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Regularity conditions, technical proofs, and simulation results are displayed in Section S1,

Section S2 and Section S3, respectively. In Section S4 we provide additional notes on the real

data analysis. In Section S5, we extend the development in the main text to accommodate the

generalized least squares loss function, with both theoretical properties and numerical studies

reported.

S1 Regularity Conditions

For a square matrix A, let ρmin(A) and ρmax(A) denote the minimum and

maximum eigenvalues of A, respectively. The following regularity condi-
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tions are imposed:

A. Assumptions about covariates and responses:

In addition to assuming {{Xi, Yi(t)} : i = 1, 2, . . . , n} to be i.i.d. for

t ∈ T , as in Section 2.1, we require that

A1. The dimension of Xi, p, is fixed.

A2. E(X4
ij) < ∞ for j = 1, . . . , p, and ρmin{E(XiX

T
i )} > 0.

A3. T is a compact interval, as required in Section 2.1.

A4. Xi is independent of {εi(t) : t ∈ T }, as required in Section 2.1.

B. Assumption about the coefficient functions in model (2.1):

There exist a positive integer q′ ≤ d and a constant C1 > 0, together

with a constant ν > 0, such that the q′th order derivative of functions

βj(·) satisfies

|β(q′)
j (t1)− β

(q′)
j (t2)| ≤ C1|t1 − t2|ν ,

for all t1, t2 ∈ T and all 1 ≤ j ≤ p. Define q = q′ + ν.

C. Assumptions about B-spline approximations:

C1. The number of knots satisfies

(i) M2q

n
> C2 for some positive constant C2;

(ii) M
n
→ 0 as n → ∞.
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C2. For j = 1, . . . ,M , let hj = τj − τj−1. Assume that

max
1≤j≤M

|hj+1 − hj| = o(M−1) and max
1≤j≤M

hj ≤ C3 · min
1≤j≤M

hj

for some positive constant C3.

C3. There exists a positive constant C4 ≥ 1 such that

C−1
4 m/M ≤ ρmin(Φ

T(t)Φ(t)) ≤ ρmax(Φ
T(t)Φ(t)) ≤ C4m/M.

(S1.1)

These requirements imply the invertibility of ΦT(t)Φ(t), yielding

that m ≥ M + d since Φ(t) is an m× (M + d) matrix.

D. Assumptions about measurement error Ui in model (3.7):

D1. For any 1 ≤ j ≤ p, assume that E(U4
ij) < ∞.

D2. For i = 1, . . . , n, Ui is independent of {Yi(t) : t ∈ T } and Xi, as

required in Section 3.1.

E. Assumptions about the penalty function Pλ(v) for v ≥ 0:

E1. Pλ(0) = 0 and Pλ(v) > 0 for v > 0.

E2. The first derivative of Pλ(v), denoted P ′
λ(v), exists on (0,+∞),

and satisfies

(i) P ′
λ(v) is continuous and monotonically non-increasing;

(ii) P ′
λ(v) = 0 for v > aλ for some constant a > 1;
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(iii) limv→0+ P ′
λ(v) = λ.

Assumption A1 states the setting we consider. Assumption A2 is im-

posed to avoid settings with the perfect covariate collinearity, which results

in nonidentifiability issues; this assumption is widely used in the litera-

ture of function-on-scalar regression models (Wang et al., 2007; Parodi and

Reimherr, 2018). Indeed, if E(XiX
T
i ) is singular, there exists a non-zero

vector γ ∈ Rp such that γTXi = 0 almost surely. Then any function of

the form β(t) + cfγ(t) satisfies model (2.1), where c ∈ R is an arbitrary

constant and fγ(t) ≡ γ.

Assumption B is commonly made for the function-on-scalar regression

model, which allows the use of B-spline based methods to estimate the

coefficient functions in the model. In fact, such βj(t) is smooth enough and

can be approximated by some “best” function in the linear space spanned

by all B-spline basis functions ϕ(t), denoted Sd,M . To be specific, together

with Condition C2, there always exist B-spline functions {θj(t) ∈ Sd,M :

j = 1, . . . , p, t ∈ T }, such that

sup
1≤j≤p

∥θj − βj∥L∞ ≤ C ′
1M

−q, (S1.2)

for any positive integer M , where C ′
1 is a positive constant functionally

independent of M (De Boor, 1978, Theorem XII(6)), and thus yielding

that ∥θj − βj∥L∞ → 0 as M → ∞. For a B-spline function θj(t) ∈ Sd,M
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satisfying (S1.2), we write

θj(t) = ϕ
T(t)b0,j, (S1.3)

where b0,j ∈ RM+d. Let b0 = (bT0,1, . . . , b
T
0,p)

T denote the (M + d)p × 1

vector. In order to establish the estimation consistency of β̂j, we therefore

examine ∥θj − β̂j∥L∞ , and it suffices to find an upper bound of ∥θj − β̂j∥L∞

which converges to 0 as n → ∞, as discussed in the following derivation of

Theorem 1.

Generally speaking, the number of B-spline inner knots should be di-

vergent to derive the function consistency, as shown in (S1.2). However, a

too large M results in an estimator with an overly large variance. Imposing

condition C1 is to constrain the divergence rate of M . The imposition of

Condition C(i) is to control the B-spline approximation error, which makes

the terms involving the B-spline error (i.e., I22 and I25 in (S2.28) of the proof

of Theorem 1) negligible, relative to other terms. Without this condition,

the convergence rate for b̂ in Theorem 1 is not Op(
√
M/n) but becomes

Op(
√

M/n +M1/2−q). Condition C2 is identical to Assumption 3 of Zhou

et al. (1998), which is easy to be met. For instance, the equally spaced

knots satisfies Condition C2.

While constraint (S1.1) in Condition C3 may look somewhat stringent,

they are readily satisfied for many settings. In fact, to satisfy (S1.1), it
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suffices to require aT{ΦT(t)Φ(t)/m}a to be of order O(M−1) for any vector

a with ∥a∥ = 1. To this end, let s(t) = aTϕ(t) for t ∈ T . Then we write

aT{ΦT(t)Φ(t)/m}a =

∫
T
s(t)2dFm(t), (S1.4)

where Fm(t) ≜ 1
m

∑m
k=1 I(tk ≤ t) is the step function of observations t =

{t1, . . . , tm}. Suppose that there is a distribution function F (t) with positive

continuous density on the domain T , which satisfies

∥Fm − F∥L∞
= o(M−1). (S1.5)

On one hand, it can be proved that
∫
T s(t)2dF (t) = O(M−1) (De Boor,

1978, Page 155). On the other hand, we have that
∫
T s(t)2d(Fm − F )(t) =

o(M−1) due to (S1.5). Therefore, the right-hand-side of equation (S1.4) is

of order O(M−1). The details of this proof can be found in Zhou et al.

(1998, Lemma 6.1).

Assumption D1 is useful for technical derivations, and it is commonly

made in the literature of measurement error models in a tacit manner, for

example, by assuming the normality ofUi in model (3.7) (e.g., Section 2.6 of

Yi (2017)). Assumptions in E are widely used in the literature of variable

selection. The well-known SCAD (Fan and Li, 2001) and MCP (Zhang,

2010) are two examples satisfying them.

Remark 1. Condition (S1.5) is easy to be met. For example, if the do-
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main T ≜ [0, 1] and the observations are equally spaced at tk = k/m

for k = 1, . . . ,m, then we take F as the uniform distribution function on

[0, 1], which satisfies ∥Fm − F∥L∞
= m−1. Hence (S1.5) holds under the

assumption that M/m → 0 as m → ∞.

Remark 2. The results in Section 5 of the main text are established by

treating the observation points t = {t1, . . . , tm} as deterministic or pre-

specified. When the observation times are random variables, the results

can still hold if proper modifications of the conditions are done; typically,

the inequalities (S1.1) is now modified to hold with probability tending

to 1. This new constraint can also be proved if ∥Fm − F∥L∞
= op(M

−1),

where the definitions of Fm and F are the same as before. In a special case

where {t1, . . . , tm} are independently sampled from a common distribution

function, say, F0(t), then we have that ∥Fm − F0∥L∞
= Op(m

−1/2) according

to Massart (1990). Therefore, the condition ∥Fm − F∥L∞
= op(M

−1) is

satisfied if we set F = F0 and assume M2/m → 0 as m → ∞.
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S2 Technical Details

S2.1 Preliminary Preparations

For a vector a = (a1, . . . , ak)
T, let ∥a∥∞ and ∥a∥ respectively denote the

infinity norm and the Euclidean norm for a, i.e., ∥a∥∞ = max1≤j≤k |aj|

and ∥a∥ =
√∑k

j=1 a
2
j . For a p × q matrix A = [ajk]p×q with the (j, k)

element ajk ∈ R, let ∥A∥F and ∥A∥2 respectively represent the Frobenius

norm and the matrix 2-norm (i.e., the spectral norm) for A, i.e., ∥A∥F =√∑p
j=1

∑q
k=1 a

2
jk and ∥A∥2 =

√
ρmax(ATA). An equivalent definition for

the matrix 2-norm is given by

∥A∥2 = sup
∥w∥=1

∥Aw∥, (S2.6)

where w is a vector with suitable dimension.

In the subsequent derivations, we frequently use the following proper-

ties, together with Lemmas 1 and 2.

Property 1: For matrices A, B, C and D having suitable dimensions,

(A⊗B)T = AT ⊗BT and (A⊗C)(B ⊗D) = (AC)⊗ (BD).

Property 2: For any matrices A, B and C with suitable dimensions,

(BT ⊗A) vec(C) = vec(ACB).
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Property 3: For any matrices A and B,

∥A⊗B∥2 = ∥A∥2∥B∥2.

Property 4: For any matrices A and B with suitable dimensions, we have

that

(a) ∥AB∥F ≤ ∥A∥2∥B∥F and ∥AB∥F ≤ ∥A∥F∥B∥2.

(b) ∥A∥2 ≤ ∥A∥F .

Property 5: For any symmetric positive semi-definite matrix G,

ρmax(G
2) = {ρmax(G)}2.

Property 6: For positive semi-definite matrices S and T ,

ρmin(S ⊗ T ) = ρmin(S)ρmin(T ).

Properties 1 and 2 can be found in Horn and Johnson (1991, Section

4.2) or proved by using the definition of the kronecker product. Properties

3 and 6 are directly resulted from Theorem 4.2.12 of Horn and Johnson

(1991) and Properties 4 and 5 can be found in Horn and Johnson (2012,

Section 5.6). We also present rigorous proofs for Properties 3-6 below.

Proof of Property 3, 4, 5 and 6:
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For any rectangular matrices S1 and T1, let the nonzero singular values

of S1 and T1 be {λ1, . . . , λs} and {µ1, . . . , µt}, respectively. According to

Theorem 4.2.12 of Horn and Johnson (1991), all nonzero singular values for

S1 ⊗ T1 is given by {λjµk : 1 ≤ j ≤ s, 1 ≤ k ≤ t}. Hence for any matrices

A and B, we have that

∥A⊗B∥22 = ρmax{(ATA)⊗ (BTB)}

= ρmax(A
TA) · ρmax(B

TB)

= ∥A∥22∥B∥22,

where the first step is due to Property 1 and the definition of spectral norm,

and the second step is because ATA and BTB are positive semi-definite,

indicating that all eigenvalues are non-negative. Property 3 is then proved.

Similarly, for two positive semi-definite matrices S and T ,

ρmin(S ⊗ T ) = ρmin(S)ρmin(T ),

since their eigenvalues are all non-negative. Property 6 is proved.

Note that the Frobenius norm for matrix A can be rewrite as ∥A∥F =√
tr(ATA), where tr(·) represents the trace operator. Property 4 (b) then

directly follows since

∥A∥2F = tr(ATA) ≥ ρmax(A
TA) = ∥A∥22.

For Property 4 (a), let B = [B1, . . . ,Bp], where Bj for j = 1, . . . , p are
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column vectors of A. Then we have that

∥AB∥2F = tr(BTATAB)

=

p∑
j=1

BT
j A

TABj

≤ ρmax(A
TA)

p∑
j=1

BT
j Bj

= ∥A∥22∥B∥2F .

By the facts that ∥AB∥F also equals to tr(ABBTAT) and ρmax(BB
T) =

∥B∥22, we can prove the other inequality analogously.

Now we verify Property 5. Since G is symmetric, there exists a a real

orthogonal matrix P such that

G = P TΛP ,

where Λ = diag(λ1, . . . , λm) is the diagonal matrix with λj, 1 ≤ j ≤ m,

representing the ith eigenvalue of G. Without loss of generality, we assume

that λ1 = ρmax(G). It is then obvious that

ρmax(G
2) = ρmax(P

TΛ2P ) = λ2
1 = {ρmax(G)}2,

where the first step is due to that PP T equals identity and the second step

is because that all λj ≥ 0, j = 1, . . . ,m.

