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Supplementary Material

This supplementary material includes illustrations of the simulation studies, real data applica-

tion, and theoretical results of our proposed method. We provide derivations of Alternating

Direction Method of Multipliers (ADMM) subproblems in Section S1. The proofs of Theorem

1-Theorem 3 are given in Section S2. The figures to demonstrate simulation performance and

Timed Up and Go test are shown in Section S3 and S4.
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S1 Derivation of ADMM subproblems

S1.1 Solution to b̃-update

Based on the Equation (8),

b̃
k+1

l = argmin
b̃l∈RMn+d

1

2
||r(−l) − Ũ lb̃l||22 + λ2||b̃l||2 + (uk

l )
T ((LT

l )
−1b̃l − zk

l ) +
ρ

2
||(LT

l )
−1b̃l − zk

l ||22

= argmin
b̃l∈RMn+d

1

2
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ρ

2
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l )
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l − uk
l /ρ||22

= argmin
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λ2||b̃l||2 +
1

2
||r̂k
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(
Ũ

T

l ,
√
ρL−1

l

)T
and r̂k

(−l) =
(
rT
(−l),

√
ρ(zk

l + uk
l /ρ

)T
)T . Since

Û l is not identity, we cannot directly get the solution to the second op-

erator. Fortunately, by following Wang and Yuan (2012) we can employ

linearization technique to approximate the quadratic term efficiently. We

linearize it by replacing ||r̂k
(−l) − Û lb̃l||22/2 with

(
Û

T

l

(
Û lb̃

k

l − r̂k
(−l)

))T
(b̃l −

b̃
k

l ) +
νl
2
||b̃l − b̃

k

l ||22, where the first term is apparently the gradient at b̃
k

l .

Hence,

b̃
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T

l

(
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)
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Û lb̃

k

l − r̂k
(−l)

)
/νl).

If ρ is fixed, b̃
k+1

l will tend to be zero when λ2 ≥ νl||b̃
k

l − Û
T

l

(
Û lb̃

k

l −

r̂k
(−l)

)
/νl||2.
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S1.2 Solution to z-update

Based on the Equation (9),

zk+1 = argmin
z∈RJ×(Mn+d)

λ1||z||1 + (uk)T (Db̃
k+1 − z) +

ρ

2
||Db̃

k+1 − z||22

= argmin
z∈RJ×(Mn+d)

λ1||z||1 +
ρ

2
||Db̃

k+1 − z + uk/ρ||22

= S1,λ1/ρ(Db̃
k+1

+ uk/ρ).

If ρ is fixed, zk+1
r will tend to be zero when λ1 >

∣∣ρDT
r·b̃

k+1
+ uk

r

∣∣, r =

1, . . . , J × (Mn + d), where Dr· is the rth row of D.

S2 Proofs

B-splines are essential in the estimation of coefficient function for func-

tional model. Before presenting the proofs of the proposed estimator, it is

necessary to state some properties of B-splines. As mentioned in Section

2.3, B-splines have a local support property: at most d + 1 consecutive

subintervals are nonzero. Plus, for a collection of B-spline basis functions

{Bk(t) : k = 1, . . . ,Mn + d, t ∈ T }, Bk(t) ≥ 0 and
∑Mn+d

k=1 Bk(t) = 1 for all

t. These properties imply that

sup
k,r

|⟨Bk, Br⟩| ≤ 2(d+ 1)M−1
n , (S2.1)
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and thus,

||Bk||22 ≤ sup
k,r

|⟨Bk, Br⟩| ≤ 2(d+ 1)M−1
n . (S2.2)

In addition, three inequalities will be also used. For any x ∈ Rp

||x||2 ≤ ||x||1 ≤
√
p||x||2;

||x||∞ ≤ ||x||1 ≤ p||x||∞;

||x||∞ ≤ ||x||2 ≤
√
p||x||∞.

