Supplement Materials: On Block Cholesky Decomposition for Sparse Inverse Covariance Estimation

Xiaoning Kang^{\dagger}, Jiayi Lian^{\ddagger} and Xinwei Deng^{\ddagger}

[‡]Institute of Supply Chain Analytics and International Business College, Dongbei University of Finance and Economics, Dalian, China

[‡]Department of Statistics, Virginia Tech, Blacksburg, VA

Supplementary Material

In the supplementary materials, we provide all the technical proofs for the main results of the paper. Before proving theorems, we present several lemmas.

Lemma 1. Denote a squared block diagonal matrix by $\mathbf{D} = diag(\mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_M)$. Suppose \mathbf{D}_i have eigenvalues $\mathcal{C}_{\lambda_i} = \{\lambda_{ip_1}, \lambda_{ip_2}, \dots, \lambda_{ip_i}\}, i = 1, 2, \dots, M$, then the eigenvalues of matrix \mathbf{D} are $\mathcal{C}_{\lambda_1}, \mathcal{C}_{\lambda_2}, \dots, \mathcal{C}_{\lambda_M}$.

Proof. Let $D_i = P_i \Lambda_i P_i^{-1}$ be the eigenvalue decomposition, where $\Lambda_i = \text{diag}(\lambda_{ip_1}, \lambda_{ip_2}, \dots, \lambda_{ip_i})$, and P_i is composed of the corresponding eigenvectors. Define $\Lambda = \text{diag}(\Lambda_1, \Lambda_2, \dots, \Lambda_M)$ and $P = \text{diag}(P_1, P_2, \dots, P_M)$. Then we have

$$\boldsymbol{DP} = \operatorname{diag}(\boldsymbol{D}_1, \boldsymbol{D}_2, \dots, \boldsymbol{D}_M) \operatorname{diag}(\boldsymbol{P}_1, \boldsymbol{P}_2, \dots, \boldsymbol{P}_M)$$

$$= \operatorname{diag}(\boldsymbol{D}_{1}\boldsymbol{P}_{1}, \boldsymbol{D}_{2}\boldsymbol{P}_{2}, \dots, \boldsymbol{D}_{M}\boldsymbol{P}_{M})$$

$$= \operatorname{diag}(\boldsymbol{P}_{1}\boldsymbol{\Lambda}_{1}, \boldsymbol{P}_{2}\boldsymbol{\Lambda}_{2}, \dots, \boldsymbol{P}_{M}\boldsymbol{\Lambda}_{M})$$

$$= \operatorname{diag}(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \dots, \boldsymbol{P}_{M})\operatorname{diag}(\boldsymbol{\Lambda}_{1}, \boldsymbol{\Lambda}_{2}, \dots, \boldsymbol{\Lambda}_{M})$$

$$= \boldsymbol{P}\boldsymbol{\Lambda},$$

which indicates $\boldsymbol{D} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1}$, and establishes the lemma.

Lemma 1 describes a property of eigenvalues for the block diagonal matrix. The following Lemma 2 is from Theorem A.10 in Bai and Silverstein (2010). It demonstrates the property of matrix singular values. Its result is stated here for completeness.

Lemma 2. Let B and C be two matrices of order $m_1 \times m_2$ and $m_2 \times m_3$. For any $i, j \ge 0$, we have

$$\varphi_{i+j+1}(\boldsymbol{B}\boldsymbol{C}) \leq \varphi_{i+1}(\boldsymbol{B})\varphi_{j+1}(\boldsymbol{C}).$$

Based on the results of Lemmas 1 and 2, we present the following Lemma 3, which provides a relationship between matrix Ω and its block Cholesky factor matrices (T^{-1}, D^{-1}) in terms of their singular values.

Lemma 3. Let $\Omega = T'D^{-1}T$ be the block MCD of the inverse covariance matrix.

If the condition (3.8) is satisfied, that is, there exists a constant $\theta > 0$ such that $1/\theta < \varphi_p(\Omega) \le \varphi_1(\Omega) < \theta$, then there exist constants h_1 and h_2 such that

$$0 < h_1 < \varphi_p(\boldsymbol{T}^{-1}) \le \varphi_1(\boldsymbol{T}^{-1}) < h_2 < \infty,$$

and

$$0 < h_1 < \varphi_p(\boldsymbol{D}^{-1}) \le \varphi_1(\boldsymbol{D}^{-1}) < h_2 < \infty.$$