Lemma 1. Let X and Z be two independent column vector variables with

mean 0 and covariance matrices ΣX and ΣZ respectively. For any real-
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valued matrix C with a suitable dimension, we have that

Cov{(X ⊗C)Z} = ΣX ⊗ (CΣZC
T).

Proof:

Let X = (X1, . . . , Xp)
T and let Wj = XjCZ for j = 1, . . . , p. Then

(X ⊗C)Z = [W T
1 , · · · ,W T

p ]
T. It is direct to verify that

Var(Wj) = E(X2
j )CΣZC

T

and

Cov(Wj,Wl) = Cov(Xj, Xl)CΣZC
T.

It is then straightforward to combine these two results and obtain that

Cov([W T
1 , · · · ,W T

p ]
T) = ΣX ⊗ (CΣZC

T).

Lemma 2. Let Σ be an m × m real-valued symmetric positive definite

matrix and let Ψ be an m × d real-valued matrix with the full rank, where

d ≤ m. Then

ρmin(Ψ
TΣΨ) ≥ ρmin(Ψ

TΨ)ρmin(Σ), (S2.7)

and

ρmax(Ψ
TΣΨ) ≤ ∥ΨTΨ∥2ρmax(Σ). (S2.8)
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Proof:

Since Σ is real-valued and symmetric, there exists a real-valued orthog-

onal matrix P such that

Σ = P TΛP ,

where Λ = diag(λ1, . . . , λm) is the diagonal matrix with λj representing an

eigenvalue of Σ for 1 ≤ j ≤ m.

Define Ψ̃ = PΨ and write Ψ̃ = [ψ1, · · · ,ψm]
T. Since P TP equals the

identity matrix, proving (S2.7) is equivalent to showing that

ρmin(Ψ̃
TΛΨ̃) ≥ ρmin(Ψ̃

TΨ̃)ρmin(Λ), (S2.9)

which is true because that

ρmin(Ψ̃
TΛΨ̃) = ρmin

(
m∑
j=1

λjψjψ
T
j

)

= inf
∥w∥=1

m∑
j=1

λj(w
Tψj)

2

≥ inf
∥w∥=1

m∑
j=1

(wTψj)
2ρmin(Λ)

= ρmin(Λ) · ρmin

(
m∑
j=1

ψjψ
T
j

)

= ρmin(Ψ̃
TΨ̃)ρmin(Λ),

where the second and the fourth steps are due to the fact that ρmin(Q) =

inf∥w∥=1w
TQw for any square matrix Q. The proof of (S2.7) is then com-

pleted.
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Expression (S2.8) can be proved using arguments analogous to those

for (S2.7) and the identity ρmax(Ψ
TΨ) = ∥ΨTΨ∥2.

Lemma 3. Consider the B-spline basis functions ϕ(t) in Section 2.2 and

the linear space Sd,M spanned by them given before (S1.2). For t ∈ T ,

let f(t) = ϕT(t)b ∈ Sd.M denote a spline function over domain T with

coefficients b ∈ RM+d. Assume Assumption C2. Then there exists positive

constants E1 and E2 depending only on d such that

E1

√
M∥f∥L2 ≤ ∥b∥ ≤ E2

√
M∥f∥L2 .

Proof:

In Section 2.2, we use τ1 < τ2 < · · · < τM+1 to denote knots on T for

the setup of B-spline, where τ1 and τM+1 represent the two endpoints of

T . Define τk = τ1 for all k = 1 − d, 1 − d + 1, . . . , 0 and τk = τM+1 for

all k = M + 2, . . . ,M + 2d + 1. Let b = (b1, . . . , bM+d)
T. According to

equation (13) in Zhou et al. (1998), there exist positive constants Ẽ1 and

Ẽ2 depending only on d, such that

Ẽ1

M+d∑
j=1

(τj+1 − τj−d)b
2
j ≤ ∥f∥2L2

≤ Ẽ2

M+d∑
j=1

(τj+1 − τj−d)b
2
j . (S2.10)

Due to Assumption C2 and the fact that min1≤j≤M hj ≤ 1/M ,

max
1≤j≤M

hj ≤ C3 min
1≤j≤M

hj ≤ C3/M.
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Similarly, since max1≤j≤M hj ≥ 1/M ,

min
1≤j≤M

hj ≥ C−1
3 max

1≤j≤M
hj ≥ 1/(C3M).

Hence, we have that for any j = 1, . . . ,M ,

1/(C3M) ≤ min
1≤j≤M

hj ≤ τj+1 − τj−d ≤ (d+ 1) max
1≤j≤M

hj ≤ C3(d+ 1)/M.

(S2.11)

Then by (S2.10) and (S2.11),

Ẽ1

C3M
∥b∥2 ≤ ∥f∥2L2

≤ C3(d+ 1)Ẽ2

M
∥b∥2,

which completes the proof.

S2.2 Proof of Theorem 1

The proof consists of two parts, each for proving (5.23) or (5.24).

Part 1: Prove (5.23).

Set δn =
√

M
n
. To show the existence of a local minimizer, say b̂, of

Qn(b) satisfying ∥b̂− b0∥ = Op(δn), it suffices to verify that, for any ϵ > 0,

there exists a positive constant Kϵ such that

P
(

inf
∥v∥=Kϵ,v∈Rp(M+d)

Qn(b0 + δnv) > Qn(b0)

)
> 1− ϵ. (S2.12)

The proof of (S2.12) consists of the following steps, where for any given

constant K > 0, we consider any v satisfying ∥v∥ = K.
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Step 1: Identify a lower bound of Qn(b0 + δnv)−Qn(b0).

For i = 1, . . . , n, let

Zi =X
T
i ⊗Φ(t) and Z∗

i =X∗
i
T ⊗Φ(t). (S2.13)

By (3.11),

Qn(b) =
1

2

n∑
i=1

∥Yi(t)−Z∗
i b∥

2 − n

2
bT
[
Σ⊗

{
ΦT(t)Φ(t)

}]
b+ nm

p∑
j=1

Pλ(∥bj∥).
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Therefore,

Qn(b0 + δnv)−Qn(b0) =
1

2

n∑
i=1

{
∥Yi(t)−Z∗

i (b0 + δnv)∥2 − ∥Yi(t)−Z∗
i b0∥

2}
+ nm

p∑
j=1

{Pλ(∥b0,j + δnvj∥)− Pλ(∥b0,j∥)}

− n

2
(b0 + δnv)

T
[
Σ⊗

{
ΦT(t)Φ(t)

}]
(b0 + δnv)

+
n

2
bT0
[
Σ⊗

{
ΦT(t)Φ(t)

}]
b0

=
δ2n
2

n∑
i=1

vTZ∗
i
TZ∗

i v − δn

n∑
i=1

vTZ∗
i
T(Yi(t)−Z∗

i b0)

+ nm

p∑
j=1

{Pλ(∥b0,j + δnvj∥)− Pλ(∥b0,j∥)}

− nδnb
T
0

[
Σ⊗

{
ΦT(t)Φ(t)

}]
v − nδ2n

2
vT
[
Σ⊗

{
ΦT(t)Φ(t)

}]
v

≥ δ2n
2

n∑
i=1

vTZ∗
i
TZ∗

i v − δn

n∑
i=1

vTZ∗
i
T(Yi(t)−Z∗

i b0)

+ nm
∑
j /∈J0

{Pλ(∥b0,j + δnvj∥)− Pλ(∥b0,j∥)}

− nδnb
T
0

[
Σ⊗

{
ΦT(t)Φ(t)

}]
v − nδ2n

2
vT
[
Σ⊗

{
ΦT(t)Φ(t)

}]
v

≜ I1 + I2 + I3 + I4 + I5,

(S2.14)

where vj is the jth part of v such that v = (vT1 , . . . ,v
T
p )

T. The inequality

is due to Assumption E1 and the fact that b0,j = 0 for all j ∈ J0.

Step 2: Examine I1 and I5 in (S2.14).
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By definition and model (3.7),

Z∗
i = Zi +U

T
i ⊗Φ(t).

Hence the term I1 in (S2.14) can be further split as

I1 =
δ2n
2

n∑
i=1

vTZ∗T
i Z

∗
i v

=
δ2n
2

n∑
i=1

vTE(ZT
i Zi)v + δ2n

n∑
i=1

vTZT
i {UT

i ⊗Φ(t)}v

+
δ2n
2

n∑
i=1

vT
[
(UiU

T
i )⊗

{
ΦT(t)Φ(t)

}]
v

+
δ2n
2

n∑
i=1

vT
{
ZT

i Zi − E(ZT
i Zi)

}
v

≜ I1,1 + I1,2 + I1,3 + I1,4. (S2.15)

Now we examine (S2.15) term by term.

For I1,1 in (S2.15), we have that

I1,1 =
δ2n
2

n∑
i=1

vTE(ZT
i Zi)v

=
nδ2n
2
vT
[
E
(
XiX

T
i

)
⊗
{
ΦT(t)Φ(t)

}]
v

≥ nδ2n
2

∥v∥2 m
M

ρmin

{
E(XiX

T
i )
}
ρmin

{
M

m
ΦT(t)Φ(t)

}
≥ δ2nK

2nm

M
C0 (S2.16)

for some positive constant C0, where the first equality is due to Property

1, the third step is due to Property 6 and the last inequality is due to

Assumption A2 and Assumption C3 as well as ∥v∥ = K.
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For I1,2 in (S2.15), we have that

|I1,2| = δ2n

∣∣∣∣∣
n∑

i=1

vTZi
T{UT

i ⊗Φ(t)}v

∣∣∣∣∣
= δ2n

∣∣∣∣∣vT
[(

n∑
i=1

XiU
T
i

)
⊗
{
ΦT(t)Φ(t)

}]
v

∣∣∣∣∣
≤ δ2n∥v∥

∥∥∥∥∥
[(

n∑
i=1

XiU
T
i

)
⊗
{
ΦT(t)Φ(t)

}]
v

∥∥∥∥∥
≤ δ2n∥v∥2 sup

∥w∥=1

∥∥∥∥∥
[(

n∑
i=1

XiU
T
i

)
⊗
{
ΦT(t)Φ(t)

}]
w

∥∥∥∥∥
= δ2n∥v∥2

∥∥∥∥∥
(

n∑
i=1

XiU
T
i

)
⊗
{
ΦT(t)Φ(t)

}∥∥∥∥∥
2

= δ2n∥v∥2
∥∥∥∥∥

n∑
i=1

XiU
T
i

∥∥∥∥∥
2

∥∥ΦT(t)Φ(t)
∥∥
2
, (S2.17)

where the second equality is due to (S2.13) and Property 1, the third step is

due to the Cauchy-Schwarz inequality, the fifth step is due to the definition

(S2.6), and the last equality is due to Property 3.

Note that

∥∥∥∥∥
n∑

i=1

XiU
T
i

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

i=1

XiU
T
i

∥∥∥∥∥
F

=

√√√√ p∑
j,k=1

(
n∑

i=1

XijUik

)2

= Op(
√
n)

(S2.18)

due to the central limit theorem, and by Assumption C3, we further know
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that

∥ΦT(t)Φ(t)∥2 =
√
ρmax {ΦT(t)Φ(t)ΦT(t)Φ(t)}

= ρmax

(
ΦT(t)Φ(t)

)
≤ C4m/M, (S2.19)

where the first step is due to the definition of the matrix 2-norm, and the

second step is due to Property 5. Therefore, (S2.17) is bounded:

|I1,2| = Op(δ
2
n

√
nm/M) ·K2 (S2.20)

since ∥v∥ = K.

Next, combining I1,3 in (S2.15) and I5 in (S2.14) gives that

I1,3 + I5 =
1

2
δ2nv

T

[{
n∑

i=1

(UiU
T
i −Σ)

}
⊗
{
ΦT(t)Φ(t)

}]
v. (S2.21)

For any 1 ≤ j, k ≤ p,

Var

{
n∑

i=1

(UijUik − Σjk)

}
= nVar(UijUik) = O(n), (S2.22)

due to Assumption D1, where Σjk is the (j, k) element of Σ. Therefore, by

Property 4 (b) and the definition of the Frobenius norm,∥∥∥∥∥
n∑

i=1

(UiU
T
i −Σ)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥
n∑

i=1

(UiU
T
i −Σ)

∥∥∥∥∥
2

F

=

p∑
j,k=1

{
n∑

i=1

(UijUik − Σjk)

}2

= Op(n),
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where the last step comes from the Markov inequality and (S2.22), so∥∥∥∥∥
n∑

i=1

(UiU
T
i −Σ)

∥∥∥∥∥
2

= Op(
√
n). (S2.23)

Applying (S2.23) and (S2.19) to (S2.21) gives that

|I1,3 + I5| ≤
1

2
δ2n∥v∥2

∥∥∥∥∥
n∑

i=1

(UiU
T
i −Σ)

∥∥∥∥∥
2

∥∥ΦT(t)Φ(t)
∥∥
2

= Op(δ
2
n

√
nm/M) ·K2, (S2.24)

where the inequality is due to Property 3.

