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Supplementary Material

S1 Proofs of main results

In this section, we provide the proofs of the main results, which contain the main
arguments for this type of problems. The proofs of ancillary lemmas and propositions

are deferred to Section S2.

Proof of Theorem 1. By the definition (3) and the equation (4),

. _ ) e ) 1<
Log,,ii(t) = Fy} 0 Fup —id = - > Fyly o Fup —id = - > " Log,, Xi(t).
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By Proposition 3.2.14 in Panaretos and Zemel (2020), we have ELog,X;(t) = 0.
Given this, the part (a) is verified by applying the central limit theorem in Hilbert
space (Aldous, 1976) that asserts convergence of the process (/n) ™" 322 Log,, ) Xi(t)
to a Gaussian measure on tensor Hilbert space .7 (1) with covariance operator C'(-) =
E({U,-),U) defined via the random element U = Log,, ) X;(t) in 7 (u). The first
statement of the part (b) is a corollary of (a), while the second statement follows
from the first one and the compactness of 7.

For assertion (c), note that u(t) is atomless for each ¢t € T, which implies that

fi(t) is also atomless (Chen et al., 2023). Then we have

n

1 & 1
PaguyC = C=-> _ (Log,X;) ® (Log,Xi) — C+ — _ (PjLog;X; — Log,X;) ® (Log,X;)
i=1 =1
4= Z (Log,X;) ® (P Log,X; — Log, X;)

+ — Z P“Logu — Log, X ) (P“Logu LogMX)

2:141 + A2 -+ A3 + A4.
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For Ay, we further have

114211510 ZZ [Log,, X, [I, + |Log, Xu,][,)

11=11i9=1

x (/[P Log;Xi, — Log,Xi, [l + [|P;Log; Xy, — Log, Xi, ;)

2 n
== Lo, Xi | P;Log; X; — Log, Xl

9 n n
+ =52 D [1Log, X, 311 Log; X, — Log, X, [
i1=1142=1

(S1.1)

For the first term on the right hand side of equation (S1.1),

- Z ILog, Xil[} Py Log,Xi — Log, X[}

n Z [Log,, Xill,
i=1
/ <7>::§f Log ) X:(1) ~ Lo Xi(1). P Loggy Xit) — Log, Xi(1))  di

u(t)
2 1 9
Fuw(u) — u) dFu(t)(U)th;ZHLO&LX@'HM
i=1

- /T PO 3 Lo, X = Op(n7),
where the second equality follows from 79“ Logu( ) Xi(t)—Log,,y Xi(t) = Fﬂ_(%)oF () —
id, and the last equality is based on the part (b) and n=' >7" | [|[Log, Xi||2 = O,(1) by
the law of large numbers. A similar argument shows that the second term in (S1.1)
is of order Op(n=?). Thus ||| As|[|3,,) = Op(n~"). Analogous calculation shows that
A3l = Op(n™") and [[[Aal[|3,,y = Op(n~?). According to Dauxois et al.

(1982), |[|[n~" 321, (Log,X;) ® (Log,X;) — C|||%(uu = 0,(n™1), and consequently,
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2

B 14) &
||Psise-c

" = O,(n™"). The result for A, follows from the perturbation
B(p,
argument in Bosq (2000).

For the part (e), we first note that
Bume L
77%(575)(3 = Z (P“Log“ ) (P”Logu )

i=1
1 n
= Z (LogﬂX LogHX) ® (Log#X LogHX)
i=1
where Log, X =n~' > " | Log,Xi.

By the proof of Theorem 5.1.18 in Hsing and Eubank (2015), for all {j : [|[A[[|y(, ) <

nj/2}, we have the following expansion,

Pl — ;=3 M@ Py (APLD; — &5), Pi)

)
= (=) -y (Aj — M) g
+ZZ _Ak H (APLD;, 1) + (PLd; = 0;), 03,2
k#j s=1

where A = Pg((ﬁﬁ))é — C. For all k # j, we have

E(A®;, @)% =E (PRl Co;, o)

2
1 — _
E {n > (Log,X; — Log,X;, ;),.(Log,X; — Log, X, <1>k>>u}

=1

—E { ! D (Gr—E)(&y - Zj)}

=1

4 4
CCBEREE _ VERES

n n n

bl

(S1.2)

where £, =n~! S &k and & i, is the k-th component score of Log, X;. By equation
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(S1.2) and Lemma 7 in Dou et al. (2012),

2
E(AD,, &,)? , 2
E :ngch&gcj_’ (S1.3)

(A, i)y
Z — Pk 20— ) (N - A ) n

(A — )

K]

where C'is a constant does not depend on j. From Bessel’s inequality and given that

1A w0 < 15/2:

R 2
2 2 All2 PLd; — P
(A(PED; — @), D), 1A s ]| P L

E § £ ol <E —E||P!d, — .

