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classified Linear Mixed Models, is referred to as MJ22. All of the notations used below are consistent with

those introduced in MJ22.

S1 Some lemmas

The proofs of Theorem 1 and Theorem 2 require the following lemmas, whose

proofs are given in the next subsection.

Lemma 1. Let Sil =
∑n

j=1 1(γij=l). If p = O(1/
√
mn) and m/n = O(1),

then we have

Var
[
tr
{
Z̃ ′(Im⊗Jn)Z̃

}]
= Var

(
m∑
i=1

m∑
l=1

S2
il

)
= mVar

(
m∑
l=1

S2
1l

)
= mn3pO(1).
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Lemma 2. Define b(θ0) = (σ0IN τ0Z̃)
′. Write P = Im ⊗ (In − n−1Jn). If

p = O(1/
√
mn) and m ∼ n, then, we have E(tr[{b(θ0)Pb′(θ0)}2]) = mnO(1).

S2 Proofs of lemmas

S2.1 Proof of Lemma 1

First, we have the following expressions: Var
[
tr
{
Z̃ ′(Im ⊗ Jn)Z̃

}]
=

Var

{
m∑
i=1

tr(Z̃ ′
iJnZ̃i)

}
= Var

 m∑
i=1

m∑
l=1

{
n∑

j=1

1(γij=l)

}2
 .

By the assumption on γij , it can be seen that
∑m

l=1 S
2
il =

∑m
l=1{

∑n
j=1 1(γij=l)}2

are i.i.d. Thus, we have Var[tr{Z̃ ′(Im ⊗ Jn)Z̃}] = mVar(
∑m

l=1 S
2
1l).

Now let us consider Var(
∑m

l=1 S
2
1l). First, by the assumptions, we have

E

(
m∑
l=1

S2
1l

)
= E

(
S2
11 +

∑
l ̸=1

S2
1l

)
= E

{
n∑

j=1

1(γ1j=1) +
∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}

+
∑
l ̸=1

E

{
n∑

j=1

1(γ1j=l) +
∑
j1 ̸=j2

1(γ1j1=l)1(γ1j2=l)

}

= n(1− p) + n(n− 1)(1− p)2 + (m− 1)

{
np

m− 1
+
n(n− 1)p2

(m− 1)2

}
= n2(1− p)2 + 2np− np2 +

n(n− 1)p2

(m− 1)
= n2(1− p)2 + npO(1),

using the fact that p = O(1/
√
mn) and m ∼ n imply that p = O(1/n).
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Next, we consider the expectation of (
∑m

l=1 S
2
1l)

2. Note that

E

(
m∑
l=1

S2
1l

)2

= E

(
m∑
l=1

S4
1l +

∑
l1 ̸=l2

S2
1l1
S2
1l2

)
= E(S4

11) +
∑
l ̸=1

E(S4
1l) +

∑
l1 ̸=1

E(S2
1l1
S2
11) +

∑
l2 ̸=1

E(S2
1l2
S2
11) +

∑
l1 ̸=l2 ̸=1

E(S2
1l1
S2
1l2
).

We study each term in the last expression. First, we have

E(S4
11) = E

{
n∑

j=1

1(γ1j=1) +
∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}2

= E

{
n∑

j=1

1(γ1j=1)

}
+ E

{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}

+2E

{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}
+ 2E

{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}

+2E

{ ∑
j1 ̸=j2 ̸=j3

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)

}

+E

{ ∑
j1=j3 ̸=j2=j4

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j1=j4 ̸=j2=j3

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j1 ̸=j2 ̸=j3 ̸=j4

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j1=j3 ̸=j2 ̸=j4

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j1=j4 ̸=j2 ̸=j3

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j1 ̸=j2=j3 ̸=j4

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}
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+E

{ ∑
j1 ̸=j2=j4 ̸=j3

1(γ1j1=1)1(γ1j2=1)1(γ1j3=1)1(γ1j4=1)

}
= n(1− p){1 + 7(n− 1)(1− p) + 6(n− 1)(n− 2)(1− p)2

+(n− 1)(n− 2)(n− 3)(1− p)3}

= n4(1− p)4 + n3pO(1),

using the fact that 1+ 7(n− 1)(1− p)+ 6(n− 1)(n− 2)(1− p)2 +(n− 1)(n−

2)(n − 3)(1 − p)3 = n3(1 − p)3 + n2pO(1). By similar arguments, it can be

shown that

E

(∑
l ̸=1

S4
1l

)
= (m− 1)

{
np

m− 1
+ 7n(n− 1)

p2

(m− 1)2

+6n(n− 1)(n− 2)
p3

(m− 1)3
+ n(n− 1)(n− 2)(n− 3)

p4

(m− 1)4

}
= np+ 7n(n− 1)

p2

(m− 1)
+ 6n(n− 1)(n− 2)

p3

(m− 1)2

+n(n− 1)(n− 2)(n− 3)
p4

(m− 1)3
= npO(1),

E

(∑
l1 ̸=1

S2
1l1
S2
11

)
=
∑
l1 ̸=1

E

{ n∑
j=1

1(γ1j=l1)

}2{ n∑
j=1

1(γ1j=1)

}2


= (m− 1)E

[{
n∑

j=1

1(γ1j=1) +
∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}

×

{
n∑

j=1

1(γ1j=l1) +
∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j4=l1)

}]

= (m− 1)E

[{
n∑

j=1

1(γ1j=1)

}{
n∑

j=1

1(γ1j=l1)

}]
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+(m− 1)E

[{
n∑

j=1

1(γ1j=1)

}{∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j4=l1)

}]

+(m− 1)E

[{
n∑

j=1

1(γ1j=l1)

}{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}]

+(m− 1)E

[{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}{∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j4=l1)

}]
.

We now obtain further expressions for the terms appear in the latest expression.

By the assumptions, it can be shown that

E

[{
n∑

j=1

1(γ1j=1)

}{
n∑

j=1

1(γ1j=l1)

}]
=
n(n− 1)p(1− p)

m− 1
;

E

[{
n∑

j=1

1(γ1j=1)

}{∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j4=l1)

}]

= E

{∑
j3 ̸=j4

1(γ1j3=1)1(γ1j3=l1)1(γ1j4=l1) +
∑
j3 ̸=j4

1(γ1j4=1)1(γ1j3=l1)1(γ1j4=l1)

}

+E

{ ∑
j ̸=j3 ̸=j4

1(γ1j=1)1(γ1j3=l1)1(γ1j4=l1)

}

=
n(n− 1)(n− 2)p2(1− p)

(m− 1)2
;

E

[{
n∑

j=1

1(γ1j=l1)

}{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}]

= E

{∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j3=1)1(γ1j4=1) +
∑
j3 ̸=j4

1(γ1j4=l1)1(γ1j3=1)1(γ1j4=1)

}

+E

{ ∑
j ̸=j3 ̸=j4

1(γ1j=l1)1(γ1j3=1)1(γ1j4=1)

}

=
n(n− 1)(n− 2)p(1− p)2

(m− 1)
;
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E

[{∑
j1 ̸=j2

1(γ1j1=1)1(γ1j2=1)

}{∑
j3 ̸=j4

1(γ1j3=l1)1(γ1j4=l1)

}]

= E

{ ∑
j1 ̸=j2 ̸=j3 ̸=j4

1(γ1j1=1)1(γ1j2=1)1(γ1j3=l1)1(γ1j4=l1)

}

=
n(n− 1)(n− 2)(n− 3)p2(1− p)2

(m− 1)2
.

Combining the above results, we obtain the following:

E

(∑
l1 ̸=1

S2
1l1
S2
11

)
= n(n− 1)p(1− p) +

n(n− 1)(n− 2)p2(1− p)

m− 1

+n(n− 1)(n− 2)p(1− p)2 +
n(n− 1)(n− 2)(n− 3)p2(1− p)2

m− 1
= n3pO(1).

Similarly, the following expression can be obtained:

E

( ∑
l1 ̸=l2 ̸=1

S2
1l1
S2
1l2

)
= (m− 2)

{
n(n− 1)p2

m− 1
+ 2

n(n− 1)(n− 2)p3

(m− 1)2

+
n(n− 1)(n− 2)(n− 3)p4

(m− 1)3

}
= npO(1).

Combining the above expressions, we obtain that

E

(
m∑
l=1

S2
1l

)2

= n4(1− p)4 + n3pO(1).

Combining the above results, we have

Var

(
m∑
l=1

S2
1l

)
= E

(
m∑
l=1

S2
1l

)2

−

{
E

(
m∑
l=1

S2
1l

)}2

= n4(1− p)4 + n3pO(1)− {n2(1− p)2 + npO(1)}2 = n3pO(1).
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S2.2 Proof of Lemma 2

Straightforward calculation shows that

tr[{b(θ0)Pb′(θ0)}2] = σ4
0tr(P ) + 2σ2

0τ
2
0 tr(Z̃

′PZ̃) + τ 40 tr{(Z̃ ′PZ̃)2}

= m(n− 1)σ4
0 + 2σ2

0τ
2
0

[
mn− 1

n
tr{Z̃ ′(Im ⊗ Jn)Z̃}

]
+τ 40 tr

[{
Z̃ ′Z̃ − 1

n
Z̃ ′(Im ⊗ Jn)Z̃

}2
]
.

Furthermore, it can be shown that

E

[
1

n
tr
{
Z̃ ′(Im ⊗ Jn)Z̃

}]
= mn(1− p)2 + 2mp−mp2 +

m(n− 1)p2

m− 1

= mn(1− p)2 +mpO(1).

