Online Supplementary Material "Longitudinal Modeling of Rank-based Global Outcome"

1 Proofs for Theorems 1-4

In this section, we prove the main theorems for the MRC estimator. Theorem 1 describes the consistency and asymptotic normality of the proposed estimator for a single longitudinal outcome. Theorem 2 generalizes results to the longitudinal GPO setting. Theorems 3 and 4 summarize the asymptotic behavior with missing data for the single longitudinal outcome and the longitudinal GPO settings, respectively.

1.1 Proof of Theorem 1

Denote $\mathcal{L}(\boldsymbol{\theta}) = \sum_{u=0}^{M} \sum_{v=0}^{M} \mathbb{E}[I(Y_{iu} > Y_{jv})I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}]$ and $\mu_{im}(\boldsymbol{\theta}) = \mu(\mathbf{X}_i, t_m, \boldsymbol{\theta}).$

1.1.1 Consistency

We assume the following regularity conditions for the consistency of θ :

- (C1) $\boldsymbol{\theta}_0$ is an interior point of Θ , where Θ is a compact subset of \mathbb{R}^q .
- (C2) There exists a unique maximizer for $\mathcal{L}(\boldsymbol{\theta})$ in the interior of Θ .
- (C3) $\mathcal{L}(\boldsymbol{\theta})$ is continuous at $\boldsymbol{\theta}_0$.

Throughout our proof, we assume that the function class $\{\mu(\cdot, \cdot, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta\}$ has finite Vapnik-Chervonenkis dimensions. Condition (C1) is a standard condition for the consistency of $\widehat{\boldsymbol{\theta}}$ (Cavanagh & Sherman 1998, Khan & Tamer 2007). Conditions (C2)-(C3) are easily satisfied under many realistic settings such as a setting with $\mu_{im}(\boldsymbol{\theta}) = \sum_{k=1}^{p} \beta_{mk} X_{ik} + \beta_t t_m$, where $\boldsymbol{\beta} = (1, \boldsymbol{\theta}^T)^T = (\beta_{01}, \dots, \beta_{0p}, \beta_{11}, \dots, \beta_{1p}, \dots, \beta_{M1}, \dots, \beta_{Mp}, \beta_t)$. **Identifiability of** θ_0 : Given $\mu_{iu}(\theta_0) > \mu_{jv}(\theta_0)$ and the monotonicity of ζ , we have

$$\mathbb{P}_{\varepsilon}(Y_{iu} > Y_{jv}) \ge \mathbb{P}_{\varepsilon}(Y_{iu} < Y_{jv}),$$

where \mathbb{P}_{ε} is the expectation with respect to ε . Thus θ_0 maximizes the following function:

$$\mathbb{E}\left[I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}\mathbb{P}_{\boldsymbol{\varepsilon}}(Y_{iu} > Y_{jv}) + I\{\mu_{iu}(\boldsymbol{\theta}) < \mu_{jv}(\boldsymbol{\theta})\}\mathbb{P}_{\boldsymbol{\varepsilon}}(Y_{iu} < Y_{jv})\right].$$

It follows that $\boldsymbol{\theta}_0$ maximizes

$$\sum_{u=0}^{M} \sum_{v=0}^{M} \mathbb{E}\left[I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}\mathbb{P}_{\varepsilon}(Y_{iu} > Y_{jv}) + I\{\mu_{iu}(\boldsymbol{\theta}) < \mu_{jv}(\boldsymbol{\theta})\}\mathbb{P}_{\varepsilon}(Y_{iu} < Y_{jv})\right],$$

and therefore maximizes the objective function, $\mathcal{L}(\boldsymbol{\theta})$. By Condition (C2), we know that $\boldsymbol{\theta}_0$ is the unique maximizer of $\mathcal{L}(\boldsymbol{\theta})$.

Uniform convergence of $\mathcal{L}_n(\boldsymbol{\theta})$: A sufficient condition for the uniform convergence is that the kernel function class of the U-statistic $\mathcal{L}_n(\boldsymbol{\theta})$ satisfies the Euclidean property for some square integrable envelope. Consider the function class $\mathcal{F}_{u,v} = \{f_{u,v}(\cdot, \cdot, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta\}, 0 \leq u, v \leq M$, where $\mathbf{z}_1 = (\mathbf{x}_1, \mathbf{y}_1), \mathbf{z}_2 = (\mathbf{x}_2, \mathbf{y}_2)$ and

$$f_{u,v}(\mathbf{z}_1, \mathbf{z}_2, \boldsymbol{\theta}) = I(y_{1u} > y_{2v})I\{\mu(\mathbf{x}_1, t_u, \boldsymbol{\theta}) > \mu(\mathbf{x}_2, t_v, \boldsymbol{\theta})\} + I(y_{1u} < y_{2v})I\{\mu(\mathbf{x}_1, t_u, \boldsymbol{\theta}) < \mu(\mathbf{x}_2, t_v, \boldsymbol{\theta})\}$$

Following Section 5 of Sherman (1993), $\mathcal{F}_{u,v}$ is Euclidean with a constant envelope of 1. By Lemma 2.14 of Pakes et al. (1989), \mathcal{F} is also Euclidean with a constant envelope of $(M+1)^2$, where

$$f(\mathbf{z}_{1}, \mathbf{z}_{2}, \boldsymbol{\theta}) = \frac{1}{2} \sum_{u=0}^{M} \sum_{v=0}^{M} [I(y_{1u} > y_{2v})I\{\mu(\mathbf{x}_{1}, t_{u}, \boldsymbol{\theta}) > \mu(\mathbf{x}_{2}, t_{v}, \boldsymbol{\theta})\} + I(y_{1u} < y_{2v})I\{\mu(\mathbf{x}_{1}, t_{u}, \boldsymbol{\theta}) < \mu(\mathbf{x}_{2}, t_{v}, \boldsymbol{\theta})\}],$$

and $\mathcal{F} = \{f(\cdot, \cdot, \theta), \theta \in \Theta\}$. The uniform convergence of $\mathcal{L}_n(\theta)$ then follows from Conditions

(C1), (C3) and Corollary 7 of Sherman (1994). By Theorem 5.7 in Van der Vaart (2000), the uniform convergence implies that $\hat{\boldsymbol{\theta}}$ converges in probability to $\boldsymbol{\theta}_0$.

1.1.2 Asymptotic normality

For each $\boldsymbol{\theta} \in \Theta$, denote $\Gamma(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta}_0)$ and $\Gamma_n(\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) - \mathcal{L}_n(\boldsymbol{\theta}_0)$. Note that $\Gamma_n(\boldsymbol{\theta}_0) = \Gamma(\boldsymbol{\theta}_0) = 0$, $\mathbb{E}\{\tau(\cdot, \boldsymbol{\theta}) - \tau(\cdot, \boldsymbol{\theta}_0)\} = 2\Gamma(\boldsymbol{\theta})$ and $\Gamma(\boldsymbol{\theta})$ is maximized at $\boldsymbol{\theta}_0$. We assume the following regularity conditions for the normality of $\hat{\boldsymbol{\theta}}$:

The following additional condition is required for asymptotic normality.

(C4) There exists an integrable function $M(\mathbf{z})$ such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood \mathcal{N} of $\boldsymbol{\theta}_0$, $\|\nabla_2 \tau(\mathbf{z}, \boldsymbol{\theta}) - \nabla_2 \tau(\mathbf{z}, \boldsymbol{\theta}_0)\| \leq M(\mathbf{z}) \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|$, where $\mathbb{E}\|\nabla_1 \tau(\cdot, \boldsymbol{\theta}_0)\|^2 < \infty$, $\mathbb{E}|\nabla_2|\tau(\cdot, \boldsymbol{\theta}_0) < \infty$, and $\mathbb{E}\nabla_2 \tau(\cdot, \boldsymbol{\theta}_0)$ is negative definite.

Condition (C4) assumes the smoothness and moment conditions of τ (Sherman 1993). For each $(\mathbf{z}_1, \mathbf{z}_2)$ and $\boldsymbol{\theta} \in \Theta$, define

$$f(\mathbf{z}_1, \mathbf{z}_2, \boldsymbol{\theta}) = \sum_{u=0}^{M} \sum_{v=0}^{M} I(y_{1u} > y_{2v}) \left[I\{\mu(\mathbf{x}_1, t_u, \boldsymbol{\theta}) > \mu(\mathbf{x}_2, t_v, \boldsymbol{\theta})\} - I\{\mu(\mathbf{x}_1, t_u, \boldsymbol{\theta}_0) > \mu(\mathbf{x}_2, t_v, \boldsymbol{\theta}_0)\} \right].$$

Using Hoeffding decomposition, we have $\Gamma_n(\boldsymbol{\theta}) = \Gamma(\boldsymbol{\theta}) + \mathbb{P}_n g(\cdot, \boldsymbol{\theta}) + U_n h(\cdot, \cdot, \boldsymbol{\theta})$, where $g(\mathbf{z}, \boldsymbol{\theta}) = \mathbb{E}f(\mathbf{z}, \cdot, \boldsymbol{\theta}) + \mathbb{E}f(\cdot, \mathbf{z}, \boldsymbol{\theta}) - 2\Gamma(\boldsymbol{\theta})$, and $h(\mathbf{z}_1, \mathbf{z}_2, \boldsymbol{\theta}) = f(\mathbf{z}_1, \mathbf{z}_2, \boldsymbol{\theta}) - \mathbb{E}f(\mathbf{z}_1, \cdot, \boldsymbol{\theta}) - \mathbb{E}f(\mathbf{z}_1, \cdot, \boldsymbol{\theta}) - \mathbb{E}f(\cdot, \mathbf{z}_2, \boldsymbol{\theta}) + \Gamma(\boldsymbol{\theta})$. By the same techniques as those in Sherman (1993), it can be shown that $\Gamma(\boldsymbol{\theta}) = \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + o(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2), \mathbb{P}_n g(\cdot, \boldsymbol{\theta}) = \frac{1}{\sqrt{n}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T W_n + o(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2)$, and $U_n h(\cdot, \cdot, \boldsymbol{\theta}) = o_P(1/n)$ uniformly over $o_P(1)$ neighbourhoods of $\boldsymbol{\theta}_0$, where $W_n = \sqrt{n} \mathbb{P}_n \nabla_1 \tau(\cdot, \boldsymbol{\theta}_0) \xrightarrow{D} N(0, \Delta)$. Thus we have

$$\Gamma_n(\boldsymbol{\theta}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + \frac{1}{\sqrt{n}} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T W_n + o\left(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2\right) + o_P(1/n)$$
(1)

uniformly over $o_P(1)$ neighbourhoods of $\boldsymbol{\theta}_0$. Combining Equation (1), Condition (C4) and Theorem 2 of Sherman (1993), we have that $\sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$ converges in distribution to $N(0, V^{-1}\Delta V^{-1})$.

