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Appendix A: Useful Lemma

The following Lemma is a multivariate extension of the martingale central limit

theorem, see Lemma 4 in Zhang et al. (2021) for details.

Lemma S.1 (Multivariate version of martingale CLT). Let {ηki, i = 1, . . . , Nk} be a

martingale difference sequence in Rp relative to the filtration {Fki, i = 0, 1, . . . , Nk}

and let Zk ∈ Rp be an Fk0-measurable random vector for k = 1, 2, 3, . . .. Denote

Rk =
∑Nk

i=1 ηki. Assume the following conditions hold.

(i) limk→∞
∑Nk

i=1 E (∥ηki∥4) = 0.

(ii) limk→∞ E
{
∥
∑Nk

i=1 E
(
ηkiη

⊤
ki | Fk,i−1

)
−Bk∥2

}
= 0 for some sequence of positive-

definite matrices {Bk}∞k=1 with supk λmax(Bk) < ∞, say that the largest eigenvalue

is uniformly bounded.
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(iii) For a probability distribution L0, ∗ denotes convolution and L(·) denotes the law of

random variables, L(Zk)∗N (0,Bk)→L0, where the convergence is in distribution.

Then we have

L(Zk +Rk)→L0.

Appendix B: Proof of Theorem 1

Proof. Denote

Ln(β) =
1

n

n∑
i=1

1

Nπ∗
i

[1− Y ∗
i f(X

∗
i ,β)]+ , LN(β) =

1

N

N∑
j=1

[1− Yjf(Xj,β)]+ ,

lλ,n(β) =
1

n

n∑
i=1

1

Nπ∗
i

[1− Y ∗
i f(X

∗
i ,β)]+ +

λ

2
∥β1∥2.

The proof can be divided into the following intermediate parts.

First, we consider the influence of a fixed λ. For a fixed θ = (1,θ⊤
1 )

⊤ ∈ Rp+1,

define

Λn(θ) = n

{
lλ,n

(
β† +

θ√
n

)
− lλ,n

(
β†)} , Tn(θ) = E {Λn(θ)} .

Observe that

Λn(θ) =
n∑

i=1

1

Nπ∗
i

{[
1− Y ∗

i f

(
X∗

i ,β
† +

θ√
n

)]
+

−
[
1− Y ∗

i f(X
∗
i ,β

†)
]
+

}
+ n

λ

2

(
∥β†

1 +
θ1√
n
∥2 − ∥β†

1∥2
)
,

and E {Ln(β)} = E [E {Ln(β) | DN}] = L(β) = E [1− Y f(X,β)]+. Under Assump-

tion 3, we assume β†
1 ̸= 0 without loss of generality. By Lemma 3 in Koo et al. (2008),
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we have

Tn(θ) = n

{
L

(
β† +

θ√
n

)
− L(β†)

}
+

λ

2

(
∥θ1∥2 + 2

√
nθ⊤

1 β
†
1

)
,

=
1

2
θ⊤H(β̆)θ +

λ

2

(
∥θ1∥2 + 2

√
nθ⊤

1 β
†
1

)
,

by applying Taylor expansion of L(β) around β†, where β̆ = β† + (θ/
√
n)t for some

0 < t < 1.

DefineDij(α) = H(β†+α)ij−H(β†)ij for 0 ≤ i, j ≤ p+1. By Assumption 1, H(β)

is continuous in β. Then, for any ε1 > 0, there exist δ1 > 0 such that Dij(α) < ε1 if

∥α∥ < δ1 for all 0 ≤ i, j ≤ p+1. Thus, for sufficiently large n such that ∥(θ/
√
n)t∥ < δ1

∣∣∣θ⊤
(
H(β̆)−H(β†)

)
θ
∣∣∣ ≤∑

i,j

|θi||θj|
∣∣∣∣Dij

(
θ√
n
t

)∣∣∣∣ ≤ 2ε1∥θ∥2,

then θ⊤H(β̆)θ/2 = θ⊤H(β†)θ/2 + o(1) as n → ∞. Combining the assumption that

λ = o(n−1/2), we have

Tn(θ) =
1

2
θ⊤H(β†)θ + o(1).