The proof is complete by showing below that

E

(
tr

[{
Z̃ ′Z̃ − 1

n
Z̃ ′(Im ⊗ Jn)Z̃

}2
])

= mnpO(1). (S2.1)

Let us begin with the following expression:

tr(Z̃ ′Z̃)2 =
m∑
l=1

[
m∑
i=1

{
n∑

j=1

1(γij=l)

}]2

=
m∑
l=1

m∑
i=1

{
n∑

j=1

1(γij=l)

}2

+
m∑
l=1

∑
i1 ̸=i2

{
n∑

j=1

1(γi1j=l)

}{
n∑

j=1

1(γi2j=l)

}

≡
m∑
i=1

S2
ii +

∑
i̸=l

S2
il +

∑
i1 ̸=i2

Si1i1Si2i1 +
∑
i1 ̸=i2

Si2i2Si1i2 +
∑

l ̸=i1 ̸=i2

Si1lSi2l,
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with the S terms defined in obvious ways. It can be shown that

E

(
m∑
i=1

S2
ii

)
= m{n(1− p) + n(n− 1)(1− p)2},

E

(∑
i̸=l

S2
il

)
= m(m− 1)

{
np

m− 1
+
n(n− 1)p2

(m− 1)2

}
,

E

(∑
i1 ̸=i2

Si1i1Si2i1

)
= mn2p(1− p),

E

( ∑
l ̸=i1 ̸=i2

Si1lSi2l

)
=
∑

i1 ̸=i2 ̸=l

E(Si1l)E(Si2l) = m(m− 1)(m− 2)

(
np

m− 1

)2

.

It can then be shown that E{tr(Z̃ ′Z̃)2} = mn2 +mnpO(1).

Next, the following expressions can be derived:

{
Z̃ ′(Im ⊗ Jn)Z̃

}2

=

(
m∑
i=1

Z̃ ′
iJnZ̃i

)2

=
m∑
i=1

(Z̃ ′
iJnZ̃i)

2 +
∑
i1 ̸=i2

(Z̃ ′
i1
JnZ̃i1)(Z̃

′
i2
JnZ̃i2).

The following expressions can be derived: tr{
∑m

i=1(Z̃
′
iJnZ̃i)

2} =
∑m

i=1(
∑m

l=1 S
2
il)

2;

tr

{∑
i1 ̸=i2

(Z̃ ′
i1
JnZ̃i1)(Z̃

′
i2
JnZ̃i2)

}
=
∑
i1 ̸=i2

(
m∑
l=1

Si1lSi2l

)2

;

E[tr{Z̃ ′(Im ⊗ Jn)Z̃}2] =
m∑
i=1

E

(
m∑
l=1

S2
il

)2

+
∑
i1 ̸=i2

E

(
m∑
l=1

Si1lSi2l

)2

= mE

(
m∑
l=1

S2
1l

)2

+m(m− 1)E

(
m∑
l=1

S1lS2l

)2

.

We now evaluate the expectations in the last expression. According to the proof

of Lemma 1, the first expectation is n4(1 − p)4 + n3pO(1). As for the second
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expectation, we have

E

(
m∑
l=1

S1lS2l

)2

=
m∑
l=1

E(S2
1lS

2
2l) +

∑
l1 ̸=l2

E(S1l1S1l2)E(S2l1S2l2)

= 2{n(1− p) + n(n− 1)(1− p)2}
{

np

m− 1
+
n(n− 1)p2

(m− 1)2

}
+(m− 2)

{
np

m− 1
+
n(n− 1)p2

(m− 1)2

}2

+ (m− 2)(m− 3)

{
n(n− 1)p2

(m− 1)2

}2

+4

[{
n(n− 1)p(1− p)

m− 1

}2

+
n2(n− 1)2p3(1− p)

(m− 1)3

]
= n2pO(1).

Thus, under the assumptions of the lemma, we have

E
(
tr[{Z̃ ′(Im ⊗ Jn)Z̃}2]

)
= mn4(1− p)4 +mn3pO(1)

= mn4 − 4mn4p+mn3pO(1).

Finally, the following expression can be derived:

tr{Z̃ ′Z̃Z̃ ′(Im ⊗ Jn)Z̃} =
m∑
i=1

m∑
l=1

S3
il +

∑
i1 ̸=i2

m∑
l=1

Si1lS
2
i2l
.

By similar arguments, one can show E
(∑

i1 ̸=i2

∑m
l=1 Si1lS

2
i2l

)
= mn3p+mn2pO(1),

E

(
m∑
i=1

m∑
l=1

S3
il

)
= mn(1− p){1 + 3(n− 1)(1− p) + (n− 1)(n− 2)(1− p)2}

+mnpO(1) = mn3(1− p)3 +mn2pO(1) = mn3 − 3mn3p+mn2pO(1),

noting that 1+3(n−1)(1−p)+(n−1)(n−2)(1−p)2 = n2(1−p)2+npO(1).
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Combining the above results, we see the left side of (S2.1) is equal to

E
[
tr{(Z̃ ′Z̃)2}

]
− 2

n
E
[
tr{Z̃ ′Z̃Z̃ ′(Im ⊗ Jn)Z̃}

]
+

1

n2
E
(
tr[{Z̃ ′(Im ⊗ Jn)Z̃}2

)
= mn2 +mnpO(1)− 2

n
{mn3 − 2mn3p+mn2pO(1)}

+
1

n2
{mn4 − 4mn4p+mn3pO(1)} = mnpO(1).

S3 Proof of Theorem 1

We provide the proof for the REML part. We have

log fθ(ỹ) = −N − 1

2
log(2π)− 1

2
log |Φ′(ZZ ′τ 2 + INσ

2)Φ|

−1

2
ỹ′{Φ′(ZZ ′τ 2 + INσ

2)Φ}−1ỹ

= −N − 1

2
log(2π)− 1

2
lθ(ỹ), (S3.1)

with lθ(y) = log |Φ′(ZZ ′τ 2+ INσ
2)Φ|+ ỹ′{Φ′(ZZ ′τ 2+ INσ

2)Φ}−1ỹ. We need

to look for the sequences of positive numbers, pl(N), l = 1, 2 of Lemma 7.2 of

Jiang (1996). By Lemma 4.2 in Jiang (1996) and the assumptions of Theorem

1, it can be shown that pi(N) ∼ ∥Vi∥R, i = 1, 2, where

∥Vi∥2R ∼ Eθ0

[
∂2lθ(ỹ)

∂θ2i

∣∣∣∣
θ=θ0

]
.

Thus, it suffices to obtain the orders of ∥V1∥R and ∥V2∥R.
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By matrix differentiation (e.g., Jiang and Nguyen (2021), sec.A.2), we have

∂lθ(ỹ)

∂θ1
=
∂lθ(ỹ)

∂τ 2
= tr[{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1Φ′ZZ ′Φ]

−ỹ′{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1Φ′ZZ ′Φ{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1ỹ,

∂lθ(ỹ)

∂θ2
=
∂lθ(ỹ)

∂σ2
= tr[{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1(Φ′Φ)]

−ỹ′{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1(Φ′Φ){Φ′(τ 2ZZ ′ + σ2IN)Φ}−1ỹ.

Let V(θ) = τ 2ZZ ′ + σ2IN , P(θ) = Φ{Φ′(τ 2ZZ ′ + σ2IN)Φ}−1Φ′, by a matrix

identity [e.g., Jiang and Nguyen (2021), eq. (1.11)], we have

P(θ) = V−1(θ)− V−1(θ)X ′{XV−1(θ)X ′}−1XV−1(θ)

= (ZZ ′τ 2 + INσ
2)−1

−(ZZ ′τ 2 + INσ
2)−1X ′{X(ZZ ′τ 2 + INσ

2)−1X ′}−1X(ZZ ′τ 2 + INσ
2)−1.

The following expressions can then be derived:

∂lθ(ỹ)

∂τ 2
= tr{P(θ)ZZ ′} − y′P(θ)ZZ ′P(θ)y,

∂lθ(ỹ)

∂σ2
= tr{P(θ)} − y′P2(θ)y.

Differentiating again, the following expressions can be derived:

∂2lθ(ỹ)

∂τ 4
= −tr{P(θ)ZZ ′P(θ)ZZ ′}+ 2y′P(θ)ZZ ′P(θ)ZZ ′P(θ)y,

∂2lθ(ỹ)

∂σ4
= −tr{P2(θ)}+ 2y′P3(θ)y. (S3.2)

Under the true one-way random effects model (2.4) of MJ22, we have y −

Xµ = Z̃α + ϵ. Define b(θ) = (σIN , τ Z̃)
′, WNl(θ0) = ϵl/σ0, 1 ≤ l ≤ N ,
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and WNl(θ0) = αl−N/τ0, N + 1 ≤ l ≤ N + m. Then, by the assumptions of

Theorem 1, it follows that WNl(θ0)’s are distributed independently as N(0, 1),

independently with b(θ0), and ỹ = Φ′b′(θ0)WN(θ0) with

WN(θ0) = [WN1(θ0), · · · ,WN,N+m(θ0)]
′.

For ∥V1∥2R, note that

∂2lθ(ỹ)

∂θ21

∣∣∣∣
θ=θ0

=
∂2lθ(ỹ)

∂τ 4

∣∣∣∣
θ=θ0

= −tr{P(θ0)ZZ ′P(θ0)ZZ
′}+ 2y′P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)y

≡ −tr{P(θ0)ZZ ′P(θ0)ZZ
′}

+2W ′
N(θ0)b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)WN(θ0).

By properties of the normal quadratic forms, we have

Eθ0

[
∂2lθ(ỹ)

∂θ22

∣∣∣∣
θ=θ0

]
= −tr{P(θ0)ZZ ′P(θ0)ZZ

′}

+2Eθ0

[
E{W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)|Z̃}

]
= −tr{P(θ0)ZZ ′P(θ0)ZZ

′}+ 2tr
[
P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)E{b′(θ0)b(θ0)}

]
≡ Π11 +Π12. (S3.3)

Now note that X = 1m ⊗ 1n, ZZ ′ = Im ⊗ Jn, V(θ0) = τ 20ZZ
′ + σ2

0IN ,

and V−1(θ0) = σ−2
0 Im ⊗ {In − τ 20 (nτ

2
0 + σ2

0)
−1Jn}, implying X ′V−1(θ)X =
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mn(nτ 20 + σ2
0)

−1, and

P(θ0) =
1

σ2
0

Im ⊗
(
In −

τ 20
nτ 20 + σ2

0

Jn

)
− 1

mn(nτ 20 + σ2
0)
Jm ⊗ Jn.