S2.1 Proof of Theorem 1

Proof. For simplicity of notation, we assume the model has no intercept,

i.e., µ = 0 and rewrite the objective in Equation (2.5)

Ln(b) =
1

n
||Y −Ub||22 +∆nλ1

J∑
l=1

w
(1)
l ||bl||1 + λ2

J∑
l=1

w
(2)
l (bTl Kφ,lbl)

1/2,

(S2.3)

where Kφ,l = Φl + φΩl is a (Mn + d)× (Mn + d) matrix.

We first provide Lemma 2 and 3 to facilitate the proof. Lemma 2 follows

Huang et al. (2004) Lemma A.3 and Zhou et al. (2013) A8, while Lemma 3

refers to Lemma 6.2 of Cardot et al. (2003).

Lemma 2. If limn→∞Mn logMn/n = 0, there are positive constants C2

and C3 such that, all eigenvalues of (Mn/n)U
TU are within the interval

[C2, C3] with probability tending to 1 as n → ∞.
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Lemma 3. There are positive constants C4 and C5 such that, all eigenval-

ues of Kφ,l are within the interval [C4φM
−1
n , C5M

−1
n ] .

Proof . We define Kφ,l = Φl + φΩl, where (Φl)pq =
∫
t
Blp(t)Blq(t)dt and

(Ωl)pq =
∫
t
Bm

lp (t)B
m
lq (t)dt. The proof follows Lemma 6.2 (i) in Cardot et al.

(2003).

Let Ln(b + ηnv) − Ln(b), where ηn is a scalar and v ∈ RJ×(Mn+d). At

the point b = α, we let b̂ = α+ ηnv. By the minimality of b̂, we have

1

n

(
||Y −U(α+ ηnv)||22 − ||Y −Uα||22

)
≤∆nλ1

∑
l∈A

w
(1)
l

(
||αl||1 − ||αl + ηnvl||1

)
+ λ2

∑
l∈A

w
(2)
l

(
(αT

l Kφ,lαl)
1/2−

((αl + ηnvl)
TKφ,l(αl + ηnvl))

1/2
)
,

(S2.4)

because of the fact that αl = 0 if l ∈ Ac.

Let ϵi = Y i−⟨X i,β⟩, ϵ = (ϵ1, . . . , ϵn) and ei = ⟨X i,B
Tα⟩−⟨X i,β⟩ =

⟨X i,β
α − β⟩, e = (e1, . . . , en), the LHS of (S2.4) gives

LHS =
1

n
||ϵ− e− ηnUv||22 −

1

n
||ϵ− e||22

=
η2n
n
vTUTUv − 2ηn

n
(ϵ− e)TUv.

By Lemma 2, (η2n/n)v
TUTUv ≥ (η2n/n)(C2n/Mn) = η2nOp(M

−1
n ).

Moreover, by Cauchy-Schwarz inequality, (2ηn/n)(ϵ−e)TUv ≤ (2ηn/n)||v||2
(
(ϵ−

e)TUUT (ϵ − e)
)1/2

. Since ϵ and e are independent, E[(ϵ − e)TUUT (ϵ −
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e)T ] = E[ϵTUUTϵ] + E[eTUUTe]. By A.1, properties of B-splines and

independence of ϵi, we have

E[ϵTUUTϵ] = E

[
J∑

l=1

Mn+d∑
k=1

[
n∑

i=1

⟨Xli, Blk⟩2ϵ2i +
∑
i′ ̸=i

⟨Xli, Blk⟩⟨Xi′ , Blk⟩ϵiϵli′
]]

≤ σ2

J∑
l=1

sup
k

Mn+d∑
k=1

n∑
i=1

|⟨Xli, Blk⟩|2

≤ σ2Jn||Xli||22 sup
k

Mn+d∑
r=1

|⟨Blr, Blk⟩|

= O(n).

