 − I}(ξ − ζ),

var(ξ̂) =(I +H)−1var(ξ̂gls)(I +HT )−1

→l−1(I +H)−1(BΓ−1BT )−1(I +HT )−1,

and we finished the proof.
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J Proof of Theorem 3

Proof. From Theorem 2, the asymptotic bias and variance are

Bias(ξ̂, ξ) → ((I +H)−1 − I)(ξ − ζ) and Var(ξ̂) → 1

l
(I +H)−1(BΓ−1BT )−1(I +H)−1T ,

respectively. To derive the shrinkage estimator, we optimize the limiting average MSE with

respect to H,

Hopt = argmin
H

tr
(
((I +H)−1 − I)E[(ξ − ζ)(ξ − ζ)T ]((I +H)−1 − I)T

)
+

1

l
tr
(
(I +H)−1(BΓ−1BT )−1(I +H)−1T

)
.

The first order condition yield

∂MSE(ξ̂)

∂H
: 2((I +H)−1 − I)E[(ξ − ζ)(ξ − ζ)T ] +

2

l
(I +H)−1(BΓ−1BT )−1 = 0,

hence

(I +Hopt)
−1 =E[(ξ − ζ)(ξ − ζ)T ]

{
(l)−1(BΓ−1BT )−1 + E[(ξ − ζ)(ξ − ζ)T ]

}−1
,

which leads to H̃opt = l−1(BΓ−1BT )−1
{
Γx − ΓxzΓ

−1
z ΓT

xz

}−1
.

K Proof of Theorem 4

To appreciate the benefit of the additional covariates Z, suppose we omit Z and Z′ from the

Models (2.3) and (2.4), and suppose that the remaining models are still correctly specified, say,

XTZ = 0, which prevents the estimation of B will suffer from the omitted variable bias. Then

the proof can be given as follows.

Proof. First, for Theorem 4 (i)., we noticed that ζ = 0 and MzX = X given XTZ = 0. By
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definition, when n → ∞,

Eξ(MSE(ξ̂)) →tr
(
((I +H)−1 − I)Eξ(ξξ

T )((I +H)−1 − I)T
)
+

l−1tr
(
(I +H)−1(BΓ−1BT )−1(I +H)−1T

)
=tr

(
((I +H)−1 − I)Γx((I +H)−1 − I)T

)
+

l−1tr
(
(I +H)−1(BΓ−1BT )−1(I +H)−1T

)
.

By a similar derivation of Theorem 3,

H̃opt = l−1(BΓ−1BT )−1Γ−1
x .

When n → ∞, we have XTX/n → Γx. By plug-in XTX/n, we noticed that Hopt →

H̃opt, which means that ξ̂opt minimizes limiting Eξ(MSE(ξ̂)) among all the ξ̂ = (I+H)−1(ξ̂gls−

ζ) + ζ.

Then, consider Theorem 4 (ii)., we will show that the limiting E(MSE(ξ̂opt)) is positively

correlated with the covariance term Γ, and the covariance will be reduced with additional Z

involved in.

The limiting MSE of ξ̂opt can be derived as

E(MSE(ξ̂opt)) →tr(((I +Hopt)
−1 − I)(n−1XTX)((I +Hopt)

−1 − I)T )+

tr(l−1(I +Hopt)
−1(BΓ−1BT )−1(I +HT

opt)
−1)

=tr(((I +Hopt)
−1)(n−1XTX + l−1(BΓ−1BT )−1)(I +HT

opt)
−1)−

2tr(((I +Hopt)
−1)(n−1XTX)) + tr(n−1XTX)

=tr(n−1XTX)−

tr{((n−1XTX)−1 + l−1(n−1XTX)−1(B̂Γ−1B̂T )−1(n−1XTX)−1)−1},

which is positively correlated with Γ.
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Given the full model

Y = 1nα
T +XB +ZD +E,

and a partial model

Y = 1nα
T +XB +Ez,

with Ez = ZD +E. Since XTZ = 0, the condition XTEz = 0 is also satisfied for the partial

model, thus it is also correctly specified. However, the covariance term of E is Γ, while for Ez

is Γz = DTZTZD + Γ. Clearly Γz − Γ is positive definite, and the limiting E(MSE(ξ̂opt)) is

thus larger compared with the full model.

