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S1 Bandwidth selection

We explored some available options for bandwidth computing:

1. the dpill function in R package KernSmooth implemented the method

of Ruppert et al. (1995) to calculate a direct plug-in estimator for

hmean



2. the h.amise function in R package kedd evaluates the asymptotic mean

integrated squared error to choose hmean (Terrell and Scott, 1985).

3. the bw.nrd0 function in R package stats implements a rule-of-thumb

for choosing the bandwidth of a Gaussian kernel density estimator

(Silverman, 1986).

In addition, we also explore user-provided hmean or the entire sequence hτ .

The corresponding results are presented in Figure 1. In general, the choice

of bandwidth does not affect the estimation that much. In the paper, we

use KernSmooth with the function dpill, as suggested in Yu and Jones

(1998).



Figure 1: Simulation results for the proposed method with different methods selecting

bandwidth hmean): (1) KernSmooth package(top left, h̄mean ≈ 0.7), (2) kedd pack-

age(top right, h̄mean ≈ 0.8), (3) stats package function bw.nrd0(mid left, h̄mean ≈

0.32), (4) stats package function bw.ucv(mid right, h̄mean ≈ 0.15), (5) user input

hmean = 0.5 (bottom left). After obtain hmean, we obtain all other hτ = hmean{τ(1 −

τ)/ϕ(Φ−1(τ))2}1/5. (6) set all hτ = 0.5 (bottom right).



S2 Additional simulation studies

We present three additional simulation settings in this section: (1) irregular

observed time points, (2) Y is generated from a stochastic process rather

than mimicking the natural history data, and (3) compares the traditional

KM estimate with the proposed KM estimate.

To generate data with irregular observational age, we first generate

a starting age ti1 ∼ Unif(4, 13) for each subject, which is the same as

described in Section 4. Then, for the following observations per person,

instead of setting tij = ti1 + 0.5(j − 1), we set tij = ti1 + ∆j with ∆j ∼

N(0.5(j − 1), 0.22). That is, we assume each subject visits the hospital

at around half a year but not exactly. When the observational ages are

irregular, the proposed method still works satisfactorily (see Figure 2), with

the estimation at each time point on the chart being rounded to a grid of

age.

Then, we consider the second case, in which Y is generated by a stochas-

tic process instead of mimicking the natural history data. We first simulate

the grid of t based on an original observation t0, as described in Section

4. Then, we generate µ(t) = −0.2t2 + 1.2t + 10 and Y (t) = N(µ(t), 32).

The true centile curves (denoted by solid lines in Figure 3) are obtained by

generating a large sample 105 to mimic the population and then applying
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Figure 2: Estimation results of ZIKQ with irregular observation points. The solid line

represents the true value, and the dashed line represents the average of estimated values.

ZIKQ. Results suggest that the proposed method estimates the true curves

consistently.

Next, we compare the estimation of the proposed KM estimator and

the classical KM estimator with 100 Monte Carlo replicates. The data-

generating scheme is the same as described in Section 4 of the paper. In

Figure 4, we provide the average of Ŝ(t) with nr = dr + cr + sr (blue

line) and the average of estimated Ŝ(t) by the classical KM estimator with

nr = nr−1 − dr−1 − cr−1 (red line). Compared to the true S(t) (black line),
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Figure 3: Estimation results of ZIKQ with Y generated from a stochastic process. The

solid line represents the true value, and the dashed line represents the average of esti-

mated values.

the classical KM estimator has an obvious deviation from the truth when

approaching older age.

S3 Estimated centile chart with confidence intervals

Though the estimated chart itself is always the primary consideration in

practice, such as the use of a growth chart, the confidence interval is often

of interest from a statistical perspective. In this section, we illustrate con-
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Figure 4: Compare the estimation of S(t) by the proposed KM estimator and the classical

KM estimator.

fidence intervals for the estimated centile chart can be easily built based on

Bootstrap. As every individual consists of multiple observations, we resam-

ple individuals with replacement instead of resample observations. Then,

the regular procedure is conducted to estimate the chart, and the 97.5% and

2.5% quantiles of the empirical distribution from bootstrap are reported at

each time point. For better visualization, we report estimated curves at

10%, 30%, 50%, 70%, and 90% (Figure 5). The confidence intervals are

well-separated with narrow widths, indicating the validity of the proposed

approach.
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Figure 5: Estimated centile chart by ZIKQ with confidence intervals. Solid lines repre-

sent the estimated chart, and dashed lines indicate 95% confidence intervals based on

Bootstrap.