On the other hand, by Cauchy-Schwarz inequality, A.1, and Lemma 1, e2i =

|⟨X i,β
α−β⟩|2 ≤ ||X i||22

∑
l

∫
T

[
supt |βα

l (t)−βl(t)|
]2
dt ≤ c21J |T |(C1M

−δ
n )2,

where |T | represents the length of time domain. The inequality still holds

for eilei′ ,∀i ̸= i′. Hence,

E[eTUUTe] = E

[
J∑

l=1

Mn+d∑
k=1

[
n∑

i=1

⟨Xli, Blk⟩2e2i +
∑
i′ ̸=i

⟨Xli, Blk⟩⟨Xli′ , Blk⟩eiei′
]]

≤
Mn+d∑
k=1

n∑
i=1

e2iE[⟨Xli, Blk⟩2] +
Mn+d∑
k=1

∑
i′ ̸=i

eiei′E[⟨Xli, Blk⟩⟨Xli′ , Blk⟩]

= O(M−2δ
n nM−1

n ) +O(M−2δ
n n(n− 1)M−1

n )

= O(n2M−2δ−1
n ).

Therefore, by A.3, we have E[(ϵ − e)TUUT (ϵ − e)T ] = O(n). By Markov

inequality, (ϵ−e)TUUT (ϵ−e)T = Op(n) and thus, −(2ηn/n)(ϵ−e)TUv ≥

−2ηn||v||2Op(n
−1/2). Therefore, the LHS gives

LHS ≥ η2nOp(M
−1
n )− 2ηnOp(n

−1/2)||v||2. (S2.5)
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We denote the two terms of RHS of (S2.4) by T1 and T2. We first show

the convergence rate of FDoS by assuming w
(1)
l = w

(2)
l = 1 for all l. With

triangle inequality and ∆n = |T |/Mn, and let |A| be the number of nonzero

functions,

T1 ≤ |T |M−1
n λ1ηn|A|(J(Mn + d))1/2||v||2

= ηnOp(λ1M
−1/2
n )||v||2.

(S2.6)

Suppose x is any vector and A is a symmetric matrix such that gA(x) =

(xTAx)1/2, g is a continuous function. By Taylor expansion, gKφ,l
(αl) −

gKφ,l
(αl + ηnv) ≤ −ηnv

T∇gKφ,l
(αl). By Lamma 3 and φ = λ2

2, T2 gives

T2 ≤ −λ2|A|ηn(αT
l Kφ,lαl)

−1/2||v||2||Kφ,lαl||2I(αl ̸= 0)

= ηnOp(λ
2
2)||v||2.

(S2.7)

Combining three inequalities (S2.5)-(S2.7), we have

η2nOp(M
−1
n )− 2ηnOp(n

−1/2)||v||2 ≤ ηnOp(λ1M
−1/2
n )||v||2 + ηnOp(λ

2
2)||v||2.

For sufficient large constant C6 such that ||v||2 = C6, we find ηn = Op(Mnn
−1/2+

M
1/2
n λ1 + Mnλ

2
2). When λ1 = O(M

1/2
n n−1/2) and λ2 = O(n−1/4), ηn =

Op(Mnn
−1/2). It means that for any given ε > 0, there always exists ηn

such that

P
{
∃v ∈ RMn+d, ||v||2 = C6 : Ln(α+ ηnv) < Ln(α)

}
≥ 1− ε.

This further means that there is a local minimizer b̂ = α+ ηnv, such that

||b̂−α||2 = Op(Mnn
−1/2).
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Therefore, by triangle inequality

||β̂ − β||∞ ≤ ||β̂ − βα||∞ + ||βα − β||∞

≤ sup
t

Mn+d∑
k=1

|Blk(t)|||b̂−α||∞ + ||βα − β||∞

= Op(Mnn
−1/2) +O(M−δ

n ) = Op(Mnn
−1/2).

The last equation holds because of A.3.

The proof of convergence rate of FadDoS depends on the same reasoning

before, except the step of T1 and T2. Let ϕ1 = supl∈A ||β̌l||−a
1 and ϕ2 =

supl∈A ||β̌l||−a
2 . When λ1ϕ1 = O(M

1/2
n n−1/2) and λ2

2ϕ2 = O(n−1/2), the

results follow.

S2.2 Proof of Theorem 2

Proof. Since the penalty terms of the objective function are separable, we

assume other coefficient functions fixed and only consider the lth coefficient

function here. The overall error can be divided into estimation error and

approximation error as follows.