L Proof of Theorem 5

Proof. Indeed, consider a class of penalized estimators solving

ξ̃ = argmin
ξ

tr[(Y ′ − Ŷ ′(ξ))S−1(Y ′ − Ŷ ′(ξ))T ] + λσ2(ξ), (L.1)

where σ2(ξ) = 1/l + 1/n + ξTC1ξ − cT2 ξ + c3, Ŷ
′(ξ) = 1lα̂

T + 1lξ
T B̂ + Z′D̂ and λ ∈ R is a

tuning parameter controls the penalty. The first order condition yield

2λC1ξ − 2λ(XTMzX)−1ζ − 2lB̂S−1(ȳ′ − α̂− D̂T z̄′ − B̂T ξ) = 0,

and it has the solution of the form

ξ̃ =

(
λ

l
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1 ˆ̄y′
res + ζ, (L.2)

where ˆ̄y′
res = ȳ′ − α̂− B̂T ζ − D̂T z̄′.

When λ = 0,

(L.2) =
(
B̂S−1B̂T

)−1

B̂S−1(ȳ′ − α̂− B̂T ζ − D̂T z̄′) + ζ

=
(
B̂S−1B̂T

)−1

B̂S−1(ȳ′ − α̂− D̂T z̄′),
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coincide with (2.6).

When λ = 1,

(L.2) =

(
1

l
(XTMzX)−1 + B̂S−1B̂T

)−1

B̂S−1(ȳ′ − α̂− B̂T ζ − D̂T z̄′) + ζ

=(B̂S−1B̂T +
1

l
(XTMZX)−1)−1(B̂S−1(ȳ′ − α̂− D̂T z̄′)− B̂S−1B̂TXTZ(ZTZ)−1z̄′)+

XTZ(ZTZ)−1z̄′

=(I +
1

l
(B̂S−1B̂T )−1(XTMZX)−1)−1((B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′)−

XTZ(ZTZ)−1z̄′) +XTZ(ZTZ)−1z̄′

=(I +Hopt)
−1(ξ̂gls − ζ) + ζ,

is the same as (2.11).

When λ = l, by Lemma B.4, we know ξ̂ir is the solution with λ = l.

M Derivation of the optimal shrinkage estimator un-

der heterogeneity

For the GLS estimator (2.16), we can derive the variance of ξ̂gls by

var(ξ̂gls) = (B̂S−1B̂T )−1.

If we further assume that α̂, B̂, D̂, Γ̂1, Γ̂2 convergence to the true parameter, since E(Â) =

0, we can obtain the mean of E(ξ̂gls) = ξ. Combining the mean and variance term, we can

yield

ξ̂gls ∼ N (ξ, (B̂S−1B̂T )−1).

Based on the asymptotic normal property, we then consider ξ̂ = Hξ̂gls as a shrinkage estimator
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of ξ, where H is a p× p matrix. We have

Bias(ξ̂, ξ) = (H − I)ξ,

Var(ξ̂) = H(B̂S−1B̂T )−1HT .

From the definition of limiting MSE, as n → ∞,

MSE(ξ̂) → tr
(
(H − I)ξξT (H − I)T

)
+ tr

(
H(BΓ−1BT )−1HT

)
,

and Ĥopt = ξξT
{
(BΓ−1BT )−1 + ξξT

}−1
that minimizes the limiting MSE. Then, replacing

ξξT by XTX/n, we finally get the optimal shrinkage estimator

ξ̂opt =
XTX

n

(
(B̂Γ−1B̂T )−1 +

XTX

n

)−1

ξ̂gls, (M.1)

which leads to (2.17).

N Simulation results for the convergence of the EM

algorithm

We have conducted extra simulations to evaluate the performance of the parameter estimations

in the linear effect models (2.15). The results are included here in Figure S1.

We have evaluated ∥θ̂−θ∥2 under different sample sizes. The relative efficiency, defined as

the ratio against the case when n = 30, is reported in Figure S1. When n = 30, α̂ and Γ̂1 were

seen less stable, so there was a drastic drop in l2 loss from n = 30 to n = 100. The l2 losses

of all parameter estimations decayed geometrically as n increases from 100. These observations

agree with the existing theoretical investigations, e.g., those from Balakrishnan et al. (2017).
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Figure S1: Empirical means and the 10th, 90th quantiles of the l2 loss ∥θ̂ − θ∥2 (in

log-scale) calculated from 1000 simulation replications for the estimators with respect to

the sample size n.

O Simulation results against the σz

In section 3.1, we have introduced an extra hyperparameter σz to generate the repeated mea-

surements. As shown in Figure S2, for the three statistical methods GLS, IR and OPT, the

MSE was not affected by the σz, while the performance of RF was worse given a larger σz. This

is expected from our Theorem 2 where the asymptotic mean and variance do not involve with

the σz term.
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Figure S2: Empirical means and the 10th, 90th quantiles of the MSEs (in log-scale)

calculated from 1000 simulation replications for the GLS, the inverse regression (IR),

the optimal shrinkage (OPT) and the inverse regression with the random forest (RF)

estimators with respect to the variances of the noises σ2
z .
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