S4 Proof for Theorem 1

Proof. We show the consistency of Q̂Y (τ | t) under two scenarios: τ ≤

1 − S(t) and τ > 1 − S(t) for its piecewise nature. As the true S(t)

is unobserved, given the estimated function Ŝ(·) and observational time

T = t, the probability of observing a positive response Y is estimated as

Ŝ(t). Then, we divide the support of quantile levels (0, 1) of Y into two

intervals such that (0, 1) = An ∪Bn:

An =
{
τ : 0 < τ ≤ 1− Ŝ(t)

}
,

Bn =
{
τ : 1− Ŝ(t) < τ ≤ 1

}
.

(i) If τ ≤ 1 − S(t), then by the consistency of Ŝ(t), P (Bn) → 0. For

any ϵ > 0,

P (|Q̂Y (τ | t)− 0| > ϵ) = P (|Q̂Y (τ | t)| > ϵ)

≤ P (|Q̂Y (τ | t)| > ϵ,An) + P (Bn)

= P (Bn) → 0.

(ii) If τ > 1−S(t), we use the convexity lemma (Pollard, 1991) and the

quadratic approximation to show the consistency. Recall that the original

loss function is Lτ (t) =
∑

i ρτ∗(Yi−a−b(Ti−t))Khn (t− Ti) and its practical

counterpart L̃τ (t) =
∑

i ρτ̂∗(Yi−a− b(Ti− t))Khn (t− Ti). Define mτ∗(t) =

argminaE(ρτ∗(Y − a) | T = t).



We first consider the consistency at the left boundary. Let tn = chn,

where c is a constant. Denote a∗n = mτ∗(tn), b
∗
n = m′

τ∗(tn) and the estimator

â = m̂τ̂∗(tn) and (â, b̂) minimize L̃τ (tn). Now, we show the consistency of

â. Denote Zi = (1, (Ti − tn)/hn)
⊤, Y ∗

i = Yi − mτ∗(tn) − m′
τ∗(tn)(Ti − tn)

and Ki = Khn(tn−Ti), Gn(θ) =
∑n

i=1{ρτ̂∗(Y ∗
i −θ⊤Zi/

√
nhn)−ρτ̂∗(Y

∗
i )}Ki.

Then, θ̄ =
√
nhn(â−mτ∗(t), hn(b̂−m′

τ∗(t)))
⊤ minimize the function Gn(θ).

For the convex function Gn(θ), based on the convexity lemma of Pollard

(1991), the pointwise convergence of Gn(θ) to its expectation is sufficient

to show the uniform convergence on any compact set of θ. We write Gn(θ)

in the following form

Gn(θ) = E{Gn(θ | t)}+(nhn)
−1/2

(∑
i

ρ′τ̂∗(Y
∗
i )ZiKi − E(ρ′τ̂∗(Y

∗
i ) | Ti)ZiKi

)⊤

θ+Rn(θ).

Let [−M,M ] be a interval contains the support of K, where M is a real

number. Then by Taylor expansion, for |Ti − tn| ≤ Mhn,

mτ∗(Ti) = mτ∗(tn) +m′
τ∗(Ti − tn) + (1/2)m′′

τ∗(tn)(Ti − t)2 + ξn,i,



where max{i:|Ti−tn|≤Mhn} ∥ξn,i∥∞ = o(h2
n). Then,

E(Gn(θ) | t)

=
∑
i

[
φ

{
mτ∗(Ti)− an − bn(Ti − tn)−

θ⊤Zi

nhn

| Ti

}
− φ{mτ∗(Ti)− an − bn(Ti − tn) | Ti}

]
Ki

=
∑
i

φ′{mτ∗(Ti)− an − bn(Ti − tn) | Ti}
θ⊤Zi√
nhn

Ki

+
1

2

∑
i

φ′′(mτ∗(Ti)− an − bn(Ti − tn) | Ti)
(θ⊤Zi)

2

nhn

Ki(1 + oP (1))

=
1√
nhn

∑
i

E{ρ′τ̂∗(Y ∗
i | Ti)}(θ⊤Zi)Ki +

1

2nhn

θ⊤

(∑
i

Kiφ
′′(0 | Ti)ZiZ

⊤
i

)
θ(1 + oP (1)).

Using (Fan et al., 1994, Lemma 1) and dominated convergence theorem, we

have

1

nhn

∑
i

Kiφ
′′(0 | ti)ZiZ

⊤
i = H + oP (1),

where H = φ′′(0 | 0)f(0)

c0 c1

c1 c2

, and cj =
∫ c

−∞ vjK(v)dv, j = 0, 1, 2.