(n/Mn)
1/2(β̂l − βl) = (n/Mn)

1/2(β̂l − βα
l ) + (n/Mn)

1/2(βα
l − βl).

Because the B-spline approximation error has been mentioned in Lemma

1, (n/Mn)
1/2(βα

l −βl) = O(n1/2M
−δ−1/2
n ), we only need to focus on the first

term of RHS, (n/Mn)
1/2(β̂l − βα

l ) = (n/Mn)
1/2BT

l (b̂l −αl). Let v ∈ RMn+d
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such that b̂l = αl + (Mn/n)
1/2v and r(−l) = Y −

∑
j ̸=l U jbj, we define

Qn(v) given (S2.3), assuming w
(1)
l = w

(2)
l = 1,

Qn(v) =||r(−l) −U l(αl + (Mn/n)
1/2v)||22 + n∆nλ1||αl + (Mn/n)

1/2v||1+

nλ2((αl + (Mn/n)
1/2v)TKφ,l(αl + (Mn/n)

1/2v))1/2.

Suppose the minimizer of Qn(v) is noted as v̂n, then v̂n = (n/Mn)
1/2(b̂l −

αl). We need to show the limiting distribution of v̂n by proving the finite

distribution convergence of V
(l)
1(n) to V

(l)
1 . Note that V

(l)
1(n)(v) = Qn(v) −

Qn(0),

V
(l)
1(n)(v) =[vT (

Mn

n
UT

l U l)v − 2(
Mn

n
)1/2(r(−l) −U lαl)

TU lv]+

n∆nλ1

(
||αl + (Mn/n)

1/2v||1 − ||αl||1
)
+

nλ2

(
((αl + (Mn/n)

1/2v)TKφ,l(αl + (Mn/n)
1/2v))1/2 − (αT

l Kφ,lαl)
1/2

)
.

Because (Mn/n)U
T
l U l → C l and W l ∼ N(0, σ2C l), the first term denoted

by T1 of RHS of V
(l)
1(n)(v) is

T1 = vTC lv − 2W T
l v,

which is due to

(Mn/n)
1/2(r(−l) −U lαl)

TU l = (Mn/n)
1/2ϵTU l + (Mn/n)

1/2eTU l.

We can see that (Mn/n)
1/2ϵTU l = W l and (Mn/n)

1/2eTU l = (Mn/n)
1/2Op(M

−δ−1/2
n n) =

op(1). Furthermore, the second term denoted by T2 of RHS is

T2 = λ1(n/Mn)
1/2

Mn+d∑
k=1

{
|vk|I(αlk = 0) + vksgn

(
αlk

)
I(αlk ̸= 0)

}
.



Statistica Sinica

By Lemma 3, the eigenvalues of Kφ,l is of the order O(φM−1
n ), the third

term denoted by T3 of RHS gives

T3 = λ2(Mnn)
1/2

{
(αT

l Kφ,lαl)
−1/2vTKφ,lαlI(αl ̸= 0) + (vTKφ,lv)

1/2I(αl = 0)

}
+ o(Mn)λ2

= λ2
2n

1/2

{
||v||2I(αl = 0) + (vTαl/||αl||2)I(αl ̸= 0)

}
+ o(Mn)λ2.

So, we have V
(l)
1(n)(v)

p→ V
(l)
1 (v) for a fixed v. V

(l)
1(n) is a convex function

and it follows the results of Geyer (1994) that (n/Mn)
1/2(b̂l − αl) = v̂n =

argminv V
(l)
1(n)

p→ argminv V
(l)
1 for l = 1, . . . , J . Multipling Bl(t) on both

sides obtains

(n/Mn)
1/2(β̂l(t)− βl(t)) = (n/Mn)

1/2(β̂l(t)− βα
l (t)) +O(n1/2M−δ−1/2

n )

d→ BT
l (t) argmin

v
V

(l)
1 (v).