Proof. By the decomposition (2.1), we partition Ω into blocks according to the variable groups $\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \ldots, \mathbf{X}^{(M)}$ such that its diagonal blocks are Ω_{ii} of order $p_i \times p_i, i = 1, 2, \ldots, M$, and $\sum_{i=1}^{M} p_i = p$. Write $\Omega = \mathbf{T}' \mathbf{D}^{-1} \mathbf{T} = \mathbf{T}' \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \mathbf{T} = \mathbf{R}' \mathbf{R}$, where

$$m{R} = m{D}^{-rac{1}{2}}m{T} = egin{pmatrix} m{R}_{11} & m{0} & \dots & m{0} \ m{R}_{21} & m{R}_{22} & \dots & m{0} \ dots & dots & \ddots & dots \ m{R}_{M1} & m{R}_{M2} & \dots & m{R}_{MM} \end{pmatrix}$$

with $\mathbf{R}_{ii} = \mathbf{D}_i^{-\frac{1}{2}}$. Note that \mathbf{R}_{ii} is a symmetric matrix due to the symmetry of \mathbf{D}_i . In addition, it is obvious to have $\mathbf{\Omega}_{ii} = \sum_{i \geq k} \mathbf{R}'_{ik} \mathbf{R}_{ik}$, implying that $\mathbf{\Omega}_{ii} - \mathbf{R}'_{ii} \mathbf{R}_{ii} =$ $\boldsymbol{\Omega}_{ii} - \boldsymbol{D}_i^{-1}$ is semi-positive definite. Consequently we have

$$\varphi_p(\boldsymbol{D}_i^{-1}) \le \varphi_1(\boldsymbol{D}_i^{-1}) \le \varphi_1(\boldsymbol{\Omega}_{ii}) \le \theta.$$
(S0.1)

Taking determinant on both sides of $\Omega = T'D^{-1}T$ yields

$$\varphi_p(\boldsymbol{\Omega})\cdots\varphi_1(\boldsymbol{\Omega})=\varphi_p(\boldsymbol{D}^{-1})\cdots\varphi_1(\boldsymbol{D}^{-1}).$$

By $\varphi_1(\boldsymbol{D}_i^{-1}) \leq \theta$ for each i = 1, 2, ..., M via (S0.1), together with Lemma 1, it is easy to see $\varphi_1(\boldsymbol{D}^{-1}) \leq \theta$. We hence have

$$(\frac{1}{\theta})^p \leq \varphi_p^p(\boldsymbol{\Omega}) \leq \prod_{i=1}^p \varphi_i(\boldsymbol{\Omega}) = \prod_{i=1}^p \varphi_i(\boldsymbol{D}^{-1}) \leq \theta^{p-1} \varphi_p(\boldsymbol{D}^{-1}),$$

which gives $\varphi_p(\boldsymbol{D}^{-1}) \geq (\frac{1}{\theta})^{2p-1}$. As a result,

$$0 < (\frac{1}{\theta})^{2p-1} \le \varphi_p(\boldsymbol{D}^{-1}) \le \varphi_1(\boldsymbol{D}^{-1}) \le \theta < \infty.$$

To bound singular values of matrix \mathbf{T}^{-1} , on one hand, we use Lemma 2 to obtain $\varphi_p(\mathbf{\Omega}) = \varphi_p(\mathbf{T}'\mathbf{D}^{-1}\mathbf{T}) = \varphi_p(\mathbf{T}\mathbf{T}'\mathbf{D}^{-1}) \le \varphi_p(\mathbf{T}\mathbf{T}')\varphi_1(\mathbf{D}^{-1}) = \varphi_p(\mathbf{T}')\varphi_p(\mathbf{T})\varphi_1(\mathbf{D}^{-1}),$ indicating

$$arphi_p(oldsymbol{T}) \geq \sqrt{arphi_p(oldsymbol{\Omega})/arphi_1(oldsymbol{D}^{-1})} \geq \sqrt{1/ heta^2} = rac{1}{ heta}.$$

On the other hand, applying Lemma 2 again for $D^{-1} = T'^{-1}\Omega T^{-1}$ yields $\varphi_p(D^{-1}) \leq \varphi_p^2(T^{-1})\varphi_1(\Omega) = \varphi_1(\Omega)/\varphi_1^2(T)$, implying

$$arphi_1(oldsymbol{T}) \leq \sqrt{rac{arphi_1(oldsymbol{\Omega})}{arphi_p(oldsymbol{D}^{-1})}} \leq \sqrt{rac{ heta}{1/ heta^{2p-1}}} = heta^p.$$

As a result,

$$0 < \frac{1}{\theta} \le \varphi_p(\boldsymbol{T}) \le \varphi_1(\boldsymbol{T}) \le \theta^p < \infty$$
$$0 < (\frac{1}{\theta})^p \le \varphi_p(\boldsymbol{T}^{-1}) \le \varphi_1(\boldsymbol{T}^{-1}) \le \theta < \infty.$$

Taking $h_1 = \min(\theta^{1-2p}, \theta^{-p})$ and $h_2 = \theta$ establishes the lemma.

It is seen from Lemma 3 that the singular values of the matrices T^{-1} and D^{-1} are bounded if the singular values of the inverse covariance matrix Ω are bounded. Now we give the proofs of Theorems.

Proof. Proof of Theorem 1.