1.2 Proof of Theorem 2

1.2.1 Consistency

Denote $\mathcal{L}_{n,\mathcal{P}}(\boldsymbol{\theta}) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \sum_{u=0}^{M} \sum_{v=0}^{M} I(\mathcal{P}_{iu} > \mathcal{P}_{jv}) I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}, \text{ and } \mathcal{L}_{\mathcal{P}}(\boldsymbol{\theta}) = \sum_{u=0}^{M} \sum_{v=0}^{M} \mathbb{E}[I(\mathcal{P}_{iu} > \mathcal{P}_{jv}) I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}].$ Throughout our proof, we assume that the function class, $\{\mu(\cdot, \cdot, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta_{\mathcal{P}}\}$, has finite Vapnik-Chervonenkis dimensions. We assume the following regularity conditions for the consistency of $\hat{\boldsymbol{\theta}}_{\mathcal{P}}$:

- (C5) $\boldsymbol{\theta}_{0,\mathcal{P}}$ is an interior point of $\Theta_{\mathcal{P}}$, where $\Theta_{\mathcal{P}}$ is a compact subset of \mathbb{R}^q .
- (C6) There exists some $\boldsymbol{\theta}_{\mathcal{P}}^*$ in the interior of $\Theta_{\mathcal{P}}$ that uniquely maximizes $\mathcal{L}_{\mathcal{P}}(\boldsymbol{\theta})$.
- (C7) $\mathcal{L}_{\mathcal{P}}(\boldsymbol{\theta})$ is continuous at $\boldsymbol{\theta}_{0,\mathcal{P}}$.

We first show that $\sup_{\boldsymbol{\theta}\in\Theta_{\mathcal{P}}} |\mathcal{L}_{n}^{GPO}(\boldsymbol{\theta}) - \mathcal{L}_{n,\mathcal{P}}(\boldsymbol{\theta})| = o_{P}(1)$. The difference between $\mathcal{L}_{n}^{GPO}(\boldsymbol{\theta})$ and $\mathcal{L}_{n,\mathcal{P}}(\boldsymbol{\theta})$ has the following upper bound:

$$\begin{aligned} &|\mathcal{L}_{n}^{GPO}(\boldsymbol{\theta}) - \mathcal{L}_{n,\mathcal{P}}(\boldsymbol{\theta})| \\ = & \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \sum_{u=0}^{M} \sum_{v=0}^{M} |I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv}) - I(\mathcal{P}_{iu} > \mathcal{P}_{jv})| I \left\{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \right\} \\ \leq & \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \sum_{u=0}^{M} \sum_{v=0}^{M} |I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv}) - I(\mathcal{P}_{iu} > \mathcal{P}_{jv})|. \end{aligned}$$

$$(2)$$

By the triangular inequality and Donsker's theorem, it can be shown that

$$\sup_{\substack{1 \le i \ne j \le n, 0 \le u, v \le M}} \sqrt{n} |(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv}) - (\mathcal{P}_{iu} - \mathcal{P}_{jv})| \le \sup_{1 \le i \le n, 0 \le u \le M} 2\sqrt{n} |\widehat{\mathcal{P}}_{iu} - \mathcal{P}_{iu}|$$
$$\le \frac{2}{K} \sum_{k=1}^{K} \sup_{t,u} \sqrt{n} |F_{ku}(t) - \widehat{F}_{ku}(t)| = O_P(1).$$

It follows that

$$\mathbb{P}\left\{\sup_{1\leq i\neq j\leq n, 0\leq u, v\leq M} |(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv}) - (\mathcal{P}_{iu} - \mathcal{P}_{jv})| > n^{-1/3}\right\} = o(1).$$
(3)

On the other hand,

$$\sup_{0 \le u, v \le M} \mathbb{P}(|\mathcal{P}_{iu} - \mathcal{P}_{jv}| \le 2n^{-1/3}) \le \sup_{0 \le u, v \le M} \sum_{k=1}^{K} \mathbb{P}\{|F_{ku}(Y_{iku}) - F_{kv}(Y_{jkv})| \le 2n^{-1/3}\} = o(1).$$
(4)

Notice that the event $\left\{ |(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv}) - (\mathcal{P}_{iu} - \mathcal{P}_{jv})| \leq n^{-1/3} \right\} \cap \left\{ |\mathcal{P}_{iu} - \mathcal{P}_{jv}| > 2n^{-1/3} \right\}$ is contained in $\left\{ |I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv}) - I(\mathcal{P}_{iu} > \mathcal{P}_{jv})| = 0 \right\}$. By Equations (3) and(4), the supremum of $\left\{ \mathbb{E}\{ |I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv}) - I(\mathcal{P}_{iu} > \mathcal{P}_{jv})| \} : 1 \leq i \neq j \leq n, 0 \leq u, v \leq M \right\}$ vanishes as n goes to infinity. Equation(2) implies $\mathbb{E}\{ \sup_{\theta \in \Theta} |\mathcal{L}_n^{GPO}(\theta) - \mathcal{L}_{n,\mathcal{P}}(\theta)| \} = o(1)$. Thus $\sup_{\theta \in \Theta} |\mathcal{L}_n^{GPO}(\theta) - \mathcal{L}_{n,\mathcal{P}}(\theta)| = o_P(1)$. Then the consistency follows the same techniques as those used in Section 1.1.1

1.2.2 Asymptotic normality

The proof of asymptotic normality is challenged by the non-differentiable term $I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv})$ in the objective function. We accordingly approximate it by some differentiable function in the proof below. Denote $K(\cdot)$ as a smooth kernel function such that $K(\cdot) \ge 0$, K(x) = K(-x)and $\int K(x)dx = 1$. Define $a_n = n^{-\nu}$ with $0 < \nu < 1/2$, $K_{a_n}(x) = a_n^{-1}K(x/a_n)$ and $\widetilde{K}_{a_n}(t) = \int_{-\infty}^t K_{a_n}(u) du$. Let $\mathbf{z} = (y_{10}, \dots, y_{KM}, \mathbf{x})$, and $\mathbf{Z}_i = (Y_{i10}, \dots, Y_{iKM}, \mathbf{X}_i)$. Define

$$\begin{split} \xi_{iku} &= \frac{1}{K} \sum_{l=1}^{K} \left\{ I(Y_{ilu} \ge Y_{klu}) - F_{lu}(Y_{ilu}) \right\}, \\ g_{1n}(\mathbf{Z}_i, \mathbf{Z}_j, \mathbf{Z}_k, \boldsymbol{\theta}) &= \sum_{u=0}^{M} \sum_{v=0}^{M} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})(\xi_{iku} - \xi_{jkv})I\left\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\right\}, \\ \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}) &= \mathbb{E}g_{1n}(\mathbf{z}, \cdot, \cdot, \boldsymbol{\theta}) + \mathbb{E}g_{1n}(\cdot, \mathbf{z}, \cdot, \boldsymbol{\theta}) + \mathbb{E}g_{1n}(\cdot, \cdot, \mathbf{z}, \boldsymbol{\theta}) = \mathbb{E}g_{1n}(\cdot, \cdot, \mathbf{z}, \boldsymbol{\theta}), \\ f_{1n}(\mathbf{z}, \boldsymbol{\theta}) &= \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}) - \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}_0), \\ E_{luv}(\mathbf{z}, \boldsymbol{\theta}) &= \mathbb{E}\left[\left\{I(Y_{ilu} \ge y_{lu}) - I(Y_{jlv} \ge y_{lv})\right\}I\left\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\right\}\right| \mathcal{P}_{iu} = \mathcal{P}_{jv}\right], \\ \tau_{1}(\mathbf{z}, \boldsymbol{\theta}) &= \sum_{u,v} \int p_{u}(s)p_{v}(s)ds \cdot \frac{1}{K} \sum_{l=1}^{K} E_{luv}(\mathbf{z}, \boldsymbol{\theta}), \\ g_{2n}(\mathbf{Z}_i, \mathbf{Z}_j, \boldsymbol{\theta}) &= \sum_{u=0}^{M} \sum_{v=0}^{M} \widetilde{K}_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})I\left\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\right\}, \\ \tau_{2n}(\mathbf{z}, \boldsymbol{\theta}) &= \mathbb{E}g_{2n}(\mathbf{z}, \cdot, \boldsymbol{\theta}) + \mathbb{E}g_{2n}(\cdot, \mathbf{z}, \boldsymbol{\theta}), \\ g_{2}(Z_i, Z_j, \boldsymbol{\theta}) &= \sum_{u=0}^{M} \sum_{v=0}^{M} I(\mathcal{P}_{iu} \ge \mathcal{P}_{jv})I\left\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\right\}, \\ \text{and} \ \tau_{2}(z, \boldsymbol{\theta}) &= \mathbb{E}g_{2}(z, \cdot, \boldsymbol{\theta}) + \mathbb{E}g_{2}(\cdot, z, \boldsymbol{\theta}), \end{split}$$

where $p_u(\cdot)$, $p_v(\cdot)$ are marginal densities for \mathcal{P}_{iu} , \mathcal{P}_{jv} , respectively. Note that $\mathbb{E}\tau_{1n}(\cdot, \boldsymbol{\theta}) = \mathbb{E}g_{1n}(Z_i, Z_j, Z_k, \boldsymbol{\theta}) = 0$. We assume the following regularity conditions for the normality of $\hat{\boldsymbol{\theta}}_{\mathcal{P}}$.