Y R o, 1o Pe =l

J H

(S1.4)

Similarly,

2

ZZ __/\k +1 AP“CDJ’CI)’“» Py,
j

k#j s=1 @

|||A|||%(u,u) (AP, @) — ®;), )7
2n; = [[1A g ,0)° {2; (A — e)? i ; >\ — )’ }

8 [IA[5. 3 (APED; D)2 (A
<§]E[ . (.uwu‘) (AM ]/\ )2 12 + T’ .“wu ||7),uq) _@ ||2
7~ Nk

W J

2 (APF®;, k)2 1 -
<°E “ 4 +—EH‘P€‘¢)-—<I>
! gé; (A = M)* gl

2

(S1.5)

Combing equation (S1.2) to (S1.5), the proof is completed by the fact H({(P/‘j@] — ), D),

2
and Cauchy-Schwarz inequality. O
o

Proof of Lemma 1. By Taylor expansion, for any real numbers x and x,

el —agt = —ap% (r — o) + 7% ( — 20)°,
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where 7 is some value between x and x,. Using this fact, we obtain

R . - R 2
A5k = 455|230, ([ = A + s = O (1AXIIN 0, (s = 1)
=0,(5%* /v/n) + 0,57 /n),
where Ay = Pg((ﬁj:ﬁ )’:)) Cx — Cx and the last equality follows from the part (d) of

Theorem 1. Under the condition Assumption (A.2), we have 73X /n = o(j%%% /\/n)
and the first assertion follows. The second assertion is proved by a similar argument.

]

Proof of Theorem 2. We first introduce two lemmas and theirs proofs can be found

in the supplementary material.

Lemma 1. Under the assumption A.2, we have

= 0,(1/y/n) and sup j>*

AV~ vy
Jj<ky ’ ’

1—1 —1
AXU'_'AXJ

= 0,(1/v/n).

sup j_2aX
J<kx

Lemma 2. For Nx.k = infj7,gk |)\X,k — )\X,j| and Nyk = inf#k ‘)\y’k — )\Y,j‘; under the

assumption B.1, one has

1

1 i )
P(gnx,kX>H’7JCX—CXHD—>1 and P(§ny,ky>m7ﬂcy—cym)%1.

To reduce notational burden, we shall suppress the subscripts and superscripts
2
from 795 + in the sequel. We first show that ‘ =

|(PE7, ) (PCyx) - C7 |

%(uxqu)-_
Op(n(1*2bY)/(“Y+2bY)), where C;}Cy = Z?il )\;;(I)y,j. Given h = Z;il hjq)X,j €
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T (ux) with [|h]|,., = 1, we have

(PCy, )(PCyx)h — Cy'Cyxh =(PCy}, )(PCyx)h — Cyh (PCyx)h

+ Cyl, (PCyx)h — Cy Cyxh+ Cy) Cyxh— Cy'Cyxh = Ji + Jo + Js.

(51.6)
For the first term in (S1.6), we further have
oo 1 n _
Z )‘sz LZ hjl {7j1j2 - Z(&]l 6 )(772]2 77]'2)} (I)YJz
Jo=1 j1=1 =1
ky o0
+ Z )\sz (Z Y1z J1> P(I)sz Z )‘YJQ (Z ’lejzhh) q)Y,jz
ja=1 j1=1 j2=1 j1=1 (S1.7)
ky 1 n
+ Z >‘ng LZ Ry {E Z §ijy — 5 )(Thm ﬁp) - %‘1]’2}] Py,
Jo=1 i=1
=Ju + Jiz + Jis,
where §; =n~' Y7 &, and 7, =n~' >0 n5,. For Jiy, it is of order
1 < ’
E”JHHZ Z )‘YigE LZ hh {731]2 . Z(fm _5 )(nwz ﬁjQ)}]
J2=1 =1
. 2
Z )\ng Z E {%132 - Z(fm _f ) (igy — ﬁjz)}
2=l n=l = (S1.8)
 CAxj Ay,
SNy T
J2=1 J1=1
k;Y—H
:_Z)\YDZ)‘XH = p< n >
Jo=1 J1=1

