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Supplementary Material

In the supplementary materials, we provide all the technical proofs for the main

results of the paper. Before proving theorems, we present several lemmas.

Lemma 1. Denote a squared block diagonal matrix by D = diag(D1,D2, . . . , DM).

Suppose Di have eigenvalues Cλi
= {λip1 , λip2 , . . . , λipi}, i = 1, 2, . . . ,M , then the

eigenvalues of matrix D are Cλ1 , Cλ2 , . . . , CλM
.

Proof. LetDi = PiΛiP
−1
i be the eigenvalue decomposition, whereΛi = diag(λip1 , λip2 , . . . , λipi),

and Pi is composed of the corresponding eigenvectors. DefineΛ = diag(Λ1,Λ2, . . . ,ΛM)

and P = diag(P1,P2, . . . ,PM). Then we have

DP = diag(D1,D2, . . . ,DM)diag(P1,P2, . . . ,PM)
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= diag(D1P1,D2P2, . . . ,DMPM)

= diag(P1Λ1,P2Λ2, . . . ,PMΛM)

= diag(P1,P2, . . . ,PM)diag(Λ1,Λ2, . . . ,ΛM)

= PΛ,

which indicates D = PΛP−1, and establishes the lemma.

Lemma 1 describes a property of eigenvalues for the block diagonal matrix. The

following Lemma 2 is from Theorem A.10 in Bai and Silverstein (2010). It demon-

strates the property of matrix singular values. Its result is stated here for complete-

ness.

Lemma 2. Let B and C be two matrices of order m1 ×m2 and m2 ×m3. For any

i, j ≥ 0, we have

φi+j+1(BC) ≤ φi+1(B)φj+1(C).

Based on the results of Lemmas 1 and 2, we present the following Lemma 3, which

provides a relationship between matrix Ω and its block Cholesky factor matrices

(T−1,D−1) in terms of their singular values.

Lemma 3. Let Ω = T ′D−1T be the block MCD of the inverse covariance matrix.
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If the condition (3.8) is satisfied, that is, there exists a constant θ > 0 such that

1/θ < φp(Ω) ≤ φ1(Ω) < θ, then there exist constants h1 and h2 such that

0 < h1 < φp(T
−1) ≤ φ1(T

−1) < h2 <∞,

and

0 < h1 < φp(D
−1) ≤ φ1(D

−1) < h2 <∞.

Proof. By the decomposition (2.1), we partition Ω into blocks according to the

variable groups X(1),X(2), . . . ,X(M) such that its diagonal blocks are Ωii of order

pi × pi, i = 1, 2, . . . ,M , and
∑M

i=1 pi = p. Write Ω = T ′D−1T = T ′D− 1
2D− 1

2T =

R′R, where

R = D− 1
2T =



R11 0 . . . 0

R21 R22 . . . 0

...
...

. . .
...

RM1 RM2 . . . RMM



with Rii = D
− 1

2
i . Note that Rii is a symmetric matrix due to the symmetry of Di.

In addition, it is obvious to have Ωii =
∑

i≥k R
′
ikRik, implying that Ωii −R′

iiRii =
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Ωii −D−1
i is semi-positive definite. Consequently we have

φp(D
−1
i ) ≤ φ1(D

−1
i ) ≤ φ1(Ωii) ≤ θ. (S0.1)

Taking determinant on both sides of Ω = T ′D−1T yields

φp(Ω) · · ·φ1(Ω) = φp(D
−1) · · ·φ1(D

−1).

By φ1(D
−1
i ) ≤ θ for each i = 1, 2, . . . ,M via (S0.1), together with Lemma 1, it is

easy to see φ1(D
−1) ≤ θ. We hence have

(
1

θ
)p ≤ φp

p(Ω) ≤
p∏

i=1

φi(Ω) =

p∏
i=1

φi(D
−1) ≤ θp−1φp(D

−1),

which gives φp(D
−1) ≥ (1

θ
)2p−1. As a result,

0 < (
1

θ
)2p−1 ≤ φp(D

−1) ≤ φ1(D
−1) ≤ θ <∞.

To bound singular values of matrix T−1, on one hand, we use Lemma 2 to obtain

φp(Ω) = φp(T
′D−1T ) = φp(TT ′D−1) ≤ φp(TT ′)φ1(D

−1) = φp(T
′)φp(T )φ1(D

−1),

indicating

φp(T ) ≥
√
φp(Ω)/φ1(D−1) ≥

√
1/θ2 =

1

θ
.
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On the other hand, applying Lemma 2 again for D−1 = T ′−1ΩT−1 yields φp(D
−1) ≤

φ2
p(T

−1)φ1(Ω) = φ1(Ω)/φ2
1(T ), implying

φ1(T ) ≤

√
φ1(Ω)

φp(D−1)
≤

√
θ

1/θ2p−1
= θp.