S2.3 Proof of Proposition 1

Proof of 1. Since finding Ân = A is the intersection of correctly estimating

nonzero values for nonzero coefficient function and correctly identifying zero

coefficient function, P (Ân = A) ≤ P (b̂l = 0 ∀l /∈ A). For lth coefficient

functions, let v∗
l = argminv V

(l)
1 (vl), Theorem 2 shows that (n/Mn)

1/2(b̂l−

αl)
d→ v∗

l . Therefore, we need to show that c = P (v∗
l = 0 ∀l /∈ A) < 1.

There are two cases:

If γ1 = γ2 = 0, v∗
l = C−1

l W l ∼ N(0, σ2C−1
l ) and therefore c = 0.
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If γ1 ̸= 0 or γ2 ̸= 0,

V
(l)
1 (vl) =


vT
l C lvl − 2W T

l vl + γ1Γ
(l)
1 (vl) + γ2(v

T
l αl/||αl||2) if l ∈ A

vT
l C lvl − 2W T

l vl + γ1||vl||1 + γ2||vl||2 if l /∈ A,

It can be seen that V
(l)
1 (vl) is not differentiable at vlk = 0 for any k. By

KKT conditions, v∗
l should satisfies

2C lv
∗
l − 2W l + γ1pl + γ2αl/||αl||2 = 0 if l ∈ A

2C lv
∗
l − 2W l + γ1ql + γ2zl = 0 if l /∈ A,

(S2.8)

where plk = ∂v∗lk
{
|v∗lk|I(αlk = 0) + v∗lksgn

(
αlk

)
I(αlk ̸= 0)

}
,

qlk =


sgn(v∗lk) if v∗lk ̸= 0

∈ {qlk : |qlk| ≤ 1} if v∗lk = 0,

zl =


v∗
l /||v∗

l ||2 if v∗
l ̸= 0

∈ {zl : ||zl||2 ≤ 1} if v∗
l = 0.

To examine the variable selection consistency, we have to introduce new

denotations by combining all coefficient functions. We letC = (Mn/n)U
TU ,

U = (U 1, . . . ,UJ)
T , W = (W 1, . . . ,W J)

T , p = (p1, . . . ,pJ)
T , q =

(q1, . . . , qJ)
T , α = (α1, . . . ,αJ)

T , and v∗ = (v∗
1, . . . ,v

∗
J)

T . Without loss of

generality, rewrite matrix C in a block-wise form involving either l ∈ A or

Ac such that

C =

CAA CAAc

CAcA CAcAc

 ,
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and rewrite vectors W , p , q, α, and v∗
l likewise. If v∗

l = 0 for any l /∈ A,

the optimality conditions (S2.8) become
2CAAv

∗
A − 2WA + γ1pA + γ2αA/||αA||2 = 0

||2CAcAv
∗
A − 2WAc + γ1qAc||2 ≤ γ2.

(S2.9)

Combining these optimality conditions (S2.9) above,

∣∣∣∣∣∣CAcAC
−1
AA(2WA − γ1pA − γ2αA/||αA||2)− 2WAc + γ1qAc

∣∣∣∣∣∣
2
≤ γ2.

Thus, we obtain,

c ≤ P

{∣∣∣∣∣∣CAcAC
−1
AA(2WA−γ1pA−γ2αA/||αA||2)−2WAc+γ1qAc

∣∣∣∣∣∣
2
≤ γ2

}
< 1.

Proof of 2. Given the same reasoning of 1, P (β̂l(t) = 0) ≤ P (b̂lk = 0 ∀k /∈

B). We need to show that c = P (v∗lk = 0 ∀k /∈ B) < 1. There are also two

cases:

If γ1 = γ2 = 0, v∗
l = C−1

l W l ∼ N(0, σ2C−1
l ) and therefore c = 0.

If γ1 = γ2 = 0, for l ∈ A,

V
(l)
1 (vl) =vT

l C lvl − 2W lvl + γ1Γ
(l)
1 (vl) + γ2v

T
l αA/||αA||2

=


vT
l C lvl − 2W lvl + γ1vlksgn

(
αlk

)
+ γ2v

T
l αA/||αA||2 if k ∈ B

vT
l C lvl − 2W lvl + γ1|vlk|+ γ2v

T
l αA/||αA||2 if k /∈ B.
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We can follow the KKT conditions with respect to individual vlk, and then

depend on the similar reasoning of the Proof of 1. to obtain the results.