By condition A.2 and Cauchy—Schwarz inequality together, the second inequality in
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the above follows from

2
1 . — E(fz i1 70 '2)2 C C
{n Z(fljl 5 )(77@]2 77j2) - '7j1j2} < C]TJ < E \/ nglnzjg )‘Xm )‘sz

=1

For Ji3, we have

2
E||<]13||i =E Z )\ng Z { . Z(&Jl _5 D(Mige = T5,) — 'lejQ}

Jo=1 Jj1=1 i=1
2
<4Z )\sz Z E{ Z 5@]1 _5 )(771]2 ﬁj2) - ,lej2}
jo=1 Ji=1 i=1 (819)
<4C D) A S~ A v,
Z D D
jg 1 ]1:1
k:;lfy+1
3Ly -o (7).
J2=1 Ji1=1

where the first inequality comes from Lemma 1. For Ji5, we divide it into two

components by

Jlg = Z )‘ng (Z Yj1so hj1) 'P(i)YJQ Z )\yD (Z Yirja hﬁ) (I)YJQ

Jjo=1 J1=1 jo=1 ji=1
ky 0o 00
= Z )‘1_/3‘2 (Z V12 hj1> ,P(I)YJQ Z )‘YJQ (Z V12 hjl) P(I)Y,jz
j2—1 Ji1=1 ja=1 j1=1
+ Z A (Z Virje hh) (PCI)YJQ - q)Y,jQ)
Je=1 J1=1

=J121 + J122.
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For the first component,

ky kY
HJ121||iy - Z ()‘1_/;2 - Y]2> (Z h]17ﬂ132> < Z (AY}]Q Y]z) Z Vj1ja

jo=1 Jji=1 J2=1 j1=1
' B opl2or2 ko
1 o -1 - —2ay —2by __ Y —40y —&a0y'\ __
< sup (/\ng )‘Y,j2> J =0y ( ) O(ky ) =0p ( ) ;
Ja<ky n n

jo=1

where the last inequality is due to the second assertion in Lemma 1 and the assump-

tion B.1. For the second component, we have
2

EH']122HZ =E Z )‘sz <Z 7j1]'2hj1> (lqu)Y,]'z - q)KJ'z)
Jo2=1 Jji=1 Ly
<hky Z A2, (Z '7j1j2hj1> E HP‘PYJ‘Q — Py
G2=1 ji=1 m
ky 4-2b ay+1
ky ky Y kyY
gc? Z )\sz Z ’7]1]2 =0 ( ) o ( Yn ) ’
Jo=1 J1=1

where the last inequality follows from the part (d) of Theorem 1, Lemma 2 and by >
ay /2+1. Together with the first component, this shows that ||.Ji5]|2 = 0, (k* ! /n).
Combing this with (S1.7) to (S1.9), we deduce that [Ji[|2, = O, (k> *')/n) =

Op (n_(2bY_1)/(aY+2bY)) )

Note that |52 = ||Ji1]|%, = Op (n= @by =D/ay+20x)) and for J;,

||J3||;21, - Z /\Y]2 (Zhj1’7j1j2> Z /\ng 2%112

J2= ky+1 Jj1=1 Je=ky+1 =1 (SllO)
Z ]2ay —2ay 2by — O (k‘}l/—Qby) —_ O (n_m,> .
Jo=ky+1
. R 2
Consequently, ‘ ) ‘(PC;&C )(PCyx) — Cy'Cyy ‘ ‘ ‘ = O, (n~@y=D/(ov+2v)) by
B(px 1y ) )
(S1.6). Similarly, we can show ‘H PCx kX)(PCXy) — C}lcxy‘ H = O, (n~x—D/lax+2x))

B(py ,1x)
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By the part (f) of Proposition 2 and the fact that PC}?,CXPCXY = O,(1), we further

deduce that

N N N “ 2
‘ ‘ ’C;(ICXYC;ICYX — PCLL PCxyPCyL PCyx ’ ‘ ‘
’ ’ %(,"LXHU‘X)
~ ~ 2
<2 H(c;}cxy = PC;(},CXPCXY‘ H

— 2
By ,px) } ‘ |CYICYX‘ ‘ |‘B(Mx“uy)

