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This supplementary material has two parts. Appendix A contains proofs of the main theorems,

lemmas and propositions stated in the manuscript. It also contains some new lemmas. Appendix

B contains some numerical results on strongly spiked eigenvalue (SSE) models.

Appendix A: Proofs and Mathematical details

Proof of Lemma 2.1 . Consider a random permutations π of {1, 2, . . . , n+

m} and let T πn,m be the permuted test statistic (permutation analogs of

Tn,m). Let c1−α be the upper α-th quantile of the distribution of T πn,m given

the pooled data U := {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym}. c1−α is permutation

invariant and underH0 : F = G, (Tn,m, c1−α) and (T πn,m, c1−α) are identically

distributed, irrespective of the values of n,m and d. Hence, we have

P[pn,m < α] = P[Tn,m > c1−α] = P
[
T πn,m > c1−α

]
= E

[
P
{
T πn,m > c1−α | U

}]
≤ E [α] ≤ α
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The second last inequality follows from the definition of c1−α. Hence the

level of the permutation tests are controlled at a desired level α in HDLSS

scenario and when n,m and d all simultaneously diverge to infinity.

Lemma A.1. If X1, . . . ,Xn
iid∼ F and Y1, . . . ,Ym

iid∼ G are independent,

then E{T ρn,m} = 1
6

(
1

n−2
+ 1

m−2

)
+ 1

m
(p0−p1)+ 1

n
(p2−p3)+Θ2

ρ(F,G), where

Θ2
ρ(F,G) is the ball divergence measure defined in Section 2,

p0 = P
{
ρ(Y1, X1) ≤ ρ(X2, X1)

}
p1 = P

{
ρ(Y1, X1) ≤ ρ(X2, X1); ρ(Y2, X1) ≤ ρ(X2, X1)

}
,

p2 = P
{
ρ(X1, Y1) ≤ ρ(Y2, Y1)

}
and

p3 = P
{
ρ(X1, Y1) ≤ ρ(Y2, Y1); ρ(X2, Y1) ≤ ρ(Y2, Y1)

}
.

Proof. Note that T ρn,m can be written as T ρn,m = V1 + V2, where

V1 =
1

n(n− 1)

∑
1≤i ̸=j≤n

{
1

n− 2

n∑
k=1,k ̸=i,j

δ(Xk,Xj,Xi)−
1

m

m∑
k=1

δ(Yk,Xj,Xi)

}2

,

V2 =
1

m(m− 1)

∑
1≤i ̸=j≤m

{
1

n

n∑
k=1

δ(Xk,Yj,Yi)−
1

m− 2

m∑
k=1,k ̸=i,j

δ(Yk,Yj,Yi)

}2

,

and δ(s,u,v) = 1[ρ(s,v) ≤ ρ(u,v)].

Therefore, we have

E{V1} =
1

(n− 2)2
E
{( n∑

k=3

δ(Xk,X2,X1)
)2}

+
1

m2
E
{( m∑

k=1

δ(Yk,X2,X1)
)2}

− 2

m(n− 2)
E
{( n∑

k=3

δ(Xk,X2,X1)
)( m∑

k=1

δ(Yk,X2,X1)
)}
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=
1

(n− 2)2
E
{ n∑
k=3

δ(Xk,X2,X1) +
n∑

k,l=3,k ̸=l

δ(Xk,X2,X1)δ(Xl,X2,X1)
}

+
1

m2
E
{ m∑
k=3

δ(Yk,X2,X1) +
m∑

k,l=3,k ̸=l

δ(Yk,X2,X1)δ(Yl,X2,X1)
}

− 2

m(n− 2)
E
{ n∑
k=3

m∑
l=1

δ(Xk,X2,X1)δ(Yl,X2,X1)
}

=
1

n− 2
P
{
ρ(X3,X1) ≤ ρ(X2,X1)

}
+
n− 3

n− 2
P
{
ρ(X3,X1) ≤ ρ(X2,X1); ρ(X4,X1) ≤ ρ(X2,X1)

}
+

1

m
P
{
ρ(Y1,X1) ≤ ρ(X2,X1)

}
+
m− 1

m
P
{
ρ(Y1,X1) ≤ ρ(X2,X1); ρ(Y2,X1) ≤ ρ(X2,X1)

}
− 2 P

{
ρ(X3,X1) ≤ ρ(X2,X1); ρ(Y1,X1) ≤ ρ(X2,X1)

}
=

1

(n− 2)

{1
2
+ (n− 3)

1

3

}
+

1

m

{
p0 + (m− 1)p1

}
− 2p4

=
1

3
+

1

6(n− 2)
+

1

m
(p0 − p1) + p1 − 2p4,

where p4 = P{ρ(X3,X1) ≤ ρ(X2,X1); ρ(Y1,X1) ≤ ρ(X2,X1)}.

Similarly one can show that

E{V2} =
1

3
+

1

6(m− 2)
+

1

n
(p2 − p3) + p3 − 2p5,

where p5 = P{ρ(Y3,Y1) ≤ ρ(Y2,Y1); ρ(X1,Y1) ≤ ρ(Y2,Y1)}.

Hence, we have

E{T ρn,m} =
1

6(n− 2)
+

1

6(m− 2)
+

1

m
(p0−p1)+

1

n
(p2−p3)+

2

3
+p1−2p4+p3−2p5.
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Now observe that

Θ2
ρ(F,G) =

∫
{F (B(u, ρ(v, u)))−G(B(u, ρ(v, u)))}2 [dF (u)dF (v) + dG(u)dG(v)]

=

∫
F 2(B(u, ρ(v, u))dF (u)dF (v)

− 2

∫
F (B(u, ρ(v, u))G(B(u, ρ(v, u))dF (u)dF (v)

+

∫
G2(B(u, ρ(v, u))dF (u)dF (v) +

∫
F 2(B(u, ρ(v, u))dG(u)dG(v)

− 2

∫
F (B(u, ρ(v, u))G(B(u, ρ(v, u))dG(u)dG(v)

+

∫
G2(B(u, ρ(v, u))dG(u)dG(v)

=
1

3
− 2p4 + p1 + p3 − 2p5 +

1

3
= p1 + p3 − 2p4 − 2p5 +

2

3
.