S2.4 Proof of Theorem 3

Proof. The proof of Theorem 3 requires Lemma 4, which shows the rate

of convergence of the initial estimator which is derived from the penalized

B-splines estimator in Cardot et al. (2003). Let λ be the tuning parameter

for the functional generalization of ridge regularization.

Lemma 4. Under (A.1)-(A.3), if λ = O(Mnn
−1/2), || ˆ̌βl−βl||∞ = Op(Mnn

−1/2).

Proof . The proof depends on the identical procedure as Theorem 1.

Now we are ready to give the proof of Theorem 3. Based on (S2.3), we

define Qn(v), v ∈ RMn+d by adding adaptive weights as following

Qn(v) =||r(−l) −U l(αl + (Mn/n)
1/2v)||22 + n∆nλ1ŵ

(1)
l ||αl + (Mn/n)

1/2v||1+

nλ2ŵ
(2)
l ((αl + (Mn/n)

1/2v)TKφ,l(αl + (Mn/n)
1/2v))1/2.

Suppose the minimizer of Qn(v) is noted as v̂n, then v̂n = (n/Mn)
1/2(b̂l −

αl). We need to show the limiting distribution of v̂n. Similarly, V
(l)
2(n)(v) =
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Qn(v)−Qn(0) = vTC lv − 2W T
l v + Γ1,2(v), where

Γ1,2(v) =



λ1(n/Mn)
1/2ŵ

(1)
l

∑Mn+d
k=1

{
|vk|I(αk = 0) + vksgn

(
αlk

)
I(αlk ̸= 0)

}
+

λ2(Mnn)
1/2ŵ

(2)
l (αT

l Kφ,lαl)
−1/2vTKφ,lαl if l ∈ A

λ1(n/Mn)
1/2ŵ

(1)
l ||v||1 + λ2(Mnn)

1/2ŵ
(2)
l (vTKφ,lv)

1/2 if l /∈ A,

and (Mn/n)U
T
l U l → C l, W l = N(0, σ2C l) as before.

If l /∈ A, ŵ
(1)
l = || ˆ̌β||−a

1 = Op(M
−a
n na/2) and ŵ

(2)
l = || ˆ̌β||−a

2 = Op(M
−a
n na/2),

λ1(
n

Mn

)1/2ŵ
(1)
l ||v||1 ∝ λ1(

n

Mn

)1/2
na/2

Ma
n

ŵ
(1)
l

Ma
n

na/2
||v||1 =

λ1n
(a+1)/2

M
a+1/2
n

ŵ
(1)
l

Ma
n

na/2
||v||1

p→ ∞,

since λ1n
(a+1)/2/M

a+1/2
n → ∞ and (Ma

n/n
a/2)ŵ

(1)
l = Op(1); on the other

hand, given Lemma 3 and φ = λ2
2,

λ2(Mnn)
1/2ŵ

(2)
l (vTKφ,lv)

1/2 = λ2
2n

1/2n
a/2

Ma
n

ŵ
(2)
l

Ma
n

na/2
=

λ2
2n

(a+1)/2

Ma
n

ŵ
(2)
l

Ma
n

na/2

p→ ∞,

since λ2
2n

(a+1)/2/Ma
n → ∞ and (Ma

n/n
a/2)ŵ

(2)
l = Op(1). Hence, for l /∈ A

V
(l)
2(n)(v) = ∞. (S2.10)

If l ∈ A and k /∈ B, we have

V
(l)
2(n)(v) = vTC lv−2W T

l v+λ1(
n

Mn

)1/2ŵ
(1)
l |vk|+λ2(Mnn)

1/2ŵ
(2)
l (αT

l Kφ,lαl)
−1/2vTKφ,lαl.