Next, we would like to provide an expansion of Λn(θ) under Assumptions 1–3. Let

Wn = −n−1
∑n

i=1 (Nπ∗
i )

−1 ξ∗i Y
∗
i X̃

∗
i , where ξ∗i = I

(
Y ∗
i f(X

∗
i ,β

†) ≤ 1
)
. If we define

Ri,n(θ) =
1

Nπ∗
i

{[
1− Y ∗

i f

(
X∗

i ,β
† +

θ√
n
t

)]
+

−
[
1− Y ∗

i f
(
X∗

i ,β
†)]

+
+ ξ∗i Y

∗
i f

(
X∗

i ,
θ√
n

)}
,

Rj,N(θ) =

[
1− Yjf

(
Xj,β

† +
θ√
n
t

)]
+

−
[
1− Yjf

(
Xj,β

†)]
+
+ ξjYjf

(
Xj,

θ√
n

)
,

where i = 1, . . . , n and j = 1, . . . , N . Recall that E{(Nπ∗
i )

−1 ξ∗i Y
∗
i X̃

∗
i } = S(β†) = 0.



LEVERAGE CLASSIFIER 4

Recall the definitions of Tn(θ) and Wn, we have

Λn(θ) =
n∑

i=1

1

Nπ∗
i

[
1− Y ∗

i f

(
X∗

i ,β
† +

θ√
n

)]
+

− nL

(
β† +

θ√
n

)
−

n∑
i=1

1

Nπ∗
i

[
1− Y ∗

i f
(
X∗

i ,β
†)]

+
+ nL

(
β†)+ λ

2

(
∥θ1∥2 + 2

√
nθ⊤

1 β
†
1

)
+

n∑
i=1

1

Nπ∗
i

ξ∗i Y
∗
i (X̃

∗
i )

⊤ θ√
n
−

n∑
i=1

1

Nπ∗
i

ξ∗i Y
∗
i (X̃

∗
i )

⊤ θ√
n

=Tn(θ) +
√
nW⊤

n θ +
n∑

i=1

[Ri,n(θ)− E {Ri,n(θ)}] . (S.1)

Recall that [·]+ denotes the hinge loss. We define φ = I (a ≤ 1) and D = [1− z]+−

[1− a]+ + φ(z − a). Then we have

D = (1− z)I(a > 1, z ≤ 1) + (z − 1)I(a < 1, z > 1)

≤ |z − a| I(a > 1, z ≤ 1) + |z − a| I(a < 1, z > 1)

= |z − a| {I(a > 1, z ≤ 1) + I(a < 1, z > 1)}

≤ |z − a| I (|1− a| ≤ |z − a|) .

(S.2)

Let zi = Y ∗
i f(X

∗
i ,β

† + θ/
√
n) and ai = Y ∗

i f(X
∗
i ,β

†) in (S.2), we have

|Ri,n(θ)| ≤
1

Nπ∗
i

∣∣∣∣f(X∗
i ,θ)√
n

∣∣∣∣Ui

(∣∣∣∣f(X∗
i ,θ)√
n

∣∣∣∣) , (S.3)

where Ui(t) = I
(∣∣1− Y ∗

i f(X
∗
i ,β

†)
∣∣ ≤ t

)
with respect to the i-th subsample point for
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t ∈ R. By (S.3), for each fixed θ we obtain

E

[
n∑

i=1

{Ri,n(θ)− E (Ri,n(θ))}

]2
= E

E

[
n∑

i=1

{Ri,n(θ)− E (Ri,n(θ))}

]2 ∣∣∣∣DN


=

n

N2

N∑
j=1

E
[
1

πj

{Rj,N(θ)− E (Rj,N(θ))}2
]

≤ n

N2

N∑
j=1

E
{

1

πj

R2
i,N(θ)

}

≤ n

N2

N∑
j=1

E
{

1

πj

(
1 + ∥Xj∥2

) ∥θ∥2
n

Uj

(√
1 + ∥Xj∥2

∥θ∥√
n

)}

≤ ∥θ∥2

N2

N∑
j=1

E
{

1

πj

(
1 + ∥Xj∥2

)
Uj

(√
1 + ∥Xj∥2

∥θ∥√
n

)}
.