As a result,

0 <
1

θ
≤ φp(T ) ≤ φ1(T ) ≤ θp <∞

0 < (
1

θ
)p ≤ φp(T

−1) ≤ φ1(T
−1) ≤ θ <∞.

Taking h1 = min(θ1−2p, θ−p) and h2 = θ establishes the lemma.

It is seen from Lemma 3 that the singular values of the matrices T−1 and D−1

are bounded if the singular values of the inverse covariance matrix Ω are bounded.

Now we give the proofs of Theorems.

Proof. Proof of Theorem 1.

From the negative log-likelihood (2.4), we have

L(T ,D) = −
M∑
j=1

log |D−1
j |+

M∑
j=1

tr
[
SϵjD

−1
j

]
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=
M∑
j=1

log |Dj|+ tr



Sϵ1D
−1
1 0 . . . 0

0 Sϵ2D
−1
2 . . . 0

...
...

. . .
...

0 0 . . . SϵMD−1
M



= log |D|+ tr



Sϵ1 0 . . . 0

0 Sϵ2 . . . 0

...
...

. . .
...

0 0 . . . SϵM


D−1.

By the notation Sϵj =
1
n
(X(j) − Z(j)A′

j)
′(X(j) − Z(j)A′

j), it is easy to see

L(T ,D) = log |D|+ 1

n
tr



(X(1))′

(X(2) − Z(2)A′
2)

′

...

(X(M) − Z(M)A′
M)′


(
X(1),X(2) − Z(2)A′

2, . . . ,X(M) − Z(M)A′
M

)
D−1

= log |D|+ 1

n
tr
[
TX′XT ′D−1

]
= log |D|+ tr

[
T ′D−1TS

]
,
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where S = 1
n
X′X. Consequently, Lλ(T ,D) can be written as

Lλ(T ,D) = log |D|+ tr
[
T ′D−1TS

]
+ λ1∥A∥1 + λ2∥D−1∥−1

= log |D|+ tr
[
T ′D−1TS

]
+ λ1∥T ∥1 + λ2∥D−1∥−1

= log |D|+ tr
[
T ′D−1TS

]
+ λ1

∑
i>k

|tik|+ λ2
∑
i ̸=k

|ψik|,

where tik and ψik are the (i, k)th elements of matrices T and D−1, respectively.

For part (a), we define G1(∆T ) = Lλ(T0 + ∆T |D∗) − Lλ(T0|D∗). Let AUj
=

{∆Tj
: ∆Tj

= ∆′
Tj
, ∥∆Tj

∥2F ≤ U2
j sTj

log(
∑j

k=1 pk)/n} for j = 1, 2, . . . ,M , where Uj are

positive constants. We will show that for ∆Tj
∈ ∂AUj

, probability Pr(G1(∆T )) > 0

is tending to 1 as n→ ∞ for sufficiently large Uj, where ∂AUj
are the boundaries of

AUj
. Additionally, since G1(∆T ) = 0 when ∆Tj

= 0, the minimum point of G1(∆T )

is achieved when ∆Tj
∈ AUj

. That is ∥∆Tj
∥2F = Op(sTj

log(
∑j

k=1 pk)/n).

Assume ∥∆Tj
∥2F = U2

j sTj
log(

∑j
k=1 pk)/n. Write T = T0+∆T , then we decompose

G1(∆T ) as

G1(∆T ) = Lλ(T0 +∆T |D∗)− Lλ(T0|D∗)

= tr
[
T ′D−1

∗ TS
]
− tr

[
T ′
0D

−1
∗ T0S

]
+ λ1

∑
|tik| − λ1

∑
|t0ik|

=M1 +M2 +M3,
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where

M1 = tr[D−1
∗ (T (S −Σ0)T

′ − T0(S −Σ0)T
′
0)],

M2 = tr[D−1
∗ (TΣ0T

′ − T0Σ0T
′
0)],

M3 = λ1
∑

|tik| − λ1
∑

|t0ik|.