- (C8) There exists an integrable function $M_1(\mathbf{z})$ such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood \mathcal{N} of $\boldsymbol{\theta}_0$, $\|\nabla_2 \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}) - \nabla_2 \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}_0)\| \leq M_1(\mathbf{z}) \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|$, where $\sup_n \mathbb{E} \|\nabla_1 \tau_{1n}(\cdot, \boldsymbol{\theta}_0)\|^2 < \infty$ and $\sup_n \mathbb{E} |\nabla_2| \tau_{1n}(\cdot, \boldsymbol{\theta}_0) < \infty$.
- (C9) $\mathbb{E} \| \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0) \|^2 < \infty.$
- (C10) There exists an integrable function, $M_2(\mathbf{z})$, such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood \mathcal{N} of $\boldsymbol{\theta}_0$, $\|\nabla_2 \tau_{2n}(\mathbf{z}, \boldsymbol{\theta}) - \nabla_2 \tau_{2n}(\mathbf{z}, \boldsymbol{\theta}_0)\| \leq M_2(\mathbf{z}) \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|$, where $\sup_n \mathbb{E} \|\nabla_1 \tau_{2n}(\cdot, \boldsymbol{\theta}_0)\|^2 < \infty$ and $\sup_n \mathbb{E} |\nabla_2 | \tau_{2n}(\cdot, \boldsymbol{\theta}_0) < \infty$.

(C11) $\mathbb{E} \| \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0) \|^2 < \infty$ and the matrix $\nabla_2 \tau_2(\cdot, \boldsymbol{\theta}_0)$ is negative definite.

We first decompose the objective function into three terms:

$$\mathcal{L}_{n}^{GPO}(\boldsymbol{\theta}) - \mathcal{L}_{n}^{GPO}(\boldsymbol{\theta}_{0})$$

$$= \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \left\{ I(\widehat{\mathcal{P}}_{iu} > \widehat{\mathcal{P}}_{jv}) - \widetilde{K}_{a_{n}}(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv}) \right\} [I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_{0}) > \mu_{jv}(\boldsymbol{\theta}_{0})\}]$$

$$+ \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \left\{ \widetilde{K}_{a_{n}}(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv}) - \widetilde{K}_{a_{n}}(\mathcal{P}_{iu} - \mathcal{P}_{jv}) \right\} [I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_{0}) > \mu_{jv}(\boldsymbol{\theta}_{0})\}]$$

$$+ \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \widetilde{K}_{a_{n}}(\mathcal{P}_{iu} - \mathcal{P}_{jv}) [I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_{0}) > \mu_{jv}(\boldsymbol{\theta}_{0})\}]$$

$$= I + II + III.$$
(5)

The first term can be controlled uniformly over $o_P(1)$ neighbourhood of $\boldsymbol{\theta}_0$ by

$$|I| \leq \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u=0}^{M} \sum_{v=0}^{M} \widetilde{K}_{a_n}(-|\widehat{\mathcal{P}}_{jv}|) |I \{\mu_{iu}(\theta) > \mu_{jv}(\theta)\} - I \{\mu_{iu}(\theta_0) > \mu_{jv}(\theta_0)\}|$$

$$= o_P(1) \sum_{u,v} \frac{1}{n(n-1)} \sum_{i \neq j} |I \{\mu_{iu}(\theta) > \mu_{jv}(\theta)\} - I \{\mu_{iu}(\theta_0) > \mu_{jv}(\theta_0)\}|$$

$$= o_P(1) \sum_{u,v} \left\{ O_P(||\theta - \theta_0||^2) + \frac{1}{\sqrt{n}} (\theta - \theta_0)^T O_P(1) + o_P(1/n) \right\}$$

$$= o_P(||\theta - \theta_0||^2) + (\theta - \theta_0)^T o_P(1/\sqrt{n}) + o_P(1/n).$$

(6)

For the second term, we take the Taylor expansion at $\mathcal{P}_{iu} - \mathcal{P}_{jv}$,

$$\widetilde{K}_{a_n}(\widehat{\mathcal{P}}_{iu}-\widehat{\mathcal{P}}_{jv})-\widetilde{K}_{a_n}(\mathcal{P}_{iu}-\mathcal{P}_{jv})=K_{a_n}(\mathcal{P}_{iu}-\mathcal{P}_{jv})(\widehat{\mathcal{P}}_{iu}-\widehat{\mathcal{P}}_{jv}-\mathcal{P}_{iu}+\mathcal{P}_{jv})+O\left(\frac{\widehat{\mathcal{P}}_{iu}-\widehat{\mathcal{P}}_{jv}-\mathcal{P}_{iu}+\mathcal{P}_{jv}}{a_n}\right)$$

It can be shown that $a_n^{-1}(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv} - \mathcal{P}_{iu} + \mathcal{P}_{jv}) = o_P(1)$ uniformly over $1 \leq i \neq j \leq n$. By these results, the second term can be further decompose into two part,

$$II = II(a) + II(b)$$

= $\frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})(\widehat{\mathcal{P}}_{iu} - \widehat{\mathcal{P}}_{jv} - \mathcal{P}_{iu} + \mathcal{P}_{jv}) [I \{\mu_{iu}(\theta) > \mu_{jv}(\theta)\} - I \{\mu_{iu}(\theta_0) > \mu_{jv}(\theta_0)\}]$
+ $o_P(1) \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} [I \{\mu_{iu}(\theta) > \mu_{jv}(\theta)\} - I \{\mu_{iu}(\theta_0) > \mu_{jv}(\theta_0)\}].$

Part II(a) can be controlled uniformly over $o_P(1)$ neighbourhood of $\boldsymbol{\theta}_0$ by

$$\frac{1}{n(n-1)} \sum_{i\neq j} \sum_{u,v} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv}) \frac{1}{n} \sum_{k=1}^n (\xi_{iku} - \xi_{jkv}) \left[I \left\{ \mu_{iu}(\theta) > \mu_{jv}(\theta) \right\} - I \left\{ \mu_{iu}(\theta_0) > \mu_{jv}(\theta_0) \right\} \right] \\
= \frac{1}{n^2(n-1)} \sum_{i\neq j\neq k} \sum_{u,v} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})(\xi_{iku} - \xi_{jkv}) \left[I \left\{ \mu_{iu}(\theta) > \mu_{jv}(\theta) \right\} - I \left\{ \mu_{iu}(\theta_0) > \mu_{jv}(\theta_0) \right\} \right] \\
+ \frac{1}{n^2(n-1)} \sum_{i\neq j} \sum_{u,v} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})(\xi_{iiu} - \xi_{jiv} + \xi_{iju} - \xi_{jjv}) \left[I \left\{ \mu_{iu}(\theta) > \mu_{jv}(\theta) \right\} - I \left\{ \mu_{iu}(\theta_0) > \mu_{jv}(\theta_0) \right\} \right] \\
= \frac{1}{n^2(n-1)} \sum_{i\neq j\neq k} \sum_{u,v} K_{a_n}(\mathcal{P}_{iu} - \mathcal{P}_{jv})(\xi_{iku} - \xi_{jkv}) \left[I \left\{ \mu_{iu}(\theta) > \mu_{jv}(\theta) \right\} - I \left\{ \mu_{iu}(\theta_0) > \mu_{jv}(\theta_0) \right\} \right] + o_P(n^{-1}) \\
= \frac{n-2}{n} \frac{1}{\sqrt{n}} \left(\theta - \theta_0 \right)^T W_{1n} + o_P \left(\left\| \theta - \theta_0 \right\|^2 \right) + o_P(n^{-1}),$$
(7)

where $W_{1n} = \sqrt{n} \mathbb{P}_n \nabla_1 \tau_{1n}(\cdot, \boldsymbol{\theta}_0)$. When the conditional density function of $(\mathcal{P}_{iu}, \mathcal{P}_{jv})|(\mathbf{X}_i, \mathbf{X}_j)$ is thrice continuously differentiable with probability 1, $\tau_{1n}(z, \boldsymbol{\theta}) \rightarrow \tau_1(z, \boldsymbol{\theta})$ and $W_{1n} \xrightarrow{P} \sqrt{n} \mathbb{P}_n \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0)$ as $n \rightarrow \infty$. Therefore,

$$II(b) = o_P(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T o_P(1/\sqrt{n}) + o_P(1/n),$$
(8)

uniformly over $o_P(1)$ neighbourhood of $\boldsymbol{\theta}_0$.

