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Supplementary Material

In the supplementary materials, we provide all the technical proofs for the main

results of the paper. Before proving theorems, we present several lemmas.

Lemma 1. Denote a squared block diagonal matriz by D = diag(Dy, Dy, ..., Dy;).
Suppose D; have eigenvalues Cy, = {Nipy; Nipgs- - Nip; },1 = 1,2,..., M, then the

eigenvalues of matrix D are Cy,,Cy,,...,Cy,,-

Proof. Let D; = P,A,-Pi_l be the eigenvalue decomposition, where A; = diag(Aip,, Aipys - - - 5 Aip; )
and P, is composed of the corresponding eigenvectors. Define A = diag(A1, A, ..., Ay)

and P = diag(Py, P, ..., Py). Then we have

DP = diag(Dl, DQ, Ce ,DM)diag(Pl, PQ, ey PM)
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= diag(DlPl,D2P2, .. 7DMPM)
= dia’g(PlA17P2A27 s 7PMAM)
= dia’g(P17P27 s 7PM)dia‘g(A'17A27 R ’A-M)

= PA

)

which indicates D = PAP™!, and establishes the lemma. O]

Lemma 1 describes a property of eigenvalues for the block diagonal matrix. The
following Lemma 2 is from Theorem A.10 in Bai and Silverstein (2010). It demon-
strates the property of matrix singular values. Its result is stated here for complete-

ness.

Lemma 2. Let B and C be two matrices of order my X mo and ms X mz. For any

i,7 >0, we have

Qitj+1(BC) < iy (B)ej(C).

Based on the results of Lemmas 1 and 2, we present the following Lemma 3, which
provides a relationship between matrix €2 and its block Cholesky factor matrices

(T, D7) in terms of their singular values.

Lemma 3. Let Q = T'D~'T be the block MCD of the inverse covariance matriz.



Inverse Covariance Estimation

If the condition (3.8) is satisfied, that is, there exists a constant 6 > 0 such that

1/0 < ¢,(Q2) < ¢1(Q) < 0, then there exist constants hy and hy such that

0< hl < QDP(T_I) < ng(T_l) < hg < 00,

and

0<h <p,(D™) < (D) < hy < o0

Proof. By the decomposition (2.1), we partition € into blocks according to the
variable groups XM, X® X ®M) guch that its diagonal blocks are €; of order
pi X pii = 1,2,..., M, and S p; = p. Write Q = T'"D'T = T'D 2D :T =

R'R, where

Ry 0 0

R21 RQQ . 0
R=D:T =

RMI RMQ c. RMM

_1
with R;; = D, *. Note that R;; is a symmetric matrix due to the symmetry of D,.

In addition, it is obvious to have ;; = Zizk R}, R;;, implying that Q; — R,,R;; =
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Q,; — D, !'is semi-positive definite. Consequently we have
ep(D;71) < @1(D;7) < Q) < 6. (0.1)
Taking determinant on both sides of Q = T'D~'T yields

Pp(Q) - p1(Q) = (D7) (D7),

By ¢1(D; ") < 6 for each i = 1,2,..., M via (S0.1), together with Lemma 1, it is

easy to see (D) < 6. We hence have

Gr e < [[o@) = [[eD) < 6,07,

i=1

which gives (D) > (3)*~. As a result,
1
0< (7 < (D7) (D) <0 < o

To bound singular values of matrix T, on one hand, we use Lemma 2 to obtain
0p(Q) = pp(T'D'T) = ¢, (TT'D ") < @p(TT")p1 (D) = ¢, (T")0p(T)p1 (D),

indicating

2lT) > \[o(Q) /(D) > VITF = 5.
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On the other hand, applying Lemma 2 again for D~ = T"1QT ! yields ¢,(D ') <

Pp(T71)e1(2) = ¢1(Q)/1(T), implying

©1(£2) o
@1(T) S \/(;Op(D_l) S \/1/92}7—1 = 0P.