From the negative log-likelihood (2.4), we have

$$L(\boldsymbol{T}, \boldsymbol{D}) = -\sum_{j=1}^{M} \log |\boldsymbol{D}_{j}^{-1}| + \sum_{j=1}^{M} \operatorname{tr} \left[\boldsymbol{S}_{\epsilon_{j}} \boldsymbol{D}_{j}^{-1} \right]$$

$$egin{aligned} &=\sum_{j=1}^M \log |m{D}_j| + ext{tr} \left(egin{array}{cccccccccc} m{S}_{\epsilon_1}m{D}_1^{-1} & m{0} & \dots & m{0} \ m{D}_{\epsilon_2}m{D}_2^{-1} & \dots & m{0} \ dots & do$$

By the notation $\boldsymbol{S}_{\epsilon_j} = \frac{1}{n} (\mathbb{X}^{(j)} - \mathbb{Z}^{(j)} \boldsymbol{A}'_j)' (\mathbb{X}^{(j)} - \mathbb{Z}^{(j)} \boldsymbol{A}'_j)$, it is easy to see

$$L(\boldsymbol{T}, \boldsymbol{D}) = \log |\boldsymbol{D}| + \frac{1}{n} \operatorname{tr} \begin{pmatrix} (\mathbb{X}^{(1)})' \\ (\mathbb{X}^{(2)} - \mathbb{Z}^{(2)} \boldsymbol{A}_{2}')' \\ \vdots \\ (\mathbb{X}^{(M)} - \mathbb{Z}^{(M)} \boldsymbol{A}_{M}')' \end{pmatrix}$$
$$(\mathbb{X}^{(1)}, \mathbb{X}^{(2)} - \mathbb{Z}^{(2)} \boldsymbol{A}_{2}', \dots, \mathbb{X}^{(M)} - \mathbb{Z}^{(M)} \boldsymbol{A}_{M}') \boldsymbol{D}^{-1}$$
$$= \log |\boldsymbol{D}| + \frac{1}{n} \operatorname{tr} [\boldsymbol{T} \mathbb{X}' \mathbb{X} \boldsymbol{T}' \boldsymbol{D}^{-1}]$$
$$= \log |\boldsymbol{D}| + \operatorname{tr} [\boldsymbol{T}' \boldsymbol{D}^{-1} \boldsymbol{T} \boldsymbol{S}],$$

where $\boldsymbol{S} = \frac{1}{n} \mathbb{X}' \mathbb{X}$. Consequently, $L_{\lambda}(\boldsymbol{T}, \boldsymbol{D})$ can be written as

$$L_{\lambda}(\boldsymbol{T}, \boldsymbol{D}) = \log |\boldsymbol{D}| + \operatorname{tr} \left[\boldsymbol{T}'\boldsymbol{D}^{-1}\boldsymbol{T}\boldsymbol{S}\right] + \lambda_{1} \|\boldsymbol{A}\|_{1} + \lambda_{2} \|\boldsymbol{D}^{-1}\|_{1}^{-}$$
$$= \log |\boldsymbol{D}| + \operatorname{tr} \left[\boldsymbol{T}'\boldsymbol{D}^{-1}\boldsymbol{T}\boldsymbol{S}\right] + \lambda_{1} \|\boldsymbol{T}\|_{1} + \lambda_{2} \|\boldsymbol{D}^{-1}\|_{1}^{-}$$
$$= \log |\boldsymbol{D}| + \operatorname{tr} \left[\boldsymbol{T}'\boldsymbol{D}^{-1}\boldsymbol{T}\boldsymbol{S}\right] + \lambda_{1} \sum_{i>k} |t_{ik}| + \lambda_{2} \sum_{i\neq k} |\psi_{ik}|_{i}$$

where t_{ik} and ψ_{ik} are the (i, k)th elements of matrices T and D^{-1} , respectively.

For part (a), we define $G_1(\Delta_T) = L_\lambda(T_0 + \Delta_T | \mathbf{D}_*) - L_\lambda(T_0 | \mathbf{D}_*)$. Let $\mathcal{A}_{U_j} = \{\Delta_{T_j} : \Delta_{T_j} = \Delta'_{T_j}, \|\Delta_{T_j}\|_F^2 \leq U_j^2 s_{T_j} \log(\sum_{k=1}^j p_k)/n\}$ for $j = 1, 2, \ldots, M$, where U_j are positive constants. We will show that for $\Delta_{T_j} \in \partial \mathcal{A}_{U_j}$, probability $\Pr(G_1(\Delta_T)) > 0$ is tending to 1 as $n \to \infty$ for sufficiently large U_j , where $\partial \mathcal{A}_{U_j}$ are the boundaries of \mathcal{A}_{U_j} . Additionally, since $G_1(\Delta_T) = 0$ when $\Delta_{T_j} = 0$, the minimum point of $G_1(\Delta_T)$ is achieved when $\Delta_{T_j} \in \mathcal{A}_{U_j}$. That is $\|\Delta_{T_j}\|_F^2 = O_p(s_{T_j}\log(\sum_{k=1}^j p_k)/n)$.