The above decomposition of G1(∆T ) intoM1 toM3 is very similar to that in the proof

of Lemma 3 of Kang and Deng (2021); hence it is omitted here. Now we bound each

component respectively. Note that ∥∆T∥2F = ∥T −T0∥2F =
∑M

j=1 ∥∆Tj
∥2F . Therefore,

based on the proof of Theorem 3.1 in Jiang (2012), for any ϵ > 0, there exists a

constant V1 > 0 such that with probability greater than 1− ϵ, we have

M2 − |M1|

>
∥∆T∥2F
h4

− V1

M∑
j=1

||Tj − Tj0||1

√√√√log(

j∑
k=1

pk)/n


=

∑M
j=1 ∥∆Tj

∥2F
h4

− V1

M∑
j=1


√√√√log(

j∑
k=1

pk)/n
∑

(i,k)∈Zc
Tj

|tik|


− V1

M∑
j=1


√√√√log(

j∑
k=1

pk)/n
∑

(i,k)∈ZTj

|tik − t0ik|


≥
∑M

j=1 ∥∆Tj
∥2F

h4
− V1

√
log(p)/n

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik| − V1

M∑
j=1

√√√√sTj
log(

j∑
k=1

pk)/n∥∆Tj
∥2F
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=
1

h4

M∑
j=1

U2
j sTj

log(

j∑
k=1

pk)/n− V1
√
log(p)/n

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik|

− V1

M∑
j=1

UjsTj
log(

j∑
k=1

pk)/n

≥ 1

nh4

M∑
j=1

U2
j sTj

(log γj + Cj log p)− V1
√

log(p)/n
∑

(i,k)∈
⋃M

j=1 Zc
Tj

|tik| − V1
log p

n

M∑
j=1

UjsTj

≥ 1

nh4

M∑
j=1

U2
j sTj

log γj +
1

h4
log p

n
τcτu

M∑
j=1

UjsTj
− V1

√
log(p)/n

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik|

− V1
log p

n

M∑
j=1

UjsTj
,

where τu is a positive constant satisfying τu ≤ Uj, j = 1, 2, . . . ,M . Next, for the

penalty term corresponding to λ1,

M3 = λ1
∑

(i,k)∈
⋃M

j=1 Zc
Tj

|tik|+ λ1
∑

(i,k)∈
⋃M

j=1 ZTj

(|tik| − |t0ik|) =M
(1)
3 +M

(2)
3 ,

where M
(1)
3 = λ1

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik|, and

|M (2)
3 | = |λ1

∑
(i,k)∈

⋃M
j=1 ZTj

(|tik| − |t0ik|)| ≤ λ1
∑

(i,k)∈
⋃M

j=1 ZTj

|tik − t0ik|

≤ λ1

M∑
j=1

∥∆Tj
∥F

√
sTj
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≤ λ1

√
log p

n

M∑
j=1

UjsTj
.

Combine all the terms above together, with probability greater than 1− ϵ, we have

G1(∆T ) ≥M2 − |M1|+M
(1)
3 − |M (2)

3 |

≥ 1

nh4

M∑
j=1

U2
j sTj

log γj +
1

h4
log p

n
τcτu

M∑
j=1

UjsTj
− V1

√
log(p)/n

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik|

− V1
log p

n

M∑
j=1

UjsTj
+ λ1

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik| − λ1

√
log p

n

M∑
j=1

UjsTj

=
1

nh4

M∑
j=1

U2
j sTj

log γj +
log p

∑M
j=1 UjsTj

n
(
τcτu
h4

− V1 −
λ1√

log(p)/n
)

+ (λ1 − V1
√
log(p)/n)

∑
(i,k)∈

⋃M
j=1 Zc

Tj

|tik|.

Here V1 is only related to the sample size n and ϵ. Assume λ1 = K1

√
log(p)/n where

K1 > V1, and choose τu > h4(K1 + V1)/τc, then G1(∆T ) > 0. Therefore, we prove

∥∆Tj
∥2F = Op(sTj

log(
∑j

k=1 pk)/n).

The proof of part (b) follows the same principle as that for part (a). Simi-

larly, define G2(∆D) = Lλ(D0 + ∆D|T∗) − Lλ(D0|T∗). Let BWj
= {∆Dj

: ∆Dj
=

∆′
Dj
, ∥∆Dj

∥2F ≤ W 2
j (sDj

+ pj) log(pj)/n} for j = 1, 2, . . . ,M , where Wj are positive

constants. We only need to show that for ∆Dj
∈ ∂BWj

, probability P (G2(∆D) > 0)

is tending to 1 as n→ ∞ for sufficiently large Wj, where ∂BWj
are the boundaries of
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BWj
.

