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This supplementary material is structured as follows. Regularity conditions

are given in Section S1. Further simulation and application results are given

in Sections S2 and S3, respectively. Section S4 contains multivariate covari-

ate setup. We provide proofs of theorems and some technical derivations in

Sections S5 and S6.

S1 Regularity conditions

We give three regularity conditions as follows:

Condition 1. {(yi,Wi, ψi)} is a sequence of independent and identically

distributed random vectors, and there exist positive constants ψL and ψU



such that 0 < ψL ≤ inf1≤i≤m ψi ≤ sup1≤i≤m ψi ≤ ψU <∞ for i = 1, ...,m.

Condition 2. ω = (β0, β1, σ
2
v)

′ ∈ Θ where Θ is a compact set such that

Θ ⊂ (R,R,R+) and ω̂
P−→ ω.

Condition 3. (i) Ũ(ω) exists almost surely in probability and E{Ũ(ω)} =

0. (ii) Ũ ′(ω) is a continuous function where E{Ũ ′(ω)} is uniformly bounded

away from zero. (iii) E{|Ũ(ω)|4+δ}, E{|Ũ ′(ω)|4+δ}, and E{supc∈(−ϵ,ϵ) |Ũ ′′(ω)|4+δ}

are uniformly bounded under some ϵ > 0 and δ > 0.

S2 Further simulation results

In this Section, we provide the empirical MSE of predictors as well as R̂1i

andmseJ for multiple values of small areas related to the simulation Section

of the paper. The results are listed in Table S2.1.

S3 Further application results

In this Section, we provide three figures related to the application Section

of the paper. Figures S3.1 and S3.2 depict the distributions of the Census

of Governments based on 4000 and 8000 sample sizes. Figure S3.3 shows

the scatter plots for the SAIPE data set. Figure S3.4 displays the box-plots

of two predictors from the SAIPE data set.



Table S2.1: Empirical MSE as well as R̂1i and mseJ of predictors averaged by the values

of Ci for all possible values of k. We assume m ∈ {20, 50, 100}, and the numerical values

are in the logarithmic scale.

k Ci EMSE(yi) EMSE(θ̃i,No-ME) EMSE(θ̃i,A) EMSE(θ̃i,B) R̂1i(θ̃i,B) mseJ(θ̃i,B)

m = 20

25 0 44.678 33.385 33.385 33.385 54.275 57.497

2 48.742 37.031 50.733 38.925 90.202 80.191

50 0 48.514 38.684 38.684 38.684 63.755 63.852

2 42.568 36.193 44.793 34.408 73.667 72.889

80 0 47.321 40.189 40.189 40.189 62.135 65.010

2 43.966 37.164 46.019 35.167 79.058 78.690

100 2 45.600 38.923 47.445 37.089 81.210 78.617

m = 50

25 0 48.779 37.851 37.851 37.851 66.433 68.337

2 47.535 37.699 49.199 39.195 90.517 89.474

50 0 47.239 37.227 37.227 37.227 63.285 65.029

2 50.841 41.380 52.488 42.141 96.313 94.237

80 0 49.722 40.308 40.308 40.308 71.310 74.125

2 48.903 41.514 50.419 40.469 90.451 88.179

100 2 48.613 42.374 49.999 41.082 89.500 88.080

m = 100

25 0 40.311 28.807 28.807 28.807 49.891 52.212

2 49.897 38.359 51.599 40.349 92.106 89.288

50 0 46.091 35.481 35.481 35.481 62.508 64.791

2 39.885 29.954 41.941 31.010 71.395 68.307

80 0 55.042 46.172 46.172 46.172 77.347 77.868

2 39.988 33.310 41.700 32.434 72.332 71.142

100 2 42.977 36.106 44.535 35.132 78.235 77.868



Figure S3.1: Histograms for the Census of Governments based on 4000 sample size. In

both plots (a) and (b), the distributions of covariate and response are highly skewed to

the right side. After transformations and in plots (d) and (e), we observe a stabilized

distribution. Plots (c) and (f) display the regression relationship between the response

variable and covariate before and after transformation.



Figure S3.2: Histograms for the Census of Governments based on 8000 sample size. In

both plots (a) and (b), the distributions of covariate and response are highly skewed to

the right side. After transformations and in plots (d) and (e), we observe a stabilized

distribution. Plots (c) and (f) display the regression relationship between the response

variable and covariate before and after transformation.



Figure S3.3: Scatter plots of response variable versus covariates (a) before and (b) after

transformations for the SAIPE data set.

Figure S3.4: Box-plots of direct and FHeblup predictors for the SAIPE data set.