Hence, E{T ρn,m} = 1
6

(
1

n−2
+ 1

m−2

)
+ 1

m
(p0−p1)+ 1

n
(p5−p3)+Θ2

ρ(F,G).

This completes the proof.

Lemma A.2. IfX1,X2, . . . ,Xn
iid∼ F andY1,Y2, . . . ,Ym

iid∼ G are independent,

then V ar(T ρn,m) ≤ C1Θ
2
ρ(F,G)

(
1
n
+ 1
m

)
+C2

(
1
n
+ 1
m

)2

, where the constants

C1 and C2 are independent of the dimension d.

Proof. Note that Θ2
ρ(F,G) can be written as Θ2

ρ(F,G) = A1 + A2, where

A1 =

∫ ∫
{F (B(u, ρ(v,u))−G(B(u, ρ(v,u))}2dF (u)dF (v)

= E
(
F (B(X1, ρ(X2,X1)))−G(B(X1, ρ(X2,X1)))

)2
,
and

A2 =

∫ ∫
{F (B(u, ρ(v,u))−G(B(u, ρ(v,u))}2dG(u)dG(v)

= E
(
F (B(Y1, ρ(Y2,Y1)))−G(B(Y1, ρ(Y2,Y1)))

)2
.
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It can be verified that V1 (as defined in the proof of Lemma A.1) can be

expressed as

V1 =
1

n(n− 1)

∑
1≤i ̸=j≤n

{ 1

n− 2

n∑
k=1,k ̸=i,j

δ(Xk,Xj,Xi)−
1

m

m∑
k=1

δ(Yk,Xj,Xi)
}2

=
1

n(n− 1)(n− 2)2m2

n∑
i ̸=j=1

n∑
u,u′ ̸=i,j

m∑
v,v′=1

{
δ(Xu,Xj,Xi)δ(Xu′ ,Xj,Xi)

+ δ(Yv,Xj,Xi)δ(Yv′ ,Xj,Xi)− δ(Xu′ ,Xj,Xi)δ(Yv,Xj,Xi)

− δ(Xu,Xj,Xi)δ(Yv′ ,Xj,Xi)
}

=
1

n(n− 1)(n− 2)2m2

n∑
i ̸=j=1

n∑
u,u′ ̸=i,j

m∑
v,v′=1

ψA1(Xi,Xj,Xu,Xu′ ;Yv,Yv′), say.

Clearly, V1 can be written as a linear combination of U-statistics of different

degrees. Let Û
(4,2)
A1

be the U-statistic with the kernel function ψA1(Xi,Xj,Xu,Xu′ ;Yv,Yv′),

which has the same degree as V1. So, it determines the order of V ar(V1).

More specifically, we get

V1 =
1

(n− 2)2m2

{
4

(
n− 2

2

)(
m

2

)
Û

(4,2)
A1

}
+OP

(( 1
n
+

1

m

))
and

V ar(V1) =
σ2
1,0(A1)

n
+
σ2
0,1(A1)

m
+ C2

(( 1
n
+

1

m

)2)
.

Note that here σ2
1,0(A1) = V ar(ψsA1,1,0

(X)) and σ2
0,1(A1) = V ar(ψsA1,0,1

(X)),

where we have ψsA1,1,0
(x) = E[ψA1(x,X2,X3,X4;Y1,Y2)] and ψ

s
A1,0,1

(y) =

E[ψA1(X1,X2,X3,X4;y,Y2)]. Since ψA1 is uniformly bounded, the constant

C2 does not depend on d.
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Now, we have

ψsA1,1,0
(x) = E

{ 1

4!2!

∑
π∈S4

∑
γ∈S2

ψA1(Xπ(1),Xπ(2),Xπ(3),Xπ(4);Yγ(1),Yγ(2)) | X1 = x
}

=
1

4
E
{
ψA1(x,X2,X3,X4;Y1,Y2) + ψA1(Xi,x,X3,X4;Y1,Y2)

+ ψA1(Xi,X2,x,X4;Y1,Y2) + ψA1(X1,X2,X3,x;Y1,Y2)
}

=
1

4

{
E
(
F (B(x, ρ(X2,x)))−G(B(x, ρ(X2,x)))

)2}
+

1

4

{
E
(
F (B(X1, ρ(x,X1)))−G(B(X1, ρ(x,X1)))

)2}
+

1

2
E
(
δ(x,X2,X1)−G(B(X1, ρ(X2,X1)))

)
×
(
F (B(X1, ρ(X2,X1)))−G(B(X1, ρ(X2,X1)))

)
= g1(x) + g2(x) + g3(x), say.

Therefore, we have σ2
1,0 = E

{
ψsA1,1,0

(X)−E(ψsA1,1,0
(X))

}2
= E

{
ψsA1,1,0

(X)−

A1

}2
= E

{
g1(X)+g2(X)+g3(X)−A1

}2
. So, using the inequality, E(

∑p
i=1 Z1)

2 ≤

p E(
∑p

i=1 Z
2
i ) and the fact that 0 ≤ g1(x), g2(x) ≤ 1/4 for all x, we get

σ2
1,0 ≤ 4

{
Eg21(X) + Eg22(X) + Eg23(X) + A2

1

}
≤ 4

{
1

4
Eg1(X) +

1

4
Eg2(X) + Eg23(X) + A1

}
.

Now note that Eg1(X) = Eg2(X) = 1
4
A1. Also, using Cauchy-Schwartz

inequality on g3(X), we get

Eg23(X) ≤ 1

4
E
(
δ(X,X2,X1)−G(B(X1, ρ(X2,X1)))

)2
A1 ≤

1

4
A1.

Hence, we have σ2
1,0(A1) ≤ 11

2
A1. Similarly, we can also show that σ2

0,1(A1) ≤
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9
2
A1. Combining these, we get

V ar(V1) ≤
11

2
A1

( 1
n
+

1

m

)
+ C2

(( 1
n
+

1

m

)2)
.

