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Section S1 provides additional remarks regarding the noisy and multivariate locally stationary functional

time series. Section S2 provides approaches to the selection of tuning parameters and simulation results,

including the simulation results for both boundary and interior regions, and the simulation results checking the

Gaussian approximation and the long-run variance function estimator. Section S3 discusses possible alternative

assumptions for Theorem 2. Section S4 contains some details about simultaneous confidence bands for the

regression function in model (2.1), where one of the arguments is fixed (Section S4.1) including additional

numerical results for this case (see Sections S4.3 and S4.4). In Section S5 we provide examples of locally

stationary functional processes, illustrating our approach of modeling non-stationary functional data. Section

S6 contains the proof of all Theorems, while Section S7 provides propositions. Finally, Section S8 presents

auxiliary results for the proofs.

S1 Additional remarks

In this section, we provide two remarks which briefly discuss how to build simultaneous

confidence surface for noisy data and multivariate locally stationary functional time
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series using our method.

Remark S1. Indeed several authors consider (stationary) functional data models with

noisy observation (see Cao et al., 2012; Chen and Song, 2015, among others) and we

expect that the results presented in this section can be extended to this scenario. More

precisely, consider the model

Yij = Xi,n(
j
N
) + σ( j

N
)zij, 1 ≤ i ≤ n, 1 ≤ j ≤ N ,

where Xi,n is the functional time series defined in (2.1), {zij}i=1,...,n,j=1,...,N is an array

of centered independent identically distributed observations and σ(·) is a positive func-

tion on the interval [0, 1]. This means that one can not observe the full trajectory of

{Xi,n(t) | t ∈ [0, 1]}, but only the function Xi,n evaluated at the discrete time points

1/N, 2/N, . . . , (N − 1)/N, 1 subject to some random error. If N → ∞ as n → ∞, and

the regression function m in (2.1) is sufficiently smooth, we expect that we can con-

struct simultaneous confidence bands and surfaces by applying the procedure described

in this section to smoothed trajectories.

For example, we can consider the smooth estimate

m̃(u, ·) = argmin
g∈Sp

⌈nu+
√
n⌉∑

i=⌊nu−
√
n⌋

N∑
j=1

(
Yi,j − g( j

N
)
)2

,

where Sp denotes the set of splines of order p, which depends on the smoothness of the

function t → m(u, t). We can now construct confidence bands applying the methodol-

ogy to the data X̃i,n(·) = m̃( i√
n
, ·), i = 1, . . . ,

√
n due to the asymptotic efficiency of
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S1. ADDITIONAL REMARKS

the spline estimate (see Proposition 3.2-3.4 in Cao et al., 2012).

Alternatively, we can also obtain smooth estimates t → X̌i,n(t) of the trajectory

using local polynomials, and we expect that the proposed methodology applied to the

data X̌1,n, . . . , X̌n,n will yield valid simultaneous confidence bands and surfaces, where

the range for the variable t is restricted to the interval [cn, 1 − cn] and cn denotes the

bandwidth of the local polynomial estimator used in smooth estimator of the trajectory.

Remark S2. The methodology presented so far can be extended to construct a simul-

taneous confidence surfaces for the vector of mean functions of a multivariate locally

stationary functional time series. For simplicity we consider a 2-dimensional series of

the form X1
i,n(t)

X2
i,n(t)

 =

m1(
i
n
, t)

m2(
i
n
, t)

 +

ε1i,n(t)

ε2i,n(t)

 ,

and define for a = 1, 2

Ẑa,σ̂
i (u) = (Ẑa,σ̂

i,1 (u), . . . , Ẑ
a,σ̂
i,p (u))

⊤

= K
( i

n
− u

bn

)( ε̂ai,n(
1
p
)

σ̂a(
i
n
,
1
p
)
,

ε̂ai,n(
2
p
)

σ̂a(
i
n
,
2
p
)
, . . . ,

ε̂ai,n(
p−1
p

)

σ̂a(
i
n
,
p−1
p

)
,

ε̂ai,n(1)

σ̂a(
i
n
,1)

)⊤
,

where ε̂ai,n(t) = Xa
i,n(t) − m̂a(

i
n
, t) and σ̂2

a(
i
n
, t) is the estimator of long-variance of εai,n

defined in (2.16). Next we consider the 2(n− 2⌈nbn⌉+ 1)p-dimensional vector

ˆ̃Z σ̂
j =

(
Ẑ σ̂,⊤

j,⌈nbn⌉, Ẑ
σ̂,⊤
j+1,⌈nbn⌉+1 . . . , Ẑ

σ̂,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
,

where Ẑ σ̂
i,l = Ẑ σ̂

i (
l
n
) = (Ẑ1,σ̂

i,l,1, Ẑ
2,σ̂
i,l,1 . . . Ẑ

1,σ̂
i,l,p, Ẑ

2,σ̂
i,l,p)

⊤ contains information from both
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components. Define for a = 1, 2

L̂σ̂
3,a(u, t) = m̂a(u, t)− r̂3,a(u, t), Û σ̂

3,a(u, t) = m̂a(u, t) + r̂3,a(u, t) ,

where

r̂3,a(u, t) =
σ̂a(u, t)

√
2T σ̂

⌊(1−α)B⌋√
nbn

√
2⌈nbn⌉ −m′

n

and T σ̂
⌊(1−α)B⌋ is generated in the same way as in step (d) of Algorithm 2 with p replaced

by 2p, m̂a is the kernel estimator of ma defined in (2.3). Further, define for a = 1, 2

the set of functions

Cσ̂
a,n =

{
f ∈ C3,0 : [0, 1]2 → R | L̂3,a(u, t) ≤ f(u, t) ≤ Û3,a(u, t)

∀u ∈ [bn, 1− bn] ∀t ∈ [0, 1]
}
.

Suppose that the mean functions and error processes of X1
i,n(t) and X2

i,n(t) satisfy the

conditions of Theorem 4, then it can be proved that the set Cσ̂
1,n × Cσ̂

2,n defines an

asymptotic (1− α) simultaneous confidence surface for the vector function (m1,m2)
⊤.

The details are omitted for the sake of brevity.

S2 Finite Sample Performance

In this section we study the finite sample performance of the simultaneous confidence

surfaces proposed in the previous sections. We start giving some more details regarding

the general implementation of the algorithms, and present the simulation study.
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S2. FINITE SAMPLE PERFORMANCE

S2.1 Implementation

For the estimator of the regression function in (2.3) we use the kernel (of order 4) in

[bn, 1− bn]

K(x) = (45/32− 150x2/32 + 105x4/32)1(|x| ≤ 1) ,

and for the boundary we use the kernel function Kl(x) = (420x2 − 480x + 120)x(1 −

x)1(0 ≤ x ≤ 1). We choose the bandwidth as the minimizer of

MGCV (b) = max
1≤s≤p

∑n
i=1(m̂b(

i
n
, s
p
)−Xi,n(

s
p
))2

(1− tr(Qs(b))/n)2
, (S2.1)

Qs(b) is an n× n matrix such that

(
m̂b(

1
n
, s
p
), m̂b(

2
n
, s
p
), . . . , m̂b(1,

s
p
)
)⊤

= Qs(b)
(
X1,n(

s
p
), . . . , Xn,n(

s
p
)
)⊤

.

Here m̂b(u, t) is the NW estimator with bandwidth b defined in (2.3).

The criterion (S2.1) is motivated by the generalized cross validation criterion in-

troduced by Craven and Wahba (1978) and will be called Maximal Generalized Cross

Validation (MGCV) method throughout this paper.

For the estimator of the long-run variance in (2.16) we use w = ⌊n2/7⌋ and τn =

n−1/7 as recommended in Dette and Wu (2019). The window size in the multiplier

bootstrap is then selected by the minimal volatility method advocated by Politis et al.

(1999). For the sake of brevity, we discuss this method only for Algorithm 2 in detail

(the method for Algorithm 1 is similar). We consider a grid of window sizes m̃1 < . . . <
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m̃M (for some integer M). We first calculate Ŝσ̂
jm̃s

= (Ŝσ̂
jm̃s,r, 1 ≤ r ≤ (n−2⌈nbn⌉+1)p)

defined in step (c) of Algorithm 2 for each m̃s. Let Ŝσ̂,⋄
m̃s

denote the (n − 2⌈nbn⌉ + 1)p

dimensional vector with rth entry defined by

Ŝσ̂,⋄
m̃s,r

=
1

2⌈nbn⌉ − m̃s

2⌈nbn⌉−m̃s∑
j=1

(Ŝσ̂
jm̃s,r)

2 ,

and consider the standard error of {Ŝσ̂,⋄
m̃s,r

}k+2
s=k−2, that is

se
(
{Ŝσ̂,⋄

m̃s,r
}k+2
s=k−2

)
=

(1
4

k+2∑
s=k−2

(
Ŝσ̂,⋄
m̃s,r

− 1

5

k+2∑
s=k−2

Ŝσ̂,⋄
m̃s,r

)2)1/2

.

Then we choose m′
n = m̃j where j is defined as the minimizer of the function

MV (k) =
1

(n− 2⌈nbn⌉+ 1)p

(n−2⌈nbn⌉+1)p∑
r=1

se
(
{Ŝσ̂,⋄

m̃s,r
}k+2
s=k−2

)
in the set {3, . . . ,M − 2}. Throughout this section we consider p = ⌊

√
n⌋.

S2.2 Simulated data

We consider two regression functions

m1(u, t)= (u+ 2t)2/2,

m2(u, t) = (1 + u2)(6(t− 0.5)2(1 + 1(t > 0.3)) + 1)

(note that m2 is discontinuous at the point t = 0.3). For the definition of the error pro-

cesses let {εi}i∈Z be a sequence of independent standard normally distributed random

variables and {ηi}i∈Z be a sequence of independent t-distributed random variables with
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S2. FINITE SAMPLE PERFORMANCE

8 degrees of freedom. Define the functions

a(t) = 0.5 cos(πt/3), b(t) = 0.4t, c(t) = 0.3t2,

d1(t) = 1 + 0.5 sin(πt), d2,1(t) = 2t− 1, d2,2(t) = 6t2 − 6t+ 1,

and F1
i = (. . . , εi−1, εi), F2

i = (. . . , ηi−1, ηi). We consider the following two locally

stationary functional time series errors G1 and G2 are defined by

G1(u, t,F1
i ) = G0(u, t,F1

i )d1(t)/3,where G0(u, t,F1
i ) = (a(u)− 0.1t)G0(u, t,F1

i ) + ϵi,

G2(u, t,F1
i ,F2

i ) = G̃1(u,F1
i )d2,1(t)/2 + G̃2(u,F2

i )d2,2(t)/2

where the locally stationary time series G̃1 and G̃2 are defined as

G̃1(u,F1
i ) = a(u)G̃1(u,F1

i−1) + εi, G̃2(u,F2
i ) = b(u)G̃2(u,F2

i−1) + ηi − c(u)ηi−1.

Note that G̃1 is a locally stationary AR(1) process (or equivalently a locally stationary

MA(∞) process), and that G̃2 is a locally stationary ARMA(1, 1) model. With these

processes we define the following functional time series model (for 1 ≤ i ≤ n, 0 ≤ t ≤ 1)

(a) Xi,n(t) = m1(
i
n
, t) +G1(

i
n
, t,F1

i ) (b)Xi,n(t) = m1(
i
n
, t) +G2(

i
n
, t,F1

i ,F2
i )

(c) Xi,n(t) = m2(
i
n
, t) +G1(

i
n
, t,F1

i ) (d)Xi,n(t) = m2(
i
n
, t) +G2(

i
n
, t,F1

i ,F2
i ).

In Figure S1 we display typical 95% simultaneous confidence surfaces of the form (2.2)

from one simulation run for model (a) with sample size n = 800 and B = 1000 bootstrap

replications, which are calculated by Algorithm 1 (constant width) and Algorithm 2
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(varying width). We observe that there exist differences between the surfaces with

constant and variable width, but they are not substantial.

Figure S1: 95% simultaneous confidence surfaces (2.13) and (2.18) for the regression function in

model (c) from n = 800 observations. Left panel: constant width (Algorithm 1); Right panel: varying

width (Algorithm 2)

We next investigate the coverage probabilities of the different surfaces constructed

in this paper for sample sizes n = 500 and n = 800. All results are based on 1000

simulation runs and B = 1000 bootstrap replications. The left part of Table S1 shows

the coverage probabilities of the surfaces with constant width while the results in the

right part correspond to the bands with varying width. We observe that the simulated

coverage probabilities are close to their nominal levels in all cases under consideration,

which illustrates the validity of our methods for finite sample sizes.
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We conclude this section mentioning that confidence bands for the regression func-

tion m for a fixed u or a fixed t can be constructed in a similar manner and details and

some additional numerical results for these bands are discussed in Section S4.