Under the same conditions before, we know that λ1(
n

Mn
)1/2ŵ

(1)
l |vk|

p→ ∞

and λ2(Mnn)
1/2ŵ

(2)
l (αT

l Kφ,lαl)
−1/2vTKφ,lαl

p→ ∞. We re-expressed v in

a blockwise form mentioned before such that v = (vB,vBc)T . Hence,
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V
(l)
2(n)(vBc) = ∞. (S2.11)

If l ∈ A and k ∈ B, due to t ∈ I0(βl),
ˆ̌βl(t)

p→ βl(t) ̸= 0, the last two

terms converge to zero in probability under the conditions λ1(n/Mn)
1/2 → 0

and λ2
2n

1/4 → 0. Thus,

V
(l)
2(n)(vB) = vT

B(C l)BBvB − 2(W l)
T
BvB. (S2.12)

Thus, we see that V
(l)
2(n)(v)

p→ V
(l)
2 (v) for a fixed v and V

(l)
2(n) is a convex

function. Given (S2.10), (S2.11), and (S2.12), it follows the results of Geyer

(1994) that v̂(l)
n = argminv V

(l)
2(n)

p→ argminv V
(l)
2 , where

V
(l)
2 (v) =



vB(C l)BBvB − 2(W l)
T
BvB if l ∈ A and k ∈ B

∞ if l ∈ A and k /∈ B

∞ if l /∈ A,

and (C l)BB, (W l)B are similarly defined. Therefore, we have v̂n
d→ (C l)

−1
BB(W l)B

if l ∈ A and k ∈ B; v̂n
d→ 0 if l ∈ A and k /∈ B; v̂n

d→ 0 if l /∈ A. Since

(W l)B ∼ N(0, σ2(C l)BB), it can be seen that for t ∈ I1(βl),

(n/Mn)
1/2(β̂l(t)− βl(t)) = (n/Mn)

1/2(β̂l(t)− βα
l (t)) + (n/Mn)

1/2(βα
l (t)− βl(t))

= (n/Mn)
1/2BT

l (b̂lB −αlB) +O(n1/2M−δ−1/2
n )

d→ BT
l (C l)

−1
BB(W l)B

d→ N(0,Σlt),
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where Σlt = σ2BT
l (t)(C l)

−1
BBBl(t).

We now want to prove the consistency of global and local selection. We

start with the global variable selection. The asymptotic normality indicates

that P (l ∈ Â) → 1. Then it suffices to show that for any l′ /∈ A, P (l′ ∈

Â) → 0. We rewrite the objective function for bl′ , resulting in Ln(bl′) =

n−1||r(−l′) −U l′bl′||22 +∆nλ1ŵ
(1)
l′ ||bl′||1 + λ2ŵ

(2)
l′ (bTl′Kφ,l′bl′)

1/2. By Lemma

3 that eigenvalues of Kφ,l is of the order O(φM−1
n ), we can derive the KKT

conditions for global and local selection respectively.

If l′ ∈ Â, under KKT conditions, we have

2UT
l′ (r(−l′) −U l′bl′) = n∆nλ1ŵ

(1)
l′ ql′ + nM−1/2

n λ2
2ŵ

(2)
l′ bl′/||bl′ ||2 (S2.13)

where ql′k is defined similary as above with respect to bl′k here. Multiplying

(Mn/n)
1/2 on both sides, the LHS gives

2(
Mn

n
)1/2UT

l′ (r(−l′) −U l′bl′) = 2W l′ + 2(
Mn

n
)UT

l′U l′(
n

Mn

)1/2(αl′ − bl′).

Because W l′ ∼ N(0, σ2C l′) and the second term asymptotically converges

to normal distribution, 2(Mn/n)
1/2UT

l′ (r(−l′)−U l′bl′)
d→ some normal distribution

by Slutsky’s theorem. Given (n/Mn)
1/2λ1ŵ

(1)
l

p→ ∞ and n1/2λ2
2ŵ

(2)
l

p→ ∞

under the conditions, we know the probability that (S2.13) holds tends to

be 0, and thus, P (l′ ∈ Â) → 0.

Now we want to prove the consistency of local selection only considering
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l ∈ A and k ∈ B. Similarly, it suffices to show that for any k′ /∈ B,

P (k′ ∈ B̂|l ∈ A) → 0.