Assume $\|\Delta_{T_j}\|_F^2 = U_j^2 s_{T_j} \log(\sum_{k=1}^j p_k)/n$. Write $\mathbf{T} = \mathbf{T}_0 + \Delta_T$, then we decompose $G_1(\Delta_T)$ as

$$G_1(\Delta_T) = L_\lambda(\boldsymbol{T}_0 + \Delta_T | \boldsymbol{D}_*) - L_\lambda(\boldsymbol{T}_0 | \boldsymbol{D}_*)$$

= tr $[\boldsymbol{T}' \boldsymbol{D}_*^{-1} \boldsymbol{T} \boldsymbol{S}]$ - tr $[\boldsymbol{T}_0' \boldsymbol{D}_*^{-1} \boldsymbol{T}_0 \boldsymbol{S}] + \lambda_1 \sum |t_{ik}| - \lambda_1 \sum |t_{0ik}|$
= $M_1 + M_2 + M_3$,

where

$$M_{1} = \operatorname{tr}[\boldsymbol{D}_{*}^{-1}(\boldsymbol{T}(\boldsymbol{S}-\boldsymbol{\Sigma}_{0})\boldsymbol{T}'-\boldsymbol{T}_{0}(\boldsymbol{S}-\boldsymbol{\Sigma}_{0})\boldsymbol{T}_{0}')],$$
$$M_{2} = \operatorname{tr}[\boldsymbol{D}_{*}^{-1}(\boldsymbol{T}\boldsymbol{\Sigma}_{0}\boldsymbol{T}'-\boldsymbol{T}_{0}\boldsymbol{\Sigma}_{0}\boldsymbol{T}_{0}')],$$
$$M_{3} = \lambda_{1}\sum|t_{ik}| - \lambda_{1}\sum|t_{0ik}|.$$

The above decomposition of $G_1(\Delta_T)$ into M_1 to M_3 is very similar to that in the proof of Lemma 3 of Kang and Deng (2021); hence it is omitted here. Now we bound each component respectively. Note that $\|\Delta_T\|_F^2 = \|\mathbf{T} - \mathbf{T}_0\|_F^2 = \sum_{j=1}^M \|\Delta_{T_j}\|_F^2$. Therefore, based on the proof of Theorem 3.1 in Jiang (2012), for any $\epsilon > 0$, there exists a constant $V_1 > 0$ such that with probability greater than $1 - \epsilon$, we have

$$\begin{split} M_{2} &- |M_{1}| \\ &> \frac{\|\Delta_{T}\|_{F}^{2}}{h^{4}} - V_{1} \sum_{j=1}^{M} \left(||\mathbf{T}_{j} - \mathbf{T}_{j0}||_{1} \sqrt{\log(\sum_{k=1}^{j} p_{k})/n} \right) \\ &= \frac{\sum_{j=1}^{M} \|\Delta_{T_{j}}\|_{F}^{2}}{h^{4}} - V_{1} \sum_{j=1}^{M} \left(\sqrt{\log(\sum_{k=1}^{j} p_{k})/n} \sum_{(i,k) \in \mathcal{Z}_{T_{j}}} |t_{ik}| \right) \\ &- V_{1} \sum_{j=1}^{M} \left(\sqrt{\log(\sum_{k=1}^{j} p_{k})/n} \sum_{(i,k) \in \mathcal{Z}_{T_{j}}} |t_{ik} - t_{0ik}| \right) \\ &\geq \frac{\sum_{j=1}^{M} \|\Delta_{T_{j}}\|_{F}^{2}}{h^{4}} - V_{1} \sqrt{\log(p)/n} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}^{c}} |t_{ik}| - V_{1} \sum_{j=1}^{M} \sqrt{s_{T_{j}} \log(\sum_{k=1}^{j} p_{k})/n} \|\Delta_{T_{j}}\|_{F}^{2} \end{split}$$

$$\begin{split} &= \frac{1}{h^4} \sum_{j=1}^M U_j^2 s_{T_j} \log(\sum_{k=1}^j p_k) / n - V_1 \sqrt{\log(p)/n} \sum_{(i,k) \in \bigcup_{j=1}^M \mathcal{Z}_{T_j}^c} |t_{ik}| \\ &\quad - V_1 \sum_{j=1}^M U_j s_{T_j} \log(\sum_{k=1}^j p_k) / n \\ &\geq \frac{1}{nh^4} \sum_{j=1}^M U_j^2 s_{T_j} (\log \gamma_j + C_j \log p) - V_1 \sqrt{\log(p)/n} \sum_{(i,k) \in \bigcup_{j=1}^M \mathcal{Z}_{T_j}^c} |t_{ik}| - V_1 \frac{\log p}{n} \sum_{j=1}^M U_j s_{T_j} \\ &\geq \frac{1}{nh^4} \sum_{j=1}^M U_j^2 s_{T_j} \log \gamma_j + \frac{1}{h^4} \frac{\log p}{n} \tau_c \tau_u \sum_{j=1}^M U_j s_{T_j} - V_1 \sqrt{\log(p)/n} \sum_{(i,k) \in \bigcup_{j=1}^M \mathcal{Z}_{T_j}^c} |t_{ik}| \\ &\quad - V_1 \frac{\log p}{n} \sum_{j=1}^M U_j s_{T_j}, \end{split}$$