Table S1: Simulated coverage probabilities of the simultaneous confidence bands (2.13) and (2.18)

calculated by Algorithm 1 (constant width) and Algorithm 2 (varying width), respectively.

constant width varying width

model (a) model (b) model (a) model (b)

level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 88.0% 94.2% 90.1% 93.8% 91.2% 95.3% 87.9% 93.6%

n=800 89.9% 95.8% 88.3% 93.9% 90.9% 96.1% 90.7% 96.0%

model (c) model (d) model (c) model (d)

level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 87.9% 93.9% 91.3% 95.4% 87.5% 95.1% 87.7% 94.8%

n=800 88.6% 94.2% 89.9% 95.9% 90.8% 95.0% 90.1% 94.9%

S2.3 Simulation results in the boundary

We examine the proposed method for the simultaneous inference in the boundary region

in Remark 2. We summarize our results in table S2, and find that our method in

boundary works reasonably well.
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Table S2: Simulated coverage probabilities of simultaneous confidence surface in the boundary using

methods in Remark 2.

constant width varying width

model (a) model (b) model (a) model (b)

level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 87.6% 93.9% 87.2% 93.7% 91.9% 96.0% 91.2% 96.2%

n=800 89.4% 94.4% 90.6% 96.1% 90.2% 95.4% 89.7% 95.0%

model (c) model (d) model (c) model (d)

level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 91.4% 95.1% 89.8% 94.6% 90.4% 95.5% 90.8% 95.3%

n=800 89.8% 95.7% 90.1% 94.9% 90.7% 95.4% 88.4% 94.1%

S2.4 Empirical investigation of Theorem 1

In this section we investigate the finite sample accuracy of the Gaussian approximation

in Theorem 1. We consider model (d), the sample size n = 500, 800 and b = 0.1, 0.2 and

compare the simulated quantiles of the maximum deviation of maxbn≤u≤1−bn
0≤t≤1

√
nbn|∆̂(u, t)|

and that of the maximum norm of the sum of corresponding high-dimensional Gaus-

sian vectors with the auto-covariance structure described in Theorem 1. The results

are presented in Figure S2, which shows that the approximation accuracy of Theorem

1 is quite high.
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Figure S2: Quantile-quantile plot of the maxbn≤u≤1−bn,0≤t≤1

√
nbn|∆̂(u, t)| versus∣∣∣ 1√

nbn

∑2⌈nbn⌉−1
i=1 Ỹi

∣∣∣
∞

as described in Theorem 1.
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S2.5 Empirical performance of the long-run variance estimator

In this section we investigate the finite sample performance of the difference based

long-run variance estimator (4.1). We examine the maximum error

max
1≤i≤n,1≤j≤p

|σ̂(i/n, j/p)− σ(i/n, j/p)| (S2.2)

where p = ⌊n1/2⌋ as mentioned in Section S2.1. We consider model (a), (c), (b), (d)

with sample size n = 500 and 800, respectively. The results are shown in Figure S3,

where we display for each case the box plot of 2000 simulations of (S2.2). We observe

that the estimator works reasonably well and in all simulation scenarios the estimation

error decreases as the sample size increases.

S3 Discussion on the alternative assumptions of Theorem 2

In this section, we discuss alternative assumptions for Theorem 2. Some assumptions

in the main paper can be relaxed yielding different approximation rates.

Remark S3.

(i) A careful inspection of the proofs in Section S6 shows that it is possible to prove

similar results under alternative moment assumptions. For example, Theorem 1

holds under the assumption

E
[

sup
0≤u,t≤1

(G(u, t,F0))
4
]
< ∞ . (S3.1)
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Figure S3: Box plot of the simulated estimation error (S2.2) for model (a), (c), (b), (d) with sample

size 500 and 800, respectively. The label a500 means model (a) for sample size 500. Other labels can

be understood similarly.
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The details are omitted for the sake of brevity. Note that the sup in (S3.1) appears

inside the expectation, while it appears outside the expectation in (3.2). Thus

neither (3.2) implies (S3.1) nor vice versa.

(ii) Assumption 3.2(2) requires geometric decay of the dependence measure δq(G, i)

and a careful inspection of the proofs in Section S6 shows that similar (but weaker)

results can be obtained under less restrictive assumptions. To be precise, define

∆k,q =
∑∞

i=k δq(G, i), ΞM =
∑∞

i=M iδ2(G, i) and consider the following assump-

tions.

(a)
∑∞

i=0 iδ3(G, i) < ∞.

(b) There exist constants M = M(n) > 0, γ = γ(n) ∈ (0, 1) and C2 > 0 such

that

(2⌈nbn⌉)3/8M−1/2l′n
−5/8 ≥ C2l

′
n

where l′n = max(log(2⌈nbn⌉(n− 2⌈nbn⌉+ 1)p/γ), 1).

Then under the conditions of Theorem 1 with Assumption 3.2(2) replaced by (a)

and (b), we have

Pn = O
(
η′n +Θ

(√
nbn(b

4
n +

1

n
), np

)
+Θ

((
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
))
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with

η′n = (nbn)
−1/8M1/2l′

7/8
n + γ +

(
(nbn)

1/8M−1/2l′
−3/8
n

)q/(1+q) (
np∆q

M,q

)1/(1+q)

+Ξ
1/3
M (1 ∨ log (np/ΞM))2/3 .

The same arguments as given in the proof of Theorem 2 show that (under the other

conditions in this theorem) the set Cn defined by (2.13) defines an (asymptotic)

(1 − α) simultaneous confidence surface if η′n = o(1). For example, if δq(G, i) =

O(i−1−α) for some α > 0, p = nβ for some β > 0 and bn = n−γ for some 0 < γ < 1,

then η′n = o(1) if (1 + β)− (1− γ)qα/4 < 0, which gives a lower bound on q.

S4 Simultaneous confidence bands for fixed u or t

S4.1 Theoretical background and algorithms

In this section, we present the simultaneous confidence band for the regression function

(u, t) → m(u, t) in model (2.1), where one of the arguments u and t is fixed. Let Ca

be the class of functions with Lipschitz continuous ath order derivatives with bounded

Lipschitz constant. Consider

(1) simultaneous confidence bands for fixed t, which have the form

C(t) =
{
f ∈ C3 | L̂1(u, t) ≤ f(u) ≤ Û1(u, t) ∀u

}
, (S4.1)

where L̂1 and Û1 are appropriate lower and upper bounds calculated from the

data. As t ∈ [0, 1] is fixed these bounds can be derived generalizing results for
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confidence bands in nonparametric regression from the independent (see Konakov

and Piterbarg, 1984; Xia, 1998; Proksch, 2014, among others) to the locally sta-

tionary case (see also Wu and Zhao, 2007, for results in a model with a stationary

error process). An alternative approach based on multiplier bootstrap will be given

below.

(2) simultaneous confidence bands for fixed u, which have the form

C(u) =
{
f ∈ C0 | L̂2(u, t) ≤ f(t) ≤ Û2(u, t) ∀t ∈ [0, 1]

}
, (S4.2)

where L̂2 and Û2 are appropriate lower and upper bounds calculated from the

data. Note that these bounds can not be directly calculated using results of Dette

et al. (2020) as these authors develop their methodology under the assumption of

stationarity.

Recall the definition of the residuals ε̂i,n(t) and the long-run variance estimator σ̂

in the main article. For the construction of a simultaneous confidence bands for a fixed

t ∈ [0, 1] of the form (S4.1) we define

Ẑi(u, t) = K
(

i
n
−u

bn

)
ε̂i,n(t), Ẑi,l(t) = Ẑi(

l
n
, t),

Ẑ σ̂
i (u, t) = K

(
i
n
−u

bn

)
ε̂i,n(t)

σ̂(
i
n
,t)
, Ẑ σ̂

i,l(t) = Ẑ σ̂
i (

l
n
, t).
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Next we consider the (n− 2⌈nbn⌉+ 1)-dimensional vectors

ˆ̃Zj(t) =
(
Ẑj,⌈nbn⌉(t), Ẑj+1,⌈nbn⌉+1(t), . . . , Ẑn−2⌈nbn⌉+j,n−⌈nbn⌉(t)

)⊤
, (S4.3)

ˆ̃Z σ̂
j (t) =

(
Ẑ σ̂

j,⌈nbn⌉(t), Ẑ
σ̂
j+1,⌈nbn⌉+1(t), . . . , Ẑ

σ̂
n−2⌈nbn⌉+j,n−⌈nbn⌉(t)

)⊤
(S4.4)

(1 ≤ j ≤ 2⌈nbn⌉ − 1), then a simultaneous confidence band for fixed t ∈ [0, 1] can be

generated by the Algorithms S1 (constant width) and Algorithm S2 (varying width).
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Algorithm S1:

Result: simultaneous confidence band of the form (S4.1) with fixed width

(a) Calculate the the (n− 2⌈nbn⌉+ 1)-dimensional vector ˆ̃Zj(t) in (S4.3);

(b) For window size mn, let m
′
n = 2⌊mn/2⌋, define

Ŝjm′
n
(t) =

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

ˆ̃Zr(t)−
1√
m′

n

j+m′
n−1∑

r=j+⌊mn/2⌋

ˆ̃Zr(t)

Let ε̂j:j+m′
n,k(t) be the kth component of Ŝjm′

n
(t).

(c) for r=1, . . . , B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n]. -

Calculate

T
(r)
k (t) =

2⌈nbn⌉−m′
n∑

j=1

ε̂j:j+m′
n,k(t)R

(r)
k+j−1 , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T (r)(t) = max
1≤k≤n−2⌈nbn⌉+1

|T (r)
k (t)|.

end

(d) Define T⌊(1−α)B⌋(t) as the empirical (1− α)-quantile of the sample T (1)(t), . . . , T (B)(t) and

L̂3(u, t) = m̂(u, t)− r̂3(t) , Û3(u, t) = m̂(u, t) + r̂3(t)

where

r̂3(t) =

√
2T⌊(1−α)B⌋(t)√

nbn
√

2⌈nbn⌉ −m′
n

Output: Cn(t) =
{
f ∈ C3 : [0, 1]2 → R | L̂3(u, t) ≤ f(u) ≤ Û3(u, t) ∀u ∈ [bn, 1− bn]

}

18
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Algorithm S2:

Result: simultaneous confidence band of the form (S4.1) with varying width

(a) Calculate the estimate of the long-run variance σ̂2 in (2.16)

(b) Calculate the (n− 2⌈nbn⌉+ 1)-dimensional vectors ˆ̃Zσ̂
j (t) in (S4.4)

(c) For window size mn, let m
′
n = 2⌊mn/2⌋, define

Ŝσ̂
jm′

n
(t) =

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

ˆ̃Zσ̂
r (t)−

1√
m′

n

j+m′
n−1∑

r=j+⌊mn/2⌋

ˆ̃Zσ̂
r (t)

Let Ŝσ̂
jm′

n,k(t) be the kth component of Ŝσ̂
jm′

n
(t). Let ε̂ σ̂

j:j+m′
n,k(t) be the kth component of Ŝσ̂

jm′
n
(t).

(d) for r=1, . . . , B do

- Generate independent standard normal distributed random variables {R(r)
i }i∈[1,n−m′

n].

- Calculate

T
σ̂,(r)
k (t) =

2⌈nbn⌉−m′
n∑

j=1

ε̂ σ̂
j:j+m′

n,k(t)R
(r)
k+j−1 , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ̂,(r)(t) = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂,(r)
k (t)|.

end

(e) Define T σ̂
⌊(1−α)B⌋(t) as the empirical (1− α)-quantile of the sample T σ̂,(1)(t), . . . , T σ̂,(B)(t) and

L̂σ̂
4 (u, t) = m̂(u, t)− r̂4(u, t), Û σ̂

4 (u, t) = m̂(u, t) + r̂4(u, t)

where

r̂4(u, t) =
σ̂(u, t)

√
2T σ̂

⌊(1−α)B⌋(t)√
nbn

√
2⌈nbn⌉ −m′

n

Output:

Cσ̂
n(t) =

{
f ∈ C3 : [0, 1]2 → R | L̂σ̂

4 (u, t) ≤ f(u) ≤ Û σ̂
4 (u, t) ∀u ∈ [bn, 1− bn]

}
.

The following result shows that the sets constructed by Algorithms S1 and S2 are

asymptotic (1 − α)-confidence bands of the form (S4.1). The proof is similar to but
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easier than the proof of Theorems 2 and 3 is therefore omitted for the sake of brevity.

Theorem S1. Assume that the conditions of Theorem 1 hold. Define

ϑ†
n =

log2 n

mn

+
mn log n

nbn
+

√
mn

nbn
n4/q.