Now we show that Rn(θ) = oP (1). Recall that

Rn(θ) = Gn(θ)− E(Gn(θ) | t)− (nhn)
−1/2

(∑
i

ρ′τ̂∗(Y
∗
i )ZiKi − E(ρ′τ̂∗(Y

∗
i ) | Ti)ZiKi

)⊤

θ



Given Conditions (A), we have

E[R2
n(θ)] ≤ nE

{
ρτ̂∗(Y

∗
1 − θ⊤Z1/

√
nhn)− ρτ̂∗(Y

∗
1 )− ρ′τ̂∗(Y

∗
1 )θ

⊤Z1/
√
nhn

}2

K2
1

≤ n

∫ ∫ {
ρτ̂∗(Y

∗
1 − θ⊤Z1/

√
nhn)− ρτ̂∗(Y

∗
1 )− ρ′τ̂∗(Y

∗
1 )θ

⊤Z1/
√
nhn

}2

G(y)dµ(y)

×K2
hn
(tn − ν)f(ν)dν

= o

(
n

∫
(θ⊤Z1)

2

nhn

K2
hn
(tn − ν)f(ν)dν

)
= o(1).

This implies that Rn(θ) = oP (1). Thus, we have

Gn(θ) = (1/2)θ⊤Hθ +W⊤
n θ + rn(θ),

where Wn = (nhn)
−1/2

∑
i ρ

′
τ̂∗(Y

∗
i )ZiKi. As in Fan et al. (1994), we write

the quantile loss function ρ(·)τ as ρτ (z) = |z| + (2τ − 1)z. Thus, ρ′τ (z) =

1z>0−1z<0+2p−1 and ρ′′τ (z) = 2δ(z), where δ(·) satisfies δ(0) = ∞, δ(z) =

0, z ̸= 0,
∫∞
−∞ δ(z)dz = 1. In addition, we have supθ∈K |rn(θ)| = oP (1) for

any compact set K (Pollard, 1991). Hence, Gn(θ) can be rewritten as

Gn(θ) = (1/2)θ⊤Hθ +W⊤
n θ + oP (1). (S4.1)

Thus, we conclude that the convex function Gn(θ)−W⊤
n θ converge in

probability to (1/2)θ⊤Hθ. Therefore, θ̄, which minimizes Gn(θ), converges



in probability to the minimizer θ̂n = −H−1Wn. That is,

θ̄n−θ̂n =
√
nhn

 â−mτ∗(tn)

hn(b̂−m′
τ∗(tn))

+

∑
i ρ

′
τ̂∗(Y

∗
i )

 c2 − c1
Ti−tn
hn

−c1 + c0
Ti−tn
hn

Ki

√
nhn{φ′′(0 | 0)f(0)(c0c2 − c21)}

= oP (1).

The first element of the above equation is

√
nhn(m̂τ̂∗(tn)−mτ∗(tn)− Vn) = oP (1);

Vn = {φ′′(0 | 0)f(0)(c0c2 − c21)}−1Un,

Un =
1

nhn

∑
i

ρ′τ̂∗(Y
∗
i ){c2 − c1(Ti − tn)/hn}Ki.

This implies that

P (
√

nhn|m̂τ̂∗(tn)−mτ∗(tn)− Vn| ≥ ϵ | t) = oP (1). (S4.2)

By Taylor expansion, we have φ′(x | t) = φ′(0 | t) + φ′′(0 | t)x(1 +



o(x)), as x → 0, where

φ′
τ̂∗(0 | T = t) = E[ρ′τ̂∗(Y −mτ∗(t0) | T = t)]

= E(1{Y−mτ∗ (t)>0} − 1{Y−mτ∗ (t)<0} + 2τ̂ ∗ − 1)

= (2τ̂ ∗ − 2)

∫
y<mτ∗ (t)

f(y | t)dy + 2τ̂ ∗
∫
y>mτ∗

f(y | t)dy

= 2(τ̂ ∗ − 1)F (mτ∗(t) | t) + 2τ̂ ∗[1− F (mτ∗(t) | t)]

= 2(τ̂ ∗ − 1)τ ∗ + 2τ̂ ∗(1− τ ∗)

= 2(τ̂ ∗ − τ ∗)

= 2

(
τ − {1− Ŝ(t)}

Ŝ(t)
− τ − {1− S(t)}

S(t)

)

Then,

Un =
1

nhn

∑
i

ρ′τ̂∗(Y
∗
i ){c2 − c1(Ti − tn)/hn}Ki

=
1

nhn

∑
i

ρ′τ̂∗(Yi − an − bn(Ti − tn)){c2 − c1(Ti − tn)/hn}Khn(Tn − ti)

=
1

nhn

∑
i

ρ′τ̂∗{Yi −mτ∗(Ti) + (1/2)m′′
τ∗(tn)(Ti − tn)

2 + ξn,i}

×{c2 − c1(Ti − tn)/hn}Khn(Ti − tn).