By (S2.13), (S2.19) and Properties 3 and 4,

|I1,4| =
δ2n
2

∣∣∣∣∣
n∑

i=1

vT
{
ZT

i Zi − E(ZT
i Zi)

}
v

∣∣∣∣∣
=

δ2n
2

∣∣∣∣∣vT
[{

n∑
i=1

XiX
T
i − nE(XiX

T
i )

}
⊗
{
ΦT(t)Φ(t)

}]
v

∣∣∣∣∣
≤ nδ2n

2
∥v∥2

∥∥∥∥∥ 1n
n∑

i=1

{XiX
T
i − E(XiX

T
i )}

∥∥∥∥∥
F

∥∥ΦT(t)Φ(t)
∥∥
2

= Op(δ
2
n

√
nm/M) ·K2, (S2.25)

where the last step comes from Assumption A2, the central limit theorem

to bound the Frobenius norm term, and (S2.19).

Therefore, combining (S2.20), (S2.24) and (S2.25) gives that

|I1,2 + I1,3 + I1,4 + I5| = Op(δ
2
n

√
nm/M) ·K2. (S2.26)

Step 3: Examine I2 and I4 in (S2.14).

To describe the difference between (2.3) and (S1.3), let ∆j(t) ≜ βj(t)−

θj(t), which equals βj(t)−bT0,jϕ(t), representing the B-spline approximation
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error for βj(t). Then we write βj(t) = b
T
0,jϕ(t) + ∆j(t). Inserting this into

model (2.2) gives that

Yi(t) =

p∑
j=1

Xij (βj(t1), · · · , βj(tm))
T + εi(t)

=

p∑
j=1

Xij{Φ(t)b0,j +∆j(t)}+ εi(t)

= Φ(t)[b0,1, · · · , b0,p]Xi + εi(t) +

p∑
j=1

Xij∆j(t)

= {XT
i ⊗Φ(t)}b0 + εi(t) +

p∑
j=1

Xij∆j(t), (S2.27)

where ∆j(t) = (∆j(t1), . . . ,∆j(tm))
T, and the last step is due to Property

2. Plugging (S2.27) into I2 in (S2.14) yields that

I2 = −δn

n∑
i=1

vTZ∗
i
T(Yi(t)−Z∗

i b0)

= −δnv
T

[
n∑

i=1

(
ZT

i +Ui ⊗ΦT(t)
){
εi(t) +

p∑
j=1

Xij∆j(t)−
(
UT

i ⊗Φ(t)
)
b0

}]

= −δnv
T

n∑
i=1

ZT
i εi(t)− δnv

T
n∑

i=1

ZT
i

(
p∑

j=1

Xij∆j(t)

)

+ δnv
T

n∑
i=1

ZT
i

(
UT

i ⊗Φ(t)
)
b0 − δnv

T
n∑

i=1

(
Ui ⊗ΦT(t)

)
εi(t)

− δnv
T

n∑
i=1

(
Ui ⊗ΦT(t)

)( p∑
j=1

Xij∆j(t)

)
+ δnv

T
n∑

i=1

(
Ui ⊗ΦT(t)

) (
UT

i ⊗Φ(t)
)
b0

≜ I2,1 + I2,2 + I2,3 + I2,4 + I2,5 + I2,6.

(S2.28)
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Note that ∥∥∥∥∥
n∑

i=1

ZT
i εi(t)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(
Xi ⊗ΦT(t)

)
εi(t)

∥∥∥∥∥
=

∥∥∥∥∥vec
(
ΦT(t)

n∑
i=1

εi(t)X
T
i

)∥∥∥∥∥
=

∥∥∥∥∥ΦT(t)
n∑

i=1

εi(t)X
T
i

∥∥∥∥∥
F

≤ ∥Φ(t)∥2

∥∥∥∥∥
n∑

i=1

εi(t)X
T
i

∥∥∥∥∥
F

, (S2.29)

where the second equality of is due to Property 2 and the last inequality is

due to Property 4 (a).

On one hand,

∥Φ(t)∥2 =
√

ρmax(ΦT(t)Φ(t)) = O(
√
m/M), (S2.30)

by Assumption C3 and the definition of the matrix 2-norm. On the other

hand, by the Chebyshev inequality, we have that

P

(∥∥∥∥∥
n∑

i=1

εi(t)X
T
i

∥∥∥∥∥
F

≥
√
nmR

)
≤ 1

nmR2
E

∥∥∥∥∥
n∑

i=1

εi(t)X
T
i

∥∥∥∥∥
2

F


=

n

nmR2

p∑
j=1

m∑
l=1

E(X2
ij)E[{εi(tl)}2]

= O(1)/R2 → 0 as R → ∞,

where the second step is due to the independence assumption for εi(t) and

Xi, and the third step is due to Assumption A2 and the assumption that
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supt∈T E[{εi(t)}2] < ∞. Hence,∥∥∥∥∥
n∑

i=1

εi(t)X
T
i

∥∥∥∥∥
F

= Op(
√
nm). (S2.31)

Combining this rate and (S2.30) with (S2.29) gives that∥∥∥∥∥
n∑

i=1

ZT
i εi(t)

∥∥∥∥∥ = Op

(
m
√
n√

M

)
,

which leads to

|I2,1| ≤ δn∥v∥

∥∥∥∥∥
n∑

i=1

ZT
i εi(t)

∥∥∥∥∥ = Op

(
δn

m
√
n√

M

)
·K (S2.32)

Similarly, following the steps of (S2.31) and using the independence

assumption for εi(t) and Ui and Assumption D1, we obtain that I2,4 in

(S2.28) can be bounded as

|I2,4| ≤ δn∥v∥

∥∥∥∥∥
n∑

i=1

(Ui ⊗ΦT(t))εi(t)

∥∥∥∥∥
≤ δn∥v∥∥Φ(t)∥2

∥∥∥∥∥
n∑

i=1

εi(t)U
T
i

∥∥∥∥∥
F

= Op

(
δn

m
√
n√

M

)
K. (S2.33)

To examine I2,2 in (S2.28), define them×pmatrix∆(t) = [∆1(t), . . . ,∆p(t)].

Then by (S2.13),

I2,2 = −δnv
T

n∑
i=1

{
(Xi ⊗ΦT(t))∆(t)Xi

}
.



S2. TECHNICAL DETAILS

Note that by Property 2,∥∥∥∥∥
n∑

i=1

{
(Xi ⊗ΦT(t))∆(t)Xi

}∥∥∥∥∥ =

∥∥∥∥∥vec
(
ΦT(t)∆(t)

(
n∑

i=1

XiX
T
i

))∥∥∥∥∥
=

∥∥∥∥∥ΦT(t)∆(t)

(
n∑

i=1

XiX
T
i

)∥∥∥∥∥
F

≤ ∥Φ(t)∥2 × ∥∆(t)∥F ×

∥∥∥∥∥
n∑

i=1

XiX
T
i

∥∥∥∥∥
2

,

(S2.34)

where the last step is due to Property 4. By (S1.2), each element of ∆(t)

is uniformly bounded by C ′
1M

−q, and hence,

∥∆(t)∥F = O(
√
mM−q). (S2.35)

Furthermore, by the Cauchy-Schwarz inequality,∥∥∥∥∥
n∑

i=1

XiX
T
i

∥∥∥∥∥
2

= ρmax

(
n∑

i=1

XiX
T
i

)

= sup
∥w∥=1

wT

(
n∑

i=1

XiX
T
i

)
w

= sup
∥w∥=1

{
n∑

i=1

(wTXi)
2

}

≤
n∑

i=1

∥Xi∥2

= Op(n), (S2.36)

where the first step comes from Property 5, the second step is because that

ρmax(A) = sup∥w∥=1w
TAw for any square matrix A, and the last step is

due to Assumption A2. Hence, applying (S2.30), (S2.35), (S2.36) to (S2.34)
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gives ∥∥∥∥∥
n∑

i=1

{
(Xi ⊗ΦT(t))∆(t)Xi

}∥∥∥∥∥ = Op(mM−q−1/2n),

which leads to

|I2,2| ≤ δn∥v∥

∥∥∥∥∥
n∑

i=1

{
(Xi ⊗ΦT(t))∆(t)Xi

}∥∥∥∥∥ = Op(δnmM−q−1/2n)K

(S2.37)

since ∥v∥ = K.

The term I2,5 in (S2.28) can be treated analogously. By (S2.18), we can

show that

|I2,5| ≤ δn∥v∥

∥∥∥∥∥
n∑

i=1

{
(Ui ⊗ΦT(t))∆(t)Xi

}∥∥∥∥∥
≤ δn∥v∥∥Φ(t)∥2∥∆(t)∥F

∥∥∥∥∥
n∑

i=1

UiX
T
i

∥∥∥∥∥
2

= Op(δnmM−q−1/2
√
n)K. (S2.38)

Now examine I2,3 in (S2.28) using a similar strategy. First, define a

p × (M + d) matrix Ũ whose transpose is [b0,1, . . . , b0,p]. According to

Assumption B, the true coefficient function βj(t) is uniformly bounded with

respect of t, which implies that all elements of Ũ is also uniformly bounded,

i.e.,

sup
1≤j≤p

∥b0,j∥∞ = O(1). (S2.39)

Therefore,

∥Ũ∥F = O(
√
M). (S2.40)
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Then by (S2.13),

|I2,3| = δnv
T

[
(

n∑
i=1

XiU
T
i )⊗

{
ΦT(t)Φ(t)

}]
b0

≤ δn∥v∥

∥∥∥∥∥
[
(

n∑
i=1

XiU
T
i )⊗

{
ΦT(t)Φ(t)

}]
b0

∥∥∥∥∥
≤ δn∥v∥

∥∥∥∥∥vec
(
ΦT(t)Φ(t)Ũ(

n∑
i=1

XiU
T
i )

)∥∥∥∥∥
= δn∥v∥

∥∥∥∥∥ΦT(t)Φ(t)Ũ(
n∑

i=1

XiU
T
i )

∥∥∥∥∥
F

≤ δn∥v∥
∥∥ΦT(t)Φ(t)

∥∥
2
∥Ũ∥F

∥∥∥∥∥
n∑

i=1

XiU
T
i

∥∥∥∥∥
2

= Op(δnm
√
n/

√
M)K, (S2.41)

where the third step is due to Property 2, the fifth step is due to Property

4 and the last step is due to (S2.18), (S2.19), and (S2.40).

Now combining I2,6 in (S2.28) and I4 in (S2.14), we obtain that

I2,6 + I4 = δnv
T

[{
n∑

i=1

(UiU
T
i −Σ)

}
⊗
{
ΦT(t)Φ(t)

}]
b0,
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which leads to

|I2,6 + I4| ≤ δn∥v∥

∥∥∥∥∥
[{

n∑
i=1

(UiU
T
i −Σ)

}
⊗
{
ΦT(t)Φ(t)

}]
b0

∥∥∥∥∥
≤ δn∥v∥

∥∥∥∥∥vec
[{

ΦT(t)Φ(t)
}
ŨT

{
n∑

i=1

(UiU
T
i −Σ)

}]∥∥∥∥∥
= δn∥v∥

∥∥∥∥∥{ΦT(t)Φ(t)
}
ŨT

{
n∑

i=1

(UiU
T
i −Σ)

}∥∥∥∥∥
F

≤ δn∥v∥

∥∥∥∥∥
n∑

i=1

(UiU
T
i −Σ)

∥∥∥∥∥
2

∥Φ(t)TΦ(t)∥2∥Ũ∥F

= Op(δnm
√
n/

√
M)K, (S2.42)

where the second and the fourth steps are due to Property 2 and Property

4 respectively, and the last step is due to (S2.23), (S2.19), and (S2.40).

Therefore, combining (S2.32), (S2.33), (S2.37), (S2.38), (S2.41) and (S2.42)

with (S2.28), we obtain that

|I2 + I4| = Op(δnmM−q−1/2n)K +Op(δnm
√
n/

√
M)K

= Op(δnm
√
n/

√
M)K, (S2.43)

where the last step is due to Assumption C1 (i).

Step 4: Examine I3 in (S2.14).