Assume ∥∆Dj
∥2F = W 2

j (sDj
+ pj) log(pj)/n. Write D = D0 + ∆D, then we

decompose G2(∆D) as

G2(∆D) = Lλ(D0 +∆D|T∗)− Lλ(D0|T∗)

= log |D| − log |D0|+ tr
[
T ′
∗D

−1T∗S − T ′
∗D

−1
0 T∗S

]
+ λ2

∑
i ̸=k

|ψik| − λ2
∑
i ̸=k

|ψ0ik|

=M4 +M5 +M6,

where

M4 = log |D| − log |D0|+ tr[(D−1 −D−1
0 )D0],

M5 = tr(D−1 −D−1
0 )[T∗(S −Σ0)T

′
∗],

M6 = λ2
∑
i ̸=k

|ψik| − λ2
∑
i ̸=k

|ψ0ik|.

The above decomposition of G2(∆D) into M4 to M6 is similar to that in the proof

of Lemma 3 of Kang and Deng (2021). Next we bound each component respectively.

Note that ∥∆D∥2F = ∥D −D0∥2F =
∑M

j=1 ∥Dj −Dj0∥2F =
∑M

j=1 ∥∆Dj
∥2F . Therefore,

based on the proof of Theorem 3.1 in Jiang (2012) together with Lemma 3, we can

have the following two results (I) and (II).

(I) Let τw be a positive constant satisfying τw ≤ Wj, j = 1, 2, . . . ,M , and note
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that (1/h2)∥∆D∥2F ≤ ∥D−1 −D−1
0 ∥2F ≤ h2∥∆D∥2F , then

M4 ≥
1

8h2
∥D−1 −D−1

0 ∥2F ≥ 1

8h4
∥∆D∥2F =

1

8h4

M∑
j=1

∥∆Dj
∥2F

=
1

8h4

M∑
j=1

W 2
j (sDj

+ pj) log(pj)/n

=
1

8h4

M∑
j=1

W 2
j (sDj

+ pj)(log γj + Cj log p)/n

≥ 1

8nh4

M∑
j=1

W 2
j (sDj

+ pj) log γj +
1

8h4
log p

n
τcτw

M∑
j=1

Wj(sDj
+ pj).

(II) For any ϵ > 0, there exists a constant V2 > 0 such that with probability

greater than 1− ϵ, we have

|M5| = |tr(D−1 −D−1
0 )[T∗(S −Σ0)T

′
∗]| ≤ max |ξik|

M∑
j=1

||Dj −Dj0||1

≤ V2

√
log p

n

M∑
j=1

√
(sDj

+ pj)∥∆Dj
∥2F

≤ V2
log p

n

M∑
j=1

Wj(sDj
+ pj),

where ξik is the (i, k)th element of matrix T∗(S −Σ0)T
′
∗, and the second inequality

applies Lemma 3 of Lam and Fan (2009).

Next, we decompose M6 = M
(1)
6 +M

(2)
6 , where M

(1)
6 = λ2

∑
(i,k)∈

⋃M
j=1 Zc

Dj

|ψik|,
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and

|M (2)
6 | ≤ |λ2

∑
(i,k)∈

⋃M
j=1 ZDj

(|ψik| − |ψ0ik|)| ≤ λ2
∑

(i,k)∈
⋃M

j=1 ZDj

|ψik − ψ0ik|

≤ λ2

M∑
j=1

∥∆Dj
∥F
√
sDj

+ pj

≤ λ2

√
log p

n

M∑
j=1

Wj(sDj
+ pj).

Combine all the terms above together, with probability greater than 1− ϵ, we have

G2(∆D) ≥M4 − |M5|+M
(1)
6 − |M (2)

6 |

≥ 1

8nh4

M∑
j=1

W 2
j (sDj

+ pj) log γj +
1

8h4
log p

n
τcτw

M∑
j=1

Wj(sDj
+ pj)

− V2
log p

n

M∑
j=1

Wj(sDj
+ pj) + λ2

∑
(i,k)∈

⋃M
j=1 Zc

Dj

|ψik| − λ2

√
log p

n

M∑
j=1

Wj(sDj
+ pj)

=
1

8nh4

M∑
j=1

W 2
j (sDj

+ pj) log γj +
log p

∑M
j=1Wj(sDj

+ pj)

n
(
τcτw
8h4

− V2 −
λ2√

log(p)/n
)

+ λ2
∑

(i,k)∈
⋃M

j=1 Zc
Dj

|ψik|.