As a result,
1
0 <5 =@p(T) =pu(T) < 0 <0
1
0<(G) <@p(T) <pi(T™) <0 < oo,
Taking h; = min(6'=2?,07P) and hy = 0 establishes the lemma. O

It is seen from Lemma 3 that the singular values of the matrices T-! and D!
are bounded if the singular values of the inverse covariance matrix €2 are bounded.

Now we give the proofs of Theorems.

Proof. Proof of Theorem 1.

From the negative log-likelihood (2.4), we have

M M
L(T.D) = - log|D;'[+ ) tr[S.,D;]
j=1 j=1
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S.,D;! 0
M 0 S., D!
Z log |D;| + tr
j=1
0 0
S, 0 ... 0
0 S, 0
=log |D| + tr
0O O .S

By the notation S, = (X — z0 ALy/(XW) —

1
L(T,D) =log |D| + —tr
n

(X(l)7 xX®@ _—

(X(Q) — Z(Q)A’Q)’

(X(M) — (M)

(X0

1
=log |D|+ —tr [TX'’XT'D ']
n

=log|D|+tr [T'D™'TS],

S, Dy}

€M

D

— ZUA}), it is easy to see
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where S = %X’X. Consequently, L(T', D) can be written as

L\(T, D) =log |D| + tr [T'D'TS]| + || A1 + Xo|| D'}
= log|D| + tr [T’D’lTS} +M|T: + XD

=log|D| +tr [T'D7'TS] + A\ > |t + X2 > [,

i>k ik

where t;; and 1)y, are the (i, k)th elements of matrices T and D!, respectively.

For part (a), we define G1(Ar) = La(Ty + Ar|D.) — Lx\(Ty|D.). Let Ay, =
{Ar, t Ay = A7, | Az [|F < U?st, log( J_ pp)/n}forj=1,2,... M, where U, are
positive constants. We will show that for Ag, € d.Ay,, probability Pr(Gi(Ar)) > 0
is tending to 1 as n — oo for sufficiently large U;, where Ay, are the boundaries of
Ay, . Additionally, since G1(Ar) = 0 when Az, = 0, the minimum point of G1(Ar)
is achieved when A, € Ay,. That is |Ar[|% = O,(sz, log(31_, pi)/n).

Assume || A, |3 = U2sg, log(375_, pi)/n. Write T = Ty+Ar, then we decompose

G1(Ar) as

G1(Ar) = Ly(Ty + Ar|D,) — Ly(Ty| D,)
=tr [T'D;'TS| — tr [TyD; ' TS| + M Y [t — M > Itoi]

:M1+M2+M37
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where

M, = tr[D;H(T(S — )T — To(S — ) Ty)],

MQ = tI'[D;l(TE[)T/ — Tooné)],

My =M ) [tae] = M) [toil-

The above decomposition of Gy (A7) into M; to Mj is very similar to that in the proof
of Lemma 3 of Kang and Deng (2021); hence it is omitted here. Now we bound each
component respectively. Note that [|Ar||% = |T — Tyl|% = Z;\il |Ar,||%. Therefore,
based on the proof of Theorem 3.1 in Jiang (2012), for any € > 0, there exists a

constant Vi > 0 such that with probability greater than 1 — e, we have

My — | M|

S, llAg 3 S j 2
> LIV fog(p) St = Vi) | s log(d - pr)/nllAgy 1%
. = k=1
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M
= % > Uisr, log(z )/n — Viy/log(p > Il

i=1 =1 (i k)euﬁil 25,

M J
-0 Z Ujst, 10g(zpk)/"
j=1 k=1
log p al
> nh4ZU25T (logy; + Cjlogp) — Vi/log(p Z lti] — V1 - ZUjsTj

(zk)GUM 25 J=1
> — nh4 ZU st; logv; + . TCTUZUST Viv/log(p)/n Z \tik|
(i,k)eUlL, 25
log p l
-W " ZUJ'STJ-,
j=1
where 7, is a positive constant satisfying 7, < U;,7 = 1,2,..., M. Next, for the

penalty term corresponding to Ay,

My=XMo > Ml D0 (el = ftoul) = M7 + 2g?,
(ik)eU)L, 25, (i.k)eUIL, Zr

where M{V = M e, 24, It and

M= > (el = oDl <A DD ik — toud

(i,k)GU?il ZT]‘ (i7k)€U§\4:1 ZTj

M
<A\ Z |Ar || Fy/51;
j=1
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[logp M
~ )\1 U ST -
n z : J
J=1