By Assumption 1 implies that E(∥X∥4) < ∞, there exists c1 such that

E
{
(1 + ∥X∥4)I (∥X∥ > c1)

}
< ε2/2,

for any ε2 > 0. Let U(t) = I
(∣∣1− Y f(X,β†)

∣∣ ≤ t
)
for t ∈ R. By Assumption 4 and

holder inequality, we have

1

N2

N∑
j=1

E
{

1

πj

(
1 + ∥Xj∥2

)
Uj

(√
1 + ∥Xj∥2

∥θ∥√
n

)}

≤ 1

N2

N∑
j=1

E
{

1

πj

(
1 + ∥Xj∥2

)
I (∥Xj∥ > c1)

}
+

1

N2

N∑
j=1

E
{
1 + c21
πj

U

(√
1 + c21

∥θ∥√
n

)}

≤

√√√√E

(
1

N3

N∑
j=1

1

π2
j

)√√√√E

{
1

N

N∑
j=1

(1 + ∥Xj∥2)2 I (∥Xj∥ > c1)

}

+ (1 + c21)

√√√√E

(
1

N3

N∑
j=1

1

π2
j

)√√√√ 1

N

N∑
j=1

P

{
U

(√
1 + c21∥θ∥/

√
n

)
= 1

}
,

By Assumption 1, the conditional distribution of X given Y is not degenerate,

which implies limt→0 P (U(t) = 1) = 0. We can take a large c2 such that

P

{
U

(√
1 + c21∥θ∥/

√
n

)
= 1

}
< ε2/

{
2(1 + c21)

}
,
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for n > c2. By Assumption 4, it proves that E [
∑n

i=1 {Ri,n(θ)− E (Ri,n(θ))}]2 → 0.

By (S.1), for each fixed θ

Λn(θ) =
1

2
θ⊤H(β†)θ +

√
nWn

⊤θ + oP (1).

Last, we devote to giving the Bahadur representation of β̃. Let κn = −
√
nH(β†)−1Wn

and Θ be a convex open subset in Rp+1. By Convexity Lemma in Pollard (1991), we

have

Λn(θ) =
1

2
(θ − κn)

⊤H(β†) (θ − κn)−
1

2
κ⊤

nH(β†)κn + rn(θ),

where for each compact set K of Θ, the aforementioned part is shown for every θ ∈ Θ,

and then we have supθ∈K |rn(θ)| → 0 in probability. Lemma S.4 shows that κn is

asymptotically normal which will be proved in the next section, then there exists a

compact set K ∈ Bρ with probability close to one, where Bρ is a closed ball with center

κn and radius ρ. Let ∆n = supθ∈Bρ
|rn(θ)|. Then we have

∆n → 0 in probability. (S.4)

Next, we discuss the behavior of Λn(θ) outside the closed ball Bρ. Consider θ =

κn + γe, with γ > ρ and the unit vector e. A boundary point θ† = κn + ρe. Under

Assumptions 1–3 and a similar discussion in Lemma 5 of Koo et al. (2008), there exists

a constant c3 such that β⊤H(β†)β ≥ c3∥β∥2. Then, by the convexity of Λn(θ) and
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the definition of ∆n, we have

ρ

γ
Λn(θ) +

(
1− ρ

γ

)
Λn(κn) ≥ Λn

(
ρ

γ
θ +

(
1− ρ

γ

)
κn

)
= Λn(θ

†)

≥ 1

2
(θ − κn)

⊤H(β†) (θ − κn)−
1

2
κ⊤
nH(β†)κn −∆n

≥ c3
2
ρ2 + Λn(κn)− 2∆n,

which implies that

inf
∥θ−κn∥>ρ

Λn(θ) ≥ Λn(κn) +
(c3
2
ρ2 − 2∆n

)
.

By (S.4), we can take ∆n such that 2∆n < c3ρ
2/2 with probability tending to one.

Thus inf∥θ−κn∥>ρ Λn(θ) ≥ Λn(κn). This implies the minimum of Λn(θ) cannot occur

at any θ with ∥θ − κn∥ > ρ. Hence for each ρ > 0 and let θ̃n =
√
n(β̃ − β†), we have

P(∥θ̃n − κn∥ > ρ) → 0. Thus

√
n(β̃ − β†) = −

√
nH(β†)−1Wn + oP (1) .