Here V2 is only related to the sample size n and ϵ. Assume λ2 = K2

√
log(p)/n where

K2 > 0, and choose τw > 8h4(K2 + V1)/τc, then G2(∆D) > 0. Therefore, we prove

∥∆Dj
∥2F = W 2

j (sDj
+ pj) log(pj)/n.
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Proof. Proof of Theorem 2.

Let Âj and D̂j be the estimates obtained from Step 3 in Algorithm 1. We

first prove the consistent rates under Frobenius norm of T̂j = −Âj and D̂j are

sTj
log(

∑j
k=1 pk)/n and (sDj

+ pj) log(pj)/n, respectively.

At the first iteration of Step 1 in Algorithm 1, the estimate Âj;1 found by mini-

mizing ℓλ(Aj|I) is sTj
log(

∑j
k=1 pk)/n consistent according to part (a) of Theorem 1.

In Step 2, the estimate D̂j;1 found by minimizing ℓλ(D
−1
j |Âj;1) is (sDj

+pj) log(pj)/n

consistent according to part (b) of Theorem 1. Next, an estimate Âj;2 obtained by

minimizing ℓλ(Aj|D̂j;1) is sTj
log(

∑j
k=1 pk)/n consistent, and D̂j;2 which minimizes

ℓλ(D
−1
j |Âj;2) is (sDj

+ pj) log(pj)/n consistent. Following this, we hence have that

Âj (or equivalently T̂j) and D̂j are sTj
log(

∑j
k=1 pk)/n and (sDj

+ pj) log(pj)/n con-

sistent. This implies

∥T̂ − T0∥2F =
M∑
j=1

||T̂j − T0||2F =
M∑
j=1

Op(sTj
log(

j∑
k=1

pk)/n) ≤ Op(sT log(p)/n)

and

∥D̂ −D0∥2F =
M∑
j=1

Op

(
(sDj

+ pj) log(pj)/n
)
= Op(

M∑
j=1

(sDj
+ pj) log(pj)/n).

Next, we derive of consistent rate of the estimate Ω̂ = T̂ ′D̂−1T̂ . Let ∆T = T̂ − T0
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and ∆D = D̂ −D0, then we decompose ∥Ω̂−Ω0∥2F as

∥Ω̂−Ω0∥2F

= ∥T̂ ′D̂−1T̂ − T ′
0D

−1
0 T0∥2F

= ∥(∆′
T + T ′

0)D̂
−1(∆T + T0)− T ′

0D
−1
0 T0∥2F

≤ ∥∆′
TD̂

−1T0∥2F + ∥T ′
0D̂

−1∆T∥2F + ∥∆′
TD̂

−1∆T∥2F + ∥T ′
0(D̂

−1 −D−1
0 )T0∥2F .

Now we bound four terms separately. Use the symbol ∥A∥ to represent the spectral

norm of matrix A. Since ∥T0∥ = O(1) and ∥D0∥ = O(1) by Lemma 3, it is obvious

that ∥D̂∥ = ∥D̂−D0+D0∥ ≤ ∥∆D∥+∥D0∥ ≤ ∥∆D∥F+∥D0∥ = Op(1). In addition,

the single values of Ω−1 are bounded since the single values of Ω are bounded, which

together with Lemma 3 leads to ∥D−1
0 ∥ = O(1), hence similarly ∥D̂−1∥ = Op(1). As

a result, it is easy to obtain

∥∆′
TD̂

−1T0∥2F ≤ ∥∆′
T∥2F∥D̂−1∥∥T0∥ = Op(∥∆T∥2F ),

and the second term ∥T ′
0D̂

−1∆T∥2F = ∥∆′
TD̂

−1T0∥2F = Op(∥∆T∥2F ). For the third

term,

∥∆′
TD̂

−1∆T∥2F ≤ ∥∆′
T∥2F∥D̂−1∥∥∆T∥2F = op(∥∆T∥2F ).
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For the fourth term,

∥T ′
0(D̂

−1 −D−1
0 )T0∥2F ≤ ∥T ′

0∥∥D̂−1 −D−1
0 ∥2F∥T0∥ = Op(∥D̂ −D0∥2F ).

Consequently, by the convergence rates of T̂ − T0 and D̂ −D0 from Theorem 1, we

reach the conclusion

∥Ω̂−Ω0∥2F = Op(∥T̂ − T0∥2F ) +Op(∥D̂ −D0∥2F )

= Op

(
sT log p+

∑M
j=1(sDj

+ pj) log pj

n

)
.
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