(i) If ϑ
†,1/3
n {1 ∨ log( n

ϑ†
n
)}2/3 +Θ(

(√
mn log n(

1√
nbn

+ b3n)(n)
1
q
)q/(q+1)

, n) = o(1) we have

that for any α ∈ (0, 1) and any t ∈ [0, 1]

lim
n→∞

lim
B→∞

P(m ∈ Cn(t) | Fn) = 1− α

in probability.

(ii) If further the conditions of Theorem 3 and Proposition 1 hold, then

lim
n→∞

lim
B→∞

P(m ∈ Cσ̂
n(t) | Fn) = 1− α

in probability.

The next theorem presents a Gaussian approximation in the case where u is fixed.

It is the basis for the construction of a confidence band for fixed u and its proof follows

by similar (but easier) arguments as given in the proof of Theorem 1.

Theorem S2. Let Assumptions 3.1 - 2.1 be satisfied and assume that the bandwidth in

(2.3) satisfies that n1+ab9n = o(1), na−1b−1
n = o(1) for some 0 < a < 4/5. For any fixed

u ∈ (0, 1) there exists a sequence of centered p-dimensional Gaussian vectors (Yi(u))i∈N
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with the same covariance structure as the vector Zi(u) in (2.5), such that

Pn(u) := sup
x∈R

∣∣∣P( max
0≤t≤1

√
nbn|∆̂(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

n

)
, p
)
+Θ

(
p

1−q∗
1+q∗ , p

))
for any sequence p → ∞ with p = O(exp(nι)) for some 0 ≤ ι < 1/11. In particular,

Pn(u) = o(1) if p = nc for some c > 0 and the constant q∗ in Assumption 3.3 is

sufficiently large.
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Algorithm S3:

Result: simultaneous confidence band for fixed u ∈ [bn, 1− bn] as defined in (S4.2)

(a) Calculate the p-dimensional vectors Ẑi(u) in (2.1)

(b) For window size mn, let m
′
n = 2⌊mn/2⌋, define

Ŝjm′
n
(u) =

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

Ẑr(u)−
1√
m′

n

j+m′
n−1∑

r=j+⌊mn/2⌋

Ẑr(u)

(c) for r=1, . . . , B do

- Generate independent standard normal distributed random variables {R(r)
i }⌊nu+nbn⌋

i=⌈nu−nbn⌉ -

Calculate the bootstrap statistic

T (r)(u) =
∣∣∣ ⌊nu+nbn⌋−m′

n+1∑
j=⌈nu−nbn⌉

Ŝjm′
n
(u)R

(r)
j

∣∣∣
∞

end

(d) Define T⌊(1−α)B⌋(u) as the empirical (1− α)-quantile of the sample T (1)(u), . . . , T (B)(u) and

L̂5(u, t) = m̂(u, t)− r̂5(u) , Û5(u, t) = m̂(u, t) + r̂5(u) ,

where

r̂5(u) =

√
2T⌊(1−α)B⌋(u)√

nbn
√

(⌊nu+ nbn⌋ − ⌈nu− nbn⌉ −m′
n + 2)

Output:

Cn(u) =
{
f ∈ C0 : [0, 1]2 → R | L̂5(u, t) ≤ f(t) ≤ Û5(u, t) ∀t ∈ [0, 1]

}
. (S4.5)
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Algorithm S4:

Result: simultaneous confidence band of the form (S4.2) with varying width.

(a) For given u ∈ [bn, 1− bn], calculate the the estimate of the long-run variance σ̂2(u, ·) in (2.16)

(b) Calculate the vector Ẑσ̂u
i (u) in (S4.7);

(c) For window size mn, let m
′
n = 2⌊mn/2⌋ and define the p-dimensional random vectors

Ŝσ̂u
jm′

n
(u) =

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

Ẑσ̂u
r (u)− 1√

m′
n

j+m′
n−1∑

r=j+⌊mn/2⌋

Ẑσ̂u
r (u)

(d) for r=1, . . . , B do

- Generate independent standard normal distributed random variables {R(r)
i }⌊nu+nbn⌋

i=⌈nu−nbn⌉ -

Calculate the bootstrap statistic

T σ̂u,(r)(u) =
∣∣∣ ⌊nu+nbn⌋−m′

n+1∑
j=⌈nu−nbn⌉

Ŝσ̂u
jm′

n
(u)R

(r)
j

∣∣∣
∞

end

(e) Define T σ̂u
⌊(1−α)B⌋(u) as the empirical (1− α)-quantile of the sample T σ̂u,(1)(u), . . . , T σ̂u,(B)(u) and

L̂σ̂u
6 (u, t) = m̂(u, t)− r̂σ̂u

6 (u, t) , Û σ̂u
6 (u, t) = m̂(u, t) + r̂σ̂u

6 (u, t),

where

r̂σ̂u
6 (u, t) =

σ̂(u, t)
√
2T σ̂u

⌊(1−α)B⌋(u)√
nbn

√
(⌊nu+ nbn⌋ − ⌈nu− nbn⌉ −m′

n + 2)

Output:

Cσ̂u
n (u) =

{
f ∈ C0 : [0, 1]2 → R | L̂σ̂u

6 (u, t) ≤ f(t) ≤ Û σ̂u
6 (u, t) ∀t ∈ [0, 1]

}
. (S4.6)

Next we present details of the algorithms for a simultaneous confidence band for a

fixed u (of the form (S4.2)) with fixed and varying width. For this purpose we define
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the p-dimensional vector

Ẑ σ̂u
i (u) = (Ẑ σ̂u

i,1 (u), . . . , Ẑ
σ̂u
i,p (u))

⊤ (S4.7)

= K
( i

n
− u

bn

)( ε̂i,n(
1
p
)

σ̂(u,
1
p
)
,
ε̂i,n(

2
p
)

σ̂(u,
2
p
)
, . . . ,

ε̂i,n(
p−1
p

)

σ̂(u,
p−1
p

)
,
ε̂i,n(1)

σ̂(u,1)

)⊤
,

where ε̂i,n and σ̂ are defined in the main article, respectively. Algorithms S3 and S4

provides asymptotically correct the confidence bands of type (S4.2). The next Theorem

S3 yields the validity of Algorithms S3 and S4, which is a consequence of Theorem S2.

Theorem S3. Assume that the conditions of Theorem 1 hold.Define

ϑ′
n =

log2 n

mn

+
mn log n

nbn
+

√
mn

nbn
p4/q

and assume that p → ∞ such that p = O(exp(nι)) for some 0 ≤ ι < 1/11.

(1) If α ∈ (0, 1) and

ϑ′1/3
n

{
1 ∨ log

( p

ϑ′
n

)}2/3

+Θ
((√

mn log p
( 1√

nbn
+ b3n

)
p

1
q

)q/(q+1)

, p
)
= o(1),

then we have for the confidence band in (S4.5)

lim
n→∞

lim
B→∞

P(m ∈ Cn(u) | Fn) = 1− α

in probability.

(ii) If further the conditions of Theorem 3 and Proposition 1 hold, then for the confi-

dence band in (2.13)

lim
n→∞

lim
B→∞

P(m ∈ Cσ̂
n(u) | Fn) = 1− α
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in probability.

The proof of Theorem S3 follows by similar (but easier) arguments as given in the

proof of Theorem 2 and Theorem 3.

Remark S4. One can prove similar results under alternative moment assumptions. In

fact, Theorem S2 remains valid if condition (3.2) is replaced by

E
[
sup
0≤t≤1

(G(u, t,F0))
4
]
< ∞ .

Moreover, one can prove Theorem S2 under weaker assumptions than Assumption 3.2

(ii), which requires geometrically decaying dependence measure. More precisely, If the

assumptions of Theorem S2 hold, where Assumption 3.2 (ii) is replaced by assumption

(a) in (ii) of Remark S3 and the following conditions

(b1) There exist constants M = M(n) > 0, γ = γ(n) ∈ (0, 1) and C1 > 0 such that

(2⌈nbn⌉)3/8M−1/2l−5/8
n ≥ C1ln

where ln = max(log(2⌈nbn⌉p/γ), 1).

Recall the quantity ΞM and ∆M,q defined in Remark S3. Then we have

Pn(u) = O
(
ηn +Θ

(√
nbn(b

4
n +

1

n
), p

)
+Θ

(
p

1−q∗
1+q∗ , p

))
with

ηn = (nbn)
−1/8M1/2l7/8n + γ +

(
(nbn)

1/8M−1/2l−3/8
n

)q/(1+q) (
p∆q

M,q

)1/(1+q)

+Ξ
1/3
M (1 ∨ log (p/ΞM))2/3 .
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By similar arguments as given in Remark S3, the sets Cn(u) and Cσ̂u
n (u) defined by

(S4.5) and (S4.6), respectively, define an (asymptotic) (1−α) simultaneous confidence

surface if ηn = o(1). For example, if δq(G, i) = O(i−1−α) for some α > 0, p = nβ for

some β > 0 and bn = n−γ for some 0 < γ < 1, then ηn = o(1) if β − (1− γ)qα/4 < 0,

which gives a lower bound on q.

S4.2 Finite sample properties

In this section we provide numerical results for the confidence bands for the regression

function m with fixed u or t derived in Algorithms S1 - S4. As in the main part of the

paper we consider simulated and real data.

For the simultaneous confidence band for a fixed t ∈ [0, 1] in (S4.1) and a fixed

u ∈ (0, 1) in (S4.2), the tuning parameters are chosen in a similar way as described in

Section S2.1. In particular for a fixed u ∈ (0, 1) use the bandwidth bn as the minmizer

of the loss function

MGCV (b) = max
1≤s≤p

∑⌊nu+nbn⌋
i=⌈nu−nbn⌉(m̂b(

i
n
, s
p
)−Xi,n(

s
p
))2

(1− tr(Qs(b, u))/(⌊nu+ nbn⌋ − ⌈nu− nbn⌉+ 1))2
. (S4.8)

and Qs(b, u) is the submatrix of Qs(b) defined in (S2.1) consisting of ⌈nu − nbn⌉ :

⌊nu + nbn⌋th rows and lines. The criterion (S4.8) is also motivated by the generalized

cross validation criterion introduced by Craven and Wahba (1978).
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S4.3 Simulated data

For simulated data, the regression functions and locally stationary functional time series

are stated in Section S2.2. We begin displaying typical 95% simultaneous confidence

bands obtained from one simulation run for model (a) with sample size n = 800. Fig-

ure S4 shows the simultaneous band of the type (S4.1) with constant width (Algorithm

S1) and variable width (Algorithm S2), while in Figure S5 we display the simultane-

ous confidence bands of the form (S4.2) (for fixed u) with constant width (Algorithm

S3) and variable width (Algorithm S4). We observe that in all cases there exist differ-

ences between the bands with constant and variable width, but they are not substantial.
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Figure S4: 95% simultaneous confidence bands of the form (S4.1) (fixed t = 0.5) for the regression

function in model (c) from n = 800 observations. Left panel: constant width (Algorithm S1); Right

panel: varying width (Algorithm S2).
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We next investigate the coverage probabilities of confidence bands constructed for

fixed t = 0.5 and u = 0.5 for sample sizes n = 500 and n = 800. All results presented

in the following discussion are based on 1000 simulation runs and B = 1000 bootstrap

replications. In all tables the left part shows the coverage probabilities of the bands

with constant width while the results in the right part correspond to the bands with

varying width.

In Table S3 we give some results for the confidence bands of the form (S4.1) (for

fixed t = 0.5) with constant and variable width (c.f. Algorithm S1 and Algorithm S2),

while we present in Table S4 the simulated coverage probabilities of the simultaneous

confidence bands of the form (S4.2), where u = 0.5 is fixed (c.f. Algorithm S3 and

Algorithm S4). We observe that the simulated coverage probabilities are close to their

nominal levels in all cases under consideration, which illustrates the validity of our

methods for finite sample sizes.
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Figure S5: 95% simultaneous confidence band of the form (S4.2) (fixed u = 0.5) for the regression

function in model (c) from n = 800 observations. Left panel: constant width (Algorithm S3); Right

panel: varying width (Algorithm S4).

Table S3: Simulated coverage probabilities of the simultaneous confidence band of the form (S4.1) for

fixed t = 0.5 calculated by Algorithm S1 (constant width) and S2 (varying width).

Constant Width Varying Width

Model (a) Model (b) Model (a) Model (b)

Level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 90.3% 95.0% 91.7% 96.0% 91.2% 95.6% 91.3% 96.2%

n=800 88.5% 95.4% 88.7% 94.4% 88.8% 94.5% 88.4% 94.0%

Model (c) Model (d) Model (c) Model (d)

Level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 91.7% 96.3% 91.4% 95.6% 91.5% 95.4% 90.4% 94.1%

n=800 89.1% 94.8% 89.8% 94.5% 87.5% 93.4% 88.7% 94.4%
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Table S4: Simulated coverage probabilities of the simultaneous confidence band of the form (S4.2) for

fixed u = 0.5 calculated by Algorithms S3 (constant width) and S4 (varying width).