where τ_u is a positive constant satisfying $\tau_u \leq U_j, j = 1, 2, ..., M$. Next, for the penalty term corresponding to λ_1 ,

$$M_{3} = \lambda_{1} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}^{c}} |t_{ik}| + \lambda_{1} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}} (|t_{ik}| - |t_{0ik}|) = M_{3}^{(1)} + M_{3}^{(2)},$$

where $M_3^{(1)} = \lambda_1 \sum_{(i,k) \in \bigcup_{j=1}^M \mathbb{Z}_{T_j}^c} |t_{ik}|$, and

$$|M_{3}^{(2)}| = |\lambda_{1} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}} (|t_{ik}| - |t_{0ik}|)| \le \lambda_{1} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}} |t_{ik} - t_{0ik}| \le \lambda_{1} \sum_{j=1}^{M} \|\Delta_{T_{j}}\|_{F} \sqrt{s_{T_{j}}}$$

$$\leq \lambda_1 \sqrt{\frac{\log p}{n}} \sum_{j=1}^M U_j s_{T_j}.$$

Combine all the terms above together, with probability greater than $1 - \epsilon$, we have

$$\begin{aligned} G_{1}(\Delta_{T}) &\geq M_{2} - |M_{1}| + M_{3}^{(1)} - |M_{3}^{(2)}| \\ &\geq \frac{1}{nh^{4}} \sum_{j=1}^{M} U_{j}^{2} s_{T_{j}} \log \gamma_{j} + \frac{1}{h^{4}} \frac{\log p}{n} \tau_{c} \tau_{u} \sum_{j=1}^{M} U_{j} s_{T_{j}} - V_{1} \sqrt{\log(p)/n} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}^{c}} |t_{ik}| \\ &- V_{1} \frac{\log p}{n} \sum_{j=1}^{M} U_{j} s_{T_{j}} + \lambda_{1} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}^{c}} |t_{ik}| - \lambda_{1} \sqrt{\frac{\log p}{n}} \sum_{j=1}^{M} U_{j} s_{T_{j}} \\ &= \frac{1}{nh^{4}} \sum_{j=1}^{M} U_{j}^{2} s_{T_{j}} \log \gamma_{j} + \frac{\log p \sum_{j=1}^{M} U_{j} s_{T_{j}}}{n} (\frac{\tau_{c} \tau_{u}}{h^{4}} - V_{1} - \frac{\lambda_{1}}{\sqrt{\log(p)/n}}) \\ &+ (\lambda_{1} - V_{1} \sqrt{\log(p)/n}) \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{T_{j}}^{c}} |t_{ik}|. \end{aligned}$$

Here V_1 is only related to the sample size n and ϵ . Assume $\lambda_1 = K_1 \sqrt{\log(p)/n}$ where $K_1 > V_1$, and choose $\tau_u > h^4 (K_1 + V_1)/\tau_c$, then $G_1(\Delta_T) > 0$. Therefore, we prove $\|\Delta_{T_j}\|_F^2 = O_p(s_{T_j} \log(\sum_{k=1}^j p_k)/n).$

The proof of part (b) follows the same principle as that for part (a). Similarly, define $G_2(\Delta_D) = L_\lambda(\mathbf{D}_0 + \Delta_D | \mathbf{T}_*) - L_\lambda(\mathbf{D}_0 | \mathbf{T}_*)$. Let $\mathcal{B}_{W_j} = \{\Delta_{D_j} : \Delta_{D_j} = \Delta'_{D_j}, \|\Delta_{D_j}\|_F^2 \leq W_j^2(s_{D_j} + p_j)\log(p_j)/n\}$ for j = 1, 2, ..., M, where W_j are positive constants. We only need to show that for $\Delta_{D_j} \in \partial \mathcal{B}_{W_j}$, probability $P(G_2(\Delta_D) > 0)$ is tending to 1 as $n \to \infty$ for sufficiently large W_j , where $\partial \mathcal{B}_{W_j}$ are the boundaries of \mathcal{B}_{W_j} .

Assume $\|\Delta_{D_j}\|_F^2 = W_j^2(s_{D_j} + p_j)\log(p_j)/n$. Write $\boldsymbol{D} = \boldsymbol{D}_0 + \Delta_D$, then we decompose $G_2(\Delta_D)$ as

$$G_{2}(\Delta_{D}) = L_{\lambda}(\boldsymbol{D}_{0} + \Delta_{D}|\boldsymbol{T}_{*}) - L_{\lambda}(\boldsymbol{D}_{0}|\boldsymbol{T}_{*})$$