From this, it can be shown that

Π11 = −tr{P(θ0)(ZZ ′)P(θ0)(ZZ
′)} = − (m− 1)n2

(nτ 20 + σ2
0)

2
. (S3.4)

As for Π12, define

d1 = (1− p)2 +
p2

m− 1
, d2 =

2p(1− p)

m− 1
+

(m− 2)p2

(m− 1)2
,

and note that b′(θ0)b(θ0) = τ 20 Z̃Z̃
′ + σ2

0IN , and

Z̃Z̃ ′ =


Z̃1Z̃

′
1 · · · Z̃1Z̃

′
m

· · ·

Z̃mZ̃
′
1 · · · Z̃mZ̃

′
m

 .

Thus, we have E(Z̃iZ̃
′
i) = (1 − d1)In + d1Jn and E(Z̃iZ̃

′
j) = d2Jn, i ̸= j,

implying that

E{b′(θ0)b(θ0)} = τ 20E(Z̃Z̃
′) + σ2

0IN

= τ 20


d1 · · · d2

· · ·

d2 · · · d1

⊗ Jn + (1− d1)τ
2
0 Im ⊗ In + σ2

0Im ⊗ In

≡ τ 20Dm ⊗ Jn + {(1− d1)τ
2
0 + σ2

0}Im ⊗ In. (S3.5)

Furthermore, we have the following expression:

P(θ0)ZZ
′P(θ0)ZZ

′P(θ0) =
n

(nτ 20 + σ2
0)

3

(
Im − 1

m
Jm

)
⊗ Jn. (S3.6)
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It is then easy to show that

Π12 = 2tr
[
P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)E{b′(θ0)b(θ0)}

]
=

2n

(nτ 20 + σ2
0)

3
tr

{
nτ 20Dm ⊗ Jn −

nτ 20
m

Jm ⊗ Jn

+(1− d1)τ
2
0

(
Im − 1

m
Jm

)
⊗ Jn + σ2

0

(
Im − 1

m
Jm

)
⊗ Jn

}
=

2n

(nτ 20 + σ2
0)

3
{n2τ 20 (md1 − 1) + (m− 1)(1− d1)nτ

2
0

+(m− 1)nσ2
0}. (S3.7)

Combining (S3.3), (S3.4), (S3.7), we have

∥V1∥2R ∼ Eθ0

[
∂2lθ(ỹ)

∂θ21

∣∣∣∣
θ=θ0

]
= O(m).

Similarly, for ∥V2∥2R, we have

∥V2∥2R ∼ Eθ0

[
∂2lθ(ỹ)

∂θ22

∣∣∣
θ=θ0

]
= −tr

{
P2(θ0)}+ 2tr{P3(θ0)E{b′(θ0)b(θ0)}

]
≡ Π21 +Π22. (S3.8)

For Π21, using an expression above (S3.4), we have

P2(θ0) =
{
V−1(θ0)−

1

mn(nτ 20 + σ2
0)
(Jm ⊗ Jn)

}2

=
1

σ4
0

Im ⊗
{
In −

nτ 40 + 2τ 20σ
2
0

(nτ 20 + σ2
0)

2
Jn

}
− 1

mn(nτ 20 + σ2
0)

2
(Jm ⊗ Jn).

Thus, we obtain the following expression:

Π21 =
1

(nτ 20 + σ2
0)

2
− {(n2 − n)τ 40 + 2(n− 1)τ 20σ

2
0 + σ4

0}mn
σ4
0(nτ

2
0 + σ2

0)
2

. (S3.9)
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As for Π22, it can be shown that, for any k ≥ 1, we have

Pk(θ0) =
1

σ2k
0

Im ⊗
(
In −

1

n
Jn

)
+

1

n(nτ 20 + σ2
0)

k

(
Im − 1

m
Jm

)
⊗ Jn. (S3.10)

By (S3.5) and (S3.10), the following expression can be obtained

Π22 = 2tr[P3(θ0)E{b′(θ0)b(θ0)}]

=
2

σ6
0

tr[E{b′(θ0)b(θ0)}]−
2(n2τ 60 + 3nτ 40σ

2
0 + 3τ 20σ

4
0)

σ6
0(nτ

2
0 + σ2

0)
3

tr[(Im ⊗ Jn)E{b′(θ0)b(θ0)}]

− 2

mn(nτ 20 + σ2
0)

3
tr[(Jm ⊗ Jn)E{b′(θ0)b(θ0)}]

= mn

{
2

σ4
0

+
2τ 20
σ6
0

(1− d1)

}
{1 + o(1)}. (S3.11)

Combining (S3.8), (S3.9) and (S3.11), it follows that

∥V2∥2R ∼ Eθ0

[
∂2lθ(ỹ)

∂θ23

∣∣∣
θ=θ0

]
= O(mn).

Thus, without loss of generality (w.l.o.g.) , we can let p1(N) =
√
m and

p2(N) =
√
mn.

Next, by Lemma 7.2 of Jiang (1996), we need an expression of IN(θ0) such

that [
1

pi(N)pj(N)

∂2lθ(ỹ)

∂θi∂θj

∣∣∣
θ=θ0

]
1≤i,j≤2

= IN(θ0) + oP(1) (S3.12)

with lim inf λmin{IN(θ0)} > 0 and lim supλmax{IN(θ0)} <∞.
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For the diagonal elements in (S3.12), we have

1

p21(N)

∂2lθ(ỹ)

∂θ21

∣∣∣∣
θ=θ0

= − 1

m
tr{P(θ0)ZZ ′P(θ0)ZZ

′}

+
2

m
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0).

Then, by (S3.4)–(S3.7), it can be shown that

E

{
1

p21(N)

∂2lθ(ỹ)

∂θ21

∣∣∣∣
θ=θ0

}
=

1

τ 40
+ o(1), (S3.13)

as m,n→ ∞ and p→ 0. Furthermore, we have

Var

{
1

p21(N)

∂2lθ(ỹ)

∂θ21

∣∣∣
θ=θ0

}
=

4

m2
Var
{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}
=

4

m2
E
{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}2

− 4

m2
E2
{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}
.

By the law of iterated expectations, we have

E
{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}2

= E
(
E
[{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}2∣∣∣Z̃]).
Thus, by properties of the normal quadratic forms, we have

E
[{
W ′

N(θ0)b(θ0)P(θ0)ZZ
′P(θ0)ZZ

′P(θ0)b
′(θ0)WN(θ0)

}2∣∣∣Z̃]
= tr2

{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}

+2tr
{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}2
.
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This, combined with (S3.6), lead to the following expression:

Var

{
1

p21(N)

∂2lθ(ỹ)

∂θ21

∣∣∣
θ=θ0

}
=

4

m2
E
[
tr2
{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}

+2tr
{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}2]

− 4

m2
E2
[
tr
{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}]

=
4n2

m2(nτ 20 + σ2
0)

6
Var
(
tr
[
b(θ0)

{(
Im − 1

m
Jm

)
⊗ Jn

}
b′(θ0)

])
+

8

m2
E

[
tr
{
b(θ0)P(θ0)ZZ

′P(θ0)ZZ
′P(θ0)b

′(θ0)
}2
]
. (S3.14)

We now evaluate the terms on the right side of (S3.14). For the first term,

we can obtain that

tr
[
b(θ0)

{(
Im − 1

m
Jm

)
⊗ Jn

}
b′(θ0)

]
= (m− 1)nσ2

0

+τ 20 tr
[
Z̃ ′
{(
Im − 1

m
Jm

)
⊗ Jn

}
Z̃
]
.

We then have the following expression:

Var
(
tr
[
b(θ0)

{(
Im − 1

m
Jm

)
⊗ Jn

}
b′(θ0)

])
= τ 40Var

[
tr{Z̃ ′(Im ⊗ Jn)Z̃} −

1

m
tr{Z̃ ′(Jm ⊗ Jn)Z̃}

]
≤ 2τ 40Var

[
tr{Z̃ ′(Im ⊗ Jn)Z̃}

]
+

2τ 40
m2

Var
[
tr{Z̃ ′(Jm ⊗ Jn)Z̃}

]
. (S3.15)

For the first term on the right side of (S3.14), we apply Lemma 1 to get

Var
[
tr{Z̃ ′(Im ⊗ Jn)Z̃}

]
= mn3pO(1).
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As for the second term on the right side of (S3.14), note that

tr{Z̃ ′(Jm ⊗ Jn)Z̃} =
m∑
i=1

tr(Z̃ ′
iJnZ̃i) +

∑
i̸=j

tr(Z̃ ′
iJnZ̃j)

= tr{Z̃ ′(Im ⊗ Jn)Z̃}+
∑
i̸=j

tr(Z̃ ′
iJnZ̃j).

By the proof of Lemma 2, it can be seen that

Var
{
tr(Z̃ ′

iJnZ̃j)
}
= Var

(
m∑
l=1

SilSjl

)
=
n3pO(1)

m− 1
.

It can be shown, using the Cauchy-Schwarz inequality, and by Lemma 1, that

1

m2
Var
(
tr{Z̃ ′(Jm ⊗ Jn)Z̃}

)
≤ 2

m2
Var

[
tr{Z̃ ′(Im ⊗ Jn)Z̃}

]
+

2

m2
Var

[∑
i̸=j

tr(Z̃ ′
iJnZ̃j)

]
= mn3pO(1).

It can be seen now the first term on the right side of (S3.14) is o(1).