By some algebraic calculation, the third term converges uniformly over $o_P(1)$ neighbourhood of $\boldsymbol{\theta}_0$ to

$$III = \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right)^T V_n \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right) + \frac{1}{\sqrt{n}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right)^T W_{2n} + o_P \left(\| \boldsymbol{\theta} - \boldsymbol{\theta}_0 \|^2 \right) + o_P (1/n), \quad (9)$$

where $2V_n = \mathbb{E}\nabla_2 \tau_{2n}(\cdot, \boldsymbol{\theta}_0)$ and $W_{2n} = \sqrt{n}\mathbb{P}_n \nabla_1 \tau_{2n}(\cdot, \boldsymbol{\theta}_0)$. Notice that $W_{2n} - \sqrt{n}\mathbb{P}_n \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0) \xrightarrow{P} 0$ and $V_n \xrightarrow{P} V_P = \mathbb{E}\nabla_2 \tau_2(\cdot, \boldsymbol{\theta}_0)$. Plugging Equations (6) - (9) into Equation(5), we have

$$\mathcal{L}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta}) - \mathcal{L}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta}_0) = \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0\right)^T V_{\mathcal{P}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0\right) + \frac{1}{\sqrt{n}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0\right)^T \left(\frac{n-2}{n} W_{1n} + W_{2n}\right) + o_P(n^{-1}),$$

uniformly over $O_P(1/\sqrt{n})$ neighbourhoods of $\boldsymbol{\theta}_0$. Then by Theorem 2 of Sherman (1993), $\sqrt{n}(\widehat{\boldsymbol{\theta}}_{\mathcal{P}} - \boldsymbol{\theta}_{0,\mathcal{P}}) \xrightarrow{D} \mathcal{N}(0, V_{\mathcal{P}}^{-1} \Delta_{\mathcal{P}} V_{\mathcal{P}}^{-1})$, where $\Delta_{\mathcal{P}} = \mathbb{E} \{ \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0) + \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0) \}^{\otimes 2}$.

1.3 Proof of Theorem 3

We assume the following regularity conditions for the consistency and normality of $\hat{\theta}^W$ and $\hat{\theta}^W_P$ in the presence of missing data:

(C12) There exists a constant c > 0 such that $\min_{i,m} w_{im}(\alpha) > c > 0$ for all $\alpha \in \mathbf{A}$, where **A** is a compact set.

(C13)
$$\widehat{\alpha} - \alpha_0 = n^{-1} \sum_{i=1}^n \kappa_i + o_P(n^{-1/2})$$
, where κ_i is the influence function of $\widehat{\alpha}$.

(C14)
$$\max_{i,m} |w_{im}(\widehat{\boldsymbol{\alpha}}) - w_{im}(\boldsymbol{\alpha}_0)| = o_P(1).$$

Condition (C12) is commonly used in missing data literature (Robins et al. 1995). Conditions (C13)-(C14) are satisfied by many regression models such as logistic regression models with bounded covariates.

1.3.1 Consistency

Denote $\widetilde{\mathcal{L}}_{n}(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \sum_{u=0}^{M} \sum_{v=0}^{M} \frac{\eta_{iu}\eta_{jv}}{w_{iu}(\boldsymbol{\alpha})w_{jv}(\boldsymbol{\alpha})} I(Y_{iu} > Y_{jv}) I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}.$ We first prove $\sup_{\boldsymbol{\theta}\in\Theta} |\widetilde{\mathcal{L}}_{n}(\boldsymbol{\theta}, \widehat{\boldsymbol{\alpha}}) - \widetilde{\mathcal{L}}_{n}(\boldsymbol{\theta}, \boldsymbol{\alpha}_{0})| = o_{P}(1).$ It suffices to show that

$$\left|\frac{1}{w_{iu}(\widehat{\boldsymbol{\alpha}})w_{jv}(\widehat{\boldsymbol{\alpha}})} - \frac{1}{w_{iu}(\boldsymbol{\alpha}_0)w_{jv}(\boldsymbol{\alpha}_0)}\right| = \frac{|w_{iu}(\boldsymbol{\alpha}_0)w_{jv}(\boldsymbol{\alpha}_0) - w_{iu}(\widehat{\boldsymbol{\alpha}})w_{jv}(\widehat{\boldsymbol{\alpha}})|}{w_{iu}(\widehat{\boldsymbol{\alpha}})w_{jv}(\widehat{\boldsymbol{\alpha}})w_{iu}(\boldsymbol{\alpha}_0)w_{jv}(\boldsymbol{\alpha}_0)} = o_P(1)$$

uniformly over i, j, u, v, which is implied by Condition (C12). Notice that $\mathbb{E}{\{\widetilde{\mathcal{L}}_n(\theta, \alpha_0)\}} = \mathcal{L}(\theta)$. By using similar techniques in Section 1.1.1, it can be shown that θ_0 uniquely maximizes $\mathbb{E}{\{\widetilde{\mathcal{L}}_n(\theta, \alpha_0)\}}$. Consider the function class, $\mathcal{F} = {f(\cdot, \cdot, \theta), \theta \in \Theta}$, where

$$f(\mathbf{z}_{1}, \mathbf{z}_{2}, \boldsymbol{\theta}) = \frac{1}{2} \sum_{u=0}^{M} \sum_{v=0}^{M} \frac{\eta_{1u} \eta_{2v}}{w(\mathbf{x}_{1}, \mathbf{y}_{1}, t_{u}, \boldsymbol{\alpha}_{0}) w(\mathbf{x}_{2}, \mathbf{y}_{2}, t_{v}, \boldsymbol{\alpha}_{0})} [I(y_{1u} > y_{2v}) I\{\mu(\mathbf{x}_{1}, t_{u}, \boldsymbol{\theta}) > \mu(\mathbf{x}_{2}, t_{v}, \boldsymbol{\theta})\} + I(y_{1u} < y_{2v}) I\{\mu(\mathbf{x}_{1}, t_{u}, \boldsymbol{\theta}) < \mu(\mathbf{x}_{2}, t_{v}, \boldsymbol{\theta})\}].$$

It follows from Lemma 2.14 of Pakes et al. (1989) that \mathcal{F} is Euclidean with a constant envelope of $(M+1)^2/c^2$. By Corollary 7 in Sherman (1994), we have $\sup_{\boldsymbol{\theta}\in\Theta} |\widetilde{\mathcal{L}}_n(\boldsymbol{\theta},\boldsymbol{\alpha}_0) - \mathcal{L}(\boldsymbol{\theta})| = o_P(1)$, which completes the proof.

1.3.2 Asymptotic normality

We assume the following regularity conditions to establish the asymptotic normality of $\widehat{\boldsymbol{\theta}}^{W}$: (C15) There exists an integrable function $M(\mathbf{z})$ such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood \mathcal{N} of $\boldsymbol{\theta}_{0}$,

$$\|\nabla_2 \tau(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) - \nabla_2 \tau(\mathbf{z}, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)\| \le M(\mathbf{z})(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\| + \|\boldsymbol{\alpha} - \boldsymbol{\alpha}_0\|).$$

Here $\nabla_1 \tau(\cdot, \boldsymbol{\theta}, \boldsymbol{\alpha})$ is continuous at $\boldsymbol{\alpha}_0$, $\mathbb{E} \| \nabla_1 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) \|^2 < \infty$, and $\mathbb{E} | \nabla_2 | \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) < \infty$. The matrix $V(\boldsymbol{\alpha}_0) = \mathbb{E} \nabla_2 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ is negative definite and $V(\boldsymbol{\alpha})$ is continuous at $\boldsymbol{\alpha}_0$.

Note that $\widetilde{\mathcal{L}}_n(\theta, \widehat{\alpha}) = \left\{ \widetilde{\mathcal{L}}_n(\theta, \widehat{\alpha}) - \widetilde{\mathcal{L}}_n(\theta_0, \widehat{\alpha}) \right\} + \widetilde{\mathcal{L}}_n(\theta_0, \widehat{\alpha})$. Denote $\Gamma_n(\theta, \alpha) = \widetilde{\mathcal{L}}_n(\theta, \alpha) - \widetilde{\mathcal{L}}_n(\theta_0, \alpha)$. The function $\widetilde{\mathcal{L}}_n(\theta_0, \widehat{\alpha})$ is independent of θ , and therefore maximizing $\widetilde{\mathcal{L}}_n(\theta, \widehat{\alpha})$ is equivalent to maximizing $\Gamma_n(\theta, \widehat{\alpha})$. By similar techniques used in Section 1.1.2, we have

$$\Gamma_n(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\boldsymbol{\alpha}) (\boldsymbol{\theta} - \boldsymbol{\theta}_0) + \frac{1}{\sqrt{n}} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T W_n(\boldsymbol{\alpha}) + o_P \left(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2 \right) + o_P (1/n),$$

uniformly over $O_P(1/\sqrt{n})$ neighbourhood of $(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$, where $W_n(\boldsymbol{\alpha}) = \sqrt{n} \mathbb{P}_n \nabla_1 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) + \sqrt{n} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbb{E} \nabla_1 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$. It implies that

$$\Gamma_n(\boldsymbol{\theta}, \widehat{\boldsymbol{\alpha}}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\widehat{\boldsymbol{\alpha}}) (\boldsymbol{\theta} - \boldsymbol{\theta}_0) + \frac{1}{\sqrt{n}} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T W_n(\widehat{\boldsymbol{\alpha}}) + o_P \left(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2 \right) + o_P (1/n).$$
(10)

Because of the continuity of $V(\cdot)$ at $\boldsymbol{\alpha}_0$, the first term of equation (10) equals to

$$\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\widehat{\boldsymbol{\alpha}})(\boldsymbol{\theta} - \boldsymbol{\theta}_0) = \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T V(\boldsymbol{\alpha}_0)(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + o_P\left(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2\right).$$
(11)

By the continuity of $\mathbb{E}\nabla_1 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$ at $\boldsymbol{\alpha}_0$ and the fact that $\mathbb{E}\nabla_1 \tau(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) = 0$, the second term of equation (10) equals to

$$W_{n}(\widehat{\boldsymbol{\alpha}}) = \sqrt{n} \mathbb{P}_{n} \nabla_{1} \tau(\cdot, \boldsymbol{\theta}_{0}, \widehat{\boldsymbol{\alpha}}) + o_{P}(1) = \sqrt{n} \mathbb{P}_{n} \nabla_{1} \tau(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0}) + \mathbb{E} \nabla_{\boldsymbol{\alpha}} \nabla_{1} \tau(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0}) \sqrt{n} (\widehat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{0}) + o_{P}(1).$$
(12)
Combining Equations (10) - (12) and Theorem 2 of Sherman (1993), we have $\sqrt{n} (\widehat{\boldsymbol{\theta}}^{W} - \boldsymbol{\theta}_{0})$

converges in distribution to $\mathcal{N}(0, V(\boldsymbol{\alpha}_0)^{-1}\Delta(\boldsymbol{\alpha}_0)V(\boldsymbol{\alpha}_0)^{-1}).$