If k′ ∈ B̂, under KKT conditions, we have

2UT
l (r(−l) −U lbl)Ik′ = n∆nλ1ŵ

(1)
l sgn(blk′) + nM−1/2

n λ2
2ŵ

(2)
l blk′/||bl||2,

(S2.14)

where Ik′ denotes (Mn+d)-dimensional unit vector with 1 at the k′th entry.

Following a similar reasoning as above, we show the probability that (S2.14)

holds tends to be 0 as well. Hence, P (k′ ∈ B̂|l ∈ Â) → 0.
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S3 Simulation Studies

S3.1 Data Generation

Figure S1 illustrates the simulated data and three different types of coeffi-

cient functions. The functional predictors are generated to be standardized

(a)

(b)

Figure S1: Generating functional predictor, response, and coefficient functions in simulations study: (a)

The left panel is generated Xij(t), j = 1, . . . , 10 for all samples. Each curve represents the functional

covariate for a subject over the time domain. The right panel is QQ-plot of generated Yi. Both figures

are drew under the sample size n = 20; (b) True coefficient functions, from left to right panel, are β1(t),

β2(t), and βj(t), j = 3, . . . , 10.
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and independent, which ensures a fair assessment of method performance,

without confounding factors of differing scales or inter-predictor dependen-

cies. Additionally, the three types of coefficient functions demonstrate the

global and local sparsity structure in the functional linear regression model.

S3.2 Effects of the Smoothness Parameters

Figure S2: Estimated coefficient functions for β1(t) and β2(t) of the proposed estimator FadDoS with

varying φ.

While the functional ℓ1,2 penalty induces global sparsity, the smooth-

ing parameter φ controls overall curvature to ensure estimate smoothness.

Figure S2 illustrates the effect of varying φ with λ1 and λ2 fixed. Insuffi-

ciently small φ leads to excessively wiggly functional estimates compared

to the true functions. This impedes accurate identification of zero sub-

regions and decreases the TNR due to inadequate shrinkage. Conversely,
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excessively large φ overly linearizes the estimates. As shown in Table S1,

moderate values of φ around 5e-5 yield superior PMSE and ISE. The op-

timal level of smoothing avoids both under- and over-smoothing, thereby

enabling precise estimation of zero subregions while maintaining estimate

accuracy. Through controlling total curvature, the smoothing parameter

provides localized regularization that complements the sparsity induced by

the functional ℓ1,2 penalty.

φ PMSE (×10−2) ISE0(β̂1) ISE1(β̂1) ISE(β̂2)
∑10

j=3 ISE(β̂j) avgTNR

3e-6 2.59(0.18) 52.87(53.87) 103.83(48.22) 99.52(36.11) 0.37(3.29) 0.99(0.0176)

7e-6 2.54(0.17) 32.56(41.13) 85.29(44.36) 82.69(33.41) 0.27(2.68) 0.99(0.13)

1e-5 2.52(0.17) 26.38(37.95) 78.68(41.63) 76.37(32.58) 0.25(2.49) 0.99(0.13)

5e-5 2.46(0.17) 12.41(18.06) 64.67(40.28) 56.78(28.58) 0.00(0.00) 1.00(0.00)

2e-4 2.50(0.18) 28.48(24.42) 95.83(49.68) 53.38(29.61) 0.00(0.00) 1.00(0.00)

6e-4 2.64(0.20) 69.21(38.84) 173.73(60.80) 75.7(40.58) 0.00(0.00) 1.00(0.00)

Table S1: PMSE (×10−2), ISE, and average TNR (avgTNR) of the proposed estimator FadDoS with

varying φ. The test sample size is 1000. The entry in the parenthesis corresponds to the standard

deviation among 100 simulation replicates.



S4. ILLUSTRATION OF TIMED UP AND GO TEST

S4 Illustration of Timed Up and Go Test

(a) (b)

(c) (d)

(e)

Figure S3: Instruction of Timed Up and Go (TUG) Test : (a) Stand up from the chair; (b) Walk forward

at a normal pace; (c) Turn; (d) Walk backward to the chair at a normal pace; (e) Sit down. Each joint

is color coded as Figure 1(b).
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