By similar arguments, it can be shown that the second term on the right side

of (S3.14) is o(1). Thus, combined with (S3.13), we have

1

p21(N)

∂2lθ(ỹ)

∂θ21

∣∣∣∣
θ=θ0

=
1

τ 40
+ oP(1). (S3.16)

By similar arguments, it can be shown that

1

p22(N)

∂2lθ(ỹ)

∂θ22

∣∣∣
θ=θ0

=
1

σ4
0

+ oP(1), (S3.17)

1

p1(N)p2(N)

∂2lθ(ỹ)

∂θ1∂θ2

∣∣∣
θ=θ0

= oP(1). (S3.18)

It follows that (S3.12) holds with IN(θ0) = diag(τ−4
0 , σ−4

0 ).
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Next, according to Lemma 7.2 of Jiang (1996), we need to show that there

is a sequence of positive numbers, qi(N) such that pi(N)qi(N) → ∞, and

1

pi(N)pj(N)pk(N)
sup
θ∈ΘN

∣∣∣ ∂3lθ(ỹ)

∂θi∂θj∂θk

∣∣∣ P−→ 0, 1 ≤ i, j, k ≤ 2, (S3.19)

where ΘN = {|θi−θi0| < qi(N), i = 1, 2}. Let qi(N) =
√
p1(N) ∧ p2(N)/pi(N),

i = 1, 2. It follows that q1(N) = m−1/4 and q2(N) = m−1/4n−1/2.

For i = j = k = 1 in (S3.19), we begin with the following expression:

∂3lθ(ỹ)

∂θ31
= 2tr

{
P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ)(ZZ ′)

}
−6W ′

N(θ0)b(θ0)
{
P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ)

}
b′(θ0)WN(θ0).

It follows that supθ∈ΘN
|∂3lθ(ỹ)/∂θ31| ≤ 2I1 + 6I2, where

I1 = sup
θ∈ΘN

tr{P(θ)ZZ ′P(θ)ZZ ′P(θ)ZZ ′},

I2 = sup
θ∈ΘN

|W ′
N(θ0)b(θ0){P(θ)ZZ ′P(θ)ZZ ′P(θ)ZZ ′P(θ)}b′(θ0)WN(θ0)| .

For I1, note that we have the following expression:

P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ)(ZZ ′) =
n2

(nτ 2 + σ2)3

(
Im − 1

m
Jm

)
⊗ Jn.

It can then be shown that p−3
1 (N)E(I1) = O(1)/

√
m. Similarly, for I2, we have

P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ)(ZZ ′)P(θ) =
n2

(nτ 2 + σ2)4

(
Im − 1

m
Jm

)
⊗ Jn.
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It follows that, for any θ ∈ ΘN , we have

W ′
N(θ0)b(θ0){P(θ)ZZ ′P(θ)ZZ ′P(θ)ZZ ′P(θ)}b′(θ0)WN(θ0)

≤ c

n2
W ′

N(θ0)b(θ0)
{(
Im − 1

m
Jm

)
⊗ Jn

}
b′(θ0)WN(θ0)

=
c

n2
tr
[{(

Im − 1

m
Jm

)
⊗ Jn

}
(ϵϵ′ + Z̃αα′Z̃ ′

)]
,

for some constant c, noting that b′(θ0)WN(θ0)W
′
N(θ0)b(θ0) = ϵϵ′ + Z̃αα′Z̃ ′.

Also note that E(Z̃αα′Z̃ ′) = E{E(Z̃αα′Z̃ ′|Z̃)} = τ 20E(Z̃Z̃
′), and, according to

an earlier result [see (S3.5)], E(Z̃Z̃ ′) = Dm⊗Jn+(1−d1)(Im⊗In). It follows

E(I2) ≤
c

n2
E

(
tr
[{(

Im − 1

m
Jm

)
⊗ Jn

}
{σ2

0IN + τ 20E(Z̃Z̃
′)}
])

= O(m).

Thus, we have p−3
1 (N)E(I2) = O(1)/

√
m, which, combined with the earlier

results, imply that (S3.19) holds for i = j = k = 1. By similar arguments, it can

be shown that (S3.19) holds for other combinations of i, j, k.

Finally, let AN(θ0) = [AN1(θ0), AN2(θ0)]
′ =[

1

p1(N)

∂lθ(ỹ)

∂θ1

∣∣∣∣
θ=θ0

,
1

p2(N)

∂lθ(ỹ)

∂θ2

∣∣∣∣
θ=θ0

]′
.

By Lemma 7.2 in Jiang (1996), we need to show boundedness of {|AN(θ0)|}.

First, write

AN1(θ0) =
1√
m

∂lθ(ỹ)

∂τ 2

∣∣∣
θ=θ0

=
1√
m
tr{P(θ0)ZZ ′} − 1√

m
W ′

N(θ0)b(θ0){P(θ0)ZZ ′P(θ0)}b′(θ0)WN(θ0)

≡ Π31 − Π32 = {Π31 − E(Π32)} − {Π32 − E(Π32)}. (S3.20)
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For Π31, we have P(θ0)ZZ
′ = (nτ 20 + σ2

0)
−1(Im −m−1Jm)⊗ Jn, implying

Π31 =
n(m− 1)√
m(nτ 20 + σ2

0)
.

Next, we have P(θ0)ZZ
′P(θ0) = (nτ 20 + σ2

0)
−1(Im −m−1Jm)⊗ Jn, implying

E(Π32) =
n2(md1 − 1)τ 20 + n(m− 1){(1− d1)τ

2
0 + σ2

0}√
m(nτ 20 + σ2

0)
2

.

By the definition of d1 [see below (S3.4)], it can then be shown that

Π31 − E(Π32) =
√
m

(
p+

1

n

)
O(1) =

√
m

n
O(1). (S3.21)

On the other hand, by following the same arguments as those leading to (S3.16),

and applying Lemma 1 and Lemma 2, it can be shown that

Var(Π32) = E{Π32 − E(Π32)}2 = O(1). (S3.22)

By (S3.21), (S3.22), and the fact thatm ∼ n, implied by the condition of the the-

orem, it follows that |AN1(θ0)| = OP(1). Similarly, define Π41 = tr{P(θ0)}/
√
mn,

and Π42 = W ′
N(θ0)b(θ0)P

2(θ0)b
′(θ0)WN(θ0)/

√
mn. By similar arguments, it

can be shown that

Π41 − E(Π42) =
√
mnp+ o(1), Π42 − E(Π42) = OP(1). (S3.23)

Thus, by similar arguments, it can be shown that |AN2(θ0)| = OP(1).

The result then follows by applying Lemma 7.2 (i) of Jiang (1996).
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S4 Proof of Theorem 2

We provide the proof for the REML part. Following the notation and proof

of Theorem 1, in particular, with p1(N) =
√
m and p2(N) =

√
mn, define

Σ(θ0) = 2diag(τ−4
0 , σ−4

0 ). For any a ∈ R2 \ {0}, we have

a′Σ−1/2(θ0)(AN1(θ0), AN2(θ0))
′ = a′Σ−1/2(θ0)(AN11(θ0), AN21(θ0))

′

−a′Σ−1/2(θ0)(AN12(θ0), AN22(θ0))
′, (S4.1)

where AN11(θ0) = Π31 − E(Π32), AN12(θ0) = Π32 − E(Π32), AN21(θ0) =

Π41 − E(Π42), AN22(θ0) = Π42 − E(Π42), AN11(θ0) and AN21(θ0) represent

the bias of the REML estimator, while AN12(θ0) and AN22(θ0) the volatility of

the estimator under the mis-classified LMM. By (S3.21) and (S3.23), and the

condition of the theorem, it is seen that the bias terms asymptotically vanish as

m,n→ ∞. Thus, we can focus on the volatility terms.

Let ca = (ca1, ca2) = Σ−1/2(θ0)a, ∆N(θ0) = (ca1/
√
m)V1(θ0)+(ca2/

√
mn)V2(θ0),

where V1(θ0) = b(θ0)P(θ0)ZZ
′P(θ0)b

′(θ0) and V2(θ0) = b(θ0)P
2(θ0)b

′(θ0). We

have

a′Σ−1/2(θ0)[AN12(θ0), AN22(θ0)]
′ = c′a[AN12(θ0), AN22(θ0)]

′

=W ′
N(θ0)

[
∆N(θ0)− E{∆N(θ0)}

]
WN(θ0)

+W ′
N(θ0)E{∆N(θ0)}WN(θ0)− E{W ′

N(θ0)∆N(θ0)WN(θ0)}

≡ Π51 +Π52, (S4.2)
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with Π51,Π52 defined in obvious ways.

We first show that Π51 = oP(1). By properties of quadratic forms of random

variables, we have E(Π51|Z̃) = tr[∆N(θ0)− E{∆N(θ0)}]. It follows that

E{E2(Π51|Z̃)} = E
(
tr{∆N(θ0)} − E[tr{∆N(θ0)}]

)2
≤ c2a1

m
Var
[
tr{V1(θ0)}

]
+
c2a2
mn

Var
[
tr{V2(θ0)}

]
+2ca1ca2

√
Var
[
tr{V1(θ0)}

]
m

√
Var
[
tr{V2(θ0)}

]
mn

.

It can be shown that tr{V1(θ0)} =

σ2
0

(nτ 20 + σ2
0)

2
tr
{(
Im−

1

m
Jm

)
⊗Jn

}
+

τ 20
(nτ 20 + σ2

0)
2
tr
[
Z̃ ′
{(
Im−

1

m
Jm

)
⊗Jn

}
Z̃
]
.

Thus, by applying Lemma 1, it can be shown that Var
[
tr{V1(θ0)}

]
/m = o(1).

Similarly, it can be shown that Var
[
tr{V2(θ0)}

]
/mn = o(1). It follows that

E{E2(Π51|Z̃)} = o(1), implying E(Π51|Z̃) = oP(1).