1.4 Proof of Theorem 4

1.4.1 Consistency

Denote $\widehat{\mathcal{P}}_{iu}(\alpha)$ and $\widehat{F}_{ku}(\cdot, \alpha)$ as the estimated \mathcal{P}_{iu} and $F_{ku}(\cdot)$ using the IPW method. Per results in Section 1.2.1 and Section 1.3.1, it is suffice to show that

$$\sup_{1 \le i \ne j \le n, 0 \le u, v \le M} \sqrt{n} |\{\widehat{\mathcal{P}}_{iu}(\widehat{\alpha}) - \widehat{\mathcal{P}}_{jv}(\widehat{\alpha})\} - (\mathcal{P}_{iu} - \mathcal{P}_{jv})| = O_P(1).$$
(13)

Notice that, for $1 \le k \le K$ and $0 \le u \le M$,

$$\sup_{t} \sqrt{n} \left| \widehat{F}_{ku}(t, \widehat{\boldsymbol{\alpha}}) - \widehat{F}_{ku}(t, \boldsymbol{\alpha}_{0}) \right| = \sup_{t} n^{-1} \sum_{i=1}^{n} \eta_{iu} \sqrt{n} \left| \frac{1}{w_{iu}(\widehat{\boldsymbol{\alpha}})} - \frac{1}{w_{iu}(\boldsymbol{\alpha}_{0})} \right| I(Y_{iku} \le t) = O_{P}(1).$$

$$\tag{14}$$

Combing Lemma 2.14 in Pakes et al. (1989), Corollary 4A in Sherman (1994) and the fact that $\mathbb{E}\widehat{F}_{ku}(t, \boldsymbol{\alpha}_0) = F_{ku}(t)$, we know that, for $1 \leq k \leq K$ and $0 \leq u \leq M$,

$$\sup_{t} \sqrt{n} \left| \widehat{F}_{ku}(t, \boldsymbol{\alpha}_0) - F_{ku}(t) \right| = O_P(1).$$
(15)

Equations (14) and (15) imply Equation(13), and thus we conclude that $\widehat{\boldsymbol{\theta}}_{\mathcal{P}}^{W}$ converges in probability to $\boldsymbol{\theta}_{0,\mathcal{P}}$.

1.4.2 Asymptotic normality

Denote the objective function as $\widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta},\widehat{\boldsymbol{\alpha}}),$

$$\widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta},\boldsymbol{\alpha}) = \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \frac{\eta_{iu}\eta_{jv}}{w_{iu}(\boldsymbol{\alpha})w_{jv}(\boldsymbol{\alpha})} I\{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) > \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha})\} I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\}.$$

Let $\mathbf{z} = (y_{10}, \dots, y_{KM}, \eta_1, \dots, \eta_M, \mathbf{x})$, and $\mathbf{Z}_i = (Y_{i10}, \dots, Y_{iKM}, \eta_{i1}, \dots, \eta_{iM}, \mathbf{X}_i)$. Define

$$\begin{split} \xi_{iku}(\boldsymbol{\alpha}) &= \frac{1}{K} \sum_{l=1}^{K} \left\{ \frac{\eta_{ku}}{w_{ku}(\boldsymbol{\alpha})} I(Y_{ilu} \geq Y_{klu}) - F_{lu}(Y_{ilu}, \boldsymbol{\alpha}) \right\}, \\ F_{lu}(y, \boldsymbol{\alpha}) &= \mathbb{E} \left\{ \frac{\eta_{ku}}{w_{ku}(\boldsymbol{\alpha})} I(y \geq Y_{klu}) \right\}, \\ g_{1n}(\mathbf{Z}_{i}, \mathbf{Z}_{j}, \mathbf{Z}_{k}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \sum_{u=0}^{M} \sum_{v=0}^{M} K_{a_{n}} \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha}) \} \{ \xi_{iku}(\boldsymbol{\alpha}) - \xi_{jkv}(\boldsymbol{\alpha}) \} I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \}, \\ \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \mathbb{E} g_{1n}(\mathbf{z}, \cdot, \cdot, \boldsymbol{\theta}, \boldsymbol{\alpha}) + \mathbb{E} g_{1n}(\cdot, \mathbf{z}, \cdot, \boldsymbol{\theta}, \boldsymbol{\alpha}) + \mathbb{E} g_{1n}(\cdot, \cdot, \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) = \mathbb{E} g_{1n}(\cdot, \cdot, \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}), \\ f_{1n}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) - \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}), \\ E_{luv}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \mathbb{E} \left[\left\{ \frac{\eta_{u}I(Y_{ilu} \geq y_{lu})}{w_{u}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha})} - \frac{\eta_{v}I(Y_{jiv} \geq y_{lv})}{w_{v}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha})} \right\} I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \} \right| \mathcal{P}_{iu}(\boldsymbol{\alpha}) = \mathcal{P}_{jv}(\boldsymbol{\alpha}) \right], \\ I_{uv}(\boldsymbol{\alpha}) &= \int p_{u}(s, \boldsymbol{\alpha}) p_{v}(s, \boldsymbol{\alpha}) ds, \\ \tau_{1}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \sum_{u,v} I_{uv}(\boldsymbol{\alpha}) \frac{1}{K} \sum_{l=1}^{K} E_{luv}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}), \\ g_{2n}(\mathbf{Z}_{i}, \mathbf{Z}_{j}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \mathbb{E} g_{2n}(\mathbf{z}, \cdot, \boldsymbol{\theta}, \boldsymbol{\alpha}) + \mathbb{E} g_{2n}(\cdot, \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}), \\ g_{2}(\mathbf{Z}_{i}, \mathbf{Z}_{j}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \sum_{u=0}^{M} \sum_{v=0}^{M} I \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) \geq \mathcal{P}_{jv}(\boldsymbol{\alpha}) \} I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \}, \\ and \tau_{2}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) &= \mathbb{E} g_{2}(\mathbf{z}, \cdot, \boldsymbol{\theta}, \boldsymbol{\alpha}) + \mathbb{E} g_{2}(\cdot, \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}), \end{aligned}$$

where $p_u(\cdot, \boldsymbol{\alpha})$, $p_v(\cdot, \boldsymbol{\alpha})$ are marginal densities for $\mathcal{P}_{iu}(\boldsymbol{\alpha})$, $\mathcal{P}_{jv}(\boldsymbol{\alpha})$, respectively. We assume the following regularity conditions to establish the asymptotic normality of $\widehat{\boldsymbol{\theta}}_{\mathcal{P}}^W$:

- (C16) There exists an integrable function $M_1(\mathbf{z})$ such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood \mathcal{N} of $\boldsymbol{\theta}_0$, $\|\nabla_2 \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) - \nabla_2 \tau_{1n}(\mathbf{z}, \boldsymbol{\theta}_0, \boldsymbol{\alpha})\| \leq M_1(\mathbf{z}) \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|$, where $\sup_{n, \boldsymbol{\alpha} \in \mathbf{A}} \mathbb{E} \|\nabla_1 \tau_{1n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})\|^2 < \infty$ and $\sup_{n, \boldsymbol{\alpha} \in \mathbf{A}} \mathbb{E} \|\nabla_2 |\tau_{1n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) < \infty$.
- (C17) $\mathbb{E} \| \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) \|^2 < \infty.$
- (C18) There exists an integrable function $M_2(\mathbf{z})$ such that for all \mathbf{z} and $\boldsymbol{\theta}$ in a neighbourhood

$$\mathcal{N} \text{ of } \boldsymbol{\theta}_0, \|\nabla_2 \tau_{2n}(\mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\alpha}) - \nabla_2 \tau_{2n}(\mathbf{z}, \boldsymbol{\theta}_0, \boldsymbol{\alpha})\| \leq M_2(\mathbf{z}) \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|, \text{ where } \sup_{n, \boldsymbol{\alpha} \in \mathbf{A}} \mathbb{E} \|\nabla_1 \tau_{2n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})\|^2 < \infty \text{ and } \sup_{n, \boldsymbol{\alpha} \in \mathbf{A}} \mathbb{E} |\nabla_2 | \tau_{2n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) < \infty.$$

(C19) $\mathbb{E} \| \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) \|^2 < \infty$, and $\nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$ is differentiable with respect to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}_0$. The matrix $\nabla_2 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ is negative definite, and $\nabla_2 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$ is continuous at $\boldsymbol{\alpha}_0$.

