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Supplementary Material

This supplementary file contains additional simulations, additional details in real application, and all

technical proofs. Here we omit the notation a.s. (almost surely) for convenience.

S1 Additional Simulations

Example 3. M0 = 4 and θ = (1.5, 0.7, 0.2,−0.4)T . Zi is a 4× 1 vector that fol-

lows a multivariate normal distribution with zero means and a variance-covariance

matrix Σ = (0.5|a−b|)4×4. The functional predictor Xi(t) is obtained by

Xi(t) =
4∑

l=1

ζilψl(t), t ∈ [0, 1],

where ψl(t) =
√
2 sin(πlt), l = 1, . . . , 4, and ζil is i.i.d and simulated from

N(0, l−3/2), i = 1, . . . , n. The random error term εi is i.i.d. and follows N(0, η2).
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η controls the signal-to-noise ratio and we vary it such that R2 = var(µi)/var(Yi)

ranges from 0.1 to 0.9, where var(µi) and var(Yi) denote the variances of µi and

Yi, respectively. And the non-linear effect of Xi(t) is introduced by

f(ξi) = exp
{ 4∑

l=1

ξil/l
}
,

where ξil = Φ(λ
−1/2
l ζil). All settings are identical to that of Example 1 except for

the non-linear effect of X(t).

Example 4. M0 = 50 and θj = j−1/2. The case where z and X(t) being cor-

related is considered. Simulate (Zi, ζi1) ∼ MN(0,Σ), where Σ = (0.5|a−b|)51×51.

The functional predictor Xi(t) is simulated by

Xi(t) =
5∑

l=1

ζilψl(t), t ∈ [0, 10],

where ψl(t) = cos(πlt/5)/
√
5, l = 1, . . . , 5, and ζil is i.i.d. and follows N(0, l−2),

i = 1, . . . , n, l = 2, . . . , 5. The independent εi’s are heteroscedastic as εi ∼

N
(
0, η2(u2i +0.01)

)
, where ui follows U [−1, 1]. Still varying η such that R2 varies

between 0.1 and 0.9. And the non-linear effect of Xi(t) is generated from

f(ξi) = 2
(
ξi1ξi2 −

1

2

)
+
(
ξi3 −

1

2

)2 − 1

12
+

1

4

(
ξi4 −

1

2

)
+

1

5

(
ξi5 −

1

2

)
,

where ξil = Φ(λ
−1/2
l ζil).

Identical to Example 1, we still omit z4 and ξ4 in preparing candidate models

in Example 3, so all candidate models are misspecified. With different specifica-

tions of which elements in {z1, z2, z3} and {ξ1, ξ2, ξ3} are included in the model,

we have a total number of M = (23 − 1)(23 − 1) = 49 candidate models for Ex-
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Example 3: n = 100
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Example 3: n = 200
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Figure S1: Normalized mean squared error (NMSE) comparisons for Example 3.

amples 1 and 2. As for Example 4, similar to that of Example 2, a pre-screening

is conducted first, and candidate models are then constructed in a nested way.

In Example 3, both MMA-type and AIC-type estimators in Figure S1 demon-

strate superiority over other competing estimators. Particularly, when sample size

n is limited, MMA exhibits an advantage over AIC and SAIC methods. With

increasing n, these estimators tend to behave similarly in most cases for R2. This

underscores the effectiveness of MMA approach. Additionally, it is observed that

the oracle MMA (oMMA) is less effective for small values of R2 and n, which
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Figure S2: Normalized mean squared error (NMSE) comparisons for Example 4.

can be attributed to the signal-to-noise ratio in data , as discussed earlier in the

manuscript. Also, Figure S1 illustrates that SAIC and SBIC outperform their

model selection counterparts, AIC and BIC. The differences tend to decrease as

R2 or n grows. Finally, it is worth noting that the lines for MMA-lin and oracle

MMA-lin (oMMA-lin) mostly fall outside the subfigures; only two points of each

can be seen at the top left of the subfigures. This implies that partially linear

functional linear models are inefficient in detecting non-linear effects, highlight-

ing the necessity of exploring nonparametric modeling. Similar trends to those
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in Figure 1 can also be observed in Figure S1.