This leads to

E(Un) = h−1
n E[φ′

τ∗{(1/2)m′′
τ∗(tn)(t− tn)

2(1 + o(1)) | t}{c2 − c1(t− tn)/hn}Khn(t− tn)]

= h−1
n E[{2(τ̂ ∗ − τ ∗) + φ′′

τ̂∗(0 | t)(1/2)m′′
τ∗(tn)(t− tn)

2(1 + o(1))}

×{c2 − c1(t− tn)/hn}Khn(tn − t)]

= h−1
n

∫ 1

0

[{2(τ̂ ∗ − τ ∗) + φ′′
τ̂∗(0 | t)(1/2)m′′

τ∗(tn)(t− tn)
2(1 + o(1))}

×{c2 − c1(t− tn)/hn}Khn(tn − t)]f(t)dt

=

∫ c

c−1/hn

{2(τ̂ ∗ − τ ∗) + φ′′
τ̂∗(0 | t)(1/2)m′′

τ∗(tn)h
2
nv

2(1 + o(1))}

×(c2 − c1v)K(v)f(xn − hnv)dv

= (1/2)m′′
τ∗(0)f(0)φ

′′(0 | 0)(c22 − c1c3)h
2
n(1 + o(1)) + o(1)

= dh2(1 + o(1)) +O(τ̂ ∗ − τ ∗),

where d = (1/2)m′′
τ∗(0)f(0)φ

′′(0 | 0)(c22−c1c3). For interior points, key con-

clusions eq(S4.1)-(S4.2) are still valid withH = φ′′(0 | t)f(0)

1 0

0
∫ +∞
−∞ v2K(v)dv

,

Vn = (φ(0 | t)f(t)
∫ +∞
−∞ v2K(v)dv)−1Un and Un = (nhn)

−1
∑

i ρ
′
τ̂∗(Y

∗
i )Ki

∫ +∞
−∞ v2K(v)dv.

Since {c2 − c1(T1 − tn)/hn}Khn(Tn − t1)] ≤ CKhn(Tn − t1)],



E[E(Un | t)− E(Un)]
2

=
1

nh2
n

var[φ
′

τ̂∗(mρ∗(t1)− an − bn(t1 − tn) | t1){c2 − c1(t1 − tn)/hn}Khn(tn − t1)]

≤ c2

nh2
n

E[φ
′

τ̂∗

(
1

2
m

′′

ρ∗(tn)(t1 − tn)
2 + o(h2

n)

)
Khn(tn − t1)]

2

=
c2

nh2
n

E[{φ′

τ̂∗(0 | t1) +
1

2
φ”
τ̂∗(0 | t1)(m

′′

ρ∗(tn)(t1 − tn)
2 + o(h2

n))}Khn(t1 − tn)]
2

=
c2

nhn

∫ c

c− 1
hn

{2(τ̂ ∗ − τ ∗) + φ
′′

τ̂∗(0 | tn − hnv)O(h2
n)}2K2(v)f(tn − hnv)dv

= O

(
h4
n

nhn

)
+O

(
(τ̂ ∗ − τ ∗)2

nhn

)
+O

(
hn

n
(τ̂ ∗ − τ ∗)

)
,

where the last equality is according to the dominated convergence theorem.

Since τ̂ ∗ − τ ∗ = op(1)and P (An) → 0 for τ > 1−S(t), P (Bn) → 1, we have

P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ | t)

≤ P (An) + P {|m̂τ̂∗(tn)−mτ∗(tn)| > ϵ | t}

= P (An) + P {|m̂τ̂∗(tn)−mτ∗(tn)− Vn|+ |Vn| > ϵ | t}

≤ op(1) + d∗h2
n{1 + op(1)}

→ 0 (when hn → 0),

where d∗ = (1/2)m′′
τ∗(0)(c

2
2 − c1c3)/(c0c2 − c21).
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P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ)

= E[P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ | t)]

=

∫
P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ | t)dµ(t)

≤
∫
{t:P (|Q̂Y (τ |tn)−QY (τ |tn)|>ϵ|t)≤ϵ1}

ϵ1dµ(t)

+

∫
{t:P (|Q̂Y (τ |tn)−QY (τ |tn)|>ϵ|t)>ϵ1}

P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ | t)dµ(t)

≤ ϵ1 +

∫
{t:P (|Q̂Y (τ |tn)−QY (τ |tn)|>ϵ|t)>ϵ1}

1dµ(t)

With a fixed ϵ1,

lim
n→∞

∫
{t:P (|Q̂Y (τ |tn)−QY (τ |tn)|>ϵ|t)>ϵ1}

1dµ(t) → 0.

Then, let ϵ1 → 0, P (|Q̂Y (τ | tn)−QY (τ | tn)| > ϵ) → 0. Hence, we conclude

the proof.
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