Constant Width Varying Width

Model (a) Model (b) Model (a) Model (b)

Level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 87.0% 93.4% 88.4% 93.5% 86.9% 92.2% 88.7% 93.7%

n=800 88.7% 93.7% 88.4% 94.7% 89.4% 94.4% 88.9% 94.1%

Model (c) Model (d) Model (c) Model (d)

Level 90% 95% 90% 95% 90% 95% 90% 95%

n=500 86.6% 92.3% 90.2% 94.0% 90.2% 94.5% 89.5% 94.2%

n=800 89.6% 94.7% 87.8% 93.3% 88.9% 93.4% 89.8% 94.1%

S4.4 Real data

In this section we further study the well documented volatility smile for implied volatil-

ity of the European call option of SP500 data set considered in Section 4 of the main

article. In Figure S6 of we display 95% simultaneous confidence bands of the form

(S4.1) for fixed t = 0.5 (which corresponds to Moneyness=1.1) where the parameters

are chosen as bn = 0.12 and mn = 18. We observe that the implied volatility changes

with time (or precisely the time to maturity) when moneyness (or equivalently, the

strike price and underlying asset price) is specified. We also calculate confidence bands
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of the form (S4.2) for fixed u = 0.5, by Algorithm S3 (constant width) and Algorithm

S4 (varying width). The parameter selection procedure yields bn = 0.1 and mn = 32,

and the resulting simultaneous confidence bands of the form (S4.2) are presented in

Figure S7. We observe that both 95% simultaneous confidence bands indicate that

the implied volatility is a quadratic function of moneyness, which supports the well

documented phenomenon of ’volatility smile’. We observe that the differences between

the bands with constant and variable width are rather small.
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Figure S6: 95% simultaneous confidence bands of the form (S4.1) (fixed t = 0.5) for the data example

in Section 4. Left panel: constant width (Algorithm S1); Right panel: variable width (Algorithm S2).

S5 Examples of locally stationary error processes

In this section we present several examples for the error processes, which satisfy the

assumptions of the main article.
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Figure S7: 95% simultaneous confidence bands of the form (S4.2) (fixed u = 0.5) for the IV surface.

Left panel: constant width (Algorithm S3); Right panel: variable width (Algorithm S4).

Example S1. Let (Bj)j≥0 denote a basis of L2
(
[0, 1]2

)
and let (ηi,j)i≥0,j≥0 denote an

array of independent identically distributed centered random variables with variance

σ2. We define the error process

ϵi(u, v) =
∞∑
j=0

ηi,jBj(u, v),

assume that

sup
u∈[0,1]

∫ 1

0

E(ϵ2i (u, v))dv = σ2 sup
u∈[0,1]

∞∑
s=0

∫
B2

s (u, v)dv < ∞.

Next, consider the locally stationary MA(∞) functional linear model

εi,n(t) =
∞∑
j=0

∫ 1

0

aj(t, v)ϵi−j(
i
n
, v)dv , (S5.1)

where (aj)j≥0 is a sequence of square integrable functions aj : [0, 1]
2 → R satisfying

∞∑
j=0

sup
u,v∈[0,1]

|aj(u, v)| < ∞.
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Define Fi = (. . . , ηi−1, ηi), then we obtain from (S5.1) the representation of the form

εi,n(t) = G( i
n
, t,Fi), where

G(u, t,Fi) =
∞∑
j=0

∫ 1

0

aj(t, v)
∞∑
s=0

ηi−j,sBs(u, v)dv.

Further, assume that ∥η1,1∥q < ∞ for some q > 2, then by Burkholder’s and Cauchy’s

inequality the physical dependence measure defined in (3.2) satisfies

δq(G, i) = sup
u,t∈[0,1]

∥∥∥ ∞∑
s=0

∫ 1

0

ai(t, v)Bs(u, v)dv(η0,s − η′0,s)
∥∥∥
q

= O
(

sup
u,t∈[0,1]

( ∞∑
s=0

(∫ 1

0

ai(t, v)Bs(u, v)dv
)2)1/2)

= O
(

sup
t∈[0,1]

[ ∫ 1

0

a2i (t, v)dv
]1/2)

.

Therefore Assumption 3.2(2) will be satisfied if

sup
t∈[0,1]

[ ∫ 1

0

a2i (t, v)dv
]1/2

= O(χi) .

Similarly, it follows for q ≥ 2 that

∥G(u, t,F0)∥2q ≤ Mq
∞∑
j=0

∞∑
s=0

(

∫ 1

0

aj(t, v)Bs(u, v)dv)
2∥η1,1∥2q

≤ Mq
∞∑
j=0

∫ 1

0

a2j(t, v)dv
∞∑
s=0

∫ 1

0

B2
s (u, v)dv∥η1,1∥2q (S5.2)

for some sufficiently large constant M . Consequently, the filter G has finite moment of

order q, if

∞∑
j=0

∫ 1

0

a2j(t, v)dv < ∞ . (S5.3)
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Furthermore, if there exists positive constants M0 and α such that ∥η1,1∥q ≤ M0q
1/2−α,

Assumption 3.2(1) is also satisfied, because for any fixed t0, the sequence

tq0∥G(u, t,F0)∥qq
q!

= O
(Cqtq0q

q−αq

q!

)
= O

( 1√
2πq

(
Ct0e

qα
)q
)

is summable, where

C = sup
t∈[0,1],u∈[0,1]

M0

√√√√M

∞∑
j=0

∫ 1

0

a2j(t, v)dv
∞∑
s=0

∫ 1

0

B2
s (u, v)dv.

Moreover, if bs(u, v) :=
∂
∂u
Bs(u, v) exists for u ∈ (0, 1), v ∈ [0, 1], then it follows observ-

ing (S5.2) that Assumption 3.2(3) holds under (S5.3) and

sup
u∈[0,1]

∞∑
s=0

∫
b2s(u, v)dv < ∞.

Finally, if ∥η1,1∥q∗ < ∞ and

sup
t∈[0,1]

[ ∫ 1

0

( ∂

∂t
ai(t, v)

)2

dv
]1/2

= O(χi) ,

it can be shown by similar arguments as given above that Assumption 3.3 is satisfied.

Example S2. For a given orthonormal basis (ϕk(t))k≥1 of L
2([0, 1]) consider the func-

tional time series (G(u, t,Fi))i∈Z defined by

G(u, t,Fi) =
∞∑
k=1

Hk(u,Fi)ϕk(t) , (S5.4)

where for each k ∈ N and u ∈ [0, 1] the random coefficients (Hk(u,Fi))i∈Z are stationary

time series. A parsimonious choice of (S5.4) is to consider Fi = ∪∞
k=1Fi,k where {Fi,k}∞k=1
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are independent filtrations. In this case we obtain

G(u, t,Fi) =
∞∑
k=1

Hk(u,Fi,k)ϕk(t), (S5.5)

and the random coefficients Hk(u,Fi,k) are stochastically independent. A sufficient

condition for Assumption 3.2(2) in model (S5.5) is

sup
t∈[0,1]

∞∑
k=0

|ϕk(t)|δq(Hk, i) = O(χi) ,

where δq(Hk, i) := supu∈[0,1] ∥Hk(u,Fi,k)−Hk(u,F∗
i,k)∥q. The qth moment of the process

G in (S5.5) exists for q ≥ 2, if

∆q := sup
t∈[0,1],u∈[0,1]

∞∑
k=0

ϕ2
k(t)∥Hk(u,F0,k)∥2q < ∞.

If further ∆q = O(q1/2−α) for some α > 0, then similar arguments as given in Example

S1 show that Assumption 3.2(1) is satisfied as well. Finally, if the inequality

∞∑
k=0

ϕ2
k(t)

∥∥∥ ∂

∂u
Hk(u,F0,k)

∥∥∥2

q
< ∞

holds uniformly with respect to t, u ∈ [0, 1], Assumption 3.2(3) is also satisfied.

On the other hand, in model (S5.4) we have Hk(u,Fi) =
∫ 1

0
G(u, t,Fi)ϕk(t)dt, and

consequently the magnitude of ∥Hk∥q and δq(Hk, i) can be determined by Assumption

3.2. For example, if the basis of L2([0, 1]) is given by ϕk(t) = cos(kπt) (k = 0, 1, . . .)

and the inequality

∥G(u, 0,F1)∥q +
∥∥∥ ∂

∂t
G(u, 0,F1)

∥∥∥
q
+ sup

t∈[0,1]

∥∥∥ ∂2

∂t2
G(u, t,F1)

∥∥∥
q
< ∞,
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holds for u ∈ [0, 1], it follows by similar arguments as given in Zhou and Dette (2020)

that

sup
u∈[0,1]

∥∥Hk(u,Fk)
∥∥
q
= O(k−2), δq(Hk, i) = O

(
min(k−2, δG(i, q))

)
. (S5.6)

Similarly, assume that the basis of L2([0, 1]) is given by the Legendre polynomials and

that

sup
u∈[0,1]

max
s=1,2,3

∥∥∥∫ 1

−1

| ∂s

∂ts
G(u, t,F0)|√
1− x2

dx
∥∥∥
q
< ∞.

If additionally for every ε > 0, there exists a constant δ > 0 such that∑
s=1,2

∑
k

∥∥∥ ∂s

∂ts
G (u, xk,Fi)−

∂s

∂ts
G (u, xk−1,Fi))

∥∥∥
q
< ε

for any finite sequence of pairwise disjoint sub-intervals (xk−1, xk) of the interval (0, 1)

such that
∑

k (xk − xk−1) < δ, it follows from Theorem 2.1 of Wang and Xiang (2012)

that (S5.6) holds as well.

Finally, if

sup
t∈[0,1]

∞∑
k=0

|ϕ′
k(t)|δq∗(Hk, i) = O(χi),

it can be shown by similar arguments as given above that Assumption 3.3 is also

satisfied.

S6 Proofs of Theorems

In the proofs, for two real sequence an and bn we write an ≲ bn, if there exists a universal

positive constant M such that an ≤ Mbn. Let 1(·) be the usual indicator function. For

36



S6. PROOFS OF THEOREMS

simplicity let K̃(u) = 1
nbn

∑n
i=1K

( i/n−u
bn

)
.

S6.1 Proof of Theorem 1

For p ∈ N define by tv =
v
p
, (v = 0, . . . , p) an equidistant partition of the interval [0, 1]

and let M be a sufficiently large generic constant which may vary from line to line.

Define

Wn(u, t) =
√
nbn

(
m̂(u, t)− E(m̂(u, t))

)
=

1
√
nbnK̃(u)

n∑
i=1

G( i
n
, t,Fi)K

( i
n
− u

bn

)
,

(S6.1)

we have by triangle inequality

∣∣∣ sup
bn≤u≤1−bn,0≤t≤1

|Wn(u, t)| − max
⌈nbn⌉≤l1≤n−⌈nbn⌉

1≤s≤p

|Wn(
l1
n
, s
p
)|
∣∣∣ ≤ W̃n ,

where

W̃n = max
⌈nbn⌉≤l1≤n−⌈nbn⌉,1≤s≤p,

|u− l1
n
|≤1/n,|t− s

p
|≤1/p,u,t∈[0,1]

|Wn(u, t)−Wn(
l1
n
, s
p
)|.

By Assumption 3.3, Burkholder’s inequality and similar arguments as given in the proof

of Proposition 1.1 of Dette and Wu (2022) we obtain

sup
u,t∈[0,1]

∥∥∥ ∂

∂u
Wn(u, t)

∥∥∥
q∗

≤ M

bn
, sup

u,t∈[0,1]

∥∥∥ ∂

∂t
Wn(u, t)

∥∥∥
q∗

≤ M,

sup
u,t∈[0,1]

∥∥∥ ∂2

∂u∂t
Wn(u, t)

∥∥∥
q∗

≤ M

bn
.

(S6.2)
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Note that we have for τs > 0, s = 1, 2 and x, y ∈ [0, 1),∥∥∥∥∥∥ sup
0≤t1≤τ1
0≤t2≤τ2

|Wn(t1 + x, t2 + y)−Wn(x, y)|

∥∥∥∥∥∥
q∗

≤
∫ τ1

0

∥∥∥∥ ∂

∂u
Wn(x+ u, y)

∥∥∥∥
q∗
du

+

∫ τ2

0

∥∥∥∥ ∂

∂t
Wn(x, y + v)

∥∥∥∥
q∗
dv +

∫ τ1

0

∫ τ2

0

∥∥∥∥ ∂2

∂x∂t
Wn(x+ u, y + v)

∥∥∥∥
q∗
dudv.

