OPTIMAL DESIGNS FOR FUNCTIONAL PRINCIPAL AND EMPIRICAL COMPONENT SCORES

MING-HUNG KAO AND PING-HAN HUANG
Arizona State University

Supplementary Material

In Tables S1 S3 we present our obtained designs $\boldsymbol{d}^{*}=\left\{\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{n}\right\}$ for predicting the functional empirical component (FEC) scores with the scenarios considered in Section 4 of the paper. The distinct K-point elemental designs for each \boldsymbol{d}^{*} are listed, along with the number of replicates of these elemental designs in $\boldsymbol{d}^{*} ; K=3,5,7$. The elemental design is represented by the K indices of the sampling time points $t_{i j}$ from the 21-point regular grid of $\mathcal{T}=[0,1]$.

In Table S4 the elemental design for each single-support design $\boldsymbol{d}_{s}=\boldsymbol{d}_{f p c}$ is listed. \boldsymbol{d}_{s} is obtained by minimizing Φ_{A} of Corollary 1, by an exhaustive search over all the single-support designs that are in Ξ_{d}. There are multiple \boldsymbol{d}_{s} for each case. Except for $J=K=7$, \boldsymbol{d}_{s} is the same as $\boldsymbol{d}_{f p c}$ that minimizes $\Phi_{A 1}$ among the single-support designs. The \boldsymbol{d}_{s} and $\boldsymbol{d}_{f p c}$ for $J=K=7$ can be found in Table 2 in the paper. As presented there, the former design depends on the number of subjects n.

Table S1: Obtained Designs for FEC scores with $J=3$: elemental design \times number of replicates

$\mathrm{n}=10$		
$K=3$	$K=5$	$K=7$
$(3,7,19) \times 3$	$(3,5,8,13,19) \times 2$	$(3,4,8,9,13,14,18) \times 2$
$(3,15,19) \times 2$	$(3,9,13,15,18) \times 3$	$(3,4,8,9,14,18,19) \times 3$
$(5,9,13) \times 2$	$(3,9,14,17,19) \times 3$	$(3,4,8,13,14,18,19) \times 3$
$(9,13,17) \times 3$	$(4,7,9,13,19) \times 2$	$(4,8,9,13,14,18,19) \times 2$
$\mathrm{n}=50$		
$K=3$	$K=5$	$K=7$
$(3,7,19) \times 13$	$(3,5,8,13,19) \times 12$	$(3,4,8,9,13,14,18) \times 13$
$(3,15,19) \times 12$	$(3,9,13,15,18) \times 13$	$(3,4,8,9,14,18,19) \times 12$
$(5,9,13) \times 12$	$(3,9,14,17,19) \times 13$	$(3,4,8,13,14,18,19) \times 12$
$(9,13,17) \times 13$	$(4,7,9,13,19) \times 12$	$(4,8,9,13,14,18,19) \times 13$
$\mathrm{n}=70$		
$K=3$	$K=5$	$K=7$
$(3,7,19) \times 17$	$(3,5,8,13,19) \times 18$	$(3,4,8,9,13,14,18) \times 18$
$(3,15,19) \times 18$	$(3,9,13,15,18) \times 17$	$(3,4,8,9,14,18,19) \times 17$
$(5,9,13) \times 18$	$(3,9,14,17,19) \times 17$	$(3,4,8,13,14,18,19) \times 17$
$(9,13,17) \times 17$	$(4,7,9,13,19) \times 18$	$(4,8,9,13,14,18,19) \times 18$

Table S2: Obtained Designs for FEC scores with $J=5$: elemental design \times number of replicates

Table S3: Obtained Designs for FEC scores with $J=7$: elemental design \times number of replicates

Table S4: Elemental designs for single-support designs

$\mathrm{J}=3$		
$K=3$	$K=5$	$K=7$
$(3,7,19)$	$(3,5,8,13,19)$	$(3,4,8,9,13,14,18)$
$(3,15,19)$	$(3,9,13,15,18)$	$(3,4,8,9,14,18,19)$
$(5,9,13)$	$(3,9,14,17,19)$	$(3,4,8,13,14,18,19)$
$(9,13,17)$	$(4,7,9,13,19)$	$(4,8,9,13,14,18,19)$
$\mathrm{J}=5$		
$K=3$	$K=5$	$K=7$
$(3,14,18)$		$(2,4,6,9,13,16,19)$
$(4,8,13)$	$(2,10,13,16,19)$	$(3,6,8,10,13,16,19)$
$(4,8,19)$	$(3,6,9,12,20)$	$(3,6,9,12,14,16,19)$
$(9,14,18)$		$(3,6,9,13,16,18,20)$
$\mathrm{J}=7$		
$K=3$	$K=5$	$K=7$
$(3,14,18)$	$(3,6,9,13,16)$	
$(4,8,13)$	$(3,6,9,16,19)$	See Table 2 in the paper
$(4,8,19)$	$(3,6,13,16,19)$	
$(9,14,18)$	$(6,9,13,16,19)$	