By the chain rule,

dPλ(∥w∥)
dw

= P ′
λ(∥w∥) w

∥w∥
,

for any vector w ̸= 0. For j /∈ J0, the mean theorem gives that

Pλ(∥b0,j + δnvj∥)− Pλ(∥b0,j∥) = δnv
T
j P

′
λ(∥b̃j∥)

b̃j

∥b̃j∥
,
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where b̃j is a vector “between” b0,j and b0,j + δnvj. As ∥b0,j∥ is bounded

away from 0 for j /∈ J0, ∥b̃j∥ is also bounded away from 0 for sufficiently

large n. By Assumption E2 (ii), P ′
λ(t) = 0 for any positive constant t as

λ → 0. Hence, when n → ∞ and λ → 0, we have that

Pλ(∥b0,j + δnvj∥)− Pλ(∥b0,j∥) = 0,

which leads to

I3 = 0. (S2.44)

In conclusion, let R ≜ I1,2 + I1,3 + I1,4 + I2 + I3 + I4 + I5. Then by

(S2.26), (S2.43) and (S2.44), we obtain that

|R| = Op(δ
2
n

√
nm/M)K2 +Op(δnm

√
n/

√
M)K

= Op(δnm
√
n/

√
M)K, (S2.45)

where the second step is due to the definition of δn as n → ∞.

According to (S2.14) and (S2.15), to prove (S2.12) it suffices to show

that for any ϵ > 0 there exists Kϵ > 0 such that

P
(

inf
∥v∥=Kϵ

I1,1 +R > 0

)
> 1− ϵ. (S2.46)

To this end, we prove a stronger version than (S2.46):

P

(
inf

∥v∥=Kϵ

I1,1 > sup
∥v∥=Kϵ

|R|

)
> 1− ϵ. (S2.47)

By the definition of δn, (S2.16) and (S2.45), we have that

I1,1 ≥ mC0K
2 and |R| = Op(m) ·K, (S2.48)
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for any ∥v∥ = K. Then for any given ϵ > 0, by (S2.48) we take Kϵ such

that KϵC0 > O(1). Then such Kϵ makes (S2.47) hold. As a result, the

assertion (S2.12) is then proved.

Part 2: Prove (5.24).

Given (5.23), it is straightforward that

∥β̂j − βj∥L∞ ≤ ∥β̂j − θj∥L∞ + ∥θj − βj∥L∞

= ∥(b̂j − b0,j)Tϕ∥L∞ + ∥θj − βj∥L∞

≤ ∥b̂j − b0,j∥∞ + ∥θj − βj∥L∞

≤ ∥b̂j − b0,j∥+ ∥θj − βj∥L∞

= Op(δn),

where the first step is due to the triangle inequality, the second step comes

from (3.13) and (S1.3), the third step is due to the fact that
∑M+d

k=1 |ϕk(t)| =

1 for any t ∈ T (Farin et al., 2002, (6.6.7)), the fourth step is because of

the relationship between the infinity norm and Euclidean norm for a vector,

and the last step is due to Assumption C1(i), (S1.2) and (5.23).

According to Assumption A3, T is bounded, and thus, its measure,

denoted |T |, is finite. Therefore, we have that for any j = 1, . . . , p,

∥θj − βj∥L2 ≤
√

|T | · ∥θj − βj∥L∞ ,
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and thus, there exists a positive constant E1 such that

∥β̂j − βj∥L2 ≤ ∥β̂j − θj∥L2 + ∥θj − βj∥L2

= ∥(ûj − u0,j)
Tϕ∥L2 +

√
|T |∥θj − βj∥L∞

≤ E−1
1 M−1/2∥ûj − u0,j∥+

√
|T |∥θj − βj∥L∞

= Op(δn/
√
M),

where the third step follows from Lemma 3, and the last step is due to

Assumption C1(i), (S1.2) and (5.23).

S2.3 Proof of Theorem 2

Proof of Theorem 2(i):

We show the result using proof by contradiction. Suppose that there

exists some k ∈ J0 such that b̂k ̸= 0. Then by (3.12), taking derivative of

Qn(b) in (3.11) with respect to bk and evaluating it at b̂ yields that

0 =
∂Qn(b̂)

∂bk

= −
n∑

i=1

X∗
ikΦ

T(t)(Yi(t)−Z∗
i b̂)

+ nmP ′
λ(∥b̂k∥)

b̂k

∥b̂k∥
− n

[
Σk ⊗ {ΦT(t)Φ(t)}

]
b̂

= −
n∑

i=1

(Xik + Uik)Φ
T(t)

{
Yi(t)−Zib̂− (UT

i ⊗Φ(t))b̂
}

+ nmP ′
λ(∥b̂k∥)

b̂k

∥b̂k∥
− n

[
Σk ⊗ {ΦT(t)Φ(t)}

]
b̂, (S2.49)

where Σk represents the kth row of Σ, and we use (3.7) and (S2.13).
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By (3.13) and (S2.13), Zib̂ = β̂(t)
TXi, where the p×m matrix β̂(t) =

[β̂(t1), · · · , β̂(tm)]. Then further applying model (2.2) to the last expression

in (S2.49) gives that

0 = −
n∑

i=1

XikΦ
T(t)εi(t)−

n∑
i=1

XikΦ
T(t)(β(t)− β̂(t))TXi

+
n∑

i=1

XikΦ
T(t)(UT

i ⊗Φ(t))b̂−
n∑

i=1

UikΦ
T(t)εi(t)

−
n∑

i=1

UikΦ
T(t)(β(t)− β̂(t))TXi +

n∑
i=1

UikΦ
T(t)(UT

i ⊗Φ(t))b̂

+ nmP ′
λ(∥b̂k∥)

b̂k

∥b̂k∥
− n

[
Σk ⊗ {ΦT(t)Φ(t)}

]
b̂

≜ T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

(S2.50)

We now show that (S2.50) does not hold because the sum
∑8

j=1 Tj

cannot equal zero. To this end, we examine the terms in (S2.50) individually

with the following steps.

Step 1: Examination of T7 in (S2.50):

According to Theorem 1, we have that ∥b̂k∥ = Op(δn), where δn =√
M/n defined in Appendix A.1. By Assumption E2 (i) and the assumption

that λ/δn → ∞, it is easily shown that |P ′
λ(∥b̂k∥) − λ| → 0 as n → ∞.

Hence, for sufficiently large n, we claim that

∥T7∥ = nm
∣∣∣P ′

λ(∥b̂k∥)
∣∣∣ > 1

2
nmλ. (S2.51)
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Step 2: Examination of T6 + T8 in (S2.50):

Simple calculations result in

T6 + T8 =
n∑

i=1

(UikU
T
i )⊗ {ΦT(t)Φ(t)}b̂− n

[
Σk ⊗ {ΦT(t)Φ(t)}

]
b̂

=

[{
n∑

i=1

(
UikU

T
i −Σk

)}
⊗ {ΦT(t)Φ(t)}

]
b̂,

where the first equality is due to Property 1.

For 1 ≤ j ≤ p, we have that

∥b̂j∥∞ ≤ ∥b̂j − b0,j∥∞ + ∥b0,j∥∞ = Op(1),

where we use Theorem 1, Condition C1, and (S2.39). Therefore,

∥b̂j∥ ≤
√
M + d∥b̂j∥∞ = Op(

√
M),

which implies that

∥b̂∥ = Op(
√
M) (S2.52)

by Condition C1 that the dimension p is finite. Hence, we arrive at

∥T6 + T8∥ ≤

∥∥∥∥∥
n∑

i=1

(
UikU

T
i −Σk

)∥∥∥∥∥
2

∥∥Φ(t)TΦ(t)
∥∥
2
∥b̂∥ = Op(

√
nm/

√
M),

(S2.53)

where the first step is due to Property 3 and the second step is due to

(S2.23), (S2.19) and (S2.52).

Step 3: Examination of T1 and T4 in (S2.50):



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

By Property 2, we can show that

T1 = −
n∑

i=1

(Xik ⊗ΦT(t))εi(t) = vec

{
ΦT(t)

(
n∑

i=1

εi(t)Xik

)}
,

which leads to

∥T1∥ =

∥∥∥∥∥ΦT(t)

(
n∑

i=1

εi(t)Xik

)∥∥∥∥∥
F

≤ ∥Φ(t)∥2

∥∥∥∥∥
n∑

i=1

εi(t)Xik

∥∥∥∥∥ = Op(
√
nm/

√
M),

(S2.54)

where the inequality is due to Property 4 and the last step is due to (S2.30)

and (S2.31).

Analogously, we can show that

∥T4∥ =

∥∥∥∥∥−
n∑

i=1

UikΦ
T(t)εi(t)

∥∥∥∥∥ = Op(
√
nm/

√
M), (S2.55)

where the procedure is the same as (S2.54) except we replace Xik in (S2.54)

with Uik.

Step 4: Examination of T3 in (S2.50):

∥T3∥ =

∥∥∥∥∥
n∑

i=1

XikΦ
T(t)(UT

i ⊗Φ(t))b̂

∥∥∥∥∥
=

∥∥∥∥∥
[(

n∑
i=1

XikU
T
i

)
⊗ {ΦT(t)Φ(t)}

]
b̂

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

XikUi

∥∥∥∥∥
2

∥∥Φ(t)TΦ(t)
∥∥
2
∥b̂∥

= Op(
√
nm/

√
M), (S2.56)



S2. TECHNICAL DETAILS

where the second and third steps are due to Property 1 and Property 3,

respectively, and the last step is due to (S2.18), (S2.19) and (S2.52).

Step 5: Examination of T2 and T5 in (S2.50):

WriteΘ = β(t)−β̂(t). Then by Theorem 1, ∥Θ∥F = Op(δn
√
m). Then

we have that

∥T2∥ =

∥∥∥∥∥ΦT(t)ΘT

(
n∑

i=1

XikXi

)∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

XikXi

∥∥∥∥∥
2

∥Φ(t)∥2∥Θ∥F

= Op(nmδn/
√
M), (S2.57)

where the inequality is due to Property 4 and the last step is due to (S2.30)

and (S2.36).

Similarly it can be proved that

∥T5∥ =

∥∥∥∥∥ΦT(t)ΘT

(
n∑

i=1

UikXi

)∥∥∥∥∥ = Op(
√
nmδn/

√
M) (S2.58)

where (S2.18) is used to replace (S2.36).

In conclusion, combining results (S2.53)-(S2.58) leads to

∥T1 + T2 + T3 + T4 + T5 + T6 + T8∥ = Op(nmδn/
√
M),

which, by (S2.51), is asymptotically ignorable relative to T7 if
√
nλ → ∞.

Therefore, with probability tending to 1, the sum
∑8

j=1 Tj in (S2.50) is

dominated by T7, which can never be zero according to (S2.51). That
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is, with probability tending to 1, (S2.50) is untrue, and thus, by proof of

contradiction, there is no k ∈ J0 such that b̂k ̸= 0.

Proof of Theorem 2(ii):

Corresponding to the active subvector XIi defined before Theorem 1,

let X∗
Ii denote its contaminated version, and let UIi denote the corre-

sponding subvector of Ui in (3.7). For the cardinality s = |J0|, we write

v = (bT1 , . . . , b
T
s )

T, v0 = (bT0,1, . . . , b
T
0,s)

T and v̂ = (b̂T1 , . . . , b̂
T
s )

T. Concen-

trating on the subvector v, let Q̌n(v) = Qn(v,0), where Qn(b) is defined

in (3.11), and 0 here is understood to have the dimension so that (vT,0T)T

is of dimension p(M + d). Throughout the manuscript, we loosely use 0

to represent a zero vector or a zero matrix without differentiating them or

saying its dimension.

Define

S(v) = ∂Q̌n(v)/∂v,

which, by (3.11), equals

S(v) =−
n∑

i=1

(
X∗

Ii ⊗ΦT(t)
){
Yi(t)−

(
X∗

Ii
T ⊗Φ(t)

)
v
}

− n
[
ΣI ⊗ {ΦT(t)Φ(t)}

]
v + nmP (v)v, (S2.59)

where P (v) ≜ diag{P ′
λ(∥b1∥)/∥b1∥, . . . , P ′

λ(∥bs∥)/∥bs∥} ⊗ IM+d and IM+d

is the (M + d)-dimensional identity matrix. Note that S(v) is well-defined
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if bj ̸= 0 for all j = 1, . . . , s.

Because v0 is bounded away from 0 and v̂ converges in probability to

v0 as n → ∞, v̂ is also bounded in probability away from 0 as n → ∞.