2 2

42 H ‘PC;(}kXPCXY( ‘ ‘ H(c;lcyx — PCyL PCyx ‘ H

By ,px) B(px 1y )

_ 2bx—1 _ 2by -1
=0, | max{n ox*2?x n oy )

Now we adopt the perturbation argument in Bosq (2000) to establish

|PU — U||3X = O, (max {n—(sz—l)/(ax-ﬂbx)?n—(Qby—l)/(aY+2by)}> ’
and complete the proof by

||Pé;;wéyx79ﬁ — Cy'CyxU|2,

A A 2 ~
<2|[|(PCyL,)(PCyx) - Cy'Cr|| IPOI2, +2l|Cy Oyl
’ B(pxpy)

HX Y

:Op (max {n_(sz_l)/(aX""sz)’ n_(ZbY_l)/(aY+2by) }) )

Proof of Theorem 3. By the fact Pidy = idy, it is sufficient to show

Y0, (@Dl 12y

sup
he T (nx)
lIhlly =1

)

)(PCY + eyidy)  (PCyx)h — Cy'Cyxh

Hny

(S1.11)

as then the proof can be completed in analogy to the proof of Theorem 2. We start

IPU = Uz,
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with the following decomposition

(PCy + eyidy ) H(PCyx)h — C;'Cyxh

=(PCy + eyidy ) H(PCyx)h — (Cy + eyidy ) H(PCyx)h
+ (Cy + eyidy) " (PCyx)h — (Cy + evidy) " (Cyx)h (51.12)
+ (Cy + eyidy) H(Cyx)h — C;'Cy xh

Z:Kl + K2 + Kg.

Since

2

E H(cy +eyidy)Y(Cy — PCy)yg

Hy

Z )\Y] gj S Z )\le +ey Z Zm]lmpgﬁ@yﬁ
e’} fo%S) n 2
= Z E Z l Z Nij1Mij2952 | — 9h )‘Y,jl
)\yJ + ey : n

Jo=1 i=1

_ f: 2)\2Y7jlgjzl + f: >‘Y7j1 )‘Y,jz 92
)\yj1 + €y n £ n 2

J2=1

LS M0, (57 ).

=E

Hny

for g =377, 9;Py; with 3222, g7 = 1 and due to the fact that (PCy +eyidy) 1Cyx

is bounded in probability, we have ||Ki[% = O, (e;(lﬂ/w)/n).
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For the second term,

2
- 1 = |1 _
EHK?H;QW =E Z \ + Z - (5131 —f )(%‘2 - 7];‘2) — Vg2 hj1q)Y,j2
Jj2=1 Yog2 & J1=1 n i=1
ny
2 e’} 1 n
S e R M PRI AT RS 37
J2=1 J1=1 =1 J1=1
oo 1 2 oo /\X )\Y
gC J1 J2
C o= Axjvy (141/ay)
- 1 2 :O ( Y/ )
2 2 e
(S1.13)
Finally,
K3, =Il(Cy + eyidy) '(Cyx)h — Cy'CyxhlZ,
2
I (o ) et
S e ey v .
Y
2
= 7]1]2 J1 g 7 172
hzzl <)\Y,]'2 + ey Asz <ﬁzl ) ]2221 (Avija + €y 2/\3/32 ﬁzl n
- gy (2by 1)/
coq 3o o (i),
Yj; (Avjo +€v)? v

When ey < n=@/(0y+2y) we have ey( +1/W)/n = egby_l)/ay, and then K, Ky and

K3 are of the same order n~ (v ~1/(av+2bv) " This establishes (S1.11) and further

H)(PCY + eyidy)*l(PCYX) — CleYX’H? _ Op(n7(2by71)/(ay+2by))'

B(ux Hy)

]

Remark 1. In the equation (7) in Lian (2014) and the proof of Theorem 2 in Zhou
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and Chen (2020), both on canonical correlation analysis for Euclidean functional

data, the following inequality
EH(Cy—i—Eyidy)_l(CYX)h— (Cy—|—€yidy) CYX hH EH Cy+€yldy) ny)hHZ,

translated from Lian (2014) and Zhou and Chen (2020) into our notation, taking
into account that parallel transport is not needed for the Euclidean case, is used to

derive

2 7]1]2
BRI < 130 e

J1 1j2= 1

However, this seems incorrect. For a counterexample, take (j,,7;,) to follow a joint