Similarly, we decompose the objective function into three terms:

$$\widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta},\boldsymbol{\alpha}) - \widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta}_0,\boldsymbol{\alpha}) = \widetilde{I} + \widetilde{II} + \widetilde{III},$$
(16)

where

$$\begin{split} \widetilde{I} &= \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \frac{\eta_{iu} \eta_{jv}}{w_{iu}(\boldsymbol{\alpha}) w_{jv}(\boldsymbol{\alpha})} \left[I\{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) > \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha})\} - \widetilde{K}_{a_n}\{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha})\} \right] \\ &\times \left[I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0)\} \right], \\ \widetilde{II} &= \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \frac{\eta_{iu} \eta_{jv}}{w_{iu}(\boldsymbol{\alpha}) w_{jv}(\boldsymbol{\alpha})} \left[\widetilde{K}_{a_n}\{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha})\} - \widetilde{K}_{a_n}\{\mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha})\} \right] \\ &\times \left[I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0)\} \right], \\ \widetilde{III} &= \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} \frac{\eta_{iu} \eta_{jv}}{w_{iu}(\boldsymbol{\alpha}) w_{jv}(\boldsymbol{\alpha})} \widetilde{K}_{a_n}\{\mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha})\} \\ &\times \left[I\{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I\{\mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0)\} \right], \end{split}$$

and $\mathcal{P}_{iu}(\boldsymbol{\alpha}) = \mathbb{E}\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha})$. The first term can be controlled uniformly over $o_P(1)$ neighbourhood of $(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ by

$$|\widetilde{I}| \leq \frac{c^{-2}}{n(n-1)} \sum_{i \neq j} \sum_{u=0}^{M} \sum_{v=0}^{M} \widetilde{K}_{a_{n}} \{-|\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha})|\} \eta_{iu} \eta_{jv} |I \{\mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta})\} - I \{\mu_{iu}(\boldsymbol{\theta}_{0}) > \mu_{jv}(\boldsymbol{\theta}_{0})\}|$$

$$= o_{P} (\|\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\|^{2}) + (\boldsymbol{\theta} - \boldsymbol{\theta}_{0})^{T} o_{P} (1/\sqrt{n}) + o_{P} (1/n).$$
(17)

We take the following Taylor expansion for the second term:

$$\widetilde{K}_{a_n} \{ \widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha}) \} - \widetilde{K}_{a_n} \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha}) \}$$
$$= K_{a_n} \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha}) \} \{ \widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha}) - \mathcal{P}_{iu}(\boldsymbol{\alpha}) + \mathcal{P}_{jv}(\boldsymbol{\alpha}) \}$$
$$+ O\left\{ \frac{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha}) - \mathcal{P}_{iu}(\boldsymbol{\alpha}) + \mathcal{P}_{jv}(\boldsymbol{\alpha})}{a_n} \right\}.$$

Note that $a_n^{-1}\{\widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha}) - \mathcal{P}_{iu}(\boldsymbol{\alpha}) + \mathcal{P}_{jv}(\boldsymbol{\alpha})\} = o_P(1)$ uniformly over $1 \leq i \neq j \leq n$ and O(1) neighbourhoods of $\boldsymbol{\alpha}_0$. Thus, the second term, uniformly over $o_P(1)$ neighbourhood of $(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$, equals to

$$\widetilde{II} = \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} K_{a_n} \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha}) \} \{ \widehat{\mathcal{P}}_{iu}(\boldsymbol{\alpha}) - \widehat{\mathcal{P}}_{jv}(\boldsymbol{\alpha}) - \mathcal{P}_{iu}(\boldsymbol{\alpha}) + \mathcal{P}_{jv}(\boldsymbol{\alpha}) \}$$

$$\times [I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \} - I \{ \mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0) \}]$$

$$+ o_P(1) \frac{1}{n(n-1)} \sum_{i \neq j} \sum_{u,v} [I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \} - I \{ \mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0) \}]$$

$$= \widetilde{II}(a) + o_P(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T o_P(1/\sqrt{n}) + o_P(1/n).$$

$$(18)$$

Since $\widehat{\mathcal{P}}_{iu}(\alpha) - \mathcal{P}_{iu}(\alpha) = n^{-1} \sum_{k=1}^{n} \xi_{iku}(\alpha)$, it can be shown that

$$\widetilde{II}(a) = \frac{1}{n^2(n-1)} \sum_{i \neq j \neq k} \sum_{u,v} K_{a_n} \{ \mathcal{P}_{iu}(\boldsymbol{\alpha}) - \mathcal{P}_{jv}(\boldsymbol{\alpha}) \} \{ \xi_{iku}(\boldsymbol{\alpha}) - \xi_{jkv}(\boldsymbol{\alpha}) \}$$
$$\times [I \{ \mu_{iu}(\boldsymbol{\theta}) > \mu_{jv}(\boldsymbol{\theta}) \} - I \{ \mu_{iu}(\boldsymbol{\theta}_0) > \mu_{jv}(\boldsymbol{\theta}_0) \}] + o_P(n^{-1})$$
$$= \frac{n-2}{n} \frac{1}{\sqrt{n}} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T W_{1n}(\boldsymbol{\alpha}) + o_P (\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2) + o_P(n^{-1})$$

uniformly over $o_P(1)$ neighbourhood of $(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$, where $W_{1n}(\boldsymbol{\alpha}) = \sqrt{n} \mathbb{P}_n \nabla_1 \tau_{1n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$. When the conditional density function of $\{\mathcal{P}_{iu}(\boldsymbol{\alpha}), \mathcal{P}_{jv}(\boldsymbol{\alpha})\}|(\mathbf{X}_i, \mathbf{X}_j)$ is thrice continuously differentiable with probability, $\tau_{1n}(z, \boldsymbol{\theta}, \boldsymbol{\alpha}) \rightarrow \tau_1(z, \boldsymbol{\theta}, \boldsymbol{\alpha})$ and $W_{1n} - \sqrt{n} \mathbb{P}_n \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) \xrightarrow{P} 0$ as $n \to \infty$. By some algebraic calculation, the third term converges uniformly over $o_P(1)$ neighbourhood of $(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ to

$$\widetilde{III} = \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right)^T V_n(\boldsymbol{\alpha}) \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right) + \frac{1}{\sqrt{n}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_0 \right)^T W_{2n}(\boldsymbol{\alpha}) + o_P \left(\| \boldsymbol{\theta} - \boldsymbol{\theta}_0 \|^2 \right) + o_P (1/n),$$
(19)

where $2V_n(\boldsymbol{\alpha}) = \mathbb{E}\nabla_2 \tau_{2n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$ and $W_{2n}(\boldsymbol{\alpha}) = \sqrt{n}\mathbb{P}_n \nabla_1 \tau_{2n}(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$. Notice that $\tau_{2n}(z, \boldsymbol{\theta}, \boldsymbol{\alpha}) \rightarrow \tau_2(z, \boldsymbol{\theta}, \boldsymbol{\alpha}), W_{2n}(\boldsymbol{\alpha}) - \sqrt{n}\mathbb{P}_n \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}) \xrightarrow{P} 0$ and $V_n(\boldsymbol{\alpha}) \xrightarrow{P} V_{\mathcal{P}}(\boldsymbol{\alpha}) = \mathbb{E}\nabla_2 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha})$. By Equations (16)-(19), we have

$$\begin{aligned} \widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta},\widehat{\boldsymbol{\alpha}}) &- \widetilde{\mathcal{L}}_{n,\widehat{\mathcal{P}}}(\boldsymbol{\theta}_{0},\widehat{\boldsymbol{\alpha}}) \\ = & \frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right)^{T} V_{\mathcal{P}}(\boldsymbol{\alpha}_{0}) \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right) + \frac{1}{\sqrt{n}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right)^{T} \left\{ \frac{n-2}{n} W_{1n}(\widehat{\boldsymbol{\alpha}}) + W_{2n}(\widehat{\boldsymbol{\alpha}}) \right\} + o_{P}(n^{-1}), \end{aligned}$$

uniformly over $O_P(1/\sqrt{n})$ neighbourhoods of $\boldsymbol{\theta}_0$. Combining the fact that

$$W_{1n}(\widehat{\boldsymbol{\alpha}}) = \sqrt{n} \mathbb{P}_n \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) + \mathbb{E} \nabla_{\boldsymbol{\alpha}} \nabla_1 \tau_1(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) n^{-1/2} \sum_{i=1}^n \kappa_i + o_P(1),$$
$$W_{2n}(\widehat{\boldsymbol{\alpha}}) = \sqrt{n} \mathbb{P}_n \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) + \mathbb{E} \nabla_{\boldsymbol{\alpha}} \nabla_1 \tau_2(\cdot, \boldsymbol{\theta}_0, \boldsymbol{\alpha}_0) n^{-1/2} \sum_{i=1}^n \kappa_i + o_P(1),$$

and Theorem 2 in Sherman (1993), $\sqrt{n}(\widehat{\boldsymbol{\theta}}_{\mathcal{P}}^{W} - \boldsymbol{\theta}_{0,\mathcal{P}}) \xrightarrow{D} \mathcal{N}(0, V_{\mathcal{P}}(\boldsymbol{\alpha}_{0})^{-1}\Delta_{\mathcal{P}}(\boldsymbol{\alpha}_{0})V_{\mathcal{P}}(\boldsymbol{\alpha}_{0})^{-1}),$ where $\Delta_{\mathcal{P}}(\boldsymbol{\alpha}_{0}) = \mathbb{E}\left[\nabla_{1}\tau_{1}(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0}) + \nabla_{1}\tau_{2}(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0}) + \{\mathbb{E}\nabla_{\boldsymbol{\alpha}}\nabla_{1}\tau_{1}(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0}) + \mathbb{E}\nabla_{\boldsymbol{\alpha}}\nabla_{1}\tau_{2}(\cdot, \boldsymbol{\theta}_{0}, \boldsymbol{\alpha}_{0})\}\kappa_{i}\right]^{\otimes 2}.$

2 Additional Simulation Results

Tables S1-S5 summarize the parameter estimation results of the proposed method (MRC) under Setups S1-S5, as well as its comparison with the GEE method under Setups S1-S3. Figures S1-S2 present the empirical coverage probabilities of MRC under Setups S1-S5.

Table S6 shows simulation results under a slightly modified Setup S4, where one of the continuous outcomes is dichotomized to binary. Table S7 examines the results when the empirical CDF and missing weights are set to their true counterparts in the estimation procedure. Table S8 compares the ASE and C95 when the perturbation sample size B = 200,

400, and 600. Table S9 reports sensitivity study when the missing scheme model was misspecified using a probit regression model.

Figure S1: Empirical coverage probabilities of the MRC estimator for a single longitudinal outcome under Setups S1-S3. The points in the figures denote averages over 2000 repetitions.