Furthermore, by Theorem 1 and Theorem 2 (i), with probability tending to

1, (v̂T,0T)T is the minimizer of Qn(b), and thus, we have that

S(v̂) = 0. (S2.60)

Combining (S2.59) and (S2.60) leads to

0 =−
n∑

i=1

(
X∗

Ii ⊗ΦT(t)
){
Yi(t)−

(
X∗

Ii
T ⊗Φ(t)

)
v̂
}

− n
[
ΣI ⊗ {ΦT(t)Φ(t)}

]
v̂ + nmP (v̂)v̂. (S2.61)

Since b0,j′ = 0 for all j′ > s, (S2.27) yields that

Yi(t) = (XT
Ii ⊗Φ(t))v0 + εi(t) +

p∑
j=1

Xij∆j(t). (S2.62)
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Inserting (S2.62) into (S2.61) yields that

A(v̂ − v0) =
M

nm

n∑
i=1

(
X∗

Ii ⊗ΦT(t)
)
εi(t)

− M

nm

n∑
i=1

[(
X∗

IiU
T
Ii −ΣI

)
⊗
{
ΦT(t)Φ(t)

}]
v0

− M

nm

n∑
i=1

[(
X∗

IiX
∗
Ii
T −ΣI −ΣXI

)
⊗
{
ΦT(t)Φ(t)

}]
(v̂ − v0)

+
M

nm

n∑
i=1

[(
X∗

Ii ⊗ΦT(t)
){ p∑

j=1

Xij∆j(t)

}]
−MP (v̂)v̂

≜ I1 + I2 + I3 + I4 + I5,

(S2.63)

whereA ≜ ΣXI
⊗
{

M
m
ΦT(t)Φ(t)

}
is a matrix whose eigenvalues are bounded

and bounded away from 0 due to Assumption C3. Multiplying the inverse

of A on both sides of (S2.63), we can then investigate the limiting distribu-

tion of αT(v̂ − v0) for any vector α satisfying 0 < ∥α∥ < ∞. To this end,

we examine (S2.63) term by term.

Step 1: Examination of I1 and I2 in (S2.63):

As defined in Section 5, ΣXI
is the covariance matrix of XIi and ΣI

represents the covariance matrix of UIi. Then the covariance matrix of I1
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in (S2.63) is computed by

Cov(I1) =
M2

nm2
Cov

{(
X∗

Ii ⊗ΦT(t)
)
εi(t)

}
=

M2

nm2
Cov(X∗

Ii)⊗
{
ΦT(t)ΣεΦ(t)

}
=

M2

nm2
(ΣXI

+ΣI)⊗
{
ΦT(t)ΣεΦ(t)

}
,

where the second step is due to Lemma 1.

Let Is be the s × s identity matrix. Recall that B0s = [b0,1, · · · , b0,s]

is the (M + d)× s matrix formed by the blocks of b0, defined in Section 5.

Then the covariance matrix of I2 in (S2.63) is calculated as follows:

Cov(I2) =
M2

nm2
Cov

([(
X∗

IiU
T
Ii −ΣI

)
⊗
{
ΦT(t)Φ(t)

}]
v0
)

=
M2

nm2
Cov

[
vec
{
ΦT(t)Φ(t)B0s

(
UIiX

∗
Ii
T
)}]

=
M2

nm2
Cov

([
X∗

Ii ⊗
{
ΦT(t)Φ(t)B0s

}]
UIi

)
=

M2

nm2
Cov

([
XIi ⊗

{
ΦT(t)Φ(t)B0s

}]
UIi

)
+

M2

nm2
Cov

([
UIi ⊗

{
ΦT(t)Φ(t)B0s

}]
UIi

)
=

M2

nm2
ΣXI

⊗
{
ΦT(t)Φ(t)B0sΣIB

T
0sΦ

T(t)Φ(t)
}

+
M2

nm2
Cov

{
vec
(
ΦT(t)Φ(t)B0sUIiU

T
Ii

)}
=

M2

nm2
ΣXI

⊗
{
ΦT(t)Φ(t)B0sΣIB

T
0sΦ

T(t)Φ(t)
}

+
M2

nm2
Cov

([
Is ⊗

{
ΦT(t)Φ(t)B0s

}]
vec
(
UIiU

T
Ii

))
=

M2

nm2
ΣXI

⊗
{
ΦT(t)Φ(t)B0sΣIB

T
0sΦ

T(t)Φ(t)
}

+
M2

nm2

[
Is ⊗

{
ΦT(t)Φ(t)B0s

}]
Cov

{
vec
(
UIiU

T
Ii

)} [
Is ⊗

{
BT

0sΦ
T(t)Φ(t)

}]
,
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where the second, third and sixth steps are due to Property 2, the fourth

step is because that XIi has mean 0 and is independent from UIi, and the

fifth step is due to Lemma 1 and Property 2.

Define the s2 × s2 matrix Γ = Cov
{
vec
(
UIiU

T
Ii

)}
. Since εi(t) is inde-

pendent of X∗
Ii and UIi, I1 and I2 are uncorrelated. Thus,

Cov(I1 + I2) =
M2

nm2
(ΣXI

+ΣI)⊗
{
ΦT(t)ΣεΦ(t)

}
+

M2

nm2
ΣXI

⊗
{
ΦT(t)Φ(t)B0sΣIB

T
0sΦ

T(t)Φ(t)
}

+
M2

nm2

[
Is ⊗

{
ΦT(t)Φ(t)B0s

}]
Γ
[
Is ⊗

{
BT

0sΦ
T(t)Φ(t)

}]
.

(S2.64)

By the assumption in Theorem 2 (ii) that ρmin(Σε) ≥ C5ξm with posi-

tive constants C5 and {ξm : m = 1, 2, . . . }, Σε is always positive definite.

Furthermore, ΣXI
is also positive definite due to Assumption A2. Hence,

αTA−1Cov(I1 + I2)A
−1α ̸= 0 for any α ̸= 0. Therefore, by the central

limit theorem, we have that as n → ∞,

αTA−1(I1 + I2)√
αTA−1Cov(I1 + I2)A−1α

d−→ N(0, 1). (S2.65)

We next show that all the scaled remaining terms in (S2.63), αTA−1Ik

for k = 3, 4, 5, are asymptotically negligible relative to αTA−1(I1 + I2).

Step 2: Examination of I3 in (S2.63):
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Following similar argument in (S2.23) ,

∥∥∥∥∥ 1n
n∑

i=1

X∗
IiX

∗
Ii
T −ΣI −ΣXI

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1n
n∑

i=1

XIiXIi
T −ΣXI

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

UIiUIi
T −ΣI

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

XIiUIi
T

∥∥∥∥∥
2

=Op(n
−1/2)

since E(X4
ij) < ∞ and E(U4

ij) < ∞ for j = 1, . . . , s by Assumptions A2 and

D1, respectively. Hence, for I3 in (S2.63), by (S2.19) and Theorem 1 we

have that

∣∣αTA−1I3
∣∣ ≤ ∥A−1α∥

∥∥∥∥∥ 1n
n∑

i=1

X∗
IiX

∗
Ii
T −ΣI −ΣXI

∥∥∥∥∥
2

·
∥∥∥∥MmΦT(t)Φ(t)

∥∥∥∥
2

∥v̂ − v0∥

= ∥A−1α∥ ·Op(n
−1/2) ·Op(

√
M/n). (S2.66)

Meanwhile, we have assumed in Theorem 2 (ii) that ρmin(Σε) ≥ C5ξm, and

thus, by Assumption C3, we have that

ρmin

{
ΦT(t)ΣεΦ(t)

}
≥ ρmin

{
ΦT(t)Φ(t)

}
ρmin(Σε) ≥ C ′

5

mξm
M

,

where C ′
5 is a positive constant and the first inequality is due to Lemma 2.
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Therefore, for some constant C ′′
5 ,

αTA−1Cov(I1 + I2)A
−1α ≥ ∥A−1α∥2ρmin{Cov(I1)}

=
M2

nm2
∥A−1α∥2ρmin(ΣI +ΣXI

)ρmin

{
ΦT(t)ΣεΦ(t)

}
≥ C ′′

5

M

nm
ξm∥A−1α∥2,

(S2.67)

where the equality is due to Property 6, and the last step is due to the facts

that ΣXI
is positive definite and ΣI is semi-positive definite, which implies

that the minimum eigenvalue for ΣXI
+ΣI is bounded away from 0. As a

result of (S2.66) and (S2.67),

∣∣αTA−1I3
∣∣ = op

(√
αTA−1Cov(I1 + I2)A−1α

)
,

since nξm
m

→ ∞ as required in Theorem 2 (ii) .

Step 3: Examination of I4 in (S2.63):

Recall that∆(t) ≜ [∆1(t), . . . ,∆p(t)]. By (S2.30), (S2.35) and (S2.36),
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we have that

|αTA−1I4| ≤
M

nm

∥∥∥∥∥
n∑

i=1

[(
X∗

Ii ⊗ΦT(t)
){ p∑

j=1

Xij∆j(t)

}]∥∥∥∥∥ ∥A−1α∥

=
M

nm

∥∥∥∥∥vec
{
ΦT(t)∆(t)

(
n∑

i=1

X∗
IiX

T
i

)}∥∥∥∥∥ ∥A−1α∥

=
M

nm

∥∥∥∥∥ΦT(t)∆(t)

(
n∑

i=1

X∗
IiX

T
i

)∥∥∥∥∥
F

∥A−1α∥

≤ M

nm
∥A−1α∥∥Φ(t)∥2∥∆(t)∥F

∥∥∥∥∥
n∑

i=1

X∗
IiX

T
i

∥∥∥∥∥
2

=
M

nm
∥A−1α∥ ·Op

(√
m

M

)
·O
(√

m

M q

)
·Op(n),

where the second step is due to Property 2, and the fourth is due to Property

4. Thus, we have that

∣∣αTA−1I4
∣∣ = op

(√
αTA−1Cov(I1 + I2)A−1α

)
,

due to the assumption M2qξm
nm

→ ∞ as required in Theorem 2 (ii) and

(S2.67).

Step 4: Examination of I5 in (S2.63):

Because v0 is bounded away from 0 and v̂ converges in probability to v0

as n → ∞, v̂ is bounded away from 0 in probability as n → ∞. Therefore,

we have that αTA−1I5 = 0 with probability tending to 1 since P ′
λ(t) = 0

for any fixed t > 0 and sufficiently small λ by Assumption E2 (ii).

In conclusion,

αTA−1(I3 + I4 + I5)√
αTA−1Cov(I1 + I2)A−1α

= op(1).
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Combining this with result (S2.65) and equation (S2.63) leads to

αT(v̂ − v0)√
αTA−1Cov(I1 + I2)A−1α

d−→ N(0, 1) as n → ∞. (S2.68)

We next give an explicit expression for the asymptotic variance of

αT(v̂ − v0). By the definition of A and inserting the expression (S2.64)

into the denominator of (S2.68), we have that

αTA−1Cov(I1 + I2)A
−1α

=
1

n
αT
({

Σ−1
XI

(ΣXI
+ΣI)Σ

−1
XI

}
⊗
[
{ΦT(t)Φ(t)}−1{ΦT(t)ΣεΦ(t)}{ΦT(t)Φ(t)}−1

]
+Σ−1

XI
⊗ (B0sΣIB

T
0s) + (Σ−1

XI
⊗B0s)Γ(Σ

−1
XI

⊗BT
0s)
)
α, (S2.69)

where we use Property 1 and the fact that (A1 ⊗ B1)
−1 = A−1

1 ⊗ B−1
1

for any nonsingular matrices A1 and B1 (Horn and Johnson, 1991, Section

4.2).

For j = 1, . . . , s, let αj = ej ⊗ ϕ(t), where ej is the s-dimensional

vector with the jth element being 1 and the rest being 0. Then ∥αj∥ =

∥ϕ(t)∥ is bounded away from 0 for any t. Indeed, for any fixed t ∈ T , at

most d + 1 consecutive ϕj(t) are positive while the remaining are all zero

due to the construction of the B-spline basis. Without loss of generality,

suppose that ϕj(t) > 0 for j = 1, . . . , d + 1, and ϕj(t) = 0 otherwise. Let

a = (a1, . . . , aM+d) with aj = 1 for j = 1, . . . , d + 1 and aj = 0 otherwise.
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By Cauchy-Schwartz’s inequality, we have that

(d+ 1)∥ϕ(t)∥2 = ∥a∥2∥ϕ(t)∥2 ≥

(
M+d∑
j=1

ajϕj(t)

)2

=

(
M+d∑
j=1

ϕj(t)

)2

= 1,

where the last equality follows from Farin et al. (2002, (6.6.7)). Hence,

∥αj∥ ≥
√

1/(d+ 1).