= $\log |\boldsymbol{D}| - \log |\boldsymbol{D}_{0}| + \operatorname{tr} \left[\boldsymbol{T}_{*}'\boldsymbol{D}^{-1}\boldsymbol{T}_{*}\boldsymbol{S} - \boldsymbol{T}_{*}'\boldsymbol{D}_{0}^{-1}\boldsymbol{T}_{*}\boldsymbol{S}\right] + \lambda_{2}\sum_{i\neq k} |\psi_{ik}| - \lambda_{2}\sum_{i\neq k} |\psi_{0ik}|$
= $M_{4} + M_{5} + M_{6}$,

where

$$M_{4} = \log |\mathbf{D}| - \log |\mathbf{D}_{0}| + tr[(\mathbf{D}^{-1} - \mathbf{D}_{0}^{-1})\mathbf{D}_{0}],$$

$$M_{5} = tr(\mathbf{D}^{-1} - \mathbf{D}_{0}^{-1})[\mathbf{T}_{*}(\mathbf{S} - \boldsymbol{\Sigma}_{0})\mathbf{T}_{*}'],$$

$$M_{6} = \lambda_{2} \sum_{i \neq k} |\psi_{ik}| - \lambda_{2} \sum_{i \neq k} |\psi_{0ik}|.$$

The above decomposition of $G_2(\Delta_D)$ into M_4 to M_6 is similar to that in the proof of Lemma 3 of Kang and Deng (2021). Next we bound each component respectively. Note that $\|\Delta_D\|_F^2 = \|\boldsymbol{D} - \boldsymbol{D}_0\|_F^2 = \sum_{j=1}^M \|\boldsymbol{D}_j - \boldsymbol{D}_{j0}\|_F^2 = \sum_{j=1}^M \|\Delta_{D_j}\|_F^2$. Therefore, based on the proof of Theorem 3.1 in Jiang (2012) together with Lemma 3, we can have the following two results (I) and (II).

(I) Let τ_w be a positive constant satisfying $\tau_w \leq W_j, j = 1, 2, \ldots, M$, and note

that $(1/h^2) \|\Delta_D\|_F^2 \le \|\boldsymbol{D}^{-1} - \boldsymbol{D}_0^{-1}\|_F^2 \le h^2 \|\Delta_D\|_F^2$, then

$$\begin{split} M_4 &\geq \frac{1}{8h^2} \| \boldsymbol{D}^{-1} - \boldsymbol{D}_0^{-1} \|_F^2 \geq \frac{1}{8h^4} \| \Delta_D \|_F^2 = \frac{1}{8h^4} \sum_{j=1}^M \| \Delta_{D_j} \|_F^2 \\ &= \frac{1}{8h^4} \sum_{j=1}^M W_j^2 (s_{D_j} + p_j) \log(p_j) / n \\ &= \frac{1}{8h^4} \sum_{j=1}^M W_j^2 (s_{D_j} + p_j) (\log \gamma_j + C_j \log p) / n \\ &\geq \frac{1}{8nh^4} \sum_{j=1}^M W_j^2 (s_{D_j} + p_j) \log \gamma_j + \frac{1}{8h^4} \frac{\log p}{n} \tau_c \tau_w \sum_{j=1}^M W_j (s_{D_j} + p_j). \end{split}$$

(II) For any $\epsilon > 0$, there exists a constant $V_2 > 0$ such that with probability greater than $1 - \epsilon$, we have

$$\begin{split} |M_5| &= |\mathrm{tr}(\boldsymbol{D}^{-1} - \boldsymbol{D}_0^{-1})[\boldsymbol{T}_*(\boldsymbol{S} - \boldsymbol{\Sigma}_0)\boldsymbol{T}'_*]| \le \max |\xi_{ik}| \sum_{j=1}^M ||\boldsymbol{D}_j - \boldsymbol{D}_{j0}||_1 \\ &\le V_2 \sqrt{\frac{\log p}{n}} \sum_{j=1}^M \sqrt{(s_{D_j} + p_j)} ||\Delta_{D_j}||_F^2 \\ &\le V_2 \frac{\log p}{n} \sum_{j=1}^M W_j(s_{D_j} + p_j), \end{split}$$

where ξ_{ik} is the (i, k)th element of matrix $T_*(S - \Sigma_0)T'_*$, and the second inequality applies Lemma 3 of Lam and Fan (2009).

Next, we decompose $M_6 = M_6^{(1)} + M_6^{(2)}$, where $M_6^{(1)} = \lambda_2 \sum_{(i,k) \in \bigcup_{j=1}^M Z_{D_j}^c} |\psi_{ik}|$,

and

$$|M_{6}^{(2)}| \leq |\lambda_{2} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{D_{j}}} (|\psi_{ik}| - |\psi_{0ik}|)| \leq \lambda_{2} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{D_{j}}} |\psi_{ik} - \psi_{0ik}|$$
$$\leq \lambda_{2} \sum_{j=1}^{M} ||\Delta_{D_{j}}||_{F} \sqrt{s_{D_{j}} + p_{j}}$$
$$\leq \lambda_{2} \sqrt{\frac{\log p}{n}} \sum_{j=1}^{M} W_{j}(s_{D_{j}} + p_{j})$$