Using the same set of arguments, we also have

V ar(V2) ≤
11

2
A2

( 1
n
+

1

m

)
+ C2

(( 1
n
+

1

m

)2)
.

This completes the proof.

Lemma A.3. Consider a random permutation π of {1, 2, . . . , n + m}.

If T ρn,m,π denotes the permuted test statistic (the permutation analog of

T ρn,m), given the pooled sample U = {U1,U2, . . . ,Un+m}, the conditional

expectation T ρn,m,π is given by E{T ρn,m,π | U} = 1
6

(
1
n
+ 1

m
+ 1

n−2
+ 1

m−2

)
.

Proof. For any random permutation π of {1, 2, . . . , n+m}, we have

T ρn,m,π =
1

n(n− 1)

∑
1≤i ̸=j≤n

{
1

n− 2

n∑
k=1,k ̸=i,j

δ(Uπ(k),Uπ(j),Uπ(i))−
1

m

n+m∑
k=n+1

δ(Uπ(k),Uπ(j),Uπ(i))

}2

+
1

m(m− 1)

∑
n+1≤i ̸=j≤n+m

{
1

n

n∑
k=1

δ(Uπ(k),Uπ(j),Uπ(i))

− 1

m− 2

n+m∑
k=n+1,k ̸=i,j

δ(Uπ(k),Uπ(j),Uπ(i))

}2

,

So, the conditional expectation of T ρn,m,π for any given U is given by

E{T ρn,m,π | U} = E

{{
1

n− 2

n∑
k=3

δ(Uπ(k),Uπ(2),Uπ(1))−
1

m

n+m∑
k=n+1

δ(Uπ(k),Uπ(2),Uπ(1))

}2∣∣∣ U

}

+E

{{
1

n

n∑
k=1

δ(Uπ(k),Uπ(2),Uπ(1))−
1

m− 2

n+m∑
k=n+1,k ̸=i,j

δ(Uπ(k),Uπ(2),Uπ(1))

}2∣∣∣ U

}
.
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Now note that

E

{{
1

n− 2

n∑
k=3

δ(Uπ(k),Uπ(2),Uπ(1))−
1

m

n+m∑
k=n+1

δ(Uπ(k),Uπ(2),Uπ(1))

}2∣∣∣ U

}

=
1

(n− 2)2
E
{ n∑
k=3

δ(Uπ(k),Uπ(2),Uπ(1)) | U
}

+
1

(n− 2)2

n∑
k,l=3,k ̸=l

E
{
δ(Uπ(k),Uπ(2),Uπ(1))δ(Uπ(l),Uπ(2),Uπ(1)) | U

}
+

1

m2

n+m∑
k=n+1

E
{
δ(Uπ(k),Uπ(2),Uπ(1)) | U

}
+

1

m2

n+m∑
k,l=n+1,k ̸=l

E
{
δ(Uπ(k),Uπ(2),Uπ(1))δ(Uπ(l),Uπ(2),Uπ(1)) | U

}
− 2

m(n− 2)

n∑
k=3

n+m∑
l=n+1

E
{
δ(Uπ(k),Uπ(2),Uπ(1))δ(Uπ(l),Uπ(2),Uπ(1)) | U

}
=

(n− 2)q1
(n− 2)2

+
(n− 2)(n− 3)q2

(n− 2)2
+
mq1
m2

+
m(m− 1)q2

m2
− 2m(n− 2)q2

m(n− 2)

= (q1 − q2)
( 1

n− 2
+

1

m

)
,

where q1 = E{δ(Uπ(1),Uπ(2),Uπ(3)) | U} and q2 = E{δ(Uπ(1),Uπ(2),Uπ(3))

δ(Uπ(4),Uπ(2),Uπ(3)) | U}.

Similarly, we can also show that

E

{{
1

n

n∑
k=1

δ(Uπ(k),Uπ(2),Uπ(1))−
1

m− 2

n+m∑
k=n+1,k ̸=i,j

δ(Uπ(k),Uπ(2),Uπ(1))

}2∣∣∣ U

}

= (q1 − q2)
( 1

m− 2
+

1

n

)
.

But given the pooled sample U , the random variables {Uπ(i)}n+mi=1 are exchangeable.
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So, we must have q1 = 1/2 and q2 = 1/3. Hence, we have

E{T ρn,m,π | U} =
1

6

(
1

n
+

1

m
+

1

n− 2
+

1

m− 2

)

Proof of Lemma 2.2. Here, we are interested in the quantiles of the conditional

distribution of T ρn,m,π given the pooled sample U . Since T ρn,m,π is non-

negative, using Markov’s inequality on the conditional random variable,

we get

P
{
T ρn,m,π ≥ 1

α
E{T ρn,m,π | U}

∣∣∣ U} ≤ α.

Therefore, from the definition of the quantile c1−α, we have c1−α ≤ 1
α
E{T ρn,m,π |

U}, which holds with probability one. From Lemma A.3, we also have

E{T ρn,m,π | U} =
1

6

(
1

n
+

1

m
+

1

n− 2
+

1

m− 2

)
≤ 2

3(min{n,m} − 2)
.

This completes the proof.

Proof of Theorem 2.1. In view of Lemma A.1 and Lemma A.2, as min{n,m}

grows to infinity, T ρn,m converges in probability to Θ2
ρ(F,G). So, if Θ

2
ρ(F,G) >

0, underH1 : F ̸= G, T ρn,m converges in probability to a positive number. On

the other hand, Lemma 2.1 shows that the cut-off value of the permutation

test c1−α goes to zero almost surely. Therefore, the power of the permutation

test converges to one as min{n,m} grows to infinity.



Bilol Banerjee and Anil K. Ghosh

Proof of Lemma 2.3. To prove this lemma, we shall use the idea of Corollary

6.1 of Kim (2021). First, let us define

F (t) =
1

N !