In Example 4, as depicted in Figure S2, the oracle MMA (o-MMA) demon-

strates a clear edge over other competing methods for medium and large R2

values. Additionally, MMA outperforms the others for small R2 and n values.

As n increases, the differences between MMA and AIC-type methods diminish.

On the other hand, MMA-lin deteriorates as R2 increases, coinciding with the

strengthening signal of the non-linear component. Notably, equally weighting

still performs the poorest for most large R2 values. Similar trends to those in

Figure 2 can also be observed in Figure S2.

S2 Details in Real Application

We excluded one covariate, phosphorous (mg·kg−1), from the original set of 19 co-

variates due to its incompleteness. The sample marginal correlations of remaining

covariates with our response variable, the total carbon percentage, are presented

in Table 1, ranging from -0.3508 to 0.6523. To prepare candidate model, we

firstly screened out scalar variables whose absolute marginal correlations exceed

0.1, and then adopted the nested fashion described in the manuscript.

Through D = 1000 repetitions, we finally obtained D mean squared predic-

tion error (MSPE) values. Figures S3 and S4 present boxplots and empirical

cumulative distribution functions of MSPEs for each approach. It is evident

from Figure S4 that a visual stochastic dominance relationship exists between
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Table 1: Sample marginal Correlations to the total carbon percentage (Y ).

marginal correlation

Exchangeable Magnesium (cmolc · kg−1) 0.6523

Exchangeable Bases (cmolc · kg−1) 0.6124

Exchangeable Potassium (cmolc · kg−1) 0.6093

Exchangeable Calcium (cmolc · kg−1) 0.5698

Boron Concentration (mg · kg−1) 0.5022

Soil Electrical Conductivity (dS ·m−1) 0.4172

Sulphur (mg · kg−1) 0.3890

Soil pH in Water 0.2202

Iron Concentration (mg · kg−1) 0.2143

Copper Concentration (mg · kg−1) 0.1963

Zinc (mg · kg−1) 0.1733

Exchangeable Calcium-to-Magnesium Ratio 0.0826

Exchangeable Manganese (mg · kg−1) 0.0749

Exchangeable Acidity (cmolc · kg−1) -0.0147

Exchangeable Aluminium (mg · kg−1) -0.0533

Exchangeable Sodium (cmolc · kg−1) -0.0991

Exchangeable Sodium Ratio (%) -0.3088

Exchangeable Sodium Percentage (%) -0.3508
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Figure S3: Boxplots of MSPE across D = 1000 repetitions for the soil dataset. The vertical

dashed line represents the median MSPE value of MMA.

MMA and other competitors, indicating the preference for MMA on this dataset.

Moreover, Figure S4 reveals that linear modeling may be underspecified, and the

equally weighting scheme may be inefficient in practice.

Additionally, the remaining results for the data-driven method using paired

Mann-Whitney-Wilcoxon (MWW) test are listed in Table 2. The alternative

hypothesis indicates that the other method is less accurate than MMA. A small

statistic value (relative to D(D + 1)/2 ≈ 250, 250) of the MWW test suggests
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Figure S4: ECDFs of MSPE based on D = 1000 values for the soil dataset.

that the respective method is less accurate than MMA. The p-values have also

been adjusted using the BH method, as employed in the manuscript. Again, both

the MWW statistics and corresponding adjusted p-values in Table 2 demonstrate

that MMA outperforms other competitors in terms of prediction accuracy for this

dataset.
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Table 2: Results of test statistics and adjusted p-values for the data-driven approach using

paired MWW test.

MMA/AIC MMA/BIC MMA/Equal MMA/SAIC MMA/SBIC MMA/MMA-lin

mww stat. 1.31E+05 1.53E+05 1.16E+05 2.03E+05 1.79E+05 1.89E+05

mww p.val 4.63E-39 1.09E-26 1.12E-48 9.17E-08 4.54E-15 9.61E-12

S3 Some Lemmas

The estimation error of the transformed FPC score is of order Op(n
−1/2l) as shown

in [4], and we list the result here while omitting the detailed proof.

Lemma S3.1. Suppose the transformation function Φ(·) has bounded derivative.

Under Assumption 1, there exists a constant C > 0 such that E(ξ̂il−ξil)2 ≤ Cl2/n

uniformly for l ≤ Jn, where Jn = ⌊(2CλOp(1))
−1/(1+α)n1/(2+2α)⌋.