Next, by properties of quadratic forms of normal random variables, we have

E{Var(Π51|Z̃)} = 2E(tr[∆N(θ0)− E{∆N(θ0)}]2).

Furthermore, write Ω(θ0) = P(θ0)(ZZ
′)P(θ0) and

∆̃N(θ0) = (ca1/
√
m)Ω(θ0) + (ca2/

√
mn)P2(θ0).

The following expression can then be derived: ∆N(θ0)− E{∆N(θ0)} = 0 σ0τ0∆̃N(θ0){Z̃ − E(Z̃)}

σ0τ0{Z̃ ′ − E(Z̃ ′)}∆̃N(θ0) τ 20
[
Z̃ ′∆̃N(θ0)Z̃ − E{Z̃ ′∆̃N(θ0)Z̃

}]
 .
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It then follows that E{Var(Π51|Z̃)} = 2E(tr[∆N(θ0)− E{∆N(θ0)}]2) =

4σ2
0τ

2
0 tr
[
∆̃N(θ0){E(Z̃Z̃ ′)− E(Z̃)E(Z̃ ′)}∆̃N(θ0)

]
+2τ 40E

(
tr
[
Z̃ ′∆̃N(θ0)Z̃ − E{Z̃ ′∆̃N(θ0)Z̃

}]2)
.

By (S3.5), and the fact that E(Z̃)E(Z̃ ′) = Dm ⊗ Jn, we have

tr
[
∆̃N(θ0){E(Z̃Z̃ ′)− E(Z̃)E(Z̃ ′)}∆̃N(θ0)

]
= (1− d1)tr

{
∆̃2

N(θ0)
}
= o(1).

Furthermore, the following expressions can be derived:

E(tr
[
Z̃ ′∆̃N(θ0)Z̃ − E{Z̃ ′∆̃N(θ0)Z̃}]2)

= E[tr{Z̃ ′∆̃N(θ0)Z̃}2]− tr([E{Z̃ ′∆̃N(θ0)Z̃}]2),

Z̃ ′Ω(θ0)Z̃ =
1

(nτ 20 + σ2
0)

2
Z̃ ′
{(
Im − 1

m
Jm

)
⊗ Jn

}
Z̃,

Z̃ ′P2(θ0)Z̃ = Z̃ ′
{

1

σ4
0

Im ⊗ In −
nτ 40 + 2τ 20σ

2
0

σ4
0(nτ

2
0 + σ2

0)
2
Im ⊗ Jn

− 1

mn(nτ 20 + σ2
0)

2
Jm ⊗ Jn

}
Z̃.

Thus, by applying the arguments as used in the proof of Lemma 2, it can be

shown that

E
(
tr
[
Z̃ ′∆̃N(θ0)Z̃ − E{Z̃ ′∆̃N(θ0)Z̃

}]2)
= o(1).

Combining the above results, we have E{Var(Π51|Z̃)} = o(1).

The established results imply that E(Π2
51|Z̃) = oP(1). It follows by the

dominated convergence theorem that Π51 = oP(1). Thus, we can further focus

on the term Π52.
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By the assumption of the theorem, we have

Π52 = W ′
N(θ0)E{∆N(θ0)}WN(θ0)− E[W ′

N(θ0)E{∆N(θ0)}WN(θ0)].

Note that WN(θ0) ∼ N(0, IN+m). Thus, by properties of quadratic forms of

normal random variables, we have Var(Π52) = 2tr[E2{∆N(θ0)}] =

2

m

(
c2a1tr

[
E2{V1(θ0)}

]
+ 2

ca1ca2√
n

tr
[
E{V1(θ0)}E{V2(θ0)}

]
+
c2a2
n
tr
[
E2{V2(θ0)}

])
.

It can be shown that tr[E{V1(θ0)}E{V1(θ0)}] = U1/(nτ
2
0 + σ2

0)
4, where

U1 = σ4
0(m− 1)n2 + τ 40n

4[m{d21 + (m− 1)d22} − 1] + 2σ2
0τ

2
0n

3(md1 − 1).

It then follows that m−1tr[E2{V1(θ0)}] → τ−4
0 . Next, we have

tr
[
E{V1(θ0)}E{V2(θ0)}

]
= σ4

0tr
[
{P(θ0)ZZ ′P(θ0)}P2(θ0)

]
+τ 40 tr

[
E{Z̃ ′P(θ0)ZZ

′P(θ0)Z̃}E{Z̃ ′P2(θ0)Z̃}
]

+2σ2
0τ

2
0 tr
[
{P(θ0)ZZ ′P(θ0)}E(Z̃)E(Z̃ ′)P2(θ0)

]
.

By similar arguments to those used above, the following expressions can be

derived:

{P(θ0)ZZ ′P(θ0)}P2(θ0) =
1

(nτ 20 + σ2
0)

4

(
Im − 1

m
Jm

)
⊗ Jn,

E{Z̃ ′P(θ0)ZZ
′P(θ0)Z̃}E{Z̃ ′P2(θ0)Z̃}

=
n3

σ4
0(nτ

2
0 + σ2

0)
2

[
Dm − 1

m
Jm − n2τ 40 + 2nτ 20σ

2
0

(nτ 20 + σ2
0)

2
{d21 + (m− 1)d22 −m−1}Jm

]
,

{P(θ0)ZZ ′P(θ0)}E(Z̃)E(Z̃ ′)P2(θ0) =
n

(nτ 20 + σ2
0)

4

(
Dm − 1

m
Jm

)
⊗ Jn.
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It follows, by the condition of the theorem, that (m
√
n)−1tr[E{V1(θ0)}E{V2(θ0)}] =

1

m
√
n

{
σ4
0(m− 1)n

(nτ 20 + σ2
0)

4
+

2σ2
0τ

2
0n

2(md1 − 1)

(nτ 20 + σ2
0)

4
+

n3τ 40
σ4
0(nτ

2
0 + σ2

0)
2

[
md1 − 1

−n
2τ 40 + 2nτ 20σ

2
0

(nτ 20 + σ2
0)

2
{md21 +m(m− 1)d22 − 1}

]}
= O(

√
np) = o(1).

Finally, we have tr[E2{V2(θ0)}] =

tr
[
σ4
0P

4(θ0) + 2σ2
0τ

2
0P

2(θ0)E(Z̃)E(Z̃
′)P2(θ0) + τ 40E

2{Z̃ ′P2(θ0)Z̃}
]
.

It can be derived that P4(θ0) = σ−8
0 Im ⊗ [In − λ1Jn] + λ2Jm ⊗ Jn with

λ1 =
2(nτ 40 + 2τ 20σ

2
0)

(nτ 20 + σ2
0)

2
− n(nτ 40 + 2τ 20σ

2
0)

2

(nτ 20 + σ2
0)

4
, λ2 =

(nτ 20 + σ2
0 − 2)

mn(nτ 20 + σ2
0)

3
.

It can then be shown that (σ4
0/mn)tr{P4(θ0)} → σ−4

0 . By similar arguments, it

can be shown that tr{P2(θ0)E(Z̃)E(Z̃
′)P2(θ0)}/mn and tr[E2{Z̃ ′P2(θ0)Z̃}]/mn

are both o(1). It follows that tr[E2{V2(θ0)}]/mn → σ−4
0 . Combining the above

results, we have

Var(Π52) → c′aΣ(θ0)ca = |a|2,

hence tr[E2{∆N(θ0)}] = Var(Π52)/2 → |a|2/2 > 0.

On the other hand, it can be shown that there are constants c1, c2 > 0 such

that

λmax

[
E2{∆N(θ0)}

]
≤
(c1
m

+
c2
mn

) |a|2

λmin{Σ(θ0)}
.

Combing the above results, we have

λmax

[
E2{∆N(θ0)}

]
tr
[
E2{∆N(θ0)}

] ≤ 2

λmin{Σ(θ0)}

(c1
m

+
c2
mn

)
−→ 0. (S4.3)
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Therefore, by applying Theorem 5.1 of Jiang (1996), noting that a key condition,

(S4.3), has been verified, we conclude that

W ′
N(θ0)E{∆N(θ0)}WN(θ0)− E{W ′

N(θ0)∆N(θ0)WN(θ0)}√
Var
[
W ′

N(θ0)E{∆N(θ0)}WN(θ0)
] d−→ N(0, 1).

The asymptotic normality of the REML estimator follows by the arbitrari-

ness of a.

S5 Proof of Theorem 3

By Lemma 7.2 in Jiang (1996), we need to first identify the sequences pl(N),

1 ≤ l ≤ s + 1. By Lemma 4.2 in Jiang (1996) and the AI4 condition, we have

pl(N) ∼ ∥Vl∥R and

∥Vl∥2R ∼ Eθ0

[
∂2lθ(ỹ)

∂θ2l

∣∣∣∣
θ=θ0

]
, 1 ≤ l ≤ s+ 1.

Note that, here, θ ≡ (θ1, · · · , θs+1)
′ = (τ 21 , · · · , τ 2s , σ2)′ and θ0 = (θ10, · · · , θs+1,0)

′

= (τ 210, · · · , τ 2s0, σ2
0)

′. Thus, it suffices to obtain the asymptotic orders of ∥Vl∥R, 1 ≤

l ≤ s+ 1.

By matrix differentiation, it is easy to obtain the following expressions:

∂lθ(ỹ)

∂θl
=

∂ ln |V (Φ, θ)|
∂θl

+
∂{ỹ′V −1(Φ, θ)ỹ}

∂θl

= tr

{
V −1(Φ, θ)

∂V (Φ, θ)

∂θl

}
− ỹ′V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)ỹ
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with ∂V (Φ, θ)/∂θl = Φ′UlU
′
lΦ for 1 ≤ l ≤ s and ∂V (Φ, θ)/∂θs+1 = Φ′Φ.

Thus, we have

∂2lθ(ỹ)

∂θ2l
= −tr

{
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θl

}
+2ỹ′V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)ỹ.