The theorem follows the above arguments. □

Appendix C: Proof of asymptotic normality

Recall that

M =
n∑

i=1

Mi =
n∑

i=1

1

nNπ∗
i

ξ∗i Y
∗
i X̃

∗
i −

n∑
i=1

(
1

nN

N∑
j=1

ξjYjX̃j

)
, (S.5)

Q =
1

N

N∑
j=1

ξjYjX̃j, T =
1

n

n∑
i=1

1

Nπ∗
i

ξ∗i Y
∗
i X̃

∗
i , BN = V

−1/2
T VMV

−1/2
T ,

where VT and VM are the variances of T and M .
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Lemma S.2. {Mi, i = 1, . . . , n} in (S.5) is a martingale difference sequence relative

to the filtration {FN,i, i = 1, . . . , n}.

Proof. The Fn,i-measurability follows from the definition of Mi and the definition of

the filtration {FN,i, i = 1, . . . , n}. Moreover, we have

E {Mi | FN,i−1} = EY |X

{
1

nNπ∗
i

ξ∗i Y
∗
i X̃

∗
i

}
− 1

nN

N∑
j=1

ξjYjX̃j

=
1

nN

N∑
i=1

ξiYiX̃i −
1

nN

N∑
j=1

ξjYjX̃j

= 0,

where EY |X is the expectation with respect to sampling randomness or the conditional

expectation of Y given XN
1 with XN

1 = (X1, . . . ,XN). Then {Mi, i = 1, . . . , n} is a

martingale difference sequence. □

Lemma S.3. Suppose Assumptions 1 and 4 hold. Let VT and VQ denote the variances

of T and Q. For any t ∈ Rp+1, we have∣∣∣E{exp(it⊤V−1/2
T Q

)}
− E

{
exp

(
it⊤V

−1/2
T V

1/2
Q A0

)}∣∣∣→ 0,

as N → ∞, where A0 ∼ N (0, Ip+1).

Proof. Note Q is a sum of i.i.d mean zero random vectors, ξjYjX̃j. The Linderberg-

Feller conditions are satisfied by Assumption 1 and Assumption 4, then we have

V
−1/2
Q Q→N (0, Ip+1) . (S.6)

Furthermore, for any ς ∈ Rp+1 and as N → ∞∣∣∣E{exp(iς⊤V−1/2
Q Q

)}
− E

{
exp

(
iς⊤A0

)}∣∣∣→ 0.
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Let ς = V
1/2
Q V

−1/2
T t⊤. For any fixed t, we need to verify the following condition to

prove this lemma

sup
N

∥ς∥ < ∞.

We note that ∥ς∥ ≤ σmax

(
V

1/2
Q V

−1/2
T

)
· ∥t∥, where σmax(·) denotes the maximum

eigenvalue of the corresponding matrix. Hence it is enough to show σmax(V
1/2
Q V

−1/2
T ) ≤

1. Since the covariance matrix VQ and VT are positive-defined, the following equation

holds

V
1/2
Q V

−1/2
T = V

1/4
T

(
V

−1/4
T V

1/2
Q V

−1/4
T

)
V

−1/4
T ,

thusV
1/2
Q V

−1/2
T is similar toV

−1/4
T V

1/2
Q V

−1/4
T . It only needs to show σmax(V

−1/4
T V

1/2
Q V

−1/4
T ) ≤

1, which is equal to show

Ip+1 −V
−1/4
T V

1/2
Q V

−1/4
T = V

−1/4
T

(
V

1/2
T −V

1/2
Q

)
V

−1/4
T > 0,

that is equivalent to show V
1/2
T −V

1/2
Q is positive-defined.

Recall that M = T −Q and by Lemma S.1, we have VT −VQ = VM > 0. Then

by the Löwner-Heinz theorem in Zhan (2004), we get V
1/2
T −V

1/2
Q > 0 which completes

the proof of this lemma. □

Lemma S.4. Suppose Assumptions 1 and 4 hold. Then we have

V
−1/2
T T→N (0, Ip+1).

Proof. Recall the conditions in Lemma S.1 with

ηki = ηNi,Zk = V
−1/2
T Q,Bk = BN ,L0 ∼ N (0, Ip+1).
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By Lemma S.2, {Mi, i = 1, . . . , n} is a martingale difference sequence, then the first

two conditions in Lemma S.2 are easily satisfied by Assumption 1. It suffices to show

the third condition in Lemma S.1 holds.