Setup	missing		β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	β_t
$\mathbf{S1}$	No	Bias	0.001	0.003	0.005	-0.004	0.001	0.011	-0.008	0.015	0.005
		ESD	0.077	0.134	0.043	0.071	0.094	0.067	0.088	0.179	0.047
		ASE	0.079	0.137	0.050	0.082	0.113	0.074	0.100	0.202	0.053
		ECP	0.931	0.929	0.939	0.938	0.950	0.947	0.943	0.944	0.949
	\mathbf{Yes}	Bias	0.003	0.006	0.007	-0.006	0.006	0.009	-0.008	0.022	0.003
		ESD	0.077	0.133	0.053	0.083	0.121	0.081	0.111	0.222	0.063
		ASE	0.082	0.144	0.062	0.097	0.137	0.088	0.124	0.242	0.067
		ECP	0.934	0.935	0.932	0.939	0.933	0.933	0.937	0.933	0.925
S2	No	Bias	0.001	0.003	0.005	-0.004	0.002	0.010	-0.006	0.014	0.004
		ESD	0.069	0.119	0.038	0.063	0.084	0.060	0.079	0.159	0.042
		ASE	0.071	0.123	0.045	0.073	0.101	0.066	0.089	0.181	0.047
		ECP	0.934	0.935	0.947	0.943	0.951	0.944	0.943	0.953	0.944
	Yes	Bias	0.003	0.005	0.006	-0.005	0.005	0.012	-0.010	0.023	0.004
		ESD	0.069	0.120	0.045	0.075	0.108	0.076	0.103	0.206	0.056
		ASE	0.074	0.130	0.054	0.088	0.125	0.081	0.116	0.226	0.062
		ECP	0.933	0.941	0.939	0.941	0.929	0.939	0.941	0.943	0.943
S3	No	Bias	0.002	0.005	0.009	-0.007	0.003	0.022	-0.016	0.033	0.009
		ESD	0.129	0.223	0.073	0.118	0.157	0.117	0.149	0.302	0.079
		ASE	0.132	0.231	0.084	0.135	0.185	0.127	0.167	0.337	0.089
		ECP	0.938	0.940	0.944	0.940	0.951	0.946	0.946	0.946	0.944
	Yes	Bias	0.005	0.010	0.015	-0.013	0.012	0.039	-0.028	0.073	0.008
		ESD	0.131	0.226	0.090	0.142	0.206	0.158	0.204	0.421	0.109
		ASE	0.141	0.254	0.107	0.167	0.239	0.170	0.229	0.453	0.121
		ECP	0.947	0.952	0.950	0.943	0.955	0.928	0.945	0.942	0.946
Bias = averag	= empirical ave e of estimated	erage of the standard er	bias for the I rors over rep	parameter es dications, an	timate, ESD d ECP = em	= empirical pirical covera	standard dev ige probabilit	riation of the y of 95% con	estimates ov nfidence inter	er replications val.	, ASE $=$

Table S1: Parameter estimation results by MRC for a single longitudinal outcome (n = 200).

S1 No Bias ESD ASE ECP FECP FECP ESD ASE ESD ASE ECP ECP Bias	000	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	β_t
ESD ASE ASE ECP Yes Bias ESD ASE ECP ECP Bias	0.000	0.002	0.003	-0.001	0.000	0.004	-0.001	0.007	0.001
ASE ECP Fecs Bias ESD ASE ECP ECP S2 No Bias S2 No Bias	0.052	0.091	0.029	0.046	0.067	0.047	0.060	0.127	0.031
ECP Yes Bias ESD ASE ECP ECP S2 No Bias	0.054	0.093	0.032	0.054	0.074	0.049	0.065	0.134	0.034
Yes Bias ESD ASE ECP S2 No Bias	0.946	0.950	0.936	0.950	0.937	0.945	0.947	0.937	0.952
ESD ASE ECP S2 No Bias	0.000	0.002	0.004	-0.001	0.002	0.003	-0.001	0.010	0.000
ASE ECP S2 No Bias	0.052	0.094	0.035	0.054	0.080	0.055	0.073	0.149	0.039
ECP S2 No Bias	0.056	0.098	0.040	0.063	0.090	0.059	0.082	0.161	0.044
S2 No Bias	0.942	0.935	0.934	0.949	0.943	0.933	0.943	0.941	0.947
	0.000	0.001	0.003	-0.001	0.001	0.004	-0.001	0.007	0.001
ESD	0.046	0.081	0.025	0.042	0.060	0.042	0.053	0.113	0.028
ASE	0.048	0.083	0.029	0.048	0.066	0.044	0.058	0.120	0.031
ECP	0.949	0.943	0.944	0.955	0.943	0.942	0.948	0.942	0.949
Yes Bias	0.000	0.002	0.003	-0.001	0.000	0.004	-0.002	0.007	0.001
ESD	0.047	0.084	0.030	0.049	0.072	0.051	0.069	0.140	0.037
ASE	0.050	0.088	0.035	0.057	0.082	0.053	0.076	0.150	0.040
ECP	0.942	0.936	0.946	0.948	0.938	0.937	0.940	0.940	0.940
S3 No Bias	0.000	0.002	0.004	-0.002	0.002	0.009	-0.003	0.016	0.001
ESD	0.085	0.150	0.046	0.076	0.109	0.078	0.099	0.209	0.051
ASE	0.089	0.155	0.054	0.088	0.121	0.083	0.108	0.222	0.057
ECP	0.951	0.948	0.959	0.949	0.945	0.951	0.952	0.953	0.950
Yes Bias	0.001	0.005	0.007	-0.004	0.002	0.014	-0.007	0.021	0.003
ESD	0.087	0.157	0.057	0.091	0.137	0.107	0.134	0.283	0.071
ASE	0.094	0.167	0.067	0.107	0.153	0.110	0.147	0.294	0.078
ECP	0.951	0.945	0.952	0.955	0.938	0.923	0.948	0.945	0.940

					= u)	40U).					
Setup	Method		eta_{20}	eta_{30}	eta_{11}	β_{21}	eta_{31}	β_{12}	β_{22}	β_{32}	eta_t
$\mathbf{S1}$	MRC	Bias	0.000	0.002	0.003	-0.001	0.000	0.004	-0.001	0.007	0.001
		ESD	0.052	0.091	0.029	0.046	0.067	0.047	0.060	0.127	0.031
		ASE	0.054	0.093	0.032	0.054	0.074	0.049	0.065	0.134	0.034
		ECP	0.946	0.950	0.936	0.950	0.937	0.945	0.947	0.937	0.952
	GEE	Bias	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	-0.001	0.000
		ESD	0.044	0.079	0.017	0.036	0.049	0.017	0.038	0.069	0.024
		ASE	0.044	0.077	0.017	0.036	0.049	0.017	0.039	0.068	0.023
		ECP	0.951	0.942	0.945	0.950	0.944	0.950	0.953	0.947	0.945
S2	MRC	Bias	0.000	0.001	0.003	-0.001	0.001	0.004	-0.001	0.007	0.001
		ESD	0.046	0.081	0.025	0.042	0.060	0.042	0.053	0.113	0.028
		ASE	0.048	0.083	0.029	0.048	0.066	0.044	0.058	0.120	0.031
		ECP	0.949	0.943	0.944	0.955	0.943	0.942	0.948	0.942	0.949
	GEE	Bias	-0.003	-0.008	-0.081	0.057	-0.075	-0.329	0.207	-0.669	0.011
		ESD	0.050	0.092	0.022	0.043	0.064	0.028	0.052	0.094	0.033
		ASE	0.051	0.089	0.022	0.044	0.064	0.028	0.053	0.092	0.032
		ECP	0.957	0.940	0.040	0.731	0.781	0.000	0.030	0.000	0.931
$\mathbf{S3}$	MRC	Bias	0.000	0.002	0.004	-0.002	0.002	0.009	-0.003	0.016	0.001
		ESD	0.085	0.150	0.046	0.076	0.109	0.078	0.099	0.209	0.051
		ASE	0.089	0.155	0.054	0.088	0.121	0.083	0.108	0.222	0.057
		ECP	0.951	0.948	0.959	0.949	0.945	0.951	0.952	0.953	0.950
	GEE	Bias	0.008	0.020	0.180	-0.135	0.171	0.533	-0.331	1.050	0.006
		ESD	0.086	0.144	0.044	0.073	0.116	0.060	0.108	0.205	0.061
		ASE	0.082	0.141	0.043	0.072	0.115	0.061	0.106	0.206	0.058
		ECP	0.939	0.942	0.016	0.555	0.691	0.000	0.101	0.000	0.939
Bias avera	= empirical av ge of estimated	erage of the l standard ei	bias for the rrors over rep	parameter es olications, an	timate, ESD d $ECP = em$	= empirical pirical covers	standard dev age probabili	riation of the sy of 95% cor	estimates ov ifidence inter	er replications val.	s, ASE =