Combine all the terms above together, with probability greater than $1 - \epsilon$, we have

$$\begin{split} &G_{2}(\Delta_{D}) \geq M_{4} - |M_{5}| + M_{6}^{(1)} - |M_{6}^{(2)}| \\ \geq \frac{1}{8nh^{4}} \sum_{j=1}^{M} W_{j}^{2}(s_{D_{j}} + p_{j}) \log \gamma_{j} + \frac{1}{8h^{4}} \frac{\log p}{n} \tau_{c} \tau_{w} \sum_{j=1}^{M} W_{j}(s_{D_{j}} + p_{j}) \\ &- V_{2} \frac{\log p}{n} \sum_{j=1}^{M} W_{j}(s_{D_{j}} + p_{j}) + \lambda_{2} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{D_{j}}^{c}} |\psi_{ik}| - \lambda_{2} \sqrt{\frac{\log p}{n}} \sum_{j=1}^{M} W_{j}(s_{D_{j}} + p_{j}) \\ &= \frac{1}{8nh^{4}} \sum_{j=1}^{M} W_{j}^{2}(s_{D_{j}} + p_{j}) \log \gamma_{j} + \frac{\log p \sum_{j=1}^{M} W_{j}(s_{D_{j}} + p_{j})}{n} (\frac{\tau_{c} \tau_{w}}{8h^{4}} - V_{2} - \frac{\lambda_{2}}{\sqrt{\log(p)/n}}) \\ &+ \lambda_{2} \sum_{(i,k) \in \bigcup_{j=1}^{M} \mathcal{Z}_{D_{j}}^{c}} |\psi_{ik}|. \end{split}$$

Here V_2 is only related to the sample size n and ϵ . Assume $\lambda_2 = K_2 \sqrt{\log(p)/n}$ where $K_2 > 0$, and choose $\tau_w > 8h^4(K_2 + V_1)/\tau_c$, then $G_2(\Delta_D) > 0$. Therefore, we prove $\|\Delta_{D_j}\|_F^2 = W_j^2(s_{D_j} + p_j)\log(p_j)/n$.

Proof. **Proof of Theorem 2**.

Let \hat{A}_j and \hat{D}_j be the estimates obtained from Step 3 in Algorithm 1. We first prove the consistent rates under Frobenius norm of $\hat{T}_j = -\hat{A}_j$ and \hat{D}_j are $s_{T_j} \log(\sum_{k=1}^j p_k)/n$ and $(s_{D_j} + p_j) \log(p_j)/n$, respectively.

At the first iteration of Step 1 in Algorithm 1, the estimate $A_{j;1}$ found by minimizing $\ell_{\lambda}(A_j|I)$ is $s_{T_j} \log(\sum_{k=1}^j p_k)/n$ consistent according to part (a) of Theorem 1. In Step 2, the estimate $\hat{D}_{j;1}$ found by minimizing $\ell_{\lambda}(D_j^{-1}|\hat{A}_{j;1})$ is $(s_{D_j} + p_j) \log(p_j)/n$ consistent according to part (b) of Theorem 1. Next, an estimate $\hat{A}_{j;2}$ obtained by minimizing $\ell_{\lambda}(A_j|\hat{D}_{j;1})$ is $s_{T_j} \log(\sum_{k=1}^j p_k)/n$ consistent, and $\hat{D}_{j;2}$ which minimizes $\ell_{\lambda}(D_j^{-1}|\hat{A}_{j;2})$ is $(s_{D_j} + p_j) \log(p_j)/n$ consistent. Following this, we hence have that \hat{A}_j (or equivalently \hat{T}_j) and \hat{D}_j are $s_{T_j} \log(\sum_{k=1}^j p_k)/n$ and $(s_{D_j} + p_j) \log(p_j)/n$ consistent. This implies

$$\|\hat{T} - T_0\|_F^2 = \sum_{j=1}^M ||\hat{T}_j - T_0||_F^2 = \sum_{j=1}^M O_p(s_{T_j} \log(\sum_{k=1}^j p_k)/n) \le O_p(s_T \log(p)/n)$$

and

$$\|\hat{\boldsymbol{D}} - \boldsymbol{D}_0\|_F^2 = \sum_{j=1}^M O_p\left((s_{D_j} + p_j)\log(p_j)/n\right) = O_p\left(\sum_{j=1}^M (s_{D_j} + p_j)\log(p_j)/n\right).$$