Lemma S3.2. Under Assumptions 1, 2 and 3(c), we have λmax(K(m)) = O(1),

λmax(K̂(m)) = Op(1), and λmax(P(m)) = O(1), λmax(P̂(m)) = Op(1), for all m =

1, . . . ,M .

Proof. For any square matrices M1 and M2 (see [1]), we have

λmax(M1M2) ≤ λmax(M1)λmax(M2),

and λmax(M1 +M2) ≤ λmax(M1) + λmax(M2).

(S3.1)

These two inequalities will be frequently used in the following proofs.

By an inequality of Reisz (see [2]), we obtain that

λ2max(K(m)) ≤ max
i

n∑
j=1

|K(m),ij| ·max
j

n∑
i=1

|K(m),ij|,
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which implies that λmax(K(m)) = O(1). Hence,

λmax(P(m)) = λmax(P̃(m))
(
1 + λmax(K(m))

)
+ λmax(K(m))

=
(
1 + λmax(K(m))

)
+ λmax(K(m)) = O(1).

From Lemma S3.1, we obtain that

ξ̂il − ξil = Op(n
−1/2l),

ξ̂il − ξ̂jl = ξil − ξjl +Op(n
−1/2l), fork ≤ Jn.

Applying Taylor series expansion and Assumption 2,

K̂(m),ij =
K(ξ̂(m),i − ξ̂(m),j)∑n

j′=1 K(ξ̂(m),i − ξ̂(m),j′)

=
{
K(ξ(m),i − ξ(m),j) +

qm∑
l=1

k′(ξil − ξjl)
∏
u̸=l

k(ξiu − ξju)(ξ̂il − ξil + ξjl − ξ̂jl)

+ op(n
− 1

2 qm)
}
/
{ n∑

j′=1

[K(ξ(m),i − ξ(m),j′) +Op(n
− 3

2 qm)]
}

=
K(ξ(m),i − ξ(m),j)∑n

j′=1K(ξ(m),i − ξ(m),j′)
+
{ qm∑

l=1

k′(ξil − ξjl)
∏
u̸=l

k(ξiu − ξju)(ξ̂il − ξil + ξjl − ξ̂jl)
}

/
{ n∑

j′=1

K(ξ(m),i − ξ(m),j′)
}
+ op(n

− 1
2 qm)

= K(m),ij +Op(n
− 3

2 qm), qm ≤ Jn,

i.e., K̂(m),ij = K(m),ij + Op(n
− 3

2 qm). Note that qm is no larger than Jn and it is

common for kernel smoothing to restrict the dimension of ξ to handle the curse

of dimensionality. By Assumptions 2 and 3, we can show that

max
i

n∑
j=1

|K̂(m),ij| = max
i

n∑
j=1

|K(m),ij|+Op(n
− 1

2 qm) = Op(1),

max
j

n∑
i=1

|K̂(m),ij| = max
j

n∑
i=1

|K(m),ij|+Op(n
− 1

2 qm) = Op(1),
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uniformly for m = 1, . . . ,M . Similarly,

λ2max(K̂(m)) ≤ max
i

n∑
j=1

|K̂(m),ij|max
j

n∑
i=1

|K̂(m),ij| = Op(1),

λmax(P̂(m)) = λmax(P(m))
(
1 + λmax(K̂(m))

)
+ λmax(K̂(m))

=
(
1 + λmax(K̂(m))

)
+ λmax(K̂(m)) = Op(1).

In addition,

max
i

n∑
j=1

|K̂(m),ij −K(m),ij| = Op(n
− 1

2 qm),

max
j

n∑
i=1

|K̂(m),ij −K(m),ij| = Op(n
− 1

2 qm),

λ2max(K̂(m) −K(m)) ≤ max
i

n∑
j=1

|K̂(m),ij −K(m),ij|max
j

n∑
i=1

|K̂(m),ij −K(m),ij|,

which leads to

λmax(K̂(m) −K(m)) = Op(n
− 1

2 qm). (S3.2)

Lemma S3.3 corresponds to Lemma 1 in the paper.