Therefore, (S6.2) and similar arguments as in the proof of Proposition B.2 of Dette

et al. (2019) show

∥W̃n∥q∗ = O((np)1/q
∗
((nbn)

−1 + 1/p)). (S6.3)

Observing (S7.7) and (S7.8). Lemma S1 and (S6.3) it therefore follows that

Pn ≲ (nbn)
−(1−11ι)/8 +Θ

(√
nbn

(
b4n +

1

n

)
, np

)
+Θ(δ, np) + P(W̃n > δ)

≲ (nbn)
−(1−11ι)/8 +Θ

(√
nbn

(
b4n +

1

n

)
, np

)
+Θ(δ, np)

+
(
(np)1/q

∗
((nbn)

−1 + 1/p)/δ
)q∗

.

Solving δ =
(
(np)1/q

∗
((nbn)

−1 + 1/p)/δ
)q∗

we get δ =
(
(np)1/q

∗
((nbn)

−1+1/p)
) q∗

q∗+1 and

the assertion of the theorem follows. □

S6.2 Proof of Theorem 2

Proof. In the following discussion we use the following notation. For any vector yn

indexed by n, let yn,r be its rth component. For example, Ŝrmn,j is the jth entry of the

vector Ŝrmn .
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Let Tk denote the statistic generated by (2.15) in one bootstrap iteration of Algo-

rithm 1 and define for integers a, b the quantities

T ⋄
ap+b =

2⌈nbn⌉−m′
n∑

j=1

Ŝjm′
n,(a−1)p+bRk+j−1, a = 1, ...n− 2⌈nbn⌉+ 1, 1 ≤ b ≤ p

T ⋄ := ((T ⋄
1 )

⊤, . . . , (T ⋄
(n−2⌈nbn⌉+1)p)

⊤)⊤ =
(
T1

⊤, . . . , Tn−2⌈nbn⌉+1
⊤)⊤

T = |T ⋄|∞ = max
1≤k≤n−2⌈nbn⌉+1

|Tk|∞

It suffices to show that the following inequality holds

sup
x∈R

∣∣∣P(|T ⋄/
√

2⌈nbn⌉ −m′
n|∞ ≤ x|Fn)− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3 +Θ
((√

mn log np
( 1√

nbn
+ b3n

)
(np)

1
q

)q/(q+1)

, np
))

.(S6.4)

If this estimate has been established, Theorem 2 follows from Theorem 1, which shows

that the probabilities P
(
maxbn≤u≤1−bn,0≤t≤1

√
nbn|∆̂(u, t)| ≤ x

)
can be approximated

by the probabilities

P
( 1√

nbn
|
2⌈nbn⌉−1∑

i=1

Ỹi|∞ ≤ x
)

uniformly with respect to x ∈ R.

For a proof of (S6.4) we assume without loss of generality that mn is even so that

m′
n = mn. For convenience, let

∑b
i=a Zi = 0 if the indices a and b satisfy a > b. Given
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the data, it follows for the conditional covariance

((2⌈nbn⌉ − 1)−mn + 1)σT ⋄

(k1−1)p+j1,(k2−1)p+j2
:= E(T ⋄

(k1−1)p+j1
T ⋄
(k2−1)p+j2

|Fn)(S6.5)

= E
( 2⌈nbn⌉−mn∑

r=1

Ŝrmn,(k1−1)p+j1Rk1+r−1

2⌈nbn⌉−mn∑
r=1

Ŝrmn,(k2−1)p+j2Rk2+r−1

∣∣∣Fn

)
=

2⌈nbn⌉−mn−(k2−k1)∑
r=1

Ŝ(r+k2−k1)mn,(k1−1)p+j1Ŝrmn,(k2−1)p+j2 .

where 1 ≤ k1 ≤ k2 ≤ (n − 2⌈nbn⌉ + 1), 1 ≤ j1, j2 ≤ p. Here, without generality, we

assume k1 ≤ k2. Define T̃ ⋄, and S̃jmn in the same way as T ⋄, and Ŝjmn in (2.15) and

(2.14), respectively, where the residuals ˆ̃Zi defined in (2.12) and used in step (a) of

Algorithm 1 have been replaced by quantities Z̃i defined in (2.7).Then we obtain by

similar arguments

((2⌈nbn⌉ − 1)−mn + 1)σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
:= E(T̃ ⋄

(k1−1)p+j1
T̃ ⋄
(k2−1)p+j2

|Fn)

=

⌈2nbn⌉−mn−(k2−k1)∑
r=1

S̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 .(S6.6)

Recall the definition of the random variable Ỹj in Proposition S1 and denote by Z̃j,i,

Ỹj,i the ith component of the vectors Z̃j and Ỹj, respectively (1 ≤ i ≤ (n−2⌈nbn⌉+1)p,

1 ≤ j ≤ 2⌈nbn⌉ − 1). Then we obtain

σỸ
(k1−1)p+j1,(k2−1)p+j2

:= E
( 1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i1=1

Ỹi1,(k1−1)p+j1

2⌈nbn⌉−1∑
i2=1

Ỹi2,(k2−1)p+j2

)
=

E(
∑2⌈nbn⌉−1

i1=1 Z̃i1,(k1−1)p+j1

∑2⌈nbn⌉−1
i2=1 Z̃i2,(k2−1)p+j2)

2⌈nbn⌉ − 1

=
E(

∑2⌈nbn⌉−1
i1=1 Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

∑2⌈nbn⌉−1
i2=1 Zi2+(k2−1),⌈nbn⌉+(k2−1),j2)

2⌈nbn⌉ − 1
, (S6.7)
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where Zi1+(k1−1),⌈nbn⌉,j1 is the j1th entry of the p−dimensional random vector Zi1+(k1−1),⌈nbn⌉

and Zi2+(k2−1),⌈nbn⌉,j2 is defined similarly. We will show at the end of this section that

∥∥∥ max
k1,k2,j1,j2

|σỸ
(k1−1)p+j1,(k2−1)p+j2

− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O(ϑn). (S6.8)

If (S6.8) holds, it follows from Lemma S3 that there exists a constant η0 > 0 such that

P
(

min
1≤k≤(n−2⌈nbn⌉+1),

1≤j≤p

σT̃ ⋄

(k−1)p+j,(k−1)p+j ≥ η0

)
≥ 1−O(ϑq/2

n ).

Then, by Theorem 2 of Chernozhukov et al. (2015), we have

sup
x∈R

∣∣∣P( |T̃ ⋄|∞√
2⌈nbn⌉ −mn

≤ x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= Op(ϑ
1/3
n {1 ∨ log(

np

ϑn

)}2/3). (S6.9)

Since conditional on Fn,
(
T̃ ⋄−T ⋄) is an (n−2⌈nbn⌉+1)p dimensional Gaussian random

vector we obtain by the (conditional) Jensen inequality and conditional inequality for

the concentration of the maximum of a Gaussian process (see Chapter 5 in Appendix

A of Chatterjee, 2014, where a similar result has been derived in Lemma A.1) that

E(|T̃ ⋄ − T ⋄|q∞|Fn) ≤ M |
√

log np
(n−2⌈nbn⌉+1)p

max
r=1

( 2⌈nbn⌉−m′
n∑

j=1

(Ŝjm′
n,r − Sjm′

n,r)
2
)1/2

|q(S6.10)

for some large constant M almost surely. Observing that

max
1≤i≤n

|Zi|l ≤
∑

1≤i≤n

|Zi|l for any l > 0, n ∈ N (S6.11)

and using a similar argument as given in the proof of Proposition 1.1 in Dette and Wu
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(2022) and the fact that Kl and Kr are both three order kernels, we have

1√
2⌈nbn⌉ −mn

∥∥∥ (n−2⌈nbn⌉+1)p
max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝjm′
n,r − Sjm′

n,r)
2
)1/2∥∥∥

q
= O

(√
mn

( 1√
nbn

+ b3n

)
(np)

1
q

)
,

and combining this result with the (conditional version) of Lemma S1 and (S6.10) yields

sup
x∈R

∣∣∣P( |T ⋄|∞√
2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

≤ sup
x∈R

∣∣∣P( |T̃ ⋄|∞√
2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

+P
( |T̃ ⋄ − T ⋄|∞√

2⌈nbn⌉ −mn

> δ
∣∣∣Fn

)
+O

(
Θ(δ, np)

)
≤ sup

x∈R
|P
( |T̃ ⋄|∞√

2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

> x
)∣∣∣

+Op

(
δ−q

(√
mn log np

( 1√
nbn

+ b3n
)
(np)

1
q
)q)

+O
(
Θ(δ, np)

)
, (S6.12)

where we have used the Markov’s inequality. Taking δ =
(√

mn log np(
1√
nbn

+b3n)(np)
1
q
)q/(q+1)

in (S6.12), and combining this estimate with (S6.9) yields (S6.4) completes the proof.

Proof of (S6.8). To simplify the notation, write

Gj,i,k = G( i+k−1
n

, j/p,Fi+k−1), Gj,i,k,u = G( i+k−1+u
n

, j/p,Fu)

Without loss of generality, we consider the case k1 ≤ k2. We calculate σỸ
(k1−1)p+j1,(k2−1)p+j2

observing the representation

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1 = Gj1,i1,k1K
(

i1−⌈nbn⌉
nbn

)
.
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By Lemma S2 it follows that

E
[
Zi1+(k1−1),⌈nbn⌉+(k1−1),j1Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

]
= O(χ|i1−i2+k1−k2|). (S6.13)

uniformly for 1 ≤ i1, i2 ≤ 2⌈nbn⌉ − 1, 1 ≤ j1, j2 ≤ p, 1 ≤ k1, k2 ≤ n − 2⌈nbn⌉ + 1.

We first show that (S6.8) holds whenever k2 − k1 > 2⌈nbn⌉ − mn. On the one hand,

observing and (S6.5) and (S6.6) that if 2⌈nbn⌉ −mn − (k2 − k1) < 0 then

σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
= 0 a.s. (S6.14)

Moreover, by (S6.7) and (S6.13), straightforward calculations show that

σỸ
(k1−1)p+j1,(k2−1)p+j2

=
1

2⌈nbn⌉ − 1
O
( 2⌈nbn⌉−1∑

i1=1

2⌈nbn⌉−1∑
i2=1

χ|i1−i2+k1−k2|
)
= O

(mn

nbn

)
.(S6.15)

Combining (S6.14), (S6.15) and by applying similar argument to k1 ≥ k2, we obtain∥∥∥ max
k1,k2,j1,j2

|k2−k1|>2⌈nbn⌉−mn

|σỸ
(k1−1)p+j1,(k2−1)p+j2

− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O
(mn

nbn

)
.(S6.16)

Now consider the case that k2 − k1 ≤ 2⌈nbn⌉ −mn. Without losing generality we

consider k1 ≤ k2. Again by (S6.7)

E
( k2−k1∑

i1=1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−1∑
i2=1

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)

= O
( k2−k1∑

i1=1

2⌈nbn⌉−1∑
i2=1

χ|i2−i1+k2−k1|
)
= O

( k2−k1∑
i1=1

2⌈nbn⌉−1∑
i2=1

χi2−i1+k2−k1
)
= O(1),

E
( 2⌈nbn⌉−1∑

i1=1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)

= O
( 2⌈nbn⌉−1∑

i1=1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

χ|i2−i1+k2−k1|
)
= O

( 2⌈nbn⌉−1∑
i1=1

2⌈nbn⌉−1∑
i2=2⌈nbn⌉−(k2−k1)

χi2−i1+k2−k1
)
= O(1).
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Let a = ⌊M log n⌋ for a sufficiently large constant M . Using (S6.7), it follows (consid-

ering the lags up to a) that

σỸ
(k1−1)p+j1,(k2−1)p+j2

= 1
2⌈nbn⌉−1

E
( 2⌈nbn⌉−1∑

i1=k2−k1+1

Zi1+(k1−1),⌈nbn⌉+(k1−1),j1

2⌈nbn⌉−(k2−k1)−1∑
i2=1

Zi2+(k2−1),⌈nbn⌉+(k2−1),j2

)
+O((nbn)

−1)

= 1
2⌈nbn⌉−1

E
( 2⌈nbn⌉−(k2−k1)−1∑

i1,i2=1

Gj1,i1,k2K( i1+k2−k1−⌈nbn⌉
nbn

)Gj2,i2,k2K( i2−⌈nbn⌉
nbn

)
)
+O((nbn)

−1)

= A+B +O(nbnχ
a + (nbn)

−1), (S6.17)

where the terms A and B are defined by

A := 1
(2⌈nbn⌉−1)

2⌈nbn⌉−(k2−k1)−1∑
i=1

Ai, (S6.18)

Ai = E(Gj1,i,k2,0Gj2,i,k2,0)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

)

B = 1
(2⌈nbn⌉−1)

a∑
u=1

(B1,u +B2,u),

B1,u =

2⌈nbn⌉−(k2−k1)−1−u∑
i=1

B1,u,i, (S6.19)

B2,u =:

2⌈nbn⌉−(k2−k1)−1−u∑
i=1

B2,u,i. (S6.20)

and

B1,u,i = E(Gj1,i,k2,uGj1,i,k2,0)K( i+u+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

))

B2,u,i = E(Gj1,i,k2,0Gj2,i,k2,u)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

)
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Therefore, by (S6.17), we have that

σỸ
(k1−1)p+j1,(k2−1)p+j2

=
1

2⌈nbn⌉ − 1

( 2⌈nbn⌉−1−(k2−k1)∑
i=1

Ai +
a∑

u=1

2⌈nbn⌉−1−(k2−k1)−u∑
i=1

(B1,u,i +B2,u,i)
)

+O(nbnχ
a + (nbn)

−1).