With α = αj, the equation (S2.69) can be simplified as

αT
jA

−1Cov(I1 + I2)A
−1αj

=
1

n

(
(Ωjj + Ω̃jj)ϕ

T(t){ΦT(t)Φ(t)}−1{ΦT(t)ΣεΦ(t)}{ΦT(t)Φ(t)}−1ϕ(t)

+ Ωjjϕ
T(t)B0sΣIB

T
0sϕ(t) +

[
ΩT

j ⊗ {ϕT(t)B0s}
]
Γ
[
Ωj ⊗ {BT

0sϕ(t)}
] )

≜σ2
j (t),

where Ωjj and Ωj are the (j, j) element and the jth column of Σ−1
XI

, re-

spectively; and Ω̃jj is the (j, j) element of Σ−1
XI

ΣIΣ
−1
XI

. Consequently, we

have that

αT
j (v̂ − v0)√

σ2
j (t)

d−→ N(0, 1) as n → ∞. (S2.70)

Finally, we derive the limiting distribution of β̂j(t) for j = 1, . . . , s. By

definition,

β̂j(t)− βj(t) = ϕ
T(t)b̂j − βj(t)

= ϕT(t)(b̂j − b0,j) + ϕT(t)b0,j − βj(t)

= αT
j (v̂ − v0) + ϕT(t)b0,j − βj(t). (S2.71)
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By (S1.2), ϕT(t)b0,j − βj(t) = O(M−q), which, by (S2.67), leads to

ϕT(t)b0,j − βj(t) = op

(√
αT

jA
−1Cov(I1 + I2)A−1αj

)
(S2.72)

since M2qξm
nm

→ ∞ as required in Theorem 2 (ii). Therefore, combining

(S2.70), (S2.71) and (S2.72) yields that

β̂j(t)− βj(t)√
σ2
j (t)

d−→ N(0, 1) as n → ∞.

S3 Simulation Studies

In this section, we conduct simulation studies to evaluate the finite-sample

performance of the proposed method and also demonstrate the deleterious

effects of ignoring measurement error in inferential procedures.

S3.1 Simulation Design

For i = 1, . . . , n, we first generate covariate vector Xi independently from

a centered multivariate normal distribution with covariance matrix whose

(j, j′) element is 0.5|j−j′| for 1 ≤ j, j′ ≤ p, and then generate response Yi(t)

from model (2.1), where the random error process εi(t) is generated from

a centered Gaussian process with covariance function Σε(t, t
′) = σ2

ερ
15|t−t′|2
ε

for t, t′ ∈ T . Here σ2
ε , which is set to be 0.1, 0.25 or 0.5, representing the

variance of εi(t) for t ∈ T , and ρε is set to be 0.1 or 0.5 to reflect varying
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auto-correlation. The common observation points are equally spaced on

the domain T = [0, 1] and the number of observations, m, is set to be 30.

Let the number of covariates p = 6 with the first three to be active. The

functional coefficients are given by β1(t) = 2t2, β2(t) =
√
2 cos(3πt/2+π/2),

β3(t) =
√
2 sin(πt/2) + 3

√
2 sin(3πt/2), and β4(t) = β5(t) = β6(t) = 0 for

t ∈ T .

The measurement errorUi in model (3.7) follows a centered multivariate

normal distribution with element (j, j′) in the covariance matrix Σ to be

Σj,j′ = σ2
Uρ

|j−j′|
U for 1 ≤ j, j′ ≤ p, where σ2

U is the variance of each element

of Ui and ρU reflects the auto-correlation of the elements in Ui. To reflect

different degrees of measurement error, we set σ2
U = 0.1, 0.2 or 0.4, and

ρU = 0.1 or 0.5. Thus, the resulting reliability ratio for each variable, called

a marginal reliability ratio, is Var(Xij)/Var(X
∗
ij) = 1/(1+σ2

U ) = 0.91, 0.83

or 0.71, respectively, where we consider a common marginal reliability ratio

for all the covariates.

We consider the sample size n = 50, 100, 200, or 500 and simulate

N ≜ 300 datasets for each parameter configuration. When implement-

ing the proposed method, we determine tuning parameters M and λ by

minimizing CV (4.21) or BIC (4.22) where we set the grid to be {Mk = 5k :

k = 1, 2, 3} × {λk = 10−1.5+2k/9 : k = 0, 1, . . . , 9}, and take the threshold
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parameter τ in (4.15) to be 10−4. The impact on the choice of τ is studied

in Section S3.5 of the supplementary material. The SCAD penalty (Fan

and Li, 2001) is used as the penalty function.

S3.2 Analysis Methods and Performance Metrics

We analyze simulated data {{Yi(t),X
∗
i } : i = 1, . . . , n; t ∈ T } using two

methods. The first method, called the naive method, disregards the differ-

ence between X∗
i and Xi, which basically optimizes the objective function

(3.11) with Σ = 0. The second method, called the proposed method, ac-

commodates the measurement error effects by implementing (3.12). As a

comparison, we analyze the precisely measured values {{Yi(t),Xi} : i =

1, . . . , n; t ∈ T } by implementing (3.12) with Ln(b;Y (t),X∗) replaced by

L̃n(b;Y (t),X) in (2.6), and call this procedure the oracle method. In im-

plementing those methods, we consider both the CV and BIC.

We evaluate the performance of the resulting estimator using three

metrics, the mean integrated squared error (MISE):

MISE =
1

N

N∑
r=1

p∑
j=1

∫
T

{
β̂
[r]
j (t)− βj(t)

}2

dt,

the integrated squared bias (ISB):

ISB =

p∑
j=1

∫
T

{
1

N

N∑
r=1

β̂
[r]
j (t)− βj(t)

}2

dt,
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and the integrated variance (IV): IV = MISE − ISB, where β̂
[r]
j (t) is the

estimated function of βj(t) for j = 1, . . . , p obtained from applying each of

the aforementioned methods to the rth simulated dataset.

Further, regarding active covariates as “positive” and inactive covari-

ates as “negative”, we evaluate the finite sample performance of selection

by the positive selection ratio (PSR), defined as the proportion of truly dis-

covered active covariates among all the active covariates, and the negative

selection ratio (NSR), defined as the proportion of truly discovered inactive

covariates among all inactive covariates.

S3.3 Simulation Results - Impact of the Sample Size

First, we evaluate how the performance of the three methods may vary with

the sample size, where we set σ2
U = 0.1, ρU = 0.1, σ2

ε = 0.25, and ρε = 0.1,

and we report in Table S3.1 the results corresponding to CV and BIC (in

parentheses). Clearly, the naive method incurs notable biases in estimation,

reflected by considerably larger values of ISB and IV than those of the oracle

method. On the contrary, the proposed method greatly reduces the bias of

the naive method, with the produced ISB values nearly identical to those

output by the oracle method. While the proposed method yields larger IV

values than the naive method, the overall metric MISE, combining both ISB
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and IV, displays a lot smaller values for the proposed method than the naive

method, especially when the sample size becomes large. The fact that the

proposed method produces a larger IV value than the naive method reflects

the price paid to reduce the bias in estimating the coefficient functions, and

that a smaller value in the overall metric MISE for the proposed method

than the naive method demonstrates the overall benefit of correcting for

the measurement error effects in the inferential procedure.

In terms of variable selection, the impact of ignoring the measurement

error effects may not be as profound as that for estimation; the naive

method yields acceptable PSR values, especially when the sample size is

not small. However, NSR values produced by the naive method notice-

ably deviate from those of the oracle method. As expected, the proposed

method significantly improves the performance of the naive method, with

the produced variable selection results fairly close to those of the oracle

method.

Overall, the naive method yields unreliable results in terms of both es-

timation and variable selection, and biased results can exacerbate as the

sample size increases. In contrast, the proposed method produces satis-

factory results, which are fairly comparable to those output by the oracle

method; and those results are further improved by increasing the sample
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size.

While using CV and BIC yields different results, they reveal the same

trend for the dependence on the sample size. In terms of estimation, using

CV always results in smaller ISB and IV, and thus MISE, than BIC does,

suggesting that using CV produces more accurate function estimates than

using BIC. Regarding variable selection, however, using BIC seems preferred

to using CV, because using BIC yields higher NSR than using CV.

S3.4 Simulation Results - Impact of the Measurement Error De-

gree

Here, we evaluate how different degrees of measurement error may affect

the performance of the proposed method as well as the naive method. We

consider the case with n = 200, σ2
ε = 0.25, and ρε = 0.1. To reflect different

magnitudes in measurement error, we consider ρU = 0.1 or 0.5 and σ2
U = 0.2

or 0.4, and report in Table S3.2 the results obtained from the three methods

using both CV and BIC, with the results corresponding to BIC presented

in parentheses.

Again, we observe the same patterns as in Section S3.3, except for cases

with σ2
U = 0.4 and BIC used. The proposed method outperforms the naive

method in producing smaller values of MISE and larger values of NSR, while



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

Table S3.1: Simulated results in Section S3.3: Evaluation of the impact of the sample

size n under setting with σ2
U = 0.1, ρU = 0.1, σ2

ε = 0.25, and ρε = 0.1. The entries

record the results obtained from using CV and BIC, with those corresponding to BIC

included in parentheses.

n Method MISE ISB IV PSR NSR

50 naive 0.390(0.411) 0.249(0.261) 0.141(0.150) 0.998(0.999) 0.689(0.746)

proposed 0.229(0.270) 0.004(0.009) 0.225(0.261) 1.000(0.996) 0.819(0.896)

oracle 0.024(0.024) 0.000(0.000) 0.024(0.024) 1.000(1.000) 0.932(0.986)

100 naive 0.334(0.335) 0.263(0.264) 0.071(0.071) 1.000(1.000) 0.730(0.754)

proposed 0.094(0.127) 0.000(0.007) 0.094(0.120) 1.000(1.000) 0.892(0.941)

oracle 0.012(0.011) 0.000(0.000) 0.012(0.011) 1.000(1.000) 0.918(0.997)

200 naive 0.277(0.277) 0.239(0.239) 0.038(0.038) 1.000(1.000) 0.758(0.784)

proposed 0.047(0.063) 0.001(0.003) 0.046(0.060) 1.000(1.000) 0.911(0.934)

oracle 0.006(0.005) 0.000(0.000) 0.006(0.005) 1.000(1.000) 0.933(0.997)

500 naive 0.280(0.276) 0.263(0.260) 0.017(0.016) 1.000(1.000) 0.562(0.653)

proposed 0.016(0.024) 0.000(0.001) 0.016(0.023) 1.000(1.000) 0.918( 0.952)

oracle 0.002(0.002) 0.000(0.000) 0.002(0.002) 1.000(1.000) 0.987(0.999)

both methods produce values of PSR close to 1. As the measurement error

variance σ2
U increases from 0.2 to 0.4, or equivalently, the marginal reliabil-

ity ratio decreases from 0.83 to 0.71, both the naive and proposed methods
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produce increased MISE values yet decreased NSR values. Interestingly,

with a given σ2
U , when the autocorrelation ρU increases, an opposite pat-

tern is observed for both methods. The impact of increasing ρU on the

naive method seems more noticeable than on the proposed method.

Regarding the use of CV or BIC, again, as observed in Table S3.1,

using CV tends to produce estimates with smaller MISE and NSR than

using BIC. However, different from the patterns in Table S3.1, applying

BIC to the proposed method does not yield satisfactory PSR values for the

case with ρU = 0.1 and σ2
U = 0.4, as the application of CV does.

Additionally, we evaluate how the performance of the proposed method

may be influenced by other factors, including the association strength in

the response model and the magnitudes of ρε and σ2
ε . Further, we assess

the impact of different treatments of Σ on the performance of the proposed

method. In particular, we conduct simulation studies for the case where

Σ is estimated from repeated surrogate measurements of the covariates.

We also consider the case where Σ is misspecified and conduct simulation

studies accordingly. The details of these additional numerical studies are

deferred to Sections S3.6- S3.8 of the supplementary material.

In summary, the simulation studies demonstrate that the naive method

ignoring the measurement error effects produces biased results, and that
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Table S3.2: Simulated results for Section S3.4: Evaluation of the impact of different

measurement error degrees under the setting with n = 200, σ2
ε = 0.25, and ρε = 0.1.

The entries record the results obtained from using CV and BIC, with those corresponding

to BIC included in parentheses.