By (S.6) in Lemma S.3, we have V
−1/2
Q Q→N (0, Ip+1). Next, we devote ourselves

to verifying the third condition in Lemma S.1. Let VM be the variance of M . For any

t ∈ Rp+1, we have the following characteristic function

E
{
exp

(
it⊤V

−1/2
T Q

)}
· exp

(
−1

2
t⊤V

−1/2
T VMV

−1/2
T t

)
=
{
exp

(
it⊤V

−1/2
T VQV

−1/2
T t

)
+ o(1)

}
· exp

(
−1

2
t⊤V

−1/2
T VMV

−1/2
T t

)
=
{
exp

(
it⊤V

−1/2
T VQV

−1/2
T t

)}
· exp

(
−1

2
t⊤V

−1/2
T VMV

−1/2
T t

)
+ o(1)

= exp

(
−1

2
t⊤t

)
+ o(1),

where the first equality holds by Lemma S.3. And the third condition in Lemma S.1

is satisfied. Then by Lemma S.1 and (S.6) we have

V
−1/2
T Q+V

−1/2
T M = V

−1/2
T T→N (0, Ip+1) .

□

Proof of Theorem 2. By Theorem 1 and Lemma S.4, we have

√
n(β̃ − β†) = −

√
nH(β†)−1T + op(1).

It follows that

V
−1/2
T H(β†)(β̃ − β†) + op(1) = −V

−1/2
T T .
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By Lemma S.4, we have

V−1/2(β̃ − β†)→N (0, Ip+1),

where V = H(β†)−1VTH(β†)−1. □

Appendix D: Proof of Theorem 3

Proof of Theorem 3. Recall that XN
1 = (X1, . . . ,XN) and Y N

1 = (Y1, . . . , YN), then

DN =
{
XN

1 , Y N
1

}
. Let var(Y | X) be the conditional variance of Y given X. First we

calculate var(T | XN
1 ). We have

var(T | XN
1 ) = EY |X {var(T | DN)}+ varY |X {E(T | DN)} .

Some algebra yields

varY |X {E(T | DN)} = varY |X

(
1

N

N∑
j=1

ξjYjX̃j

)

=
1

N2

N∑
j=1

EY |X

(
ξ2jY

2
j X̃jX̃

⊤
j

)
− 1

N2

N∑
j=1

{
EY |X(ξjYjX̃j)

}2

=
1

N2

N∑
j=1

EY |X

(
ξjX̃jX̃

⊤
j

)
− 1

N2

N∑
j=1

{
EY |X(ξjYjX̃j)

}2

,

(S.7)

where the third equality holds by the fact that ξ2j = ξj and Y 2
j = 1. Next

EY |X {var(T | DN)} =
1

nN2

N∑
j=1

EY |X

{
πj

(
1

π2
j

ξ2jY
2
j X̃jX̃

⊤
j

)}
− 1

nN

N∑
j=1

{
EY |X(ξjYjX̃j)

}2

=
1

nN2

N∑
j=1

EY |X

{
1

πj

ξjX̃jX̃
⊤
j

}
− 1

nN

N∑
j=1

{
EY |X(ξjYjX̃j)

}2

.

(S.8)
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In view of (S.7) and (S.8), we get

var(T | XN
1 ) =

1

nN2

N∑
j=1

EY |X

(
1

πj

ξjX̃jX̃
⊤
j

)
+

1

N2

N∑
j=1

EY |X

(
ξjX̃jX̃

⊤
j

)
− 1

N

N∑
j=1

{
EY |X

(
ξjYjX̃j

)}2
(

1

N
+

1

n

)
.

Next we calculate VT through

VT = E
{
var(T | XN

1 )
}
+ var

{
E(T | XN

1 )
}
.

A simple calculation shows that

E(T | XN
1 ) = E

{
E(T | XN

1 , Y N
1 )
}
=

1

N

N∑
j=1

EY |X

(
ξjYjX̃j

)
,

var
{
E(T | XN

1 )
}
=

1

N2

N∑
j=1

EY |X

(
ξjX̃jX̃

⊤
j

)
− 1

N2

N∑
j=1

{
EY |X

(
ξjYjX̃j

)}2

.

Therefore, we have

VT =
1

nN2

N∑
j=1

EY |X

(
1

πj

ξjX̃jX̃
⊤
j

)
+C,

whereC = 2N−2
∑N

j=1 EY |X

(
ξjX̃jX̃

⊤
j

)
−N−1

∑N
j=1

{
EY |X

(
ξjYjX̃j

)}2

(2N−1 + n−1)

is a constant matrix that does not depend on π.