Lemma S3.3. Under Assumptions 1, 2 and 3(c)(e), we have

λmax

(
P(m) − P̂(m)

)
= Op(n

− 1
2 qm),

for all m = 1, . . . ,M .
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Proof. Take a decomposition as

P(m) − P̂(m) = (P̃(m) −P(m)) + (K(m) − K̂(m)) + P̃(m)(K̂(m) −K(m))

+ (P(m) − P̃(m))K(m) + (P̃(m) −P(m))(Km − K̂(m)).

(S3.3)

Recalling Eq.(S3.1), it suffices to determine the order of λmax(P̃(m) − P(m))

and λmax(K(m) − K̂(m)). We have already quantified λmax(K(m) − K̂(m)) in

Eq.(S3.2). Remind that P̃(m) and P(m) are projection matrices related to Z̃(m) =

(I−K(m))Z(m) and Ẑ(m) = (I−K̂(m))Z(m), i.e. P̃(m) = Z̃(m)(Z̃
T
(m)Z̃(m))

−1Z̃T
(m) and

P(m) = Ẑ(m)(Ẑ
T
(m)Ẑ(m))

−1ẐT
(m). We simplify the notations as P̃(m) = H(I−K(m))Z(m)

and P(m) = H(I−K̂(m))Z(m)
, where HA represents the (normalised) projection op-

erator generated from A. It is obviously observed that the deviation between two

projection operators P̃(m) and P(m) derives from the difference between K(m) and

K̂(m), so using Assumption 3(e) it holds that

∥P̃(m) −P(m)∥ ≤ ∥HI−K(m)
−HI−K̂(m)

∥ = ∥HK(m)
−HK̂(m)

∥

≤ C
(
∥K(m) − K̂(m)∥

)(
λmax(K(m)) + λmax(K̂(m))

)
+ 2λmax(K(m))λmax(K̂(m)) = Op(n

− 1
2 qm),

(S3.4)

where C is related to the smallest nonzero singular value of K(m).

Finally according to Eq.(S3.3), combining Eqs.(S3.1), (S3.2) and (S3.4), we

have

λmax(P(m) − P̂(m)) = Op(n
− 1

2 qm),

which completes the proof.
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S4 Proof of Theorem 1

Proof. Firstly, it follows from Lemma S3.2 that

sup
ω
λmax

(
P̂(ω)

)
= sup

ω
λmax

( M∑
m=1

ωmP̂(m)

)
≤ sup

ω

M∑
m=1

ωmλmax(P̂(m))

≤ max
1≤m≤M

λmax(P̂(m)) = Op(1),

(S4.5)

and similarly,

sup
ω
λmax

(
P(ω)

)
= Op(1). (S4.6)

Let Â(ω) = I− P̂(ω) and A(ω) = I−P(ω). From the definition of Ln(ω),

Ĉn(ω) and Rn(ω), we have

Ĉn(ω) = Ln(ω) + ∥ε∥2 − 2µT (P(ω)− P̂(ω))µ− 2εT (P(ω)− P̂(ω))ε− 2εT (P(ω)− P̂(ω))µ

− 2εT (P(ω)− P̂(ω))Tµ− 2εT (P̂(ω)−P(ω))TP(ω)µ+ 2εTPT (ω)(P̂(ω)−P(ω))µ

+ µT (P(ω) + P̂(ω))T (P(ω)− P̂(ω))µ+ εT (P(ω) + P̂(ω))T (P(ω)− P̂(ω))ε

+ εT (P(ω) + P̂(ω))T (P(ω)− P̂(ω))µ+ 2εTA(ω)µ

− 2[εTP(ω)ε− tr(P(ω)Ω)]− 2[tr(P(ω)Ω)− tr(P̂(ω)Ω)],

and

Ln(ω)−Rn(ω) = εTPT (ω)P(ω)ε− tr(PT (ω)P(ω)Ω)− 2εTPT (ω)A(ω)µ.