{ ∑
π∈SN

1[ζ̂πi ≤ t]

}
and FB(t) =

1

B

{
B∑
i=1

1[ζ̂πi ≤ t]

}
.

where F and FB are distribution functions conditioned on the observed

pooled data U . Then,

|pn,m − pn,m,B| =

∣∣∣∣∣ 1N !

{ ∑
π∈SN

1[ζ̂πi ≥ ζ̂n,m]

}
− 1

B + 1

{
B∑
i=1

1[ζ̂πi ≥ ζ̂n,m] + 1

}∣∣∣∣∣
=

∣∣∣∣∣ 1N !

{ ∑
π∈SN

1[ζ̂πi < ζ̂n,m]

}
− 1

B + 1

{
B∑
i=1

1[ζ̂πi < ζ̂n,m]

}∣∣∣∣∣
= |F (ζ̂n,m−)− B

B + 1
FB(ζ̂n,m−)|

≤ |F (ζ̂n,m−)− FB(ζ̂n,m−)|+ |FB(ζ̂n,m−)

B + 1
|

≤ sup
t∈R

|F (t)− FB(t)|+
1

B + 1

Conditioned on the pooled data U , the Dvoretzky-Keifer-Wolfwitz inequality

(see, e.g., Massart, 1990) gives us P{supt∈R |F (t) − FB(t)| > ϵ} ≤ 2e−2Bϵ2 .

Hence, conditioned on U , as B grows to infinity, the randomized p-value

pn,m,B converges almost surely to pn,m.

Proof of Lemma 3.1. For W = X1 − X2,Y1 − Y2 or X1 − Y1, under

(A1), 1
d

∣∣∣∥W∥2 − E(∥W∥2)
∣∣∣ P→ 0 as d → ∞. Again under (A2), as d → ∞,

1
d
E(∥W∥2) converges to 2σ2

F , 2σ
2
F and σ2

F + σ2
G + ν2 in these three cases.

spectively, as d grows to infinity. The result follows from these two facts.
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Lemma A.4. Suppose thatX1,X2∼F , Y1,Y2∼G and they are independent.

For a distance function ρ, assume that ρ(X1,X2)
P→ θ1, ρ(Y1,Y2)

P→ θ2 and

ρ(X1,Y2)
P→ θ3 as d → ∞. If θ3 > min{θ1, θ2}, then P (T ρn,m > 1/3) → 1

as d diverges to infinity.

Proof. Note that T ρn,m involves the terms δ(Uk,Uj,Ui)’s for different choices

of Ui,Uj,Uk from the pooled sample. So, the behaviour of T ρn,m can be

studied using the convergence of the δ(Uk,Uj,Ui)’s.

First, consider the case min{θ1, θ2} < θ3 < max{θ1, θ2}. Let us assume

that θ1 > θ3 > θ2. In such a situation, we have limd→∞ P[ρ(X2,Y1) ≤

ρ(Y2,Y1)] = 0 and limd→∞ P[ρ(Y1,X1) ≤ ρ(X2,X1)] = 1. Hence, we get

V1 =
1

n(n− 1)

∑
1≤i ̸=j≤n

{
1

n− 2

n∑
k=1,k ̸=i,j

δ(Xk,Xj,Xi)−
1

m

m∑
k=1

δ(Yk,Xj,Xi)

}2

P→ 1

n(n− 1)

∑
1≤i ̸=j≤n

{
1

n− 2

n∑
k=1,k ̸=i,j

δ(Xk,Xj,Xi)− 1

}2

=
1

n(n− 1)

∑
1≤i ̸=j≤n

{
−1

n− 2

n∑
k=1,k ̸=i,j

1[ρ(Xk,Xi) > ρ(Xj,Xi)]

}2

=
1

n(n− 1)(n− 2)2

{ ∑
1≤i ̸=j ̸=k≤n

1[ρ(Xk,Xi) > ρ(Xj,Xi)]

+
∑

1≤i ̸=j≤n

n∑
k=1,k ̸=i,j

n∑
l=1,l ̸=i,j,k

1[ρ(Xk,Xi) > ρ(Xj,Xi)]1[ρ(Xl,Xi) > ρ(Xj,Xi)]

}

=
1

n(n− 1)(n− 2)2

{(
n

1

)(
n− 1

2

)
+ 2

(
n

1

)(
n− 1

3

)}
=

1

3
+

1

6(n− 2)
.



Bilol Banerjee and Anil K. Ghosh

Similarly, as d diverges to infinity, we have

V2
P→ 1

m(m− 1)

∑
n+1≤i ̸=j≤n+m

{
1

m− 2

m∑
k=1,k ̸=i,j

δ(Yk,Yj,Yi)

}2

=
1

3
+

1

6(m− 2)
.

Thus, T ρn,m
P→ 2

3
+ 1

6

(
1

n−2
+ 1

m−2

)
. The same result holds for θ1 < θ3 < θ2

as well.

Now consider the case, θ3 = max{θ1, θ2}. Assume that θ2 < θ1 = θ3.

In this case, the convergence of P[ρ(Y1,X1) ≤ ρ(X2,X1)] is not clear,

but P[ρ(X1,Y1) ≤ ρ(Y2,Y1)] converges to zero as d diverges to infinity.

Hence, V2 converges to 1/3+1/6(m−2) in probability, and V1 converges in

probability to a non-negative random variable. Therefore, P (T ρn,m > 1/3)

converges to one. Similar arguments can be given for θ1 < θ2 = θ3 as well.

Finally, consider the case θ3 > max{θ1, θ2}. In this case, we have

lim
d→∞

P[ρ(X2,Y1) ≤ ρ(Y2,Y1)] = 0 and lim
d→∞

P[ρ(Y1,X1) ≤ ρ(X2,X1)] =

0. Hence as d diverges to infinity, V1 and V2 converge in probability to

1/3 + 1/6(n− 2) and 1/3 + 1/6(m− 2), respectively. Thus, T ρn,m converges

in probability to 2/3 + 1/6 (1/(n− 2) + 1/(m− 2)).

These three cases together imply that if θ1 > min{θ1, θ2}, P (T ρn,m >

1/3) → 1 as d→ ∞.