For the mixed ANOVA model (3.5) in MJ22, it follows that ỹ = Φ′Ũ1α1 +

· · · + Φ′Ũsαs + Φ′ϵ. Define b(θ) = (σIN , τ1Ũ1, · · · , τsŨs)
′, and WN(θ) =(

WN1(θ), · · · ,WN,s+1(θ)
)′ with WNl(θ) = αl/τl for 1 ≤ l ≤ s and WNl(θ) =

ϵ/σ for l = s + 1. By the assumptions of model (3.5) and assumption (i) in

Theorem 5, it follows that WNi(θ0)’s are independent with b(θ0), and are dis-

tributed as standard multivariate normal, b′(θ0)b(θ0) =
∑s

k=1 τ
2
k0Ũ

′
kŨk + INσ

2
0 ,

ỹ = Φ′b′(θ0)WN(θ0). Then, we have

Eθ0

[∂2lθ(ỹ)
∂θ2l

∣∣∣
θ=θ0

]
= −tr

{
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl

}
+2Eθ0

[
ỹ′V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)ỹ

]
= −tr

{
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl

}
+ 2Eθ0

[
W ′

N(θ0)b(θ0)Φ

V −1(Φ, θ0)
∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θl
V −1(Φ, θ0)Φ

′b′(θ0)WN(θ0)
]

≡ −tr{Ψ2ll(θ0)}+ 2Eθ0

{
W ′

N(θ0)A2ll(θ0)WN(θ0)
}

= 2Eθ0 [tr{A2ll(θ0)}]− tr{Ψ2ll(θ0)},
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with A2ll(θ0) = b(θ0)ΦΨ2ll(θ0)V
−1(Φ, θ0)Φ

′b′(θ0). Thus, we have

pl(N) ∼ ∥Vl∥R =
√

2Eθ0 [tr{A2ll(θ0)}]− tr{Ψ2ll(θ0)}, l = 1, · · · , s+ 1.

Next, by Lemma 7.2 in Jiang (1996), we need to obtain a detailed expression

of IN(θ0) with lim inf λmin{IN(θ0)} > 0 such that

[
1

pi(N)pj(N)

∂2lθ(ỹ)

∂θi∂θj

∣∣∣
θ=θ0

]
1≤i,j≤s+1

= IN(θ0) + op(1). (S5.1)

For the diagonal elements in (S5.1), by assumption (ii), we have

Eθ0

{
∂2lθ(ỹ)

∂θ2i

∣∣∣
θ=θ0

}
= −tr{Ψ2ii(θ0)}+ 2Eθ0 [tr{A2ii(θ0)}]

= tr{Ψ2ii(θ0)}+ 2Eθ0

[
tr{A2ii(θ0)−Ψ2ii(θ0)}

]
= tr{Ψ2ii(θ0)}+ 2Eθ0

{
tr
(
Ψ2ii(θ0)V

−1(Φ, θ0)
[
Φ′Eθ0{b′(θ0)b(θ0)}Φ− V (Φ, θ0)

])}
= {Ψ2ii(θ0)}{1 + o(1)}.

Also, by assumptions (i) and (ii) of Theorem 3, and properties of the multi-

variate normal distribution (e.g., Jiang and Nguyen (2021), sec. B.1), we have

Varθ0

{
∂2lθ(ỹ)

∂θ2i

∣∣∣
θ=θ0

}
= Varθ0{2W ′

N(θ0)A2ii(θ0)WN(θ0)}
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= 4
[
Eθ0{W ′

N(θ0)A2ii(θ0)WN(θ0)}2 − E2
θ0
{W ′

N(θ0)A2ii(θ0)WN(θ0)}
]

= 4
{
Eθ0

([
tr{A2ii(θ0)}

]2
+ 2tr{A2

2ii(θ0)}
)
− E2

θ0
[tr{A2ii(θ0)}]

}
= 4Varθ0 [tr{A2ii(θ0)}] + 8Eθ0

(
tr{A2

2ii(θ0)}
)

= p4i (N)o(1).

Thus, we have, for l = 1, . . . , s+ 1,

1

p2i (N)

∂2lθ(ỹ)

∂θ2i

∣∣∣
θ=θ0

=
tr{Ψ2ii(θ0)}
p2i (N)

+ op(1).

For the off-diagonal elements in (S5.1), by assumptions (i) and (iii), we have

Eθ0

{
∂2lθ(ỹ)

∂θi∂θj

∣∣∣
θ=θ0

}
= −tr

{
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θi
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θj

}
+2Eθ0

{
ỹ′V −1(Φ, θ0)

∂V (Φ, θ0)

∂θi
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θj
V −1(Φ, θ0)ỹ

}
≡ −tr{Ψ2ij(θ0)}+ 2Eθ0{W ′

N(θ0)A2ij(θ0)WN(θ0)}

= −tr{Ψ2ij(θ0)}+ 2Eθ0 [tr{A2ij(θ0)}]

= tr{Ψ2ij(θ0)}+ 2Eθ0 [tr{A2ij(θ0)−Ψ2ij(θ0)}]

= tr{Ψ2ij(θ0)}{1 + o(1)},

where A2ij(θ0) = b(θ0)ΦΨ2ij(θ0)V
−1(Φ, θ0)Φ

′b′(θ0).

Also by assumptions (i) and (iii) and, again, the properties of multivariate
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normal distribution, it follows that

Varθ0

{
∂2lθ(ỹ)

∂θi∂θj

∣∣∣
θ=θ0

}
= 4

[
Eθ0{W ′

N(θ0)A2ij(θ0)WN(θ0)}2 − E2
θ0
{W ′

N(θ0)A2ij(θ0)WN(θ0)}
]

= 4
{
Eθ0

([
tr{A2ij(θ0)}

]2
+ 2tr{A2

2ij(θ0)}
)
− E2

θ0
[tr{A2ij(θ0)}]

}
= 4Varθ0

[
tr{A2ij(θ0)}

]
+ 8Eθ0

[
tr{A2

2ij(θ0)}
]

= p2i (N)p2j(N)o(1).

It follows that, for 1 ≤ i ̸= j ≤ s+ 1, we have

1

pi(N)pj(N)

∂2lθ(ỹ)

∂θi∂θj

∣∣∣
θ=θ0

=
tr{Ψ2ij(θ0)}
pi(N)pj(N)

+ op(1).

Thus, we obtain (S5.1) with IN(θ0) = [INij(θ0)]1≤i,j≤s+1 and

INij(θ0) =
tr{Ψ2ij(θ0)}
pi(N)pj(N)

.

Next, by Lemma 7.2 in Jiang (1996), we need to show that there are se-

quences of positive numbers, qi(N), such that pi(N)qi(N) → ∞, 1 ≤ i ≤ s+1,

1

pi(N)pj(N)pl(N)
sup
θ∈ΘN

∣∣∣ ∂3lθ(ỹ)
∂θi∂θj∂θl

∣∣∣ P−→ 0, 1 ≤ i, j, l ≤ s+ 1, (S5.2)

where ΘN = {∥θi − θi0∥ < qi(N), i = 1, · · · , s+ 1}. Deine

qi(N) =

√
min1≤j≤s+1 pj(N)

pi(N)
, i = 1, . . . , s+ 1.
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Note that we have the following expression: ∂3lθ(ỹ)/∂θi∂θj∂θl =

tr
{
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θj

}
+tr
{
V −1(Φ, θ)

∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θj

}
−2ỹ′V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θj
V −1(Φ, θ)ỹ

−2ỹ′V −1(Φ, θ)
∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)

∂V (Φ, θ)

∂θj
V −1(Φ, θ)ỹ

−2ỹ′V −1(Φ, θ)
∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θj
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
V −1(Φ, θ)ỹ

≡ tr{Ψ3lij(θ)}+ tr{Ψ3ilj(θ)} − 2W ′
N(θ0)b(θ0)A3lij(θ)b

′(θ0)WN(θ0)

−2W ′
N(θ0)b(θ0)A3ilj(θ)b

′(θ0)WN(θ0)− 2W ′
N(θ0)b(θ0)A3ijl(θ)b

′(θ0)WN(θ0),

1 ≤ i, j, l ≤ s+ 1. We then have supθ∈ΘN
|∂3lθ(ỹ)/∂θi∂θj∂θl| ≤

sup
θ∈ΘN

|tr{Ψ3lij(θ)}|+ sup
θ∈ΘN

|tr{Ψ3ilj(θ)}|

+2

[
sup
θ∈ΘN

|W ′
N(θ0)b(θ0)A3lij(θ)b

′(θ0)WN(θ0)|+ · · ·
]
,

where · · · denotes two similar terms to the first term in the square brackets. By

assumption (iv), we have supθ∈ΘN
|tr{Ψ3lij(θ)}| = pi(N)pj(N)pl(N)o(1) and

sup
θ∈ΘN

|tr{Ψ3ilj(θ)}| = pi(N)pj(N)pl(N)o(1).

Also, for any θ ∈ ΘN , we have W ′
N(θ0)b(θ0)A3lij(θ)b

′(θ0)WN(θ0) ≤

∥A3lij(θ)∥W ′
N(θ0)b(θ0)b

′(θ0)WN(θ0)

≤
{
sup
θ∈ΘN

∥A3lij(θ)∥
}
tr
{
b′(θ0)WN(θ0)W

′
N(θ0)b(θ0)

}
,
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using the fact that A ≤ ∥A∥In for an n × n nonnegative definite matrix A, and

A ≤ B implies v′Av ≤ v′Bv for symmetric matrices A,B and vector v. It

follows that

E

{
sup
θ∈ΘN

W ′
N(θ0)b(θ0)A3lij(θ)b

′(θ0)WN(θ0)

}
≤
{
sup
θ∈ΘN

∥A3lij(θ)∥
}
E
[
tr
{
b′(θ0)b(θ0)

}]
.