Combine all the terms above together, with probability greater than 1 — e, we have

Q@ﬂzm—mm+Mm4M%
1

M
> WZU st; logy; + " TCTUZU st, — Vi/log(p)/n Z |ti]
j=1

(3, k)EUM ZC

M M
log p [log p
_‘/1 n E UjSTj +)\1 E ’tzk’ —)\1 n El UjSTj
j:

i=1 (el 25,
logp 3%, Ujsn, 7o, M
- - U~25.10 . J= iclelu oy oo AL
b Z e T

+ = Viviog(p)/n) Y Jtal:

(i,k)eUlL, 25
Here V; is only related to the sample size n and e. Assume \; = K;4/log(p)/n where
Ky > Vi, and choose 7, > h*(K; + V1) /7., then G1(Ar) > 0. Therefore, we prove
1A7 17 = Op(s1, log(3o7—, i) /n)-

The proof of part (b) follows the same principle as that for part (a). Simi-
larly, define GQ(AD) = L)\(Do + ADlT*> — L)\<D0|T*> Let BWj = {ADj . AD]. =
AV |Ap, |7 < W2(sp, + p;)log(p;)/n} for j = 1,2,..., M, where W; are positive
constants. We only need to show that for Ap, € 9By, probability P(G2(Ap) > 0)

is tending to 1 as n — oo for sufficiently large W, where OBy, are the boundaries of
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Bu,.

Assume ||Ap,[|F = WZ(sp, + p;)log(p;)/n. Write D = Dy + Ap, then we

decompose G(Ap) as

Ga(Ap) = Ly(Dy + Ap|T.) — Ly(Dy|T.)

=log |D| — log |Do| + tr [T/D™'T.S — T/Dy'T.S] + X2 > _ [t — A2 Y _ [thoir|
ik i#k

= My + M5 + M,

where

My = log |D| — log | Dy| + tr[(D~" — Dy')Dy),

M; = (D" — Dy )[T.(S - S)T7),

Mo =X [0l — A2 Y [thol-

ik ik

The above decomposition of Go(Ap) into My to Mg is similar to that in the proof
of Lemma 3 of Kang and Deng (2021). Next we bound each component respectively.
Note that [ Ap[% = |D — Doll = S, 1D; — Dyoll = S, 1 Ap, 3. Therefore,
based on the proof of Theorem 3.1 in Jiang (2012) together with Lemma 3, we can
have the following two results (I) and (II).

(I) Let 7, be a positive constant satisfying 7, < W,,j = 1,2,..., M, and note
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that (1/h*)[|Ap|[7 < [D~" — Dy |3 < h?||Apl[, then

M
1 -1 —112 1 2 1 2
My > W”D - Do HF > @HADHF = @321 ||ADj||F
1 &
= A Z Wi (sp, + p;)log(p;)/n
j=1

M
1
=i > Wi(sp, + pj)(logv; + Cjlogp)/n
=1

>

M M

1 1 logp

it 2= V5 om, i)Yo+ = B D Wisn, + py)
j=1

Jj=1

(II) For any € > 0, there exists a constant V5 > 0 such that with probability

greater than 1 — ¢, we have

M
| Ms| = [tx(D™" = Dy )[T.(S — Eo)T]| < max|&i| Y [1D; — Dyolx

7j=1
log p <~

< Vo | =223 (s, +pi) 180, I3
j=1

10g p —
<V ngWj(SDj+pj)7
=1

n

where &, is the (i, k)th element of matrix T.(S — ()T}, and the second inequality
applies Lemma 3 of Lam and Fan (2009).