Proof of Lemma 3.2. Here, we have d−1/2∥X1−X2∥
P→ σF

√
2, d−1/2∥Y1−

Y2∥
P→ σG

√
2 and d−1/2∥X1 − Y1∥

P→
√
σ2
F + σ2

G + ν2 as d → ∞ (see
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Lemma 3.1). Let these limiting values be denoted by θ1, θ2, and θ3,

respectively. If ν2 + (σF − σG)
2 > 0, one can check that θ3 >

√
θ1θ2 ≥

min{θ1, θ2}. Hence the proof follows from Lemma A.4.

Proof of Theorem 3.1. It follows from Lemma A.4 that under the condition

ν2+(σF−σG)2 > 0, P (T ℓ2n,m > 1/3) converges to 1 as d tends to infinity. We

have also seen that the cut-off of the permutation test c1−α has an upper

bound 2/{3α(min{n,m} − 2)}, which does not depend on the dimension d.

Therefore, if min{n,m} ≥ 2 + 2/α, the test based on T ℓ2n,m rejects H0 with

probability tending to 1 as d grows to infinity.

Proof of Lemma 3.3. This lemma is taken from Sarkar and Ghosh (2018).

The proof can be found on page 5 (see Lemma 1) of that article.

Proof of Theorem 3.2 . We use a sub-sequence argument to prove this

theorem. Let {dk} be an arbitrary sub-sequence of the sequence of natural

numbers. Under (A4) and lim infd→∞ eh,ψ(F,G) > 0, there exists a further

subsequence {d′k} such that limd′k→∞ eh,ψ(F,G) > 0, and the corresponding

limits of the three terms in eh,ψ(F,G) exist. Let θ1, θ2 and θ3 be the

limiting values of d−1
∑d

q=1{ψ(|X
(q)
1 − X

(q)
2 |2), d−1

∑d
q=1{ψ(|Y

(q)
1 − Y

(q)
2 |2)

and d−1
∑d

q=1{ψ(|X
(q)
1 − Y

(q)
1 |2), respectively, along the sub-sequence {d′k}.
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Since limd′k→∞ eh,ψ(F,G) > 0, we have 2θ3 > θ1 + θ2. Hence, using Lemma

A.4, we get P (T h,ψn,m > 1/3) → 1 as d′k → ∞. Since {d′k} is the sub-sequence

of an arbitrary sequence {dk}, we can conclude that P (T h,ψn,m > 1/3) → 1 as

d → ∞. Now, using arguments similar to those in the proof of Theorem

3.1, one can establish the consistency of the level α test when min{n,m} ≥

2 + 2/α.

Lemma A.5. If X1,X2
iid∼ F and Y1,Y2

iid∼ G are independent random

vectors, then Θ2
ℓ2
(F,G) ≥ {P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥} − 1/2}2

+ {P{∥Y1 −X1∥ ≤ ∥X2 −X1∥} − 1/2}2 .

Proof. We know that for any random variable Z, (E{Z})2 ≤ E{Z2}. Using

this fact twice, we get

Θ2
ℓ2
(F,G) =

∫
{F (B(u, ℓ2(v, u)))−G(B(u, ℓ2(v, u)))}2 (dF (u)dF (v) + dG(u)dG(v))

≥
{∫

F (B(u, ℓ2(v, u)))−G(B(u, ℓ2(v, u))) dF (u)dF (v)

}2

+

{∫
F (B(u, ℓ2(v, u)))−G(B(u, ℓ2(v, u))) dG(u)dG(v)

}2

= {P{∥Y1 −X1∥ ≤ ∥X2 −X1∥} − 1/2}2 + {P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥} − 1/2}2

The last equality follows from the fact that if X1,X2,X3
iid∼ F0, where

F0 is a continuous distribution, we have
∫
F0(B(u, ℓ2(v, u))) dF0(u)dF0(v) =

P{∥X3 −X1∥ ≤ ∥X2 −X1∥} = 1
2
.
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Lemma A.6. Consider two d-dimensional random variables X = (ξ1, 0, . . . , 0)
⊤

and Y = (ξ2, 0, . . . , 0)
⊤, where ξ1 ∼ N(µ1, 1) and ξ2 ∼ N(µ2, 1) are

independent. Let P1 and P2 denote the distributions ofX andY, respectively.

If µ1 = cn−1/2 and µ2 = −cm−1/2 for some c > 0, then there exists a

constant C > 0 independent of the dimension d such that Θ2(P1, P2) ≥

C
(

1√
n
+ 1√

m

)2
. This lower bound is tight up to a constant factor.

Proof. Let ξ11, ξ12
iid∼ N(µ1, 1) and ξ21, ξ22

iid∼ N(µ2, 1) be independent

random variables. In view of Lemma A.5, for X1 = (ξ11, 0, . . . , 0)
⊤,X2 =

(ξ12, 0, . . . , 0)
⊤ ∼ P1 and Y1 = (ξ21, 0, . . . , 0)

⊤, Y2 = (ξ22, 0, . . . , 0)
⊤ ∼ P2,

it is enough to prove that

[P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥}−1/2]2+[P{∥Y1 −X1∥ ≤ ∥X2 −X1∥}−1/2]2

≥ C
( 1√

n
+

1√
m

)2
,

Now, we derive the lower bounds for these two terms separately. Note that∣∣∣∣P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥} − 1/2

∣∣∣∣ = ∣∣∣∣P{|ξ11 − ξ21| ≤ |ξ22 − ξ22|} − 1/2

∣∣∣∣
=

∣∣∣∣P{|ξ11 − ξ21|2 − |ξ22 − ξ21|2 ≤ 0} − 1/2

∣∣∣∣
=

∣∣∣∣P{(ξ11 + ξ22 − 2ξ21)(ξ11 − ξ22) ≤ 0} − 1/2

∣∣∣∣.
So, taking T1 = ξ11 − ξ22 and S1 = ξ11 + ξ22 − 2ξ21, we get∣∣∣∣P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥} − 1/2

∣∣∣∣ = ∣∣∣∣P{S1T1 ≤ 0} − 1/2

∣∣∣∣
=

∣∣∣∣E{P{S1T1 ≤ 0 | S1} − 1/2}
∣∣∣∣.
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Here, T1 and S1 jointly follow a bivariate normal distribution with

E(T1) = c( 1√
n
+ 1√

m

)
, E(S1) = c( 1√

n
+ 1√

m

)
, V ar(T1) = 2, V ar(S1) = 6 and

Cov(T1, S1) = 0. Therefore,∣∣∣∣E{P{S1T1 ≤ 0 | S1} − 1/2}
∣∣∣∣ = ∣∣∣∣E{Φ(− c

( 1√
n
+

1√
m

) S1

|S1|
√
2

)
− 1/2

}∣∣∣∣
≥ c√

2

( 1√
n
+

1√
m

)
ϕ(
√
2c),

where ϕ(·) and Φ(·) denote the density function and the distribution function

of the standard normal variate, respectively. Here, the last inequality

is obtained by using the mean value theorem and the fact that ϕ(t) is

decreasing in |t|. So, we get∣∣∣P{∥X1 −Y1∥ ≤ ∥Y2 −Y1∥} − 1/2
∣∣∣ ≥ c√

2

( 1√
n
+

1√
m

)
ϕ(
√
2c).

Similarly, we can derive the same lower bound for
∣∣∣P{∥Y1 −X1∥ ≤ ∥X2 −

X1∥} − 1/2
∣∣∣ as well. So, we can find a constant C > 0 independent of the

dimension d such that

Θ2
ℓ2
(P1, P2) ≥ C

( 1√
n
+

1√
m

)2
.

To show that this lower bound is tight, notice that

Θ2(P1, P2) ≤ sup
A

|P1(A)− P2(A)| ≤ KL(P1, P2)

=
c2

2
(µ1 − µ2)

2 =
c2

2

( 1√
n
+

1√
m

)2
,

where KL(·, ·) denotes the Kullback-Leibler divergence between two

probability measures. Here, the first inequality follows trivially, and the
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second one is known as Pinsker’s inequality (see Lemma 2.5 in Tsybakov,

2009). Hence the lower bound is tight up to a constant term.

Proof of Theorem 4.1 . The minimax lower bound can be obtained based

on the standard application of Neyman-Pearson lemma (see Baraud, 2002;

Kim et al., 2020). Let the distributions of the sample under the null

and alternative hypotheses be denoted as Q0 and Q1 respectively. Then

following our notations, we have

Rn,m,d(ϵ) ≥ 1− α− sup
A

|Q0(A)−Q1(A)| ≥ 1− α−
√

1

2
KL(Q0, Q1),

where the second inequality is obtained from Pinsker’s inequality (see Tsybakov,

2009). Now suppose that P1 and P2 are the distributions corresponding to

X = (ξ1, 0, . . . , 0)
⊤ andY = (ξ2, 0, . . . , 0)

⊤, where ξ1 and ξ2 are independent

random variables following normal distributions with the unit variance and

means

µ1 =

√
2(1− α− ζ)√

n
and µ2 = −

√
2(1− α− ζ)√

m
,

respectively. Let P0 be the distribution of (ξ, 0, . . . , 0)⊤ where ξ is a standard

normal random variable. Define k(α, ζ) := (1−α−ζ)2
(
ϕ
(√

2(1−α−ζ)
))2

.

Then by Lemma A.5, (P1, P2) ∈ F(cλ(n,m)) for all 0 < c < k(α, ζ). Now
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taking Q0 = P
(n+m)
0 and Q1 = P n

1 P
m
2 , we have

KL(Q0, Q1) =
n

2
µ2
1 +

m

2
µ2
2 = 2(1− α− ζ)2.

Therefore, Rn,m,d(cλ(n,m)) ≥ ζ for all 0 < c < k(α, ζ). Since ζ and

k(α, ζ) do not depend on n,m and d, this trivially satisfies the condition

lim inf
n,m,d→∞

Rn,m,d(cλ(n,m)) ≥ ζ for all 0 < c < k(α, ζ).

Proof of Theorem 4.2 . Here we want to show that for every positive α

and ζ, there exists a constant K(α, ζ) such that

lim sup
n,m,d→∞

sup
(F,G)∈F(cλ(n,m))

Pn,mF,G{Tn,m ≤ c1−α} ≤ ζ

for all c > K(α, ζ). Let us first choose a constant K1 such that

K1

( 1√
n
+

1√
m

)2
≥ 1

α
E{T πn,m | U} =

1

6α

(
1

n
+

1

m
+

1

n− 2
+

1

m− 2

)
.

Now, take any (F,G) ∈ F(cλ(n,m)) such that c > K1. Using the fact that

c1−α ≤ 1
α
E{T πn,m | U} (see the proof of Lemma 2.1), we get

Pn,mF,G{Tn,m ≤c1−α} ≤ Pn,mF,G{Tn,m ≤ 1

α
E{T πn,m | U}}

= Pn,mF,G{−Tn,m + EF,G{Tn,m} ≥ EF,G{Tn,m} −
1

α
E{T πn,m | U}}}.

Since EF,G{Tn,m} ≥ Θ2
ρ(F,G) ≥ cλ(n,m) ≥ K1λ(n,m) ≥ 1

α
E{T ρn,m,π | U},
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using the Chebyshev’s inequality, one gets

Pn,mF,G{Tn,m ≤ c1−α}

≤ Pn,mF,G{−Tn,m + EF,G{Tn,m} ≥ EF,G{Tn,m} −
1

α
E{T πn,m | U}}}

≤ V arF,G(Tn,m)(
EF,G{Tn,m} − 1

α
E{T πn,m | U}

)2
≤

C1Θ
2
ρ(F,G)

(
1
n
+ 1

m

)
+ C2

(
1
n
+ 1

m

)2
(

1
6

(
1

n−2
+ 1

m−2

)
+ 1

m
(p0 − p1) +

1
n
(p2 − p3) + Θ2

ρ(F,G)− 1
6α

(
1
n
+ 1

m
+ 1

n−2
+ 1

m−2

))2
≤

C1Θ
2
ρ(F,G)

(
1
n
+ 1

m

)
+ C2

(
1
n
+ 1

m

)2
(
Θ2
ρ(F,G)− 1

6α

(
1
n
+ 1

m
+ 1

n−2
+ 1

m−2

))2 ,
This implies that

lim sup
n,m,d→∞

sup
(F,G)∈F(cλ(n,m))

Pn,mF,G{Tn,m ≤ c1−α} ≤ (C1c+ C2)/

(
c− 1

3α

)2

.