Thus, again by assumption (iv), it is easy to verify (S5.2).

Finally, by Lemma 7.2 of Jiang (1996), we need to show boundedness in

probability of AN(θ0) = [AN1(θ0), · · · , AN,s+1(θ0)] =[
1

p1(N)

∂lθ(ỹ)

∂θ1

∣∣∣
θ=θ0

, · · · , 1

ps+1(N)

∂lθ(ỹ)

∂θs+1

∣∣∣
θ=θ0

]
.

Noting that, for i = 1, · · · , s+ 1, we have ∂lθ(ỹ)/∂θi|θ=θ0 =

tr
{
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θi

}
− ỹ′V −1(Φ, θ0)

∂V (Φ, θ0)

∂θi
V −1(Φ, θ0)ỹ

= tr
{
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θi

}
−W ′

N(θ0)b(θ0)ΦV
−1(Φ, θ0)

∂V (Φ, θ0)

∂θi
V −1(Φ, θ0)Φ

′b′(θ0)WN(θ0)

= tr{Ψ1i(θ0)} −W ′
N(θ0)A1i(θ0)WN(θ0).

Thus, ANi(θ0) can be written as Ã1Ni(θ0)− Ã2Ni(θ0), where

Ã1Ni(θ0) =
1

pi(N)

(
tr{Ψ1i(θ0)} − Eθ0

[
tr{A1i(θ0)}

])
Ã2Ni(θ0) =

1

pi(N)

(
W ′

N(θ0)A1i(θ0)WN(θ0)− Eθ0

[
tr{A1i(θ0)}

])
.

By assumption (v), we have Ã1Ni(θ0) = O(1). Furthermore, by assumption

(v) and properties of quadratic forms of normal random variables, we have
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Eθ0{Ã2Ni(θ0)} = 0 and

Varθ0{Ã2Ni(θ0)} =
Varθ0

[
tr{A1i(θ0)}

]
+ 2Eθ0

[
tr{A2

1i(θ0)}
]

p2i (N)
= O(1),

which implies Ã2Ni(θ0) = OP(1). This completes the proof by Lemma 7.2 of

Jiang (1996).

S6 Proof of Theorem 4

Continue with the notation introduced in the proof of Theorem 3. Also write E

and Var for Eθ0 and Varθ0 , respectively, for notation simplicity.

For any a ∈ Rs+1 \ {0}, let ca = (ca1, · · · , cas+1)
′ = Σ−1/2(θ0)a, we have

a′Σ−1/2(θ0)A
′
N(θ0) = c′aA

′
N(θ0) ≡ c′aÃ

′
1N(θ0)− c′aÃ

′
2N(θ0). (S6.1)

Assumption (v+) implies c′aÃ
′
1N(θ0) = o(1).

Next, write ∆N(θ0) =
∑s+1

i=1 cai{A1i(θ0)/pi(N)}. Then, we have

c′aÃ
′
2N(θ0) = W ′

N(θ0)∆N(θ0)WN(θ0)− Eθ0

{
W ′

N(θ0)∆N(θ0)WN(θ0)}

= W ′
N(θ0)

[
∆N(θ0)− E{∆N(θ0)}

]
WN(θ0)

+W ′
N(θ0)E{∆N(θ0)}WN(θ0)− E{W ′

N(θ0)∆N(θ0)WN(θ0)}

≡ Ω1 + Ω2,

with Ωr, r = 1, 2 defined in obvious ways. It is easy to show E(Ω1) = 0. Also,
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we have

Var(Ω1) = E
{
E(Ω2

1|Z̃)
}
= E

{
Var(Ω1|Z̃) + E2(Ω1|Z̃)

}
. (S6.2)

By properties of quadratic forms of random variables, we have

E(Ω1|Z̃) = tr
[
∆N(θ0)− E{∆N(θ0)}

]
=

s+1∑
i=1

cai
pi(N)

tr
[
A1i(θ0)− E{A1i(θ0)}

]
.

Thus, by assumption (v+), and the Cauchy-Schwarz inequality, we have

E{E2(Ω1|Z̃)} ≤ (s+ 1)
s+1∑
i=1

c2ai
p2i (N)

Var[tr{A1i(θ0)}] = o(1).

Next, by properties of quadratic forms of normal random variables, we have

Var(Ω1|Z̃) = 2tr
(
[∆N(θ0)− E{∆N(θ0)}]2

)
= 2c′aTc(A1i(θ0)/pi(N), 1 ≤ i ≤ s+ 1)ca.

Thus, by the last assumption of the theorem, we have E{Var(Ω1|Z̃)} =

2a′Σ−1/2(θ0)E{Tc(A1i(θ0)/pi(N), 1 ≤ i ≤ s+ 1)}Σ−1/2(θ0)a = o(1).

Combining the above results with (S6.2), we have Ω1 = oP(1).

Now we consider Ω2. By properties of quadratic forms of normal random

variables, and assumption (i) of Theorem 3, it can be shown that Var(Ω2) =

Var
[
W ′

N(θ0)E{∆N(θ0)}WN(θ0)
]
= 2tr

[
E2
{
∆N(θ0)

}]
−→ c′aΣ(θ0)ca = |a|2,

hence tr[E2{∆N(θ0)}] → |a|2/2. On the other hand, by the definition of Σ(θ0)
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[above (3.6) in MJ22], it can be shown that λmin(Σ(θ0)) > 0. It follows that

λmax

[
E2{∆N(θ0)}

]
≤ c|a|2

s+1∑
i=1

1

p2i (N)

for some constant c > 0. Combining the above results, it follows that

λmax

[
E2{∆N(θ0)}

]
tr
[
E2{∆N(θ0)}

] ≤ c
s+1∑
i=1

1

p2i (N)
→ 0,

for some constant c. Now applying Theorem 5.1 in Jiang (1996), we have

W ′
N(θ0)E{∆N(θ0)}WN(θ0)− E{W ′

N(θ0)∆N(θ0)WN(θ0)}√
Var
[
W ′

N(θ0)E{∆N(θ0)}WN(θ0)
] d−→ N(0, 1),

hence, combined with an earlier result, we have Ω2
d−→ N(0, |a|2). Note that

E{W ′
N(θ0)∆N(θ0)WN(θ0)} = E[W ′

N(θ0)E{∆(θ0)}WN(θ0)]

by assumption (i) of Theorem 3.

Combining the results, and by the arbitrariness of a, we have

Σ− 1
2 (θ0)AN(θ0)

d−→ N(0, Is+1).

The proof is complete by applying Lemma 7.2 of Jiang (1996).

S7 Proofs of Theorem 5 and Theorem 6 (β̂ parts)

In this section, we provide the proofs of Theorem 5 and Theorem 6 for the ML

estimator of β only. The proofs for the ML estimators of the variance compo-

nents are similar to those for the REML estimators, and therefore omitted.
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S7.1 Proof of Theorem 5 (β̂ part)

By Lemma 7.2 of Jiang (1996), it suffices to show the boundedness of

AN1(θ0) =
1

p1(N)

∂lθ(y)

∂θ1

∣∣∣
θ=θ0

= − 2

p1(N)
X ′V −1(τ 20 , σ

2
0)b

′(θ0)WN(θ0).

By Assumptions (i) and (v) in Theorem 5, it can be shown that E{AN1(θ0)} = 0,

tr
[
Var{AN1(θ0)}

]
=

4

p21(N)
tr
[
X ′V −1(τ 20 , σ

2
0)E{b′(θ0)b(θ0)}V −1(τ 20 , σ

2
0)X

]
= O(1).

The boundedness in probability of |AN1(θ0)| then follows. The boundedness in

probability of p1(N)(β̂ − β0), hence consistency of β̂ then follows by Lemma

7.2 (i) of Jiang (1996).

S7.2 Proof of Theorem 6 (β̂ part)

First, we establish the asymptotical normality ofAN1(θ0). Note that p1(N) ∼
√
N , and

AN1(θ0) = − 2√
N
X ′V −1(τ 20 , σ

2
0)
[
b′(θ0)− E{b′(θ0)}

]
WN(θ0)

− 2√
N
X ′V −1(τ 20 , σ

2
0)E{b′(θ0)}WN(θ0)

≡ ÃN11(θ0) + ÃN12(θ0).

For ÃN11(θ0), we have E{ÃN11(θ0)} = 0. Furthermore, by the law of iter-

ated expectations, assumption (i) of Theorem 5, and assumption (vi) of Theorem
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6, we have

tr
[
Var{ÃN11(θ0)}

]
=

4

N
tr
(
X ′V −1(τ 20 , σ

2
0)
[
E{b′(θ0)b(θ0)} − E{b′(θ0)}E{b(θ0)}

]
V −1(τ 20 , σ

2
0)X

)
= o(1).

It follows that ÃN11(θ0) = oP(1).

For ÃN12(θ0), note that every component of WN(θ0) is distributed indepen-

dently as N(0, 1). Thus, we have Var{ÃN12(θ0)} =

4

N
X ′V −1(τ 20 , σ

2
0)E{b′(θ0)}E{b(θ0)}V −1(τ 20 , σ

2
0)X

=
4

N
X ′V −1(τ 20 , σ

2
0)
[
E{b′(θ0)}E{b(θ0)} − V (τ 20 , σ

2
0)
]
V −1(τ 20 , σ

2
0)X

+
4

N
X ′V −1(τ 20 , σ

2
0)X;

hence, by assumption (vi) of Theorem 6, it follows that

Var{ÃN12(θ0)} =
4

N
X ′V −1(τ 20 , σ

2
0)X + o(1).

Thus, by the Hájek-Sidak theorem (e.g., Jiang (2022), Example 6.6), it can be

shown that { 4

N
X ′V −1(τ 20 , σ

2
0)X

}−1/2

AN1(θ0)
d−→ N(0, Iq).