Gaussian distribution with zero mean and covariance matrix

AX.j1s Vind

Virizs AY.ja
Let h = ®x1. Then E[[Ky|* = 327 372 (AxjiAvys +273,,)/ Ay, +€v)?, and
under the condition B.2, the term n™" 372 | 372 | Ax j; Avj, /(Avj, + €y)? is asymp-
totically strictly larger than n=' 37 37 | 42 . /(Ay, + €v)?. Consequently, there
is a gap in the proof of Theorem 1 of Lian (2014), which however may be filled by
using our arguments in the above. In contrast, the proof of Theorem 2 in both Lian
(2014) and Zhou and Chen (2020) about the convergence rate with respect to an
RHKS (reproducing kernel Hilbert space) norm, may not be fixed in the same way.

To see this, let Gx be the RKHS generated by the kernel Cx. Then a bound on
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E| K,||¢, is given by

n

2
1 _
Bt <33 5 () e (Ez AL nj2>—m)
J1=1j2=1 ’ =1
_ZZAXMYJQ ( 1 )2
J1=1jo=1 X >\y7j2+€y ’

which diverges with respect to j;, contrasting the finite bound made in those works.

S2 Proofs of the ancillary results
Proof of Lemma 1. By Taylor expansion, for any real numbers z and x,
1 -1

el —agt = —ap% (r — o) + 7% ( — 20)°,

where 7 is some value between x and xy. Using this fact, we obtain

=20, (’5\&]’ — Ax,j

) + (Ax,; — O, (1IAXIN) P O, ()S\X:j — Axj

)

where Ay = 733((5)’:5 )’:)) Cyx — Cyx and the last equality follows from the part (d) of

3-1 -1

=0,(5 [v/n) + Oy (5°** /n),

Theorem 1. Under the condition Assumption (A.2), we have j3*X /n = o(j2** /\/n)
and the first assertion follows. The second assertion is proved by a similar argument.

]

Proof of Lemma 2. According to the part (d) of Theorem 1, we have H‘PCX — CX‘ H =

O,(n=/?). Under the assumption Assumption (B.1), nx .y < kx™¥ " and n*/2k3"> " —
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00, which implies that

P (Guea > [[[Pex-cx]) =1

The second statement follows analogously.

]

Proposition 1 extends the framework in Lin and Yao (2019) developed for (finite-

dimensional) Riemannian manifolds to Wasserstein spaces.

Proof of Proposition 1. To show that .7 (u) is a Hilbert space, it is sufficient to
prove that 7 (u) is complete. Suppose that V;, is a Cauchy sequence in 7 (p), i.e.,
Mmoo SUPy, oy Ve — Vinlll, = 0, where |[[-]]|, denotes the norm induced by the
inner product in 7 (u). From this sequence we choose a subsequence ny such that

H|Vnk Az p < 27% For U € Z(p), by Cauchy-Schwarz inequality,

e[l
/THU(t)Hu(t) Ve (8) = Vi Olluoydt < NUMM Vi = Vs [, < 278U,

where || - ||,,¢) denotes the norm induced by the inner product in Tan,). Thus

Z/ 1T Nty - Ve, (8) = Voo Ol uny dt < U], < 00,

k=1"T

which implies
Y Ve @) =V @)]] oy <00, ae.. (S2.14)
k=1

Since Tan, ) is complete, for those t € T such that (5S2.14) holds, the limit V' (t) =

limy o0 Vi, (t) is defined and falls into Tan,). For any € > 0, choose N, such that
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n,m > N and [[V,, = V,,[|, < e. Fatou’s lemma applied to the function ||V, (¢) —

V

Nk+1

()|l ey implies that if m > N, then ||V — mei < liminfg oo [||Va, — Vm|||i <
€. This shows that V —V,, € J(u), thus V. = (V = V,) + V,, € T(u). The
arbitrariness of e implies that lim,,_, [V — Vi, = 0. From the triangle inequality
IV = Valll, < IV = Vaall,, + IIViw = Valll, < 2€, we conclude that V,, converges to V
in 7 (u), and further that .7 (u) is complete.