So similar to the proof of Theorem 2.1 of [1], in order to prove Eq.(4) in Theorem

1, we need only to verify that

sup
ω

|εTA(ω)µ|
Rn(ω)

= op(1), (S4.7)

sup
ω

|εTP(ω)ε− tr(P(ω)Ω)|
Rn(ω)

= op(1), (S4.8)



LIU ET AL.

sup
ω

|εTPT (ω)P(ω)ε− tr(PT (ω)P(ω)Ω)|
Rn(ω)

= op(1), (S4.9)

sup
ω

|µTAT (ω)P(ω)ε|
Rn(ω)

= op(1), (S4.10)

sup
ω

|εT
(
P(ω)− P̂(ω)

)T
µ|

Rn(ω)
= op(1), (S4.11)

sup
ω

|εT
(
P(ω)− P̂(ω)

)
µ|

Rn(ω)
= op(1), (S4.12)

sup
ω

|εT
(
P̂(ω)−P(ω)

)T
P(ω)µ|

Rn(ω)
= op(1), (S4.13)

sup
ω

|εTPT (ω)
(
P̂(ω)−P(ω)

)
µ|

Rn(ω)
= op(1), (S4.14)

sup
ω

|εT
(
P(ω) + P̂(ω)

)T (
P(ω)− P̂(ω)

)
µ|

Rn(ω)
= op(1), (S4.15)

sup
ω

|µT
(
P(ω)− P̂(ω)

)
µ|

Rn(ω)
= op(1), (S4.16)

sup
ω

|µT
(
P(ω) + P̂(ω)

)T (
P(ω)− P̂(ω)

)
µ|

Rn(ω)
= op(1), (S4.17)

sup
ω

|εT
(
P(ω)− P̂(ω)

)
ε|

Rn(ω)
= op(1), (S4.18)

sup
ω

|εT
(
P(ω) + P̂(ω)

)T (
P(ω)− P̂(ω)

)
ε|

Rn(ω)
= op(1), (S4.19)

and

sup
ω

|tr(P(ω)Ω)− tr(P̂(ω)Ω)|
Rn(ω)

= op(1). (S4.20)
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Note that Eqs.(S4.7)–(S4.10) do not include any ·̂ terms. From Eq.(S4.6) and

Assumption 3, Eqs.(S4.7)–(S4.10) can be shown by using the same steps as in

the proof of Theorem 1 of [3].

For proving Eq.(S4.19), by (S3.1), it is seen that

sup
ω

|εT
(
P(ω) + P̂(ω)

)T (
P(ω)− P̂(ω)

)
ε|

Rn(ω)

≤ η−1
n

1

2
sup
ω

∣∣∣εT[(P(ω) + P̂(ω)
)T (

P(ω)− P̂(ω)
)
+
(
P(ω)− P̂(ω)

)T (
P(ω) + P̂(ω)

)]
ε
∣∣∣

≤ η−1
n

1

2
∥ε∥2 · sup

ω
λmax

[(
P(ω) + P̂(ω)

)T (
P(ω)− P̂(ω)

)
+
(
P(ω)− P̂(ω)

)T (
P(ω) + P̂(ω)

)]
≤ η−1

n ∥ε∥2 · sup
ω
λmax

(
P(ω) + P̂(ω)

)
λmax

(
P(ω)− P̂(ω)

)
≤ η−1

n ∥ε∥2 · sup
ω

[
λmax(P(ω)) + λmax(P̂(ω))

]
·

M∑
m=1

ωmλmax(P(m) − P̂(m))

≤ nη−1
n · ∥ε∥

2

n
· sup

ω

[
λmax(P(ω)) + λmax(P̂(ω))

]
· max
1≤m≤M

λmax(P(m) − P̂(m))

= op(1),

where the last step is from Eqs.(S4.5)–(S4.6), Assumption 3 and Lemma S3.3.

By Lemma S3.3 and Assumption 3, we can prove Eqs.(S4.15)–(S4.18) in a similar

way.
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For Eq.(S4.12),

sup
ω

|εT
(
P(ω)− P̂(ω)

)
µ|

Rn(ω)

≤ η−1
n ∥µ∥ · sup

ω
∥
(
P(ω)− P̂(ω)

)T
ε∥

≤ η−1
n · ∥µ∥ · sup

ω
λmax

(
P(ω)− P̂(ω)

)
· ∥ε∥

≤ nη−1
n · ∥µ∥√

n

∥ε∥√
n
· max
1≤m≤M

λmax

(
P(m) − P̂(m)

)
= op(1),

where the last step is from Lemma S3.3 and Assumption 3. Similarly, we can ver-

ify Eqs.(S4.11), (S4.13)–(S4.14) by Lemma S3.3, Assumption 3 and Eqs.(S4.5)–

(S4.6).