Let tr(A) denotes the trace of matrix A. We minimize tr(VT ) to obtain the A-

optimality subsampling probability

tr (VT ) =
1

nN2

N∑
j=1

tr

{
EY |X

(
1

πj

ξjH(β†)−1X̃jX̃
⊤
j H(β†)−1

)}
+ tr(C)

=
1

nN2
EY |X

{
N∑
j=1

πj

N∑
j=1

(
1

πj

ξj∥H(β†)−1X̃j∥2
)}

+ tr( C)

≥ 1

nN2

{
N∑
j=1

P
(
Yjf( Xj,β

†) ≤ 1
)
∥H(β†)−1X̃j∥

}2

+ tr(C),
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where the last inequality follows from the Cauchy-Schwarz inequality, and the equality

holds if and only if

πA
j ∝ I

(
Yjf( Xj,β

†) ≤ 1
)
∥H(β†)−1X̃j∥.

Note that H(β†)−1var(T | XN
1 )H(β†)−1 depends on subsampling probability π

only through var(T | XN
1 ). Hence, by the similar argument for minimizing tr

{
var(T | XN

1 )
}
,

we get the L-optimality subsampling probability

πL
j ∝ I

(
Yjf( Xj,β

†) ≤ 1
)
∥X̃j∥.

□

Appendix E: Additional simulation results

method LC−A LC−L

im−Uniform
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Figure S1: Comparison of MSE for approximating the full sample SVM estimator β̂ with different

pilot subsample sizes given n = 1000 under Scenarios I–IV.

To assess the impact of the pilot study in our proposed algorithm, we conduct

the following boxplot by 500 replications on the four scenarios presented in Section

4. Figure S1 reveals that the MSE is not sensitive to the pilot subsample size n0.



LEVERAGE CLASSIFIER 14

As n0 increases, the boxplot shows a slight decrease in MSE, suggesting that a smaller

pilot subsample size can reduce computational costs without significantly compromising

accuracy.

method LC−A LC−L LC−UNIF

n+n0=1000

0.2 0.4 0.6 0.8

0.0100
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n + n0

M
S

E

n+n0=1500

0.2 0.3 0.4 0.5 0.6

0.006

0.007

0.008

0.009

0.010

0.011

n0

n + n0

M
S

E

Figure S2: Comparison of mean squared errors (MSEs) for approximating the full sample SVM esti-

mator β̂ with different subsample size allocations under Scenario I.

Moreover, we fix the total subsample size of n + n0 and vary the proportions of

n and n0. It provides practical guidelines on allocating subsamples in two steps. We

evaluate both π̂A and π̂L and the results are presented in Figure S2 under Scenario

I. It illustrates that the MSEs increase when n0 is either too small or too large. This

is because that if n0 is too small, the pilot estimate is not accurate, and thus the

optimal subsampling probabilities may not be well approximated; on the other hand,

if n0 is too large, there is not enough sampling budget to select informative subsample

in subsequent steps. Figure S2 shows that our methods perform well when the ratio

n0/(n + n0) is around (0.2, 0.4). Therefore, we use n0 = 500 in our simulation studies
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with N = 105.

Bandwidth selection is a critical issue in nonparametric estimation. In Table S1, we

compare the MSE and accuracy of LC-A with three bandwidth selectors: Silverman’s

rule of thumb (ROT, Silverman, 1986), Sheather and Jones method, (SJ, Sheather and

Jones, 1991), and biased cross-validation, (BCV, Scott and Terrell, 1987). Clearly, The

results demonstrate that the choice of bandwidth selector has a negligible impact on the

empirical MSE and accuracy. To this end, we employ the commonly-used bandwidth

selector, Silverman’s rule of thumb (Silverman, 1986), in our numerical analysis.

Table S1: Comparison of MSE (10−2) and prediction accuracy (%) for LC-A against different band-

width selectors under Scenarios I–II when n = 1000.

ROT SJ BCV

Scenario n0 MSE Accuracy MSE Accoracy MSE Accuracy

300 0.68 95.54 0.92 94.52 0.65 94.56

im-Uniform 400 0.64 94.53 0.85 94.52 0.61 94.54

500 0.60 94.53 0.75 94.52 0.60 94.53

300 4.84 97.52 4.89 97.52 4.87 97.52

normMIX 400 4.49 97.53 4.63 97.53 4.56 97.53

500 4.33 97.54 4.43 97.54 4.35 97.54
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