To see 7 (u) is separable, we notice that for each ¢ € T, Tan,y is a sepa-
rable Hilbert space thus it has an orthonormal basis {®(¢,s)}32,. Define O =
{{®r(t,s)}2,|Vt € T}, which can be regarded as an orthonormal frame along
the curve u(t). For every element U € 7 (p), define Ug be the coordinate rep-
resentation of U with respect to O. One can see that Ug is an element in the
Hilbert space £2(T, [?) of square integrable [?>-valued measurable functions with norm

| fllzz = {[ |f(#)|2dt}/? for f € L*(T,1%), where {? is the space of square-summable

o0
Jj=1

sequences endowed with the inner product (a,b)z = > 7, a;b; and the induced
norm | - |;z, for each a = (ay,as,---) and b = (by,by,--+). If we define the map
T : T () — L2T,1?) by Y(U) = Uo), we can immediately see that Y is a linear
map. It is also surjective, because for any f € L£2(T,1?), the vector field U along
p given by U(t) = > oo fr(t)Px(t,s) for t € T is an element in 7 (i), where fi(t)
denotes the kth component of f(¢). It can be verified that T preserves the inner

product. Therefore, it is a Hilbertian isomorphism. Since £2(7,1?) is separable, the
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isomorphism between £2(7,1?) and 7 (i) implies separability of 7 (u). O

The first two statements of Proposition 2 are direct results of Proposition 1 in
Chen et al. (2023) and the remaining assertions can be checked by similar arguments
in Lin and Yao (2019). Proposition 3 and 4 can be checked by arguments similar to

that of He et al. (2003) and Lian (2014). Thus we omit theirs proofs.

S3 Additional simulation results

Figure 2 and 3 present the histograms for selected tuning parameters and behaviors

of our proposed estimators with noise level 0 = 0.1 and ¢ = 0.2, leading to the same

conclusion as in those observations in Section 4. Table 1 presents the IMSE of V.
Following are the setting details of the heavy-tail distribution and Figure 1

presents the convergence rates of weight functions via different tuning parameters.

e Case 3 (Log-normal distribution): We sample & ~ 0.1vg(ViM) a0, with
Oir ~ LN(0,1) independently for ¢ = 1,2,--- ,n and k = 1,2,--- | K, and
Nie ~ 0.1v, (Ve M) 7 b0 with 9 ~ LN(0,1), except that 7, = 0.5(&1 + &i2) +
0.1 % oE(&4 + £%)9;2, where LN(0, 1) denotes the log-normal distribution with
mean 0 and standard deviation 1 in the log scale, a; are the Bernoulli random
variables with success probability 1/2, and o is a constant representing the noise

level.
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Table 1: IMSE of V (V, respectively) for different noise levels with tuning parameters chosen by

5-fold CV.

FPCA Tikhonov

o n=50 n=100 n=200 n=500 | n=50 n=100 n=200 n=500

0.05 .1095 .0774 .0621 0405 | .1943  .1982 .2431 .1849

0.1 .1554  .1177 .0989 0657 | .2003  .1907  .2361 .2316

Case1 0.2 2111 .1754 .1661 1048 | 2255 .2268 .2359 .2020

0.3 .2640  .2340 .2061 1360 | 2549 2622 .2459 1997

0.5 .3869  .3268 2753 2187 | 2860  .3360 2939 .2608

0.05 1133 .0769 .0645 0433 | 2040  .1955 .2387 1925

0.1 .1568 .1114 1074 0663 | .2082  .1857 2414 2395

Case 2 0.2 2150 .1674 .1632 1070 | 2271 2241 .2410 .2041

0.3 2677 .2274 .2062 1422 | 2578 .2563 .2504 .2029

0.5 .3847  .3287 .2829 2085 | 2922 3287 2917 2571
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Figure 1: The IMSE for U (left panel) and 1% (right panel), respectively on different tuning param-
eters for the and Tikhonov method by the average of 200 Monte Carlo replicates with noise level

o = 0.1 in Case 3.
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Figure 2: The first three rows show the absolute error for p — p (p — p, respectively) and IMSE
for U ,V (Tj ,17, respectively) on different tuning parameters and the last four rows present the
Histograms of tuning parameters selected by 5-fold CV for the FPCA (left column) and Tikhonov
(right column) methods by the average of 200 Monte Carlo replicates with noise level o = 0.1 in

Case 1.
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Figure 3: The first three rows show the absolute error for p — p (p — p, respectively) and IMSE

for U ,V (Tj ,17, respectively) on different tuning parameters and the last four rows present the

Histograms of tuning parameters selected by 5-fold CV for the FPCA (left column) and Tikhonov

(right column) methods by the average of 200 Monte Carlo replicates with noise level o = 0.2 in

Case 1.
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