One can notice that this upper bound is a decreasing function in c, and as

c grows to infinity, it goes to zero. Hence, for any 0 < ζ < 1 − α, there

exists a constant K2 > 0 such that this upper bound is smaller than ζ.

Now let K(α, ζ) = max{K1, K2}. Then for c > K(α, ζ) the maximum type

II error rate is asymptotically upper bounded by ζ. This establishes the

theorem.

Proof of Theorem 4.3 . If F andG are such that lim
d→∞

Θ2
ℓ2
(F,G)/λ(n,m) =

∞, then from Theorem 4.2, we have limd→∞ Pn,mF,G{Tn,m ≤ c1−α} = 0. Hence

the power of the test converges to 1.
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Proof of Theorem 4.4 . Using similar arguments as in the proofs of Theorems

4.1 and 4.2, one can show that if h and ψ are strictly increasing functions,

then for testing H0 : Θ2
φh,ψ

(F,G) = 0 against H1 : Θ2
φh,ψ

(F,G) > ϵ,

the minimax rate of separation is λ(n,m) = (1/
√
n + 1/

√
m)2, and the

permutation test based on T h,ψn,m is minimax rate optimal. Hence, one gets

a similar conclusion as in Theorem 4.3.

Proof of Proposition 4.1 . Here, we use Lemma A.5 to establish the

condition of Theorem 4.3 for different β. Assume that X1,X2 ∼ F =∏d
i=1 N1(1/d

β, 1),Y1,Y2 ∼ G =
∏d

i=1N1(−1/dβ, 1), and they are independent.

Then

Θ2
ℓ2
(F,G) ≥

[
P
(
∥X1 −Y1∥ ≤ ∥Y2 −Y1∥

)
− 1/2

]2
+
[
P
(
∥Y1 −X1∥ ≤ ∥X2 −X1∥

)
− 1/2

]2
=
[
P
(
∥X1 −Y1∥2 − ∥Y2 −Y1∥2 ≤ 0

)
− 1/2

]2
+
[
P
(
∥Y1 −X1∥2 − ∥X2 −X1∥2 ≤ 0

)
− 1/2

]2
=

[
P
( d∑

i=1

TiSi ≤ 0

)
− 1

2

]2
+

[
P
( d∑

i=1

T ′
iS

′
i ≤ 0

)
− 1

2

]2
,

where Ti = X1i − Y2i, Si = X1i + Y2i − 2Y1i, T
′
i = Y1i − X2i and S ′

i =

Y1i+X2i−2X1i (i = 1, 2, . . . , d). Clearly, Ti, Si are independent, and so are

T ′
i , S

′
i. Here S1, S2, . . . , Sd

iid∼ N( 2
dβ
, 6)
)
, and S

′
i has the same distribution as



High dimensional two-sample test

−Si for all i = 1, 2, . . . , d. Now,

[
P
(
∥X1 −Y1∥ ≤ ∥Y2 −Y1∥

)
− 1/2

]2
+
[
P
(
∥Y1 −X1∥ ≤ ∥X2 −X1∥

)
− 1/2

]2
=

E{Φ(− 2

dβ

∑d
i=1 Si√

2
∑d

i=1 S
2
i

)}
− 1

2

2

+

E{Φ( 2

dβ

∑d
i=1 S

′
i√

2
∑d

i=1 S
′
i
2

)}
− 1

2

2

.

= 2

E{Φ(− 2

dβ

∑d
i=1 Si√

2
∑d

i=1 S
2
i

)}
− 1

2

2

Hence, studying the behaviour of Z(β) =
(
2
∑d

i=1 Si
)
/
(
dβ
√

2
∑d

i=1 S
2
i

)
for

different values of β will yield the conditions for the consistency of our test.

Note that
∑d

i=1 Si/d
β+1/2 ∼ N(2/d2β−1/2, 6/d2β). Hence for β < 1/4,

1
dβ+1/2

∑d
i=1 Si

P→ ∞ and
∑d

i=1 S
2
i /d

P→ 6. So, for β < 1/4, Z(β)
P→ ∞. For

β = 1/4,
∑d

i=1 Si/d
β+1/2 P→ 2. So, Z(β)

P→ 2/
√
3. Therefore, for β ≤ 1/4,

we have

lim inf
d→∞

E{Φ(− 2

dβ

∑d
i=1 Si√

2
∑d

i=1 S
2
i

)}
− 1

2

2

> 0,

which in turn implies that lim infd→∞Θ2
ℓ2
(F,G) > 0. This proves Proposition

4.1(a).

For 1/4 < β < 1/2, notice that d2β−1/2
∑d

i=1 Si/d
β+1/2 ∼ N(2, 6d2β−1).

So, as d tends to infinity, d2β−1/2
∑d

i=1 Si/d
β+1/2 P→ 2. Now, if we take

n ≍ m ≍ dγ, to match this convergence rate so that Θ2
ℓ2
(F,G)/λ(n,m)
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diverges to infinity, we require the following

lim
d→∞

dγ

E{Φ(− 2

d2β−1/2

dβ−1
∑d

i=1 Si√
2
∑d

i=1 S
2
i /d

)}
− 1

2

2

= ∞.

This is possible when γ > 4β − 1. Also, note that for β = 1/2,∑d
i=1 Si/d

1/2 forms a tight sequence. In this case, we need

lim
d→∞

dγ

E{Φ(− 2

dβ
d−1/2

∑d
i=1 Si√

2
∑d

i=1 S
2
i /d

)}
− 1

2

2

= ∞,

which is satisfied when γ > 1 = 4β − 1. This proves Proposition 4.1(b).