(S6.21)

Now for the term in (S6.6) we have

mnS̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 =
( r+k2−k1+mn/2−1∑

i=r+k2−k1

−
r+k2−k1+mn∑

i=r+k2−k1+mn/2

)
Zi+k1−1,⌈nbn⌉+k1−1,j1

×
( r+mn/2−1∑

i=r

−
r+mn∑

i=r+mn/2

)
Zi+k2−1,⌈nbn⌉+k2−1,j2

=
( r+mn/2−1∑

i=r

−
r+mn∑

i=r+mn/2

)
Gj1,i,k2K( i+k2−k1−⌈nbn⌉

nbn
)×

( r+mn/2−1∑
i=r

−
r+mn∑

i=r+mn/2

)
Gj2,i,k2K( i−⌈nbn⌉

nbn
).

By Lemma S2, it follows that uniformly for |k2 − k1| ≤ 2⌈nbn⌉ −mn and 1 ≤ r ≤

⌈2nbn⌉ −mn − (k2 − k1),

mnES̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2

=
r+mn∑
i=r

E(Gj1,i,k2Gj2,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

)

+
a∑

u=1

( r+mn−u∑
i=r

(
E(Gj1,i,(k2+u)Gj2,i,k2)K( i+u+k2−k1−⌈nbn⌉

nbn
)K( i−⌈nbn⌉

nbn
)

+ E(Gj2,i,(k2+u)Gj1,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

)
))

+O(mnχ
a + a2),(S6.22)

where the the term mnχ
a corresponds to the error of omitting terms in the sum with a

large index a, and the term a2 summarizes the error due to ignoring different signs in
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the product S̃(r+k2−k1)mn,(k1−1)p+j1S̃rmn,(k2−1)p+j2 (for each index u, we omit 2u). Fur-

thermore, by Assumption 2.1 and 3.2(3) it follows that uniformaly for |u| ≤ a

1

mn

r+mn∑
i=r

E(Gj1,i,k2Gj2,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

) = Ar +O(
mn

nbn
), (S6.23)

1

mn

r+mn−u∑
i=r

E(Gj1,i,(k2+u)Gj2,i,k2)K( i+u+k2−k1−⌈nbn⌉
nbn

)K( i−⌈nbn⌉
nbn

) = B1,u,r +O(
mn

nbn
+

a

mn

),

(S6.24)

1

mn

r+mn−u∑
i=r

E(Gj2,i,(k2+u)Gj1,i,k2)K( i+k2−k1−⌈nbn⌉
nbn

)K( i+u−⌈nbn⌉
nbn

) = B2,u,r +O(
mn

nbn
+

a

mn

)
)
,

(S6.25)

where terms Ar, B1,u,r and B2,u,r are defined in equations (S6.18), (S6.19) and (S6.20),

respectively. Notice that (S6.6) and expressions (S6.22), (S6.23), (S6.24) and (S6.25)

yield that

EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
=

1

2⌈nbn⌉ −mn

{ 2⌈nbn⌉−mn−(k2−k1)∑
r=1

(Ar +O(
mn

nbn
))

+
a∑

u=1

2⌈nbn⌉−mn−(k2−k1)∑
r=1

(B1,u,r +B2,u,r +O(
mn

nbn
+

a

mn

))
}
+O

(
χa +

a2

mn

)
.(S6.26)

Lemma S2 implies

max
1≤r≤2⌈nbn⌉−(k2−k1)−1,

1≤k1≤k2≤(n−2⌈nbn⌉+1),s=1,2

Bs,u,r = O(χu),

which yields in combination with equations (S6.21), (S6.26) with a = M log n for a
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sufficiently large constant M , and a similar argument applied to the case that k1 ≥ k2,

max
1≤k1,k2≤(n−2⌈nbn⌉+1)

|k2−k1|≤2⌈nbn⌉−mn,1≤j1,j2≤p

∣∣∣EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
− σỸ

(k1−1)p+j1,(k2−1)p+j2

∣∣∣ = O
( log2 n

mn

+
mn log n

nbn

)
.

(S6.27)

Furthermore, using (S6.11), the Cauchy-Schwartz inequality, a similar argument as

given in the proof of Lemma 1 of Zhou (2013) and Assumption 3.2(2) yield that

∥∥∥ max
1≤k1≤k2≤(n−2⌈nbn⌉+1),

1≤j1,j2≤p

|EσT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2
|
∥∥∥
q/2

= O
(√mn

nbn
(np)4/q

)
.

(S6.28)

Combining (S6.27) and (S6.28), we obtain

∥∥∥ max
k1,k2,j1,j2

|k2−k1|≤2⌈nbn⌉−mn

|σỸ
(k1−1)p+j1,(k2−1)p+j2

− σT̃ ⋄

(k1−1)p+j1,(k2−1)p+j2

∥∥∥
q/2

= O
( log2 n

mn

+
mn log n

nbn
+

√
mn

nbn
(np)4/q

)
. (S6.29)

Therefore the estimate (S6.8) follows combining (S6.16) and (S6.29). ♢

S6.3 Proof of Theorem 3

Similarly to (S7.1) and (S7.2) in the proof of Proposition S1 we obtain

sup
u∈[bn,1−bn]

t∈[0,1]

1

σ(u, t)

∣∣∣E(m̂(u, t))−m(u, t)
∣∣∣ ≤ M

( 1
n
+ b4n

)
(S6.30)

for some constantM , where we have used the fact that, by Assumption 2.1,
∫
K(v)v2dv =

0. Moreover, by a similar but simpler argument as given in the proof of equation (B.7)
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in Lemma B.3 of Dette et al. (2019) we have for the quantity

(m̂(u, t)− E(m̂(u, t)))

σ(u, t)
=

1

nbnK̃(u)

n∑
i=1

G( i
n
, t,Fi)

σ(u, t)
K
( i

n
− u

bn

)
:= Ψσ(u, t)

the estimate ∥∥∥ sup
u∈[bn,1−bn],t∈[0,1]

√
nbn|Φσ(u, t)−Ψσ(u, t)|

∥∥∥
q
= O(b1−2/q

n ), (S6.31)

where

Φσ(u, t) =
1

nbnK̃(u)

n∑
i=1

G( i
n
, t,Fi)

σ( i
n
, t)

K(
i
n
− u

bn
).

Following the proof of Theorem 1 we find that

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn

∣∣Φσ(u, t)
∣∣ ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
((

(np)1/q
∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
))

.

Combining this result with Lemma S1 (with X = maxbn≤u≤1−bn
0≤t≤1

√
nbn

∣∣Φσ(u, t)
∣∣,

Y = 1√
nbn

∑2⌈nbn⌉−1
i=1 Ỹ σ

i , X
′ = maxbn≤u≤1−bn,0≤t≤1

√
nbn

∣∣Ψσ(u, t)
∣∣ ) and (S6.31) gives

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn

∣∣Ψσ(u, t)
∣∣ ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ(
(
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np)

+P
(

sup
u∈[bn,1−bn],t∈[0,1]

√
nbn|Φσ(u, t)−Ψσ(u, t)| > δ

)
+Θ(δ, np)

)
= O

(
(nbn)

−(1−11ι)/8 +Θ(
(
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np) + Θ(δ, np) +
bq−2
n

δq

)
.(S6.32)

Taking δ = b
q−2
q+1
n we obtain for the last two terms in (S6.32)

Θ(δ, np) +
bq−2
n

δq
= O

(
Θ(b

q−2
q+1
n , np)

)
.
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On the other hand, (S6.30), (S6.32) and Lemma S1 (withX = maxbn≤u≤1−bn,0≤t≤1

√
nbn

∣∣Ψσ(u, t)
∣∣,

Y = 1√
nbn

∑2⌈nbn⌉−1
i=1 Ỹ σ

i , X
′ = maxbn≤u≤1−bn,0≤t≤1

√
nbn

∣∣∆̂σ(u, t)
∣∣ and δ = M

√
nbn(

1
n
+

b4n) with a sufficiently large constant M) yield

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn

∣∣∆̂σ(u, t)
∣∣ ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x)
∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
((
(np)1/q

∗
((nbn)

−1 + 1/p)
) q∗

q∗+1 , np
)

+Θ
(√

nbn(b
4
n +

1

n
), np

)
+Θ(b

q−2
q+1
n , np)

)
.

□

S6.4 Proof of Theorem 4

Proof. Recall that gn = w5/2

n
τ
−1/q′
n +w1/2n−1/2τ

−1/2−2/q′
n +w−1 and let ηn be a sequence

of positive numbers such that ηn → ∞ and (gn + τn)ηn → 0 (note that gn + τn is the

convergence rate of the estimator σ̂2 in Proposition 1). Define the Fn measurable event

An =
{

sup
u∈[0,1],t∈[0,1]

|σ̂2(u, t)− σ2(u, t)| > (gn + τn)ηn

}
,

then Proposition 1 and Markov’s inequality yield

P(An) = O
(
η−q′

n

)
. (S6.33)

Then by Theorem 3, Proposition 1 and Lemma S1 we have

Pσ̂ = sup
x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn|∆̂σ̂(u,t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣ = op(1).

(S6.34)
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Let T σ̂
k denote the statistic T

σ̂,(r)
k in step (d) of Algorithm 2 generated by one bootstrap

iteration and define for integers a, b the quantities

T σ̂,⋄
ap+b =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ̂
jm′

n,(a−1)p+bRk+j−1, a = 1, ...n− 2⌈nbn⌉+ 1, 1 ≤ b ≤ p

T σ̂,⋄ := ((T σ̂,⋄
1 )⊤, . . . , (T σ̂,⋄

(n−2⌈nbn⌉+1)p)
⊤)⊤ =

(
T σ̂
1

⊤
, . . . , T σ̂

n−2⌈nbn⌉+1

⊤)⊤
and therefore

T σ̂ = |T σ̂,⋄|∞ = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂
k |∞

We recall the notation (4.2), introduce the (n−2⌈nbn⌉+1)p-dimensional random vectors

Ŝσ,∗
jmn

=
∑j+mn−1

r=j Z̃σ
r , and

Ŝσ
jm′

n
=

1√
m′

n

Ŝσ,∗
j,⌊mn/2⌋ −

1√
m′

n

Ŝσ,∗
j+⌊mn/2⌋+1,⌊mn/2⌋ ,

and consider

T σ
k =

2⌈nbn⌉−m′
n∑

j=1

Ŝσ
jm′

n,[(k−1)p+1:kp]Rk+j−1 , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ,⋄ := ((T σ,⋄
1 )⊤, . . . , (T σ,⋄

(n−2⌈nbn⌉+1)p)
⊤)⊤ =

(
T σ
1
⊤, . . . , T σ

n−2⌈nbn⌉+1
⊤)⊤ ,

where T σ,⋄ is obtained from T σ̂,⋄ by replacing σ̂ by σ. Similar arguments as given in

the proof of Theorem 2 show, that it is sufficient to show the estimate

sup
x∈R

∣∣∣P(|T σ̂,⋄/
√
2⌈nbn⌉ −m′

n|∞ ≤ x|Fn)− P
( 1√

2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3 +Θ
(√

mn log np(
1√
nbn

+ b3n)(np)
1
q
)q/(q+1)

, np
)

+Θ
((√

mn log np((gn + τn)ηn)(np)
1
q
)q/(q+1)

, np
)
+ η−q′

n

)
(S6.35)
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where ϑn is defined in Theorem 2. The assertion of Theorem 4 then follows from

(S6.34).