(ρU , σ2
U ) Method MISE ISB IV PSR NSR

oracle 0.006(0.006) 0.000(0.000) 0.006(0.006) 1.000(1.000) 0.918(0.997)

(0.1, 0.2) naive 0.815(0.810) 0.752(0.750) 0.063(0.061) 1.000(1.000) 0.522(0.594)

proposed 0.110(0.449) 0.004(0.306) 0.106(0.143) 1.000(0.999) 0.878(0.993)

(0.1, 0.4) naive 1.984(1.976) 1.898(1.895) 0.085(0.081) 1.000(1.000) 0.359(0.448)

proposed 0.362(2.241) 0.017(1.814) 0.345(0.427) 0.997(0.698) 0.776(0.999)

(0.5, 0.2) naive 0.360(0.362) 0.319(0.320) 0.041(0.042) 1.000(1.000) 0.892(0.919)

proposed 0.077(0.132) 0.001(0.026) 0.076(0.106) 1.000(1.000) 0.912(0.940)

(0.5, 0.4) naive 1.003(1.007) 0.942(0.945) 0.061(0.062) 1.000(1.000) 0.822(0.857)

proposed 0.207(0.720) 0.003(0.392) 0.204(0.328) 1.000(0.954) 0.827(0.983)

the proposed method greatly improves its performance and produces sat-

isfactory results under a variety of settings. Using CV with the proposed

method seems to be preferred over the use of BIC, especially for the case of

parameter estimation where the reliability ratio is very low and the sample

size is not big enough; in terms of inactive variable detection, the use of

BIC may outperform the use of CV.
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S3.5 Simulation Results - Effects of τ

As mentioned in Section 4 of the main text, the matrix X∗TX∗ − nΣ

may not be positive definite in some finite sample cases, and thus, (4.15)

is essential since the unique Cholesky decomposition can only be done for

positive definite matrices. To see how the nature of X∗TX∗ − nΣ may

depend on the sample size n, we consider the data generated as in Section

S3.1 and report the frequencies thatX∗TX∗−nΣ is not positive definite in

Table S3.3. It shows that the frequency increases with an increasing σ2
U and

decreases with an increasing sample size n. Sufficiently large sample size

almost always guarantees the matrix X∗TX∗ −nΣ to be positive definite .

Further simulation studies are conducted to study the impact of the

choice of the threshold parameter τ in (4.15). As opposed to the mean in-

tegrated squared error (MISE) considered in Section S3.2, we calculate the

standard deviation of the integrated squared error
∑p

j=1

∫
T

{
β̂
[r]
j (t)− βj(t)

}2

dt

for r = 1, . . . , N , and let SDISE represents it, where N = 300 is the number

of replicates and β̂
[r]
j (t) is the estimated function of βj(t) for j = 1, . . . , p

by applying the proposed method to the rth simulated dataset. We display

values of MISE, SDISE (in parentheses), mean of PSR, and NSR in Table

S3.4 under the same setting in Section S3.1. As shown in the table, the

performance of the proposed method does not seem to be very sensitive to
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Table S3.3: Frequencies of non-positive definiteness of matrix X∗TX∗ − nΣ, with

ρU=0.1.

n σ2
U marginal reliability ratio Frequency

50 0.2 0.833 0.000

0.4 0.714 0.063

0.6 0.625 0.257

100 0.2 0.833 0.000

0.4 0.714 0.000

0.6 0.625 0.020

200 0.2 0.833 0.000

0.4 0.714 0.000

0.6 0.625 0.000

the choice of τ for a wide range of values. However, it is risky to choose

relatively large τ for an extremely small sample size. For larger σ2
U (i.e.,

smaller marginal reliability ratio), it is safer to choose a smaller τ to ab-

tain accurate estimates. The results based on the BIC tuning parameter

selection strategy are similar and thus omitted.
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Table S3.4: Simulation results obtained from using CV under the setting with ρU = 0.1,

σ2
ε = 0.25 and ρε = 0.1.

σ2
U n τ MISE (SDISE) PSR NSR

0.4 50 0.0001 2.532 (2.726) 0.778 0.931

0.001 2.532 (2.726) 0.778 0.931

0.01 3240 (36227) 0.691 0.907

100 0.0001 0.999 (1.181) 0.973 0.811

0.001 0.999 (1.182) 0.973 0.811

0.01 0.999 (1.183) 0.973 0.811

200 0.0001 0.396 (0.570) 1.000 0.813

0.001 0.396 (0.570) 1.000 0.813

0.01 0.396 (0.570) 1.000 0.813

0.6 50 0.0001 4.156 (3.533) 0.574 0.948

0.001 4.156 (3.533) 0.574 0.948

0.01 25381 (135641) 0.480 0.810

100 0.0001 2.080 (2.379) 0.827 0.911

0.001 2.080 (2.380) 0.827 0.911

0.01 2.652 (4.346) 0.803 0,901

200 0.0001 0.896 (1.233) 0.981 0.797

0.001 0.896 (1.233) 0.981 0.797

0.01 0.896 (1.233) 0.981 0.797
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S3.6 Simulation Results - Effect of ρε and σ2
ε

We evaluate how different association strength in the response model may

influence the performance of the proposed estimator, and report the results

in Table S3.5 for the case with n = 100, σ2
U = 0.1 and ρU = 0.1, using CV

or BIC (results are presented in parentheses), where we consider ρε = 0.1

or 0.5 and σ2
ε = 0.1 or 0.5. As expected, the oracle method always produces

the best results among the three methods for all settings. Compared to the

naive method, the proposed method produces consistently smaller values of

MISE and larger values of NSR, yet both methods give satisfactory values

of PSR. For all the three methods, an increase in σ2
ε leads to an increase in

MISE, but has relatively little effect on changing values of PSR and NSR.

The impact of ρε does not appear to be substantial. Under the setting

with a small value of σ2
U (i.e., σ2

U = 0.1), the performance of all the three

methods appear stable, regardless of whether CV or BIC is used, though

using CV tends to give smaller values for MISE and NSR than BIC does in

all settings.
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Table S3.5: Simulation results for Section S3.6: Evaluation of the impact of different

association strengths in the response model, where n = 100, σ2
U = 0.1, and ρU =

0.1. The entries record the results obtained from using CV and BIC, with the results

corresponding to BIC included in parentheses.

(ρε, σ
2
ε) Method MISE ISB IV PSR NSR

(0.1, 0.1) naive 0.325 (0.328) 0.260 (0.264) 0.065 (0.064) 1.000 (1.000) 0.761 (0.788)

proposed 0.089 (0.112) 0.000 (0.004) 0.088 (0.108) 1.000 (1.000) 0.908 (0.927)

oracle 0.005 (0.005) 0.000 (0.000) 0.005 (0.005) 1.000 (1.000) 0.943 (0.999)

(0.1, 0.5) naive 0.343 (0.347) 0.262 (0.264) 0.081 (0.083) 1.000 (1.000) 0.733 (0.791)

proposed 0.106 (0.137) 0.000 (0.007) 0.106 (0.130) 1.000 (1.000) 0.894 (0.951)

oracle 0.024 (0.023) 0.000 (0.000) 0.023 (0.023) 1.000 (1.000) 0.910 (0.989)

(0.5, 0.1) naive 0.329 (0.330) 0.264 (0.265) 0.065 (0.065) 1.000 (1.000) 0.767 (0.779)

proposed 0.088 (0.119) 0.000 (0.006) 0.088 (0.112) 1.000 (1.000) 0.911 (0.932)

oracle 0.005 (0.005) 0.000 (0.000) 0.005 (0.005) 1.000 (1.000) 0.947 (0.991)

(0.5, 0.5) naive 0.345 (0.352) 0.262 (0.267) 0.083 (0.085) 1.000 (1.000) 0.749 (0.791)

proposed 0.111 (0.141) 0.000 (0.008) 0.111 (0.133) 1.000 (1.000) 0.881 (0.939)

oracle 0.025 (0.025) 0.000 (0.000) 0.025 (0.024) 1.000 (1.000) 0.928 (0.982)
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S3.7 Simulation Study with the Measurement Error Covariance

Matrix Σ Estimated

In this subsection, we investigate the performance of the proposed method

for the case where Σ is unknown, but replicate surrogate measurement

are available for certain study subjects, allowing for its estimation. In

particular, we assume that half of n samples have additional K repeated

surrogate measurements. For k = 1, . . . , K + 1 and i = 1, . . . , n/2, with n

assumed to be even, let X∗
i[k] denote the kth surrogate measurement of Xi.

Then using the method of moments, we estimate Σ by

2

n

n/2∑
i=1

{
1

K

K+1∑
k=1

(X∗
i[k] − X̄∗

i )(X
∗
i[k] − X̄∗

i )
T

}
, (S3.1)

where X̄∗
i ≜ 1

K+1

∑K+1
k=1 X

∗
i[k]. See equation (4.3) of Carroll et al. (2006)

for a more general formula applicable to varying numbers of replicates for

different subjects.

We generate {{Xi, Yi(t)} : t ∈ T ; i = 1 . . . , n} and {X∗
i : i = n

2
+

1, . . . , n} using the same manner of Section S3.1, and {X∗
i[k] : k = 1, . . . , K+

1} are generated independently from model (3.7) in the main text for i =

1, . . . , n
2
, where σU = 0.1, ρU = 0.1, σ2

ε = 0.25 and ρε = 0.1, together

with n = 50 or 200. First, we apply (S3.1) to the repeated surrogate

measurements {X∗
i[k] : k = 1, . . . , K+1; i = 1, . . . , n

2
} to obtain an estimate
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Σ̂ of Σ. Next, having Σ replaced by Σ̂, we apply the proposed method

to the data {{X∗
i , Yi(t)} : t ∈ T , i = 1, . . . , n}, with X∗

i taken as X∗
i[1] for

i = 1, . . . , n
2
. where CV is used for the tuning parameter selection as in

Section S3.1.

We consider K = 0, 1 or 2, where we let K = 0 represent the case for

which no replicated surrogate measurements are available and Σ is taken

as known when applying the proposed method. The results are reported in

Table S3.6 in the same manner as for Table S3.1.

As expected, the performance of the proposed method improves as K

increases due to the better estimation of Σ with a larger K. When n = 200,

the proposed method with estimated Σ from K = 4 performs analogously

to that for the case with K = 0.

S3.8 Effects of the Misspecified Measurement Error Covariance

Matrix

In this subsection, we assess the sensitivity of the proposed method to

the misspecification of the measurement error covariance matrix Σ. In

Section S3.1, the covariance matrix Σ used to simulate data is specified as

the matrix, denoted as Σs, with the (j, j′) element set to be σ2
Uρ

|j−j′|
U for

1 ≤ j, j′ ≤ p, where we consider σ2
U = ρU = 0.1. When implementing the
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Table S3.6: Simulation results for Section S3.7: Evaluation of the impact of the number

of additional repeated measurements K using CV, where σU = 0.1, ρU = 0.1, σ2
ε = 0.25,

ρε = 0.1, and n = 50 or 200.

MISE ISB IV PSR NSR

n=50 K = 0 0.229 0.004 0.225 1.000 0.819

K = 1 0.340 0.003 0.337 0.997 0.783

K = 4 0.239 0.004 0.235 0.998 0.823

n=200 K = 0 0.047 0.001 0.046 1.000 0.911

K = 1 0.054 0.001 0.053 1.000 0.878

K = 4 0.047 0.001 0.046 1.000 0.903

proposed method, the covariance matrix Σ for the error term Ui is mistaken

as a working matrix, denoted as Σw, whose (j, j
′) element is set as σ̃2

U ρ̃
|j−j′|
U ,

where in case 1, we take σ̃2
U = γ1σ

2
U and ρ̃U = ρU for a positive constant

γ1; and in case 2, we let σ̃2
U = σ2

U and ρ̃U = γ2ρU for a constant γ2. When

γ1 = 1 or γ2 = 1, the working matrix Σw is identical to the true matrix Σs

used to generate data.

Tables S3.7 and S3.8 display the results for cases 1 and 2, respectively, in

the same manner as for Table S3.1, where we take γ1 ∈ {0.5, 0.8, 1.0, 1.2, 1.5, 2.0},

γ2 ∈ {−1.0,−0.5, 0, 0.5, 1.0, 2.0}, and the results for the naive method are

displayed in parentheses. Clearly, the values of MISE and ISB minimize
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when true Σ is used in both cases. The values of IV tend to increase as γ1

increases or γ2 decreases; they decrease as n increases. The values of PSR

are always 1 for all settings. When n is large, the best NSR is obtained

when true Σ is used. However, best NSR values may be reached for γ1 > 1

or γ2 < 1 if n is small. Similar performance to the true Σ-based method is

achievable when the discrepancy between the working matrix Σw and Σs

is moderate. However, a large discrepancy, such as γ1 = 2, can lead to the

proposed method performing even worse than the naive method, as shown

in Table S3.7.
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Table S3.7: Simulation results for Section S3.8: Misspecification of Σ for Case 1 using

CV, where σ2
ε = 0.25, ρε = 0.1, and n = 100 or 500. The results for the naive method is

included in parentheses.

γ1 = 0.5 0.8 1 1.2 1.5 2

n = 100 MISE 0.148 0.096 0.094 (0.334) 0.126 0.278 1.003

ISB 0.074 0.012 0.000 (0.263) 0.018 0.127 0.646

IV 0.074 0.084 0.094 (0.071) 0.108 0.151 0.357

PSR 1.000 1.000 1.000 (1.000) 1.000 1.000 1.000

NSR 0.861 0.891 0.892 (0.730) 0.916 0.903 0.837

n = 500 MISE 0.086 0.025 0.016 (0.280) 0.037 0.151 0.742

ISB 0.071 0.011 0.000 (0.263) 0.017 0.119 0.666

IV 0.015 0.014 0.016 (0.017) 0.020 0.032 0.076

PSR 1.000 1.000 1.000 (1.000) 1.000 1.000 1.000

NSR 0.786 0.904 0.918 (0.562) 0.913 0.823 0.611
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Table S3.8: Simulation results for Section S3.8: Misspecification of Σ for Case 2 using

CV, where σ2
ε = 0.25, ρε = 0.1, and n = 100 or 500. The results for the naive method is

included in parentheses.