Furthermore, by noting the following relation: −AN1(θ0)= IN1(θ0)p1(N)(β̂−

β0) + oP(1), with IN1(θ0)=
2
N
X ′V −1(τ 20 , σ

2
0)X , it follows that

√
N(β̂ − β0)

d−→ N
(
0,
{ 1

N
X ′V −1(τ 20 , σ

2
0)X

}−1)
.
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The asymptotical normality result for β̂ then follows.

S8 ML and REML: Difference and similarity

To illustrate the difference and similarity between ML and REML, let us use the

balanced one-way random effects model (e.g., Jiang and Nguyen (2021)) for

illustration. The model can be expressed as

yij = µ+ αi + ϵij,

i = 1, . . . ,m, j = 1, . . . , n, where i represents the group (e.g., subject, commu-

nity) and n is the group size, that is, the number of observations in the training

data that belong to group i, which is assumed to be the same for difference

groups (hence explaining the term “balanced”). Furthermore, yij is the outcome

of interest, µ is an unknown mean, αi is a group-specific random effect, and ϵij

is an error. It is assumed that the random effects and errors are independent with

αi ∼ N(0, τ 2) and ϵij ∼ N(0, σ2), where σ2, τ 2 > 0 are unknown variances.

The model can be expressed in a vector-matrix form:

y = Xβ + Zα + ϵ, (S8.1)

where y = (yi)1≤i≤m, yi = (yij)1≤j≤ni
, X = 1m ⊗ 1n, α = (αi)1≤i≤m, β = µ,

Z = Im ⊗ 1n, In, 1n denote the n-dimensional identity matrix and vector of

1’s, respectively, and ⊗ denotes the Kronecker product, ϵi = (ϵij)1≤j≤ni
, ϵ =



Haiqiang Ma and Jiming Jiang

(ϵi)1≤i≤m.

Standard methods of estimation for the linear mixed model (S8.1) are maxi-

mum likelihood (ML) and restricted maximum likelihood (REML). For ML, the

joint pdf of y, under the LMM (S8.1), can be expressed as

f(y) =
1

(2π)N/2|V |1/2
exp

{
− 1

2
(y −Xβ)′V −1(y −Xβ)

}
,

where N = mn is the dimension of y and V = ZZ ′τ 2 + INσ
2. Thus, the

log-likelihood function is given by

l(β, τ 2, σ2) = c− 1

2
log(|V |)− 1

2
(y −Xβ)′V −1(y −Xβ), (S8.2)

where c is a constant. By maximizing the log-likelihood function (S8.2) with

the parameters β, τ 2, σ2, one obtains the ML estimator ψ̃ = (β̃, τ̃ 2, σ̃2) of ψ =

(β, τ 2, σ2).

In general, the ML estimator of the variance components θ = (τ 2, σ2) are

biased, and the bias can be severe as it may not vanish as the sample size in-

creases, if the number of the fixed effects is proportional to the sample size (e.g.,

Jiang (1996)). In some cases, the fixed effects β may be viewed as nuisance

parameter, while the main interest is the variance components θ. In order to

estimate the variance components of main interest without having to deal with

the nuisance parameters, one can apply a transformation to the data to eliminate

the (nuisance) fixed effects, then use the transformed data to estimate the vari-
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ance components of interest. This method is referred to as restricted maximum

likelihood (REML).

Specifically, let Φ be an N × (N − 1) matrix satisfying rank(Φ) = N − 1

and Φ′X = 0. Then, define ỹ = Φ′y. It is easy to see that ỹ ∼ N(0,Φ′V Φ). It

follows that the joint pdf of ỹ can be expressed as

fR(ỹ) =
1

(2π)(N−1)/2|Φ′V Φ|1/2
exp

{
− 1

2
ỹ′(Φ′V Φ)−1ỹ

}
,

where the subscript R corresponds to “restricted”. Thus, the log-likelihood

based on ỹ, which we call restricted log-likelihood, is given by

lR(τ
2, σ2) = c− 1

2
log(|Φ′V Φ|)− 1

2
ỹ′(Φ′V Φ)−1ỹ, (S8.3)

where c is a constant. By maximizing the restricted log-likelihood (S8.3) with

respect to the parameters θ = (τ 2, σ2), one obtains the REML estimator θ̂ of

θ. Note that, although the REML estimator is defined through a transforming

matrix Φ, the REML estimator, in fact, does not depend on Φ. What is more,

the REML estimator loses no information in estimating the parameters of vari-

ance components; in fact, asymptotically, REML has superiority over ML, if the

number of fixed effects is increasing with the sample size at a sufficiently fast

rate. More detail can be found in Chapter 1 of Jiang and Nguyen (2021).

Furthermore, the proofs of the asymptotic properties of ML and REML es-

timators are both based on a central limit theorem for quadratic forms of random
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variables, that is, Lemma 7.2 of Jiang (1996). Thus, starting from the (restrict-

ed) log-likelihood function, we can follow the same lines of proofs to establish

standard asymptotic properties of the ML and REML estimators, including con-

sistency and asymptotic normality. As a result, the proofs and derivations for

the ML and REML of variance components are similar. The proofs for ML are

simpler because the log-likelihood is somewhat easier to handle compared to the

restricted log-likelihood. There are, of course, also differences in the assump-

tions and proofs between ML and REML, that require additional conditions (see

Theorem 5 and Theorem 6).

S9 Another simulation study based on a real data example

We further illustrate the finite-sample performance with a real-data from the

Nationwide Insurance Company (Nationwide). The data have been studied by

Lewis, Maceachern and Lee (2021) and can be downloaded from https:// github.

com/jrlewi/brlm−paper/.

Many of Nationwide’s insurance policies are sold via agencies, which pro-

vide direct service to policy holders. The contractual agreements between Na-

tionwide and these agencies vary. Identifiers such as agency/agent names are

removed. Likewise, agency types (identifying the varying contractual agree-

ments) have been de-identified to protect the proprietary nature of the data. The
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data are grouped by agency types, and there are m = 10 agency types in the

analysis. We delete the agencies that closed during the 2010–2012 period. In the

end, the numbers of agencies for the ten agency types are 2549, 6, 54, 51, 8, 6,

81, 8, 5 and 82, respectively.

Here, we intend to carry out a real-data based simulation not only to study

the impact of the misclassification but also how the latter interact with data un-

balancedness. We consider the following LMM: yij = β0 + x′ijβ + αi + eij ,

where the covariate vector xij consists of the square root of the household count

in 2010, and two other different size/experience measures related to the number

of employees associated with the agency; the response, yij is the square root of

household count in 2012; the group-specific random effects, αi, and errors, eij ,

are assumed to be independent with αi ∼ N(0, τ 2) and eij ∼ N(0, σ2). Here

i = 1, · · · 10, j = 1, · · · , ni with n1 = 2549, n2 = 6, n3 = 54, n4 = 51, n5 = 8,

n6 = 6, n7 = 81, n8 = 8, n9 = 5, and n10 = 82.

To study the influence of data unbalancedness, note that group 1 is much

larger than the other groups. Thus, a subset of size ñ1 is randomly chosen from

group 1, which replaces group 1; the other groups are unchanged. Here ñ1 =

50, 200, 2000. As the size of ñ1 increases, so does the degree of unbalancedness

in the data.

To study the impact of misclassification on the ML estimation, we randomly
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select a subset from each group, and replace the group index with other group

indexes uniformly. The proportion of misclassified group indexes, p, ranges

between 0 and 0.2.

For each value of p, we run 200 simulations and report the averaged relative

absolute bias (RAB), defined as RABτ2(p) = |τ̂ 2 − τ̂ 2(p)|/τ̂ 2, RABσ2(p) =

|σ̂2 − σ̂2(p)|/σ̂2, and RABβ(p) = (1/4)
∑4

k=1 |β̂k−1 − β̂k−1(p)|/|β̂k−1|, where

β̂k−1(p), τ̂
2(p), σ̂2(p) are the MLEs of βk−1, τ 2, σ2, respectively, under the mis-

classification with the given p, and β̂k−1, τ̂
2, σ̂2 are the MLEs without misclassi-

fication (k = 1, 2, 3, 4). See Figure 1.

It can be seen from Figure 1 that the averaged relative absolute bias (RAB)

increases with p for every parameter. This suggests that parameter estimation

gets worse as the degree of misclassification increases. However, under differ-

ent degree of data unbalancedness, every parameter has its own path of being

impacted by the misclassification.

Specifically, when the degree of data unbalancedness is relatively small, that

is, ñ1 = 50, the magnitude of increase is the largest for τ 2; by contrast, the

magnitudes of increase are very small for β and σ2. In addition, the patterns

of increase are similar for β and σ2. When the degree of data unbalancedness

is moderate, that is, ñ1 = 200, the magnitude of increase is still the largest for

τ 2. As for β and σ2, although the rate of increase is still small for β, the rate of
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increase becomes large for σ2. Finally, when the degree of data unbalancedness

is most severe, that is, ñ1 = 2000, the rate of increase becomes very fast for τ 2.

Furthermore, although the increasing patterns remain similar for β and σ2, the

rate of increase for β is faster than that for σ2.
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(c) ñ1 = 2000

Figure 1: Trend of Empirical RAB as p increases for MLE of β (dotted, green),τ2 (dashed, blue),

and σ2 (solid, red)

From a theoretical standpoint, the convergence rates for different parameter

estimation are different (Theorem 5). Specifically, the convergence rate for σ2

and the slope coefficients of β is O(N−1/2) with N =
∑m

i=1 ni, while the con-

vergence rate for τ 2 and the intercept β0 is O(m−1/2). Note that the RAB for β

is defined as the average RAB for different β components; thus, the overall con-

vergence rate for β is somewhere between O(N−1/2) and O(m−1/2). This may

explain why the magnitude of increase in RAB for τ 2 is much larger than those
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for β and σ2. It is also seen that there are some switching of orders between β

and σ2 depending on the data unbalancedness. See discussion in Section 5.
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