Now we prove (S6.35). By the first step in the proof of Theorem 2 it follows that

sup
x∈R

∣∣∣P(|T σ,⋄/
√

2⌈nbn⌉ −m′
n|∞ ≤ x|Fn)− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= Op

(
ϑ1/3
n {1 ∨ log(

np

ϑn

)}2/3

+Θ
((√

mn log np(
1√
nbn

+ b3n)(np)
1
q
)q/(q+1)

, np
))

. (S6.36)

By similar arguments as given in the proof of Theorem 2 we have

E
(
|T σ,⋄ − T σ̂,⋄|q∞1(An)

∣∣Fn

)
≤ M

∣∣∣√log np
(n−2⌈nbn⌉+1)p

max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝσ
jm′

n,r
− Ŝσ̂

jm′
n,r

)21(An)
)1/2∣∣∣q

(S6.37)

for some large constant M almost surely, and the triangle inequality, a similar

argument as given in the proof of Proposition 1.1 in Dette and Wu (2022) and (S6.11)

yield

1√
2⌈nbn⌉ −mn

∥∥∥ (n−2⌈nbn⌉+1)p
max
r=1

( ⌈2nbn⌉−m′
n∑

j=1

(Ŝσ
jm′

n,r
− Ŝσ̂

jm′
n,r

)21(A)
)1/2∥∥∥

q
= O

(√
mn(gn + τn)ηn(np)

1
q
)
.
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This together with the (conditional version) of Lemma S1 and (S6.37) shows that

sup
x∈R

∣∣∣P( |T σ̂,⋄|∞√
2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x
)∣∣∣

≤ sup
x∈R

∣∣∣P( |T σ,⋄|∞√
2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x)
∣∣∣

+P
( |T ⋄,σ − T ⋄,σ̂|∞√

2⌈nbn⌉ −mn

> δ
∣∣∣Fn

)
+O

(
Θ(δ, np)

)
≤ sup

x∈R

∣∣∣P( |T σ,⋄|∞√
2⌈nbn⌉ −mn

> x
∣∣∣Fn

)
− P

( 1√
2nbn

∣∣∣ 2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

> x
)∣∣∣

+Op

(
δ−q

(√
mn log np((gn + τn)ηn)(np)

1
q
)q)

+O
(
Θ(δ, np) + η−q′

n

)
,

where we used Markov’s inequality and (S6.33). Taking

δ =
(√

mn log np((gn + τn)ηn)(np)
1
q
)q/(q+1)

and observing (S6.36) yields (S6.35) and proves the assertion. ♢

S7 Proposition S1 and Proof of Proposition 1

S7.1 Proposition S1

The proof of Theorems 1 is based on the following auxiliary result providing a Gaussian

approximation for the maximum deviation of the quantity
√
nbn|∆̂(u, tv)| over the grid

of {1/n, ..., n/n} × {t1, ..., tp} where tv =
v
p
(v = 1, . . . , p).

Proposition S1. Assume that n1+ab9n = o(1), na−1b−1
n = o(1) for some 0 < a < 4/5,

and let Assumptions 3.1, 3.2 and 2.1 be satisfied.
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(i) For a fixed u ∈ (0, 1), let Y1(u), . . . , Yn(u) denote a sequence of centered p-dimensional

Gaussian vectors such that Yi(u) has the same auto-covariance structure of the vec-

tor Zi(u) defined in (2.5). If p = O(exp(nι)) for some 0 ≤ ι < 1/11, then

Pp,n(u) := sup
x∈R

∣∣∣P( max
1≤v≤p

√
nbn|∆̂(u, tv)| ≤ x

)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

n

)
, p
))

(ii) Let Ỹ1, . . . , Ỹ2⌈nbn⌉−1 denote independent (n − 2⌈nbn⌉ + 1)p-dimensional centered

Gaussian vectors with the same auto-covariance structure as the vector Z̃i in (2.7).

If np = O(exp(nι)) for some 0 ≤ ι < 1/11, then

Pp,n := sup
x∈R

∣∣∣P( max
⌈nbn⌉≤l≤n−⌈nbn⌉,1≤v≤p

√
nbn|∆̂( l

n
, tv)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

n

)
, np

))
Proof. Using Assumptions 3.1, 2.1 and a Taylor expansion we obtain

sup
u∈[bn,1−bn]

t∈[0,1]

∣∣∣E(m̂(u, t))−m(u, t)− b2n

∫
K(v)v2dv

∂2

∂u2
m(u, t)/2

∣∣∣ ≤ M
( 1
n
+ b4n

)
(S7.1)

for some constant M . Notice that by assumption
∫
K(v)v2dv = 0. Notice that for

u ∈ [bn, 1− bn],

m̂(u, t)− E(m̂(u, t)) =
1

nbnK̃(u)

n∑
i=1

G( i
n
, t,Fi)K

( i
n
− u

bn

)
(S7.2)

=
1

nbnK̃(u)

⌊n(u+bn)⌋∑
i=⌈n(u−bn)⌉

G( i
n
, t,Fi)K

( i
n
− u

bn

)
.
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Therefore, observing the definition of Zi(u) in (2.5) we have (notice that Zi(u) is a

vector of zero if | i
n
− u| ≥ bn)

max
1≤v≤p

√
nbn|m̂(u, tv)− E(m̂(u, tv))|K̃(u) =

∣∣∣ 1√
nbn

⌊n(u+bn)⌋∑
i=⌈n(u−bn)⌉

Zi(u)
∣∣∣
∞
.

We will now apply Corollary 2.2 of Zhang and Cheng (2018) and check its assumptions

first. By Assumption 3.2(2) and the fact that the kernel is bounded it follows that

max
1≤l≤p

sup
i

∥Zi,l(u)− Z
(i−j)
i,l (u)∥2 = O(χj),

where for any (measurable function) g = g(Fi), we define for j ≤ i the function g(j) by

g(j) = g(F (j)
i ), where F (j)

i = (. . . , ηj−1, η
′
j, ηj+1, . . . , ηi) and {η′i}i∈Z is an independent

copy of {ηi}i∈Z (recall that Fi = (η−∞, ..., ηi)). Lemma S3 in Section S8 shows that

condition (9) in the paper of Zhang and Cheng (2018) is satisfied. Moreover Assumption

3.2(1) implies condition (13) in this reference. Observing that for random vector v =

(v1, ..., vp)
⊤ and all x ∈ R

{|v|∞ ≤ x} =
{
max(v1, ..., vp,−v1, ...,−vp) ≤ x

}
,

we can use Corollary 2.2 of Zhang and Cheng (2018)

sup
x∈R

∣∣∣P(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)
− P

( 1√
nbn

∣∣∣ n∑
i=1

Zi(u)
∣∣∣
∞

≤ x
)∣∣∣ = O((nbn)

−(1−11ι′)/8).

(S7.3)

Therefore by (S7.1), (S7.3) and Lemma S1, and the fact that K̃(u) = 1 + O( 1
nbn

) for
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bn ≤ u ≤ 1− bn

sup
x∈R

∣∣∣P( max
1≤v≤p

√
nbn|∆̂(u, tv)| ≤ x

)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)K̃(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn

(
b4n +

1

nbn

)
, p
))

. (S7.4)

Using Theorem 2 of Chernozhukov et al. (2015), it follows that

sup
x∈R

∣∣∣P(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)
∣∣∣
∞

≤ x
)
− P

(∣∣∣ 1√
nbn

n∑
i=1

Yi(u)K̃(u)
∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−1/3 log2/3(npbn)
)
. (S7.5)

Since p = O(exp(nι)) , Then part (i) of the assertion follows from (S7.4) and (S7.5).

For part (ii), notice that K̃(i/n) = K̃(j/n) for i, j ∈ Z such that bn ≤ i/n, j/n ≤ 1−bn.

Let K̃ = K̃(⌊n/2⌋/n). Further note that by the definition of the vector Z̃i in (2.7) we

have that (Recall the notation Wn(u, t) in (S6.1))

max
1≤v≤p

max
⌈nbn⌉≤l≤n−⌈nbn⌉

K̃|Wn(
l
n
, tv)| = max

⌈nbn⌉≤l≤n−⌈nbn⌉

∣∣∣ 1√
nbn

n∑
i=1

Zi(
l

n
)
∣∣∣
∞

=
∣∣∣ 1√

nbn

2⌈nbn⌉−1∑
i=1

Z̃i

∣∣∣
∞

.

(S7.6)

Let Z̃i,s denote the sth entry of the vector Z̃i defined in (2.7) (1 ≤ s ≤ (n−2⌈nbn⌉+1)p).

By Assumption 3.2(2) it follows that

max
1≤s≤(n−2⌈nbn⌉+1)p

sup
i

∥Z̃i,s − Z̃
(i−j)
i,s ∥2 = O(χj).

By Lemma S3 in Section S8 we obtain the inequality

c1 ≤ min
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ max
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ c2
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for the quantities

σ̃j,j :=
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

Cov(Z̃i,j, Z̃l,j).

Therefore condition (9) in the paper of Zhang and Cheng (2018) holds, and condition

(13) in this reference follows from Assumption 3.2(1). As a consequence, Corollary 2.2

in Zhang and Cheng (2018) (the validity of Corollary 2.2 of Zhang and Cheng (2018)

for Z̃i can be verified via the argument of Proposition 2.1, A.1 and Theorem 2.1 of that

paper and via (S7.6); details are omitted for the sake of brevity) yields

sup
x∈R

∣∣∣P( max
⌈nbn⌉≤l1≤n−⌈nbn⌉

1≤l2≤p

K̃|Wn(
l1
n
, l2
p
)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣ = O((nbn)

−(1−11ι)/8).

(S7.7)

Using Theorem 2 of Chernozhukov et al. (2015) and the the fact that K̃ = 1+O( 1
nbn

),

it follows that

sup
x∈R

∣∣∣P(∣∣∣ 1√
nbn

n∑
i=1

Ỹi

∣∣∣
∞

≤ x
)
− P

(∣∣∣ 1√
nbn

n∑
i=1

ỸiK̃
∣∣∣
∞

≤ x
)∣∣∣ = O

(
(nbn)

−1/3 log2/3(n2pbn)
)
.

(S7.8)

Consequently part (ii) follows by the same arguments given in the proof of part (i) via

an application of Lemma S1. ♢

S7.2 Proof of Proposition 1

Proof. Define S̃G
k,r(t) =

1√
r

∑k+r−1
i=k G(i/n, t,Fi), and define for u ∈ [w/n, 1− w/n]

∆̃j(t) =
S̃G
j−w+1,w(t)− S̃G

j+1,w(t)√
w

, σ̃2(u, t) =
n∑

j=1

w∆̃2
j(t)

2
ω̄(u, j)
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as the analogs of ∆j(t) defined in the main article and the quantities in (2.16), respec-

tively. We also use the convention σ̃2(u, t) = σ̃2(w/n, t) and σ̃2(u, t) = σ̃2(1 − w/n, t)

if u ∈ [0, w/n) and u ∈ (1− w/n, 1], respectively. Assumption 3.1 and the mean value

theorem yield

max
w≤j≤n−w

sup
0≤t≤1

|∆̃j(t)−∆j(t)| = max
w≤j≤n−w

sup
0≤t≤1

∣∣∣ j∑
r=j−w+1

m(r/n, t)−
j+w∑

r=j+1

m(r/n, t)
∣∣∣ = O(w/n).

(S7.9)

On the other hand, Assumption 3.2 and Assumption 3.3 and similar arguments as given

in the proof of Lemma 3 of Zhou and Wu (2010) give

max
j

∥∆̃j(t)∥q′ = O(
√
w), max

j

∥∥∥ ∂

∂t
∆̃j(t)

∥∥∥
q′
= O(

√
w). (S7.10)

Here we use the convention that ∂
∂t
∆̃j|t=0 =

∂
∂t
∆̃j|t=0+,

∂
∂t
∆̃j|t=1 =

∂
∂t
∆̃j|t=1−. Moreover,

Proposition B.1. of Dette et al. (2019) yields

max
j

∥∥∥ sup
t

|∆̃j(t)|
∥∥∥
q′
= O(

√
w). (S7.11)

Now we introduce the notation Cj(t) = ∆̃j(t) − ∆j(t) (note that this quantity is not

random) and obtain by (S7.9) the representation

σ̃2(u, t)− σ̂2(u, t) =
n∑

j=1

w(2∆̃j(t)− Cj(t))Cj(t)

2
w̄(u, j)

=
n∑

j=1

w∆̃j(t)Cj(t)ω̄(u, j) +O(w3/n2) (S7.12)
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uniformly with respect to u, t. Furthermore, by (S7.9) we have

sup
t∈[0,1]

∣∣∣ n∑
j=1

w∆̃j(t)Cj(t)ω̄(u, j)
∣∣∣ ≤ W ⋄(u) := M(w/n)

n∑
j=1

w sup
t∈[0,1]

|∆j(t)|ω̄(u, j) ,

where M is a sufficiently large constant. Notice that W ⋄(u) is differentiable with

respect to the variable u. Therefore it follows from the triangle inequality, (S7.11) and

Proposition B.1 of Dette et al. (2019), that∥∥∥ sup
u∈[γn,1−γn]

|W ⋄(u)|
∥∥∥
q′
= O

(w5/2

n
τ−1/q′

n

)
. (S7.13)

Combining (S7.12)– (S7.13), we obtain∥∥∥ sup
u∈[γn,1−γn]

t∈[0,1]

|σ̃2(u, t)− σ̂2(u, t)|
∥∥∥
q′
= O

(w5/2

n
τ−1/q′

n + w3/n2
)
. (S7.14)

By Burkholder inequality (see for example Wu, 2005) in Lq′/2 norm, (S7.10) and similar

arguments as given in the proof of Lemma 3 in Zhou and Wu (2010) we have

sup
u∈[γn,1−γn]

t∈[0,1]

∥∥σ̃2(u, t)− E(σ̃2(u, t))
∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2

n

)
,

sup
u∈[γn,1−γn]

t∈[0,1]

∥∥∥ ∂

∂t
(σ̃2(u, t)− E(σ̃2(u, t)))

∥∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2

n

)
,

sup
u∈[γn,1−γn]

t∈[0,1]

∥∥∥( ∂

∂u
+

∂2

∂u∂t

(
σ̃2(u, t)− E(σ̃2(u, t))

)∥∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2−1

n

)
.