γ2 = −1 -0.5 0 0.5 1 2

n = 100 MISE 0.166 0.133 0.112 0.098 0.094 (0.334) 0.097

ISB 0.042 0.022 0.009 0.002 0.000 (0.263) 0.006

IV 0.124 0.111 0.103 0.096 0.094 (0.071) 0.091

PSR 1.000 1.000 1.000 1.000 1.000 (1.000) 1.000

NSR 0.900 0.912 0.911 0.923 0.892 (0.730) 0.874

n = 500 MISE 0.076 0.047 0.030 0.020 0.016 (0.280) 0.021

ISB 0.044 0.022 0.009 0.002 0.000 (0.263) 0.005

IV 0.031 0.025 0.021 0.018 0.016 (0.017) 0.016

PSR 1.000 1.000 1.000 1.000 1.000 (1.000) 1.000

NSR 0.768 0.851 0.889 0.916 0.918 (0.562) 0.881
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S4 Analysis Results Additional to Section 6

This section records additional results for Section 6, which reports some

results for a = c = 1 only. First, for a = c = 1, we display in Figure

S4.1 the estimates of βj(t) corresponding to each of the twelve covariates

obtained by using either CV or BIC to choose a suitable tuning parameter

value. Estimates of Xi,9 and Xi,10 are quite different with the use of CV or

BIC, for which the corresponding covariates Xi,9 and Xi,10 are excluded by

CV but not by BIC. Additionally, all the covariates excluded by BIC are

also excluded by CV.

Next, we report sensitivity in estimating β1(t), the coefficient function

corresponding to the BMI Z-score (Xi,1), when different degrees of mea-

surement error are present in the data, and display the estimates of β1(t) in

Figure S4.2, where a = 0, 1, 2 and 3 and c = 0, 5, 10 and 15 are considered.

Here a = 0 corresponds to the naive method which ignores the differences

betweenXi andX
∗
i . It seems that the value of a has more noticeable impact

on estimation results than that of c. All other estimated functions share

analogous trends and the variable selection results are consistent among all

the chosen values for a and c, and are not reported here.
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Figure S4.1: The estimates of βj(t) corresponding to each of the twelve covariates ob-

tained by using CV (solid) or BIC (dotted) to choose a tuning parameter value with

a = c = 1.
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Figure S4.2: BMI Z-score coefficient function estimates for different values of a and c:

the estimates corresponding to a = 0, 1, 2 and 3 are expressed by curves marked with

solid red, dash green, dotted blue and dash-dotted purple, respectively.
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S5 Extension to Accommodating the Generalized Least

Squares Loss Function

S5.1 Method and Properties

The simple least squares loss function (2.6) focuses on expressing the differ-

ences between the responses Y (t) and their approximate mean (X⊗Φ(t))b,

without accounting for the correlation within the error process ε(t) over t.

In this section, we extend the method in the main text to accommodate

generalized least squares loss functions. LetG denote a symmetric positive-

definite m×m matrix. Define

L̃G
n (b;Y (t),X) ≜

1

2

n∑
i=1

∥∥Yi(t)− (XT
i ⊗Φ(t))b

∥∥2
G
, (S5.2)

where ∥a∥2G represents aTGa for any m-dimensional vector a. The new

loss function (S5.2) differs from (2.6) in the inclusion of a weight matrix G.

Under the model (3.7), (3.9) can be modified as

E
{
L̃G
n (b;Y (t),X∗)

}
= E

{
L̃G
n (b;Y (t),X)

}
+
n

2
bT
[
Σ⊗

{
ΦT(t)GΦ(t)

}]
b,

which motivates the generalized version of (3.10):

LG
n (b;Y (t),X∗) ≜ L̃G

n (b;Y (t),X∗)− n

2
bT
[
Σ⊗

{
ΦT(t)GΦ(t)

}]
b.

(S5.3)
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Define

QG
n (b) = LG

n (b;Y (t),X∗) + nm

p∑
j=1

Pλ(∥bj∥),

which is identical to (3.11) except replacing the loss function Ln(b;Y (t),X∗)

with LG
n (b;Y (t),X∗).

Replacing Qn(b) in (3.12) with QG
n (b), we let b̂G denote the resulting

estimators, and let β̂G
j for j = 1, . . . , p denote the estimators determined by

(3.13) with b̂j replaced by the jth element of b̂G. Analogous to Theorems

1 and 2 in the main text, we establish asymptotic properties for b̂G and β̂G
j

with j = 1, . . . , p.

Corollary 1. Assume that the weight matrix G satisfies

C ′−1
4 ζ ′m ≤ ρmin(G) ≤ ρmax(G) ≤ C ′

4ζm, (S5.4)

where C ′
4 is a positive constant, ζm and ζ ′m are sequences of m satisfying

ζm/ζ
′
m = o(

√
n/M). Then under the conditions of Theorem 1, there exists

a local minimizer b̂G of QG
n (b) such that

∥b̂G − b0∥ = Op(ζm
√
M/n/ζ ′m),

and hence, for j = 1, . . . , p,

∥β̂G
j − βj∥L∞ = Op(ζm

√
M/n/ζ ′m) and ∥β̂G

j − βj∥L2 = Op(ζm
√
1/n/ζ ′m).

Remark 3. In Corollary 1, ζm is allowed to be divergent and ζ ′m is allowed

to converge to 0 as m → ∞. For example, if we choose G to be the inverse
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of Σε, then ζm can be ξ−1
m , as discussed in Remark 2, and thus, can be

divergent for some settings of εi(t). Also, the largest eigenvalue of Σε may

be divergent as m → ∞, and thus, the minimum eigenvalue of the inverse

of Σε, G, converges to 0, showing that ζ ′m → 0. Corollary 1 implies that

incorporating G may result in a lower convergence rate than Theorem 1.

The following corollary encompasses Theorem 2 as a special case by

setting ζ ′m = ζm = 1 and G to be the identity matrix.

Corollary 2. Suppose the conditions in Corollary 1 hold. Assume further

that λ
√
n/M · ζ ′m/ζm → ∞ and λ

√
n · ζ ′m/ζ2m → ∞ as n → ∞.

(i) Then with probability tending to 1, the minimizer b̂ satisfies b̂j = 0 for

all j ∈ J0, and thus, Ĵ0 = J0.

(ii) Assume ρmin(Σε) ≥ C5ξm, where C5 is a positive constant and {ξm :

m = 1, 2, . . . } is a sequence of constants satisfying nξmζ′4m
mζ4m

→ ∞ and

M2qξmζ′2m
nmζ2m

→ ∞ as n → ∞ and m → ∞. Then for any t ∈ T and

j /∈ J0, we have that

β̂j(t)− βj(t)√
σ2
j (t)

d−→ N(0, 1) as n → ∞,
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where

σ2
j (t)

=
1

n

(
(Ωjj + Ω̃jj)ϕ

T(t){ΦT(t)GΦ(t)}−1{ΦT(t)GΣεGΦ(t)}{ΦT(t)GΦ(t)}−1ϕ(t)

+ Ωjjϕ
T(t)B0sΣIB

T
0sϕ(t) +

[
ΩT

j ⊗ {ϕT(t)B0s}
]
Γ
[
Ωj ⊗ {BT

0sϕ(t)}
] )

with Ωjj, Ωj and Ω̃jj given in Theorem 2.

Comparing the variance σ2
j (t) in Corollary 2 and the counterpart in

Theorem 2, the only difference is the inclusion ofG in the first term. Specif-

ically, if we set G = Σ−1
ε , the first term can be simplified as

1

n
(Ωjj + Ω̃jj)ϕ

T(t){ΦT(t)Σ−1
ε Φ(t)}−1ϕ(t).

The proofs of Corollaries 1 and 2 are similar to those for Theorems 1

and 2 with slight modifications, and thus, are omitted.

S5.2 Implementation

The algorithm of minimizing QG
n (b) is analogous to Section 4 in the main

text, except the inclusion of the matrix G. To be specific, let WG ≜

(X∗TX∗−nΣ)⊗{ΦT(t)GΦ(t)} be the counterpart ofW in (4.14). We then

obtain W
G
by (4.15) and the Cholesky decomposition W

G
= (V G)TV G.

Define b̃G ≜ (W
G
)−1 (X∗ ⊗Φ(t))TGY (t), where G ≜ diag(G, · · · ,G)
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with n blocks of G. We then consider minimizing the objective function

Q̃G
n (b) =

1

2nm

∥∥∥V Gb̃G − V Gb
∥∥∥2 + p∑

j=1

Pλ(∥bj∥)

=
1

2(M + d)p

∥∥∥∥∥
√

(M + d)p

nm
V Gb̃G −

√
(M + d)p

nm
V Gb

∥∥∥∥∥
2

+

p∑
j=1

Pλ(∥bj∥).

The remaining procedure is identical to the discussion for (4.19) in the main

text, except that the term V Gb̃G is now computed by solving the equation

(V G)TỸ = (X∗ ⊗Φ(t))TGY (t)

for unknown Ỹ .

For the tuning parameters selection, the CV method is similar to (4.21)

except the ordinary ∥·∥ term is replaced by ∥·∥G and the ΦT(t)Φ(t) is now

ΦT(t)GΦ(t). Analogously, BIC is the same as (4.22) with ∥ · ∥ replaced by

∥ · ∥G, where ∥a∥2G represents aTGa for any mn-dimensional vector a.

S5.3 A Simulation Study

In the literature of generalized least squares (GLS) methods, the matrix G

is commonly set as the inverse matrix Σ−1
ε . In this subsection, we compare

the performance of the original method based on least squares (LS) which

minimizes (3.11), to the extended approach with a generalized least squares

function, where we set G to be Σ−1
ε or Σ̂−1

ε , and let GLS0 and GLS refer

to those methods, respectively. Here Σ̂−1
ε is simply obtained using the
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residuals, formed as follows: the residual for unit i is given by

êi ≜ Yi(t)− (X∗T
i ⊗Φ(t))b̂ for i = 1, . . . , n,

where b̂ denotes the estimate obtained from the LS method (3.12). To

account for the use of the contaminated X∗
i , we estimate Σε by adding a

debias term as follows:

Σ̂ε =
1

n

n∑
i=1

êiê
T
i −Φ(t)B̂ΣB̂TΦT(t), (S5.5)

where B̂ is the (M + d)× p matrix version of b̂ satisfying vec(B̂) = b̂. We

can then compute the inverse Σ̂−1
ε for GLS. If there is no measurement error,

the first part of Σ̂ε in (S5.5) is often considered in multivariate responses

models. See, for example, Sofer et al. (2014) and the reference therein. In

functional response models, Chen et al. (2016) proposed a similar procedure.

The setting is analogous to those in Section S3.1 except for the ran-

dom error. Indeed, direct calculation of Σ−1
ε based on the definition, i.e.,

Σε(t, t
′) = σ2

ερ
15|t−t′|2
ε for t, t′ ∈ T , is unstable of infeasible since those

εi(t1), . . . , εi(tm) are highly correlated even when ρε is very small. Alter-

natively, we consider enhancing the diagonal elements of Σ̂ε by defining

Σε(t, t
′) = σ2

ερ
15|t−t′|2
ε + σ′2

ε 1(t = t′) for t, t′ ∈ T now, where σ′
ε is a positive

constant.

Repeating the experiments for three methods 300 times, Table S5.1 re-
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ports MISE and SDISE (displayed in parentheses), the definition of which

is given in Section S3.5) and means of PSR anf NSR under different sam-

ple sizes n using the CV method. Clearly, GLS0 is consistently the best,

though it only slightly outperforms LS . When n is relatively small, GLS

can perform worse than LS because of inaccurate estimation of Σε.

Table S5.1: Simulation results for comparing three methods under the setting with

σ2
U = 0.1, ρU = 0.1, σ2

ε = σ′2
ε = 0.25, and ρε = 0.1

n Method MISE (SDISE) PSR NSR

100 LS 0.097 (0.090) 1.000 0.903

GLS 0.124 (0.142) 0.998 0.848

GLS0 0.093 (0.088) 1.000 0.913

200 LS 0.047 (0.041) 1.000 0.894

GLS 0.046 (0.036) 1.000 0.896

GLS0 0.047 (0.040) 1.000 0.912

500 LS 0.017 (0.016) 1.000 0.922

GLS 0.016 (0.014) 1.000 0.911

GLS0 0.015 (0.012) 1.000 0.953
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