Next, we decompose Mg = Mél) + MéZ), where Mél) = XY KeUM , 25 Vi ]
) 1= ]
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and

M) < A Z ([Yir] = [0 < Ao Z i — Poir]
(kUM Zp, (ke 2,

J
M
< )\QZ |1Ap;||F+/5D; + pj
j=1
log p M
24/ W.(sp. ).
< Ag n ; J(SDJ + pj)

Combine all the terms above together, with probability greater than 1 — e, we have

Ga(Ap) > My — | Ms| + MY — | M|

M
1 9 1 logp
> 8nh4j21Wj(sD].+pj)log7j+8h4 . TCTwZW sp, + ;)

M
lo logp
1 ipzwj(sij)m Sl = ey 2 ZW sp, + ;)
j=1

(k) eUjLs 25,

longA-fl Wi(sp, + ;) 7ot Ay
W2 S + 10 J= J clw v 2
8nh4 ; D; p]) gVJ n ( ])4 2 IOg(p)/TL)
+h > al.
(i,k)eUIL, 25,

Here Vj is only related to the sample size n and e. Assume \y = Ky4/log(p)/n where

K5 > 0, and choose 7, > 8h*(Ky + V1) /7e, then Go(Ap) > 0. Therefore, we prove

|Ap, % = W2(sp, + p;)log(p;)/n. O
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Proof. Proof of Theorem 2.
Let Aj and ﬁj be the estimates obtained from Step 3 in Algorithm 1. We

first prove the consistent rates under Frobenius norm of ’_ZA“] = —Aj and ljj are

ST, log(37_, p)/n and (sp, + p;)log(p;)/n, respectively.

At the first iteration of Step 1 in Algorithm 1, the estimate Aj;l found by mini-
mizing £ (A;|I) is s, log(377_, px)/n consistent according to part (a) of Theorem 1.
In Step 2, the estimate ﬁj;l found by minimizing KA(DJ._l\Aj;l) is (sp, +p;) log(p;)/n
consistent according to part (b) of Theorem 1. Next, an estimate Aj;g obtained by
minimizing y(A;|D;,) is s, log(3>7_, p)/n consistent, and D;,, which minimizes
KA(D;1|AJ-;2) is (sp, + p;)log(p;)/n consistent. Following this, we hence have that

A; (or equivalently T}) and D; are ST log(37_, pi)/n and (sp, +pj)log(p;)/n con-

sistent. This implies

.

IT = Tolli: = 3T = Tolli = D_ Oplsr, log(>_ pu)/n) < Oplsrlog(p) /)

j=1 j=1 k=1
and
R M M
1D — Dol|% =0, ((sp, +pj)log(p;)/n) = 04> (sp, + p;) log(p;)/n).
j=1 Jj=1

Next, we derive of consistent rate of the estimate Q=TD'T. Let Ap =T — T,
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and Ap = D — Dy, then we decompose [|[€2 — Ql|% as

12 — Q%
= ||[T'"D'T — T;Dy ' Ty |3
= (A% + T)) D Y (Ar + Ty) — TyDy ' Ty | %

< |ATDT'T||7 + | TyD ' Arlf + | AZD ™ Arlfs + | To(D ™" — Dy ) To|I7-

Now we bound four terms separately. Use the symbol ||A|| to represent the spectral
norm of matrix A. Since ||Tp|| = O(1) and ||Dy|| = O(1) by Lemma 3, it is obvious
that || D|| = || D— Do+ Dyl < [[Ap||+]|Doll < [|Ap|lr+][Doll = Op(1). In addition,
the single values of ! are bounded since the single values of  are bounded, which
together with Lemma 3 leads to || Dj'|| = O(1), hence similarly |[D~!|| = O,(1). As

a result, it is easy to obtain

IATD ™ Ty [[3 < |AZ[FID I Toll = Op(1AT]IE),

and the second term ||T/D 'Ar|% = ||ALD'Ty||% = O,(||Ar|/%). For the third

term,

1ATD ™ Al < |AT[HI D IIAT]E = op(| A7),
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For the fourth term,
IT5(D™" = DTl < Tl D~" = Dy 121 Toll = Op(| D — Do),

Consequently, by the convergence rates of T — Ty and D — Dy from Theorem 1, we

reach the conclusion

19— il = O,(IT ~ Tul13) + O,(1D — Dll3)

0 <8T10gp+2%1(8Dj +pj)10gpj)
= p *

n
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