It can be shown by similar but simpler argument as given in the proof of Proposition

B.2 of Dette et al. (2019) that these estimates imply

∥∥ sup
u∈[γn,1−γn]

t∈[0,1]

|σ̃2(u, t)− E(σ̃2(u, t))|
∥∥
q′/2

= O
(
w1/2n−1/2τ−1/2−2/q′

n

)
. (S7.15)
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Moreover, it follows from the proof of Theorem 4.4 of Dette and Wu (2019) that

sup
u∈[γn,1−γn]

t∈[0,1]

∣∣∣Eσ̃2(u, t)− σ2(u, t)
∣∣∣ = O

(√
w/n+ w−1 + τ 2n

)
,

sup
u∈[0,γn)∪(1−γn,1]

t∈[0,1]

∣∣∣Eσ̃2(u, t)− σ2(u, t)
∣∣∣ = O

(√
w/n+ w−1 + τn

)
(S7.16)

and the assertion is a consequence of (S7.14), (S7.15) and (S7.16). ♢

S8 Some auxiliary results

This section contains several technical lemmas, which will be used in the proofs of the

main results in Section S6.

Lemma S1. For any random vectors X,X ′, Y , and δ ∈ R, we have that

sup
x∈R

|P(|X ′| > x)− P(|Y | > x)| ≤ sup
x∈R

|P(|X| > x)− P(|Y | > x)|

+P(|X −X ′| > δ) + 2 sup
x∈R

P(|Y − x| ≤ δ). (S8.1)

Furthermore, if Y = (Y1, ..., Yp)
⊤ is a p-dimensional Gaussian vector and there exist

positive constants c1 ≤ c2 such that for all 1 ≤ j ≤ p, c1 ≤ E(Y 2
j ) ≤ c2, then

sup
x∈R

|P(|X ′| > x)− P(|Y |∞ > x)| ≤ sup
x∈R

|P(|X| > x)− P(|Y |∞ > x)|+ P(|X −X ′| > δ)

+CΘ(δ, p),

(S8.2)

where C is a constant only dependent on c1 and c2.
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Proof of Lemma S1. By triangle inequality, we shall see that

P(|X ′| > x)− P(|Y | > x) ≤ P(|X ′ −X| > δ) + P(|X| > x− δ)− P(|Y | > x),(S8.3)

P(|X ′| > x)− P(|Y | > x) ≥ −P(|X ′ −X| > δ) + P(|X| > x+ δ)− P(|Y | > x).(S8.4)

Notice that right-hand side of (S8.3) is

P(|X ′ −X| > δ) + P(|X| > x− δ)− P(|Y | > x− δ) + P(|Y | > x− δ)− P(|Y | > x).

The absolute value of the above expression is then uniformly bounded by

P(|X ′ −X| > δ) + sup
x∈R

|P(|X| > x)− P(|Y | > x)|+ 2 sup
x∈R

P(|Y − x| ≤ δ). (S8.5)

Similarly, the absolute value of right-hand side of (S8.4) is also uniformly bounded by

(S8.5), which proves (S8.1). Finally, (S8.2) follows from (S8.1) and an application of

Corollary 1 in Chernozhukov et al. (2015). Note that in this result the constant C is

determined by max1≤j≤p E(Y 2
j ) ≤ c2 and min1≤j≤p E(Y 2

j ) ≥ c1. ♢

The following result is a consequence of of Lemma 5 of Zhou and Wu (2010).

Lemma S2. Under the assumption 3.2(2), we have that

sup
u1,u2,t1,t2∈[0,1]

|E(G(u1, t,Fi)G(u2, t2,Fj))| = O(χ|i−j|).

Lemma S3. Define

σj,j(u) =
1

nbn

n∑
i,l=1

Cov(Zi,j(u), Zl,j(u))
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where Zi,j are the components of the vector Zi(u) defined in (2.5). If bn = o(1), logn
nbn

=

o(1) and Assumption 3.2 and Assumption 2.1 are satisfied, then there exist positive

constants c1 and c2 such that for sufficiently large n

0 < c1 ≤ min
1≤j≤p

σj,j(u) ≤ max
1≤j≤p

σj,j(u) ≤ c2 < ∞.

for all u ∈ [bn, 1− bn]. Moreover, we have for

σ̃j,j :=
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

Cov(Z̃i,j, Z̃l,j), (S8.6)

the estimates

c1 ≤ min
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ max
1≤j≤(n−2⌈nbn⌉+1)p

σ̃j,j ≤ c2.

Proof of Lemma S3. By definition,

σj,j(u) =
1

nbn

n∑
i,l=1

E
(
G( i

n
, tj,Fi)K

( i
n
− u

bn

)
G( l

n
, tj,Fl)K

( l
n
− u

bn

))
.

Observing Assumption 3.2 and Lemma S2, we have

E(G( i
n
, tj,Fi)G( l

n
, tj,Fl)−G(u, tj,Fi)G(u, tj,Fl)) = O

(
min(χ|l−i|, bn)

)
uniformly with respect to u ∈ [bn, 1− bn], | in − u| ≤ bn and | l

n
− u| ≤ bn. Consequently,

observing Assumption 2.1 it follows that

σj,j(u) =
1

nbn

n∑
i,l=1

E
(
G(u, tj,Fi)K

( i
n
− u

bn

)
G(u, tj,Fl)K

( l
n
− u

bn

))
+O(−bn log bn)(S8.7)

On the other hand, if rn is a sequence such that rn = o(1) and nbnrn → ∞, A(u, rn) :=

{l : |
l
n
−u

bn
| ≤ 1− rn, u ∈ [bn, 1− bn]} we obtain by (S8.7) and Lemma S2 that
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σj,j(u) =
1

nbn

n∑
l=1

n∑
i=1

1(|i− l| ≤ nbnrn)E
(
G(u, tj,Fi)K

( i
n
− u

bn

)
G(u, tj,Fl)K

( l
n
− u

bn

))
+O(−bn log bn + χnbnrn)

=
1

nbn

n∑
l=1

K2
( l

n
− u

bn

) ∑
1≤i≤n,

|i−l|≤nbnrn

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1
))

+O(−bn log bn + χnbnrn + rn)

=
1

nbn

∑
1≤l≤n,

l∈A(u,rn)

K2
( l

n
− u

bn

) ∑
1≤i≤n,

|i−l|≤nbnrn

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1
))

+O(−bn log bn + χnbnrn + rn) (S8.8)

uniformly for j ∈ {1, . . . , p}. We obtain by the definition of the long-run variance

σ2(u, t) in Assumption 3.2(4) and Lemma S2 that∣∣∣ n∑
i=1

E
(
G(u, tj,Fi)G(u, tj,Fl)1

(∣∣∣ i
n
− u

bn

∣∣∣ ≤ 1, |i− l| ≤ nbnrn

))
− σ2(u, tj)

∣∣∣ = O(χnbnrn)

(S8.9)

uniformly with respect to l ∈ A(u, rn) = {l : |
l
n
−u

bn
| ≤ 1 − rn, u ∈ [bn, 1 − bn]} and

j ∈ {1, . . . , p}. Combining (S8.8) and (S8.9) and using Lemma S2 yields

σj,j(u) =
1

nbn

n∑
l=1

K2
( l

n
− u

bn

)
σ2(u, tj) +O(−bn log bn + χnbnrn + rn)

= σ2(u, tj)

∫ 1

−1

K2(t)dt+O
(
− bn log bn + χnbnrn + rn +

1

nbn

)
.

Let rn = a logn
nbn

for some sufficiently large positive constant a, then the assertion of the
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lemma follows in view of Assumption 3.2(4)).

For the second assertion, consider the case that j = k1p + k2 for some 0 ≤ k1 ≤

n− 2⌈nbn⌉ and 1 ≤ k2 ≤ p. Therefore by definition (2.7) in the main article,

Z̃i,k1p+k2 = G( i+k1
n

, k2
p
,Fi+k1)K( i−⌈nbn⌉

nbn
),

which gives for the quantity in (S8.6)

σ̃k1p+k2,k1p+k2 =
1

2⌈nbn⌉ − 1

2⌈nbn⌉−1∑
i,l=1

E
(
G( i+k1

n
, k2

p
,Fi+k1)K( i−⌈nbn⌉

nbn
)G( l+k1

n
, k2

p
,Fl+k1)K( l−⌈nbn⌉

nbn
)
)

Consequently, putting i + k1 = s1 and l + k1 = s2 and using a change of variable, we

obtain that

σ̃k1p+k2,k1p+k2 = σk2,k2

(
k1+⌈nbn⌉

n

)
,

which finishes the proof. ♢

Bibliography

Cao, G., L. Yang, and D. Todem (2012). Simultaneous inference for the mean function

based on dense functional data. Journal of Nonparametric Statistics 24 (2), 359–377.

Chatterjee, S. (2014). Superconcentration and related topics, Volume 15. Springer.

Chen, M. and Q. Song (2015). Simultaneous inference of the mean of functional time

series. Electronic Journal of Statistics 9 (2), 1779–1798.

63



Holger Dette & Weichi Wu

Chernozhukov, V., D. Chetverikov, and K. Kato (2015). Comparison and anti-

concentration bounds for maxima of gaussian random vectors. Probability Theory

and Related Fields 162 (1), 47–70.

Craven, P. and G. Wahba (1978). Smoothing noisy data with spline functions. Nu-

merische mathematik 31 (4), 377–403.

Dette, H., K. Kokot, and A. Aue (2020). Functional data analysis in the Banach space

of continuous functions. Annals of Statistics 48 (2), 1168–1192.

Dette, H. and W. Wu (2019). Detecting relevant changes in the mean of nonstationary

processes—a mass excess approach. The Annals of Statistics 47 (6), 3578–3608.

Dette, H. and W. Wu (2022). Prediction in locally stationary time series. Journal of

Business & Economic Statistics 40 (1), 370–381.

Dette, H., W. Wu, and Z. Zhou (2019). Change point analysis of correlation in non-

stationary time series. Statistica Sinica 29 (2), 611–643.

Konakov, V. D. and V. I. Piterbarg (1984). On the convergence rate of maximal devia-

tion distribution for kernel regression estimate. Journal of Multivariate Analysis 15,

279–294.

Politis, D. N., J. P. Romano, and M. Wolf (1999). Subsampling. Springer Science &

Business Media.

Proksch, K. (2014). On confidence bands for multivariate nonparametric regression.

Annals of the Institute of Statistical Mathematics 68, 209–236.

64



BIBLIOGRAPHY

Wang, H. and S. Xiang (2012). On the convergence rates of legendre approximation.

Mathematics of Computation 81 (278), 861–877.

Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proceedings

of the National Academy of Sciences 102 (40), 14150–14154.

Wu, W. B. and Z. Zhao (2007). Inference of trends in time series. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 69 (3), 391–410.

Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. Journal

of the Royal Statistical Society, Ser. B 60, 797–811.

Zhang, X. and G. Cheng (2018). Gaussian approximation for high dimensional vector

under physical dependence. Bernoulli 24 (4A), 2640–2675.

Zhou, Z. (2013). Heteroscedasticity and autocorrelation robust structural change de-

tection. Journal of the American Statistical Association 108 (502), 726–740.

Zhou, Z. and H. Dette (2020). Statistical inference for high dimensional panel functional

time series. arXiv preprint arXiv:2003.05968 .

Zhou, Z. and W. B. Wu (2010). Simultaneous inference of linear models with time

varying coefficients. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 72 (4), 513–531.

65


	Additional remarks
	Finite Sample Performance
	Implementation
	Simulated data
	Simulation results in the boundary
	Empirical investigation of Theorem 1
	Empirical performance of the long-run variance estimator

	Discussion on the alternative assumptions of Theorem 2
	Simultaneous confidence bands for fixed u or t
	Theoretical background and algorithms
	Finite sample properties
	Simulated data
	Real data

	Examples of locally stationary error processes
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Proposition S1 and Proof of Proposition 1
	Proposition S1
	Proof of Proposition 1

	Some auxiliary results