Now we consider the last Eq.(S4.20). Note that Ω is a diagonal matrix,

sup
ω

|tr(P(ω)Ω)− tr(P̂(ω)Ω)|
Rn(ω)

= sup
ω

|tr[(P(ω)− P̂(ω))Ω]|
Rn(ω)

≤ η−1
n sup

ω
|tr(P(ω)− P̂(ω))|λmax(Ω)

≤ nη−1
n max

1≤m≤M
λmax

(
P(m) − P̂(m)

)
λmax(Ω)

= op(1),

where the last step is from Lemma S3.3 and Assumption 3. This completes the

proof of Theorem 1.
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S5 Proof of Theorem 2

Proof. Note that

Ĉn(ω)|Ω=Ω̂ = Ĉn(ω) + 2tr(P̂(ω)Ω̂)− 2tr(P̂(ω)Ω).

From the result of Theorem 1, to prove Eq.(5) in Theorem 2, it suffices to prove

that

sup
ω

|tr(P̂(ω)Ω̂)− tr(P̂(ω)Ω)|
Rn(ω)

= op(1). (S5.21)

LetQ(m) = diag(ρ
(m)
11 , . . . , ρ

(m)
nn ) andQ(ω) =

∑M
m=1 ωmQ(m). To prove Eq.(S5.21),

we decompose the left-hand side of Eq.(S5.21) into four parts as follows.

sup
ω

|tr(P̂(ω)Ω̂)− tr(P̂(ω)Ω)|
Rn(ω)

= sup
ω

|(Y − P̂(M∗)Y)T Q̂(ω)(Y − P̂(M∗)Y)− tr(Q̂(ω)Ω)|
Rn(ω)

= sup
ω

|(µ+ ε)T (I− P̂(M∗))
T Q̂(ω)(I− P̂(M∗))(µ+ ε)− tr(Q̂(ω)Ω)|

Rn(ω)

≤ sup
ω

|µT (I− P̂(M∗))
T Q̂(ω)(I− P̂(M∗))µ|
Rn(ω)

+ sup
ω

2|εT (I− P̂(M∗))
T Q̂(ω)(I− P̂(M∗))µ|
Rn(ω)

+ sup
ω

|εT (I− P̂(M∗))
T Q̂(ω)(I− P̂(M∗))ε|
Rn(ω)

+ sup
ω

|tr(Q̂(ω)Ω)|
Rn(ω)

≡ Ξ1 + Ξ2 + Ξ3 + Ξ4.

Now define ρ = max1≤m≤M max1≤i≤n |ρ(m)
ii |. From Assumption 4 and Lemma
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S3.2, we have max1≤m≤M |tr(K̂(m))| = max1≤m≤M |tr(K(m))|+Op(n
− 1

2 q̃) and

ρ ≤ cn−1 max
1≤m≤M

|tr(P̂(m))|

≤ cn−1 max
1≤m≤M

|tr(P(m))|+ cn−1 max
1≤m≤M

|tr(P(m)K̂(m))|+ cn−1 max
1≤m≤M

|tr(K̂(m))|

≤ cn−1 max
1≤m≤M

rank(P(m)) + cn−11

2
max

1≤m≤M

[
λmax

(
P(m)K̂(m) + K̂T

(m)P(m)

)
· rank

(
P(m)K̂(m) + K̂T

(m)P(m)

)]
+ cn−1 max

1≤m≤M
|tr(K̂(m))|

≤ cn−1p̃+ cn−1 · 2p̃ · λmax(P(m))λmax(K̂(m)) + cn−1 max
1≤m≤M

|tr(K̂(m))|

= cn−1p̃+ cn−1p̃ ·Op(1) + cn−1 ·Op(h
−q̃ + n− 1

2 q̃)

= Op(n
−1p̃+ n−1h−q̃ + n− 3

2 q̃).