Next, we derive of consistent rate of the estimate $\hat{\Omega} = \hat{T}'\hat{D}^{-1}\hat{T}$. Let $\Delta_T = \hat{T} - T_0$

and $\boldsymbol{\Delta}_D = \hat{\boldsymbol{D}} - \boldsymbol{D}_0$, then we decompose $\|\hat{\boldsymbol{\Omega}} - \boldsymbol{\Omega}_0\|_F^2$ as

$$egin{aligned} &\|\hat{m{\Omega}}-m{\Omega}_0\|_F^2 \ &=\|\hat{m{T}}'\hat{m{D}}^{-1}\hat{m{T}}-m{T}_0'm{D}_0^{-1}m{T}_0\|_F^2 \ &=\|(m{\Delta}_T'+m{T}_0')\hat{m{D}}^{-1}(m{\Delta}_T+m{T}_0)-m{T}_0'm{D}_0^{-1}m{T}_0\|_F^2 \ &\leq \|m{\Delta}_T'\hat{m{D}}^{-1}m{T}_0\|_F^2+\|m{T}_0'\hat{m{D}}^{-1}m{\Delta}_T\|_F^2+\|m{\Delta}_T'\hat{m{D}}^{-1}m{\Delta}_T\|_F^2+\|m{T}_0'(\hat{m{D}}^{-1}-m{D}_0^{-1})m{T}_0\|_F^2. \end{aligned}$$

Now we bound four terms separately. Use the symbol $||\mathbf{A}||$ to represent the spectral norm of matrix \mathbf{A} . Since $||\mathbf{T}_0|| = O(1)$ and $||\mathbf{D}_0|| = O(1)$ by Lemma 3, it is obvious that $||\hat{\mathbf{D}}|| = ||\hat{\mathbf{D}} - \mathbf{D}_0 + \mathbf{D}_0|| \le ||\Delta_D|| + ||\mathbf{D}_0|| \le ||\Delta_D||_F + ||\mathbf{D}_0|| = O_p(1)$. In addition, the single values of $\mathbf{\Omega}^{-1}$ are bounded since the single values of $\mathbf{\Omega}$ are bounded, which together with Lemma 3 leads to $||\mathbf{D}_0^{-1}|| = O(1)$, hence similarly $||\hat{\mathbf{D}}^{-1}|| = O_p(1)$. As a result, it is easy to obtain

$$\| \boldsymbol{\Delta}_T' \hat{\boldsymbol{D}}^{-1} \boldsymbol{T}_0 \|_F^2 \le \| \boldsymbol{\Delta}_T' \|_F^2 \| \hat{\boldsymbol{D}}^{-1} \| \| \boldsymbol{T}_0 \| = O_p(\| \boldsymbol{\Delta}_T \|_F^2),$$

and the second term $\|\boldsymbol{T}_0'\hat{\boldsymbol{D}}^{-1}\boldsymbol{\Delta}_T\|_F^2 = \|\boldsymbol{\Delta}_T'\hat{\boldsymbol{D}}^{-1}\boldsymbol{T}_0\|_F^2 = O_p(\|\boldsymbol{\Delta}_T\|_F^2)$. For the third term,

$$\| \boldsymbol{\Delta}_T' \hat{\boldsymbol{D}}^{-1} \boldsymbol{\Delta}_T \|_F^2 \le \| \boldsymbol{\Delta}_T' \|_F^2 \| \hat{\boldsymbol{D}}^{-1} \| \| \boldsymbol{\Delta}_T \|_F^2 = o_p(\| \boldsymbol{\Delta}_T \|_F^2).$$

For the fourth term,

$$\|\boldsymbol{T}_{0}'(\hat{\boldsymbol{D}}^{-1}-\boldsymbol{D}_{0}^{-1})\boldsymbol{T}_{0}\|_{F}^{2} \leq \|\boldsymbol{T}_{0}'\|\|\hat{\boldsymbol{D}}^{-1}-\boldsymbol{D}_{0}^{-1}\|_{F}^{2}\|\boldsymbol{T}_{0}\| = O_{p}(\|\hat{\boldsymbol{D}}-\boldsymbol{D}_{0}\|_{F}^{2}).$$

Consequently, by the convergence rates of $\hat{T} - T_0$ and $\hat{D} - D_0$ from Theorem 1, we reach the conclusion

$$\begin{split} \|\hat{\boldsymbol{\Omega}} - \boldsymbol{\Omega}_{0}\|_{F}^{2} &= O_{p}(\|\hat{\boldsymbol{T}} - \boldsymbol{T}_{0}\|_{F}^{2}) + O_{p}(\|\hat{\boldsymbol{D}} - \boldsymbol{D}_{0}\|_{F}^{2}) \\ &= O_{p}\left(\frac{s_{T}\log p + \sum_{j=1}^{M}(s_{D_{j}} + p_{j})\log p_{j}}{n}\right). \end{split}$$

_	

References

- Bai, Z., and Silverstein, J. (2010), Spectral analysis of large dimensional random matrices Springer Series in Statistics. Springer, New York.
- Jiang, X. (2012), "Joint estimation of covariance matrix via Cholesky Decomposition," *Ph.D Dissertation*, Department of Statistics and Applied Probability, National University of Singapore.
- Kang, X., and Deng, X. (2021), "On variable ordination of Cholesky-based estimation for a sparse covariance matrix," *Canadian Journal of Statistics*, 49(2), 283–310.

Lam, C., and Fan, J. (2009), "Sparsistency and rates of convergence in large covariance matrix estimation," Annals of Statistics, 37(6B), 4254–4278.