S4 Multivariate extension

In this Section, we give some details of formulation and forms of predic-

tors A and B for multivariate covariate set-up. Let’s assume the following

hierarchical set-up

zi|ϕi ∼ N(ϕi, ψi)

ϕi ∼ N(β0 + β′xi, σ
2
v)

Wi ∼ MVN(xi,Ci),

where β′ = (β1, β2, ..., βp), xi = (xi1, xi2, ..., xip)
′, W i = (Wi1,Wi2, ...,Wip)

′,

and Ci = diag(Ci1, ..., Cip).

The parameter of interest is θi = exp(β0 + β′xi + vi). Following the

same derivations given in the manuscript, predictor A can be defined as

θ̃i,A = exp(γ̃izi + (1− γ̃i)(β0 + β′W i) + γ̃iψi/2),

where γ̃i = (β′Ciβ+σ2
v)/Si(β, σ

2
v) and Si(β, σ

2
v) = (β′Ciβ+σ2

v +ψi). Pre-

dictor B can be defined as θ̃i,B = θ̃i,A exp(−1
2
di), where di = 2ψiβ

′Ciβ/Si(β, σ
2
v).

The vector of unknown parameters can be estimated along the same lines

of the manuscript.



S5 Proofs of theorems

In this Section, we provide proofs of theorems.

Proof of Theorem 1:

E[θ̃i,A] = E[exp(γ̃izi)]E[exp{(1− γ̃i)(β0 + β1Wi)}] exp(γ̃iψi/2)

= exp[γ̃i(β0 + β1xi +
1

2
γ̃2i (σ

2
v + ψi))]

× exp[(1− γ̃i)(β0 + β1xi +
1

2
(1− γ̃i)

2(β2
1Ci))] exp(γ̃iψi/2)

= exp[β0 + β1xi +
1

2
{γ̃2i (σ2

v + ψi) + (1− γ̃i)
2(β2

1Ci) + γ̃iψi}]. (S5.1)

Next, we simplify

γ̃2i (σ
2
v + ψi) + (1− γ̃i)

2β2
1Ci + γ̃iψi

= γ̃2i (σ
2
v + ψi + β2

1Ci)− 2γ̃iβ
2
1Ci + β2

1Ci + γ̃iψi

= S−1
i (β1, σ

2
v)(β

2
1Ci + σ2

v)
2 − 2γ̃iβ

2
1Ci + β2

1Ci + γ̃iψi

= γ̃i(β
2
1Ci + σ2

v)− 2γ̃iβ
2
1Ci + β2

1Ci + γ̃iψi

= γ̃i(σ
2
v + ψi) + (1− γ̃i)β

2
1Ci. (S5.2)

The result follows from (S5.1) and (S5.2).

Proof of Theorem 2: We use the equations from the expressions (4.2) of

the manuscript to find the matrix Iω as follows



Iω =


var(Ũ1(ω)) cov(Ũ1(ω), Ũ2(ω)) cov(Ũ1(ω), Ũ3(ω))

cov(Ũ1(ω), Ũ2(ω)) var(Ũ2(ω)) cov(Ũ2(ω), Ũ3(ω))

cov(Ũ1(ω), Ũ3(ω)) cov(Ũ2(ω), Ũ3(ω)) var(Ũ3(ω))

 .
The elements of the matrix are as follows

var(Ũ1(ω)) =
m∑
i=1

S−1
i (β1, σ

2
v),

cov(Ũ1(ω), Ũ2(ω)) =
m∑
i=1

S−2
i (β1, σ

2
v)cov[Wiτi(β0, β1), τi(β0, β1)]

=
m∑
i=1

S−2
i (β1, σ

2
v)E[(Wi − xi + xi)τ

2
i (β0, β1)] =

m∑
i=1

S−1
i (β1, σ

2
v)xi,

cov(Ũ1(ω), Ũ3(ω)) = 0,

var(Ũ2(ω)) =
m∑
i=1

S−2
i (β1, σ

2
v)var[Wiτi(β0, β1)] + β2

1

m∑
i=1

S−4
i (β1, σ

2
v)C

2
i var[τ

2
i (β0, β1)]

+ 2β1

m∑
i=1

S−3
i (β1, σ

2
v)Cicov[Wiτi(β0, β1), τ

2
i (β0, β1)].

Note that we have

(i) var[Wiτi(β0, β1)] = (x2i + Ci)Si(β1, σ
2
v) + β2

1C
2
i ,

(ii) var[τ 2i (β0, β1)] = 2S2
i (β1, σ

2
v), and

(iii) cov[Wiτi(β0, β1), τ
2
i (β0, β1)] = −2β1CiSi(β1, σ

2
v).