(S5.22)

It follows from Lemma S3.2, Assumptions 3–4, and Eqs.(S4.5) and (S5.22)

that

Ξ1 ≤ η−1
n sup

ω
λmax(Q̂(ω)) · ∥(I− P̂(M∗))µ∥2

≤ η−1
n ρ · ∥(I− P̂(M∗))µ∥2

≤ η−1
n ρ ·

[
1 + λmax(P̂(M∗))

]2 · ∥µ∥2
= η−1

n ·Op(n
−1p̃+ n−1h−q̃ + n− 3

2 q̃) ·Op(1) ·Op(n)

= Op(η
−1
n p̃+ η−1

n h−q̃ + n− 1
2η−1

n q̃).

Using Lemma S3.2, Assumptions 3–4, and Eqs.(S4.5) and (S5.22), we obtain
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that

Ξ2 ≤ 2η−1
n · ∥(I− P̂(M∗))µ∥ · sup

ω
∥Q̂(ω)(I− P̂(M∗))ε∥

≤ 2η−1
n · ∥(I− P̂(M∗))µ∥ · sup

ω
λmax(Q̂(ω)) · ∥(I− P̂(M∗))ε∥

≤ 2η−1
n · ∥(I− P̂(M∗))µ∥ · ρ · ∥(I− P̂(M∗))ε∥

≤ 2η−1
n ·

(
1 + λmax(P̂(M∗))

)
· ∥µ∥ · ρ ·

(
1 + λmax(P̂(M∗))

)
· ∥ε∥

= 2η−1
n ·Op(1) ·Op(n

1
2 ) ·Op(n

−1p̃+ n−1h−q̃ + n− 3
2 q̃) ·Op(1) ·Op(n

1
2 )

= Op(η
−1
n p̃+ η−1

n h−q̃ + n− 1
2η−1

n q̃).

Using Lemma S3.2, Assumptions 3–4, and Eqs.(S4.5) and (S5.22), we have

Ξ3 ≤ η−1
n · sup

ω
λmax(Q̂(ω)) · ∥(I− P̂(M∗))ε∥2

≤ η−1
n · ρ

[
1 + λmax(P̂(M∗))

]2 · ∥ε∥2
= η−1

n ·Op(n
−1p̃+ n−1h−q̃ + n− 3

2 q̃) ·Op(1) ·Op(n)

= Op(η
−1
n p̃+ η−1

n h−q̃).

Using Assumptions 3–4, and Eqs.(S4.5) and (S5.22), we have

Ξ4 ≤ η−1
n · n sup

ω
λmax(Q̂(ω)) · λmax(Ω)

≤ η−1
n · n · ρ · λmax(Ω)

= η−1
n · n ·Op(n

−1p̃+ n−1h−q̃ + n− 3
2 q̃) ·Op(1)

= Op(η
−1
n p̃+ η−1

n h−q̃ + n− 1
2η−1

n q̃).

Finally, it follows from Assumptions 3–4 that Ξ1 = op(1), Ξ2 = op(1), Ξ3 =

op(1) and Ξ4 = op(1). Therefore, we have verified Eq.(S5.21) and this completes

the proof.
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Remark 1. In our current development, we focus on the setting of densely ob-

served functional data with noise. Through our theoretical derivation, we find

that the estimation error from FPCA mainly influences asymptotic optimality

via the convergence rate of λmax

(
P(m) − P̂(m)

)
. When {Xi(t)} are sparsely or

irregularly observed, similar to cases encountered in longitudinal studies, we can

similarly justify the optimality for this sparse and irregular setting. This is con-

tingent on FPCA for sparsely or irregularly observed data yielding appropriate

convergence rates for the estimator of transformed FPC scores {ξ̂il − ξil}.

Bibliography

[1] Li, K.-C. (1987). Asymptotic optimality for cp, cl, cross-validation and gen-

eralized cross-validation: discrete index set. The Annals of Statistics , 958–975.

[2] Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of

the Royal Statistical Society: Series B (Methodological) 50 (3), 413–436.

[3] Wan, A. T., X. Zhang, and G. Zou (2010). Least squares model averaging by

mallows criterion. Journal of Econometrics 156 (2), 277–283.

[4] Wong, R. K., Y. Li, and Z. Zhu (2019). Partially linear functional additive

models for multivariate functional data. Journal of the American Statistical

Association 114 (525), 406–418.


	Additional Simulations
	Details in Real Application
	Some Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