Now for β > 1/2, we have
∑d

i=1 Si/d
1/2 ∼ N(2/dβ−1/2, 6), and hence it

is a tight sequence of random variables. In this scenario we require

lim
d→∞

dγ

E{Φ(− 2

dβ
d−1/2

∑d
i=1 Si√

2
∑d

i=1 S
2
i /d

)}
− 1

2

2

= ∞,

which is satisfied if γ > 2β. Also notice that when β > 1/2 and γ < 2β−1,

the Kullback-Leibler Divergence (KL(Q1, Q0) ≍ dγ−2β+1) converges to zero

with increasing dimensions. Hence in this scenario, the asymptotic type II

error rate of any test remains bounded below by 1 − α, i.e., no tests have

asymptotic power more than the nominal level α. This completes the proof

of Proposition 4.1(c).
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Appendix B: Numerical Results on SSE Models

In the main part of the manuscript, we analyzed several simulated data

sets belonging to non-strongly spike eigenvalue (NSSE) models to study the

high dimensional behaviour of our tests. Here we consider two examples

involving data sets generated using strongly spiked eigenvalue (SSE) models

(see Aoshima and Yata, 2018) and analyze them. In particular, we consider

a scale problem (Example A1) and a location problem (Example A2) and

investigate the performance of different methods when the sample sizes

remain fixed (50 from each distribution) and the dimension increases.

Example E1: Two probability distributions F = Nd(0d,Σ
◦
d(1.1)) and

G = Nd(0,Σ
◦
d(1.5)) differ only in the scale of the first coordinate variable.

Here Σ◦
d(γ) denotes the d× d diagonal matrix with the first diagonal entry

dγ for some γ > 0 and the rest equal to unity.

Example E2: Here F = Nd(0d,Σ
◦
d(1.5)) and G = Nd(0.51d,Σ

◦
d(1.5))

differ only in location. Note that Σ◦
d(γ) has the same meaning as in Example

E1, and here 1d is a d dimensional vector with all entries being unity.

Since limλ2max(Σ
◦
d(γ))/trace(Σ

◦2
d (γ)) = lim d2α/(d2α+d−1) = 1 for any

γ > 1, both examples belong to SSE models. For each of these examples, we

considered 10 different choices of d (2i for i = 1, . . . , 10), and in each case,
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we repeated the experiment 500 times to estimate the power of the tests

by the proportion of times they rejected the null hypothesis (H0 : F = G).

These results are summarized in Figure F1.

Note that in Example E1, (X11 −X21) ∼ N(0, 2d1.1) and (X1i−X2i) ∼

N(0, 2) for i = 2, . . . , d. Hence, as d → ∞, ∥X1 − X2∥2/2d1.1
L→ χ2

1

(converges in distribution to a chi-square random variable with one degree

of freedom). Similarly, as d → ∞, we have ∥Y1 − Y2∥2/2d1.5
L→ χ2

1,

∥X1 − Y1∥2/d1.5
L→ χ2

1, and hence P{∥X1 − X2∥ ≤ ∥X1 − Y1∥} → 1.

Thus by Lemma A.4, the HDLSS consistency of the BD-ℓ2 test holds. One

can use similar arguments to show the consistency of BD-ℓ1 test. This

was the reason behind the excellent performance by these tests. In this

example, the BG test performed best followed by our BD-ℓ2 and BD-

2 4 6 8 10

0

0.5

1

log2(d)

P
o
w
e
r
E
st
im

a
te
s

Example E1

2 4 6 8 10

0

0.5

1

log2(d)

P
o
w
e
r
E
st
im

a
te
s

Example E2

Figure F1: Powers of BD-ℓ2 ( ), BD-ℓ1 ( ), BD-exp ( ), BD-log ( ), FR (■), BF (♦),

NN (■), MMD (♦), SHP (■), BG (♦) tests in Examples E1 and E2.
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ℓ1 tests. Except for BD-exp and BD-log, powers of all other tests also

converged to 1 as the dimension increased. In cases of these two tests,

the pairwise distances
∑d

i=1 ψ
(
(X1i − X2i)

2
)
/d,
∑d

i=1 ψ
(
(Y1i − Y2i)

2/2
)
/d

and
∑d

i=1 ψ
(
(X1i−Y1i)2/2

)
/d converges in probability to the same positive

constant as d goes to infinity. So, unlike BD-ℓ2 and BD-ℓ1, they were unable

to extract substantial discriminatory information from the first coordinate.

In Example E2, powers of BD-ℓ2, BF, BG and MMD tests dropped down

as d increased, but those for the graph-based tests increased steadily. Note

that while the performance of the graph-based tests depends on the ordering

of the pairwise distances, those of the above mention four tests depends on

their magnitudes. In this example, though the inter-sample distances had a

tendency to take higher values than the intra-sample distances, as d grows to

infinity, ∥X1−X2∥2/2d1.5, ∥Y1−Y2∥2/2d1.5 and ∥X1−Y1∥2/2d1.5 all converge

in distribution to a chi-square random variable with one degree of freedom,

and that is why they failed to discriminate among the two populations in

higher dimensions. However, BD-exp and BD-log tests outperformed all

graph-based tests in this example. Note that here
∑d

i=1 ψ
(
(X1i −X2i)

2
)
/d

and
∑d

i=1 ψ
(
(Y1i−Y2i)

2/2
)
/d converge in probability to the same limit but∑d

i=1 ψ
(
(X1i − Y1i)

2/2
)
/d converges in probability to a limit higher than

that. This explains the excellent performance of these tests. Beacuse of
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the same reason the BD-ℓ1 also had increasing power. In this example,

the first coordinate difference was a dominating term in the ℓ1 distance,

and along that coordinate, we had very little difference between the two

populations. This affected the performance of the BD-ℓ1 test. In this

case, coordinate-wise standardization of the variables may improve the

performance of this test. Similar coordinatewise standardization may lead

to better performance by the BD−ℓ2 test as well.
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