Therefore,

var(Ũ2(ω)) =
m∑
i=1

S−2
i (β1, σ

2
v)(σ

2
v + ψi)Ci +

m∑
i=1

S−1
i (β1, σ

2
v)x

2
i =

m∑
i=1

S−1
i (β1, σ

2
v)(x

2
i + σ̃2

ci),



cov(Ũ2(ω), Ũ3(ω)) =
1

2
cov[

m∑
i=1

S−1
i (β1, σ

2
v)Wiτi(β0, β1) + β1

m∑
i=1

S−2
i (β1, σ

2
v)Ciτ

2
i (β0, β1),

m∑
i=1

S−1
i (β1, σ

2
v)τ

2
i (β0, β1)]

=
1

2

m∑
i=1

S−3
i (β1, σ

2
v)cov[Wiτi(β0, β1), τ

2
i (β0, β1)]

+
1

2
β1

m∑
i=1

S−4
i (β1, σ

2
v)Civar[τ

2
i (β0, β1)] = −β1

m∑
i=1

S−2
i (β1, σ

2
v)Ci

+ β1

m∑
i=1

S−2
i (β1, σ

2
v)Ci = 0,

var(Ũ3(ω)) =
1

4

m∑
i=1

S−4
i (β1, σ

2
v)var[τ

2
i (β0, β1)] =

1

2

m∑
i=1

S−2
i (β1, σ

2
v).

As a final result, we get

Iω =


∑m

i=1 S
−1
i (β1, σ

2
v)

∑m
i=1 S

−1
i (β1, σ

2
v)xi 0∑m

i=1 S
−1
i (β1, σ

2
v)xi

∑m
i=1 S

−1
i (β1, σ

2
v)(x

2
i + σ̃2

ci) 0

0 0 1
2

∑m
i=1 S

−2
i (β1, σ

2
v)

 .

S6 Details of derivations for R̂1i

Recall that R1i :=M1i(ω)M2i(ω). In order to estimate R1i, one can define

E[M1i(ω̂)M2i(ω̂)−M1i(ω)M2i(ω)]2 := E[{M1i(ω̂)−M1i(ω)}{M2i(ω̂)−M2i(ω)}

+M2i(ω)(M1i(ω̂)−M1i(ω)) +M1i(ω)(M2i(ω̂)−M2i(ω))]2

= E[{M1i(ω̂)−M1i(ω)}2{M2i(ω̂)−M2i(ω)}2]



+M2
2i(ω)E[M1i(ω̂)−M1i(ω)]2 +M2

1i(ω)E[M2i(ω̂)−M2i(ω)]2

+ 2E[(M1i(ω̂)−M1i(ω))2(M2i(ω̂)−M2i(ω))]M2i(ω)

+ 2E[(M1i(ω̂)−M1i(ω))(M2i(ω̂)−M2i(ω))2]M1i(ω)

+ 2M1i(ω)M2i(ω)E[(M1i(ω̂)−M1i(ω))(M2i(ω̂)−M2i(ω))]. (S6.1)

Application of the Cauchy-Schwarz inequality yields

(i) E[{M1i(ω̂)−M1i(ω)}2{M2i(ω̂)−M2i(ω)}2]

≤ E1/2[M1i(ω̂)−M1i(ω)]4E1/2[M2i(ω̂)−M2i(ω)]4 = O(1)O(m−1) = O(m−1),

(ii) E[{M1i(ω̂)−M1i(ω)}2{M2i(ω̂)−M2i(ω)}]

≤ E1/2[M1i(ω̂)−M1i(ω)]4E1/2[M2i(ω̂)−M2i(ω)]2 = O(1)O(m−1/2) = O(m−1/2),

(iii) E[{M1i(ω̂)−M1i(ω)}{M2i(ω̂)−M2i(ω)}2]

≤ E1/2[M1i(ω̂)−M1i(ω)]2E1/2[M2i(ω̂)−M2i(ω)]4 = O(1)O(m−1) = O(m−1),

(iv) E[M2i(ω̂)−M2i(ω)]2 = O(m−1), and

(v) E[{M1i(ω̂)−M1i(ω)}{M2i(ω̂)−M2i(ω)}]

≤ E1/2[M1i(ω̂)−M1i(ω)]2E1/2[M2i(ω̂)−M2i(ω)]2 = O(1)O(m−1/2) = O(m−1/2).

Thus, we conclude that only the term M2
2i(ω)E[M1i(ω̂) −M1i(ω)]2 from

expression (S6.1) needs to be estimated. Therefore, the estimator of R1i is

the expression of R̂1i given in the manuscript.
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