Table S3: Comparison of parameter estimation results by MRC and GEE on complete data for a single longitudinal outcome

nissing		β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	β_t
No	Bias	-0.008	0.009	0.009	0.001	0.000	0.012	-0.001	0.000	0.001
	ESD	0.078	0.109	0.082	0.044	0.062	0.096	0.058	0.066	0.023
	ASE	0.085	0.113	0.096	0.054	0.080	0.112	0.073	0.084	0.027
	ECP	0.950	0.948	0.943	0.933	0.952	0.944	0.936	0.956	0.941
$\mathbf{Y}_{\mathbf{es}}$	Bias	-0.012	0.013	0.015	0.003	-0.004	0.019	0.002	-0.009	0.004
	ESD	0.084	0.108	0.093	0.081	0.078	0.118	0.078	0.086	0.032
	ASE	0.095	0.123	0.119	0.090	0.100	0.142	0.096	0.108	0.038
	ECP	0.948	0.950	0.939	0.952	0.948	0.942	0.951	0.959	0.960
N_{O}	Bias	-0.008	0.009	0.011	-0.001	0.000	0.013	-0.003	0.000	0.001
	ESD	0.074	0.100	0.069	0.039	0.061	0.085	0.057	0.066	0.021
	ASE	0.084	0.111	0.090	0.051	0.077	0.105	0.071	0.082	0.025
	C95	0.941	0.940	0.945	0.943	0.941	0.940	0.945	0.947	0.940
$\mathbf{Y}_{\mathbf{es}}$	Bias	-0.013	0.014	0.017	0.004	-0.002	0.018	0.001	-0.007	0.003
	ESD	0.082	0.104	0.087	0.077	0.076	0.110	0.078	0.088	0.031
	ASE	0.093	0.119	0.112	0.090	0.097	0.133	0.093	0.106	0.037
	C95	0.944	0.934	0.948	0.962	0.951	0.933	0.937	0.954	0.956
mpirical aver f estimated :	rage of the k standard err	bias for the provide the provided the provided of the provided the provided of	arameter est ications, and	imate, ESD ECP = em]	= empirical pirical covera	standard dev age probabilit	riation of the y of 95% cor	estimates ov nfidence inter	er replicatio val.	ıs, ASE =
	No Yes No Yes Tes festimated f	missing No Bias FSD ASE ECP Yes Bias FCP No Bias FCP No Bias FCP Yes Bias FCP No Bias FCP ASE C95 Yes Bias C95 ASE ASE C95 ASE C95 ASE ASE C95 ASE ASE C95 ASE ASE C95 ASE			missing β_{20} β_{30} β_{11} No Bias -0.008 0.009 0.009 ESD 0.078 0.113 0.096 ASE 0.085 0.113 0.096 ASE 0.085 0.113 0.096 Yes Bias -0.012 0.013 0.015 Yes Bias -0.012 0.013 0.015 Yes Bias -0.012 0.013 0.011 Yo<	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	missing β_{20} β_{30} β_{11} β_{21} β_{12} β_{12} No Bias -0.008 0.009 0.001 0.002 0.009 0.012 0.006 0.012 0.006 0.012 0.006 0.012 0.006 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0113 0.012 0.0122 0.0125 0.	missing β_{20} β_{30} β_{11} β_{21} β_{31} β_{12} β_{22} No Bias -0.008 0.009 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.012 -0.003 0.073 -0.073 -0.073 0.093 0.013 0.073	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

(n = 200).
GPO
the longitudinal
for
MRC
$\mathbf{b}\mathbf{y}$
results
ter estimation
Paramet
Table S4:

Setup	Missing		β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	β_t
$\mathbf{S4}$	No	Bias	-0.003	0.006	0.005	-0.001	0.000	0.008	-0.002	0.000	0.000
		ESD	0.049	0.066	0.047	0.027	0.040	0.059	0.036	0.042	0.015
		ASE	0.054	0.072	0.059	0.034	0.049	0.069	0.045	0.052	0.017
		ECP	0.959	0.947	0.943	0.948	0.953	0.937	0.953	0.949	0.950
	$\mathbf{Y}_{\mathbf{es}}$	Bias	-0.003	0.006	0.008	-0.001	0.000	0.009	-0.001	-0.003	0.002
		ESD	0.053	0.069	0.058	0.053	0.051	0.074	0.050	0.056	0.020
		ASE	0.060	0.078	0.073	0.059	0.061	0.087	0.059	0.067	0.024
		ECP	0.949	0.942	0.948	0.951	0.940	0.947	0.947	0.951	0.953
S5	N_{O}	Bias	-0.003	0.007	0.006	-0.001	-0.001	0.007	-0.002	-0.001	0.001
		ESD	0.051	0.068	0.047	0.024	0.040	0.057	0.036	0.043	0.014
		ASE	0.055	0.073	0.057	0.032	0.049	0.067	0.045	0.052	0.016
		ECP	0.946	0.938	0.938	0.958	0.945	0.934	0.951	0.949	0.949
	$\mathbf{Y}_{\mathbf{es}}$	Bias	-0.004	0.007	0.007	-0.002	-0.002	0.008	-0.002	-0.003	0.002
		ESD	0.055	0.069	0.057	0.054	0.051	0.071	0.049	0.058	0.019
		ASE	0.061	0.077	0.070	0.059	0.061	0.084	0.059	0.066	0.023
		ECP	0.939	0.941	0.948	0.951	0.946	0.946	0.953	0.937	0.961
Bias = averag	= empirical ave e of estimated	rage of the standard er	bias for the p rors over repl	barameter es lications, and	timate, ESD d ECP = em	= empirical mirical covers	standard dev age probabilit	iation of the v of 95% cor	estimates ov ufidence inter	er replicatior val.	s, ASE =
					1			^ ^ ^ ^ ^			

(n = 400).
gitudinal GPO
ARC for the lor
on results by N
eter estimatio
Table S5: Param

Figure S2: Empirical coverage probabilities of the MRC estimator for the longitudinal GPO under Setups S4-S5. The points in the figures denote averages over 2000 repetitions.

		Table D	0. Diniu	1401011 1	Course wi	ion one	or the o	utcomes	is binar	y.
n		β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	t
200	Bias	-0.011	0.012	0.013	-0.001	0.001	0.015	-0.002	-0.000	0.001
	ESD	0.093	0.126	0.099	0.052	0.080	0.113	0.075	0.085	0.026
	ASE	0.099	0.133	0.119	0.067	0.101	0.139	0.092	0.105	0.030
	C95	0.935	0.934	0.940	0.944	0.939	0.945	0.932	0.944	0.922
400	Bias	-0.003	0.008	0.008	-0.002	-0.002	0.010	-0.003	-0.000	0.001
	ESD	0.060	0.081	0.061	0.034	0.054	0.074	0.048	0.057	0.017
	ASE	0.066	0.088	0.078	0.044	0.066	0.090	0.060	0.068	0.020
	C95	0.934	0.937	0.948	0.943	0.934	0.952	0.947	0.941	0.931

Table S6: Simulation results when one of the outcomes is binary.

Table S7: Performance of the proposed method when marginal CDF and censoring weightsare estimated from data or set to true.

n			β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	t
200	Estimated	Bias	-0.012	0.013	0.015	0.003	-0.004	0.019	0.002	-0.009	0.004
		ESD	0.084	0.108	0.093	0.081	0.078	0.118	0.078	0.086	0.032
	True	Bias	-0.010	0.011	0.016	0.001	-0.002	0.021	-0.003	-0.005	0.005
		ESD	0.082	0.104	0.091	0.082	0.074	0.115	0.078	0.086	0.032
400	Estimated	Bias	-0.003	0.006	0.008	-0.001	0.000	0.009	-0.001	-0.003	0.002
		ESD	0.053	0.069	0.058	0.053	0.051	0.074	0.050	0.056	0.020
	True	Bias	-0.003	0.007	0.005	0.002	-0.003	0.004	0.002	-0.006	0.001
		ESD	0.056	0.071	0.060	0.054	0.049	0.072	0.051	0.057	0.020

n		В	β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	t
200	Bias		-0.010	0.011	0.013	-0.002	0.002	0.014	-0.002	-0.002	0.001
	ESD		0.077	0.102	0.075	0.043	0.060	0.089	0.059	0.065	0.023
	ASE	200	0.085	0.113	0.096	0.054	0.080	0.111	0.073	0.084	0.027
	ASE	400	0.085	0.113	0.096	0.054	0.080	0.112	0.073	0.084	0.027
	ASE	600	0.085	0.113	0.096	0.054	0.080	0.112	0.073	0.084	0.027
	C95	200	0.951	0.947	0.940	0.936	0.947	0.948	0.934	0.951	0.932
	C95	400	0.950	0.948	0.943	0.933	0.952	0.944	0.936	0.956	0.941
	C95	600	0.951	0.956	0.956	0.948	0.956	0.955	0.943	0.961	0.944
400	Bias		-0.002	0.006	0.005	-0.001	0.000	0.008	-0.002	0.001	0.000
	ESD		0.049	0.066	0.047	0.027	0.041	0.057	0.036	0.044	0.015
	ASE	200	0.054	0.072	0.059	0.034	0.049	0.069	0.045	0.052	0.017
	ASE	400	0.054	0.072	0.059	0.034	0.049	0.069	0.045	0.052	0.017
	ASE	600	0.054	0.072	0.059	0.034	0.049	0.069	0.045	0.052	0.017
	C95	200	0.941	0.938	0.943	0.938	0.938	0.938	0.949	0.939	0.943
	C95	400	0.959	0.947	0.943	0.948	0.953	0.937	0.953	0.949	0.950
	C95	600	0.955	0.947	0.952	0.938	0.948	0.954	0.948	0.946	0.940

Table S8: Comparison of simulation results when B = 200, 400, and 600 under Setup S4.

\overline{n}		β_{20}	β_{30}	β_{11}	β_{21}	β_{31}	β_{12}	β_{22}	β_{32}	t
200	Bias	-0.012	0.010	0.015	0.004	-0.003	0.019	0.002	-0.007	0.005
	ESD	0.085	0.106	0.098	0.078	0.075	0.113	0.076	0.088	0.033
	ASE	0.094	0.123	0.119	0.090	0.099	0.142	0.095	0.107	0.038
	C95	0.949	0.963	0.953	0.967	0.959	0.960	0.956	0.954	0.953
400	Bias	-0.001	0.003	0.006	-0.002	0.001	0.007	-0.002	-0.002	0.001
	ESD	0.053	0.071	0.060	0.051	0.051	0.071	0.049	0.055	0.020
	ASE	0.060	0.078	0.073	0.059	0.061	0.088	0.059	0.067	0.024
	C95	0.958	0.942	0.944	0.971	0.929	0.942	0.960	0.948	0.963

Table S9: Performance of the proposed method when the missing weights were estimatedusing a probit regression model under Setup S4.

References

- Cavanagh, C. & Sherman, R. P. (1998), 'Rank estimators for monotonic index models', Journal of Econometrics 84(2), 351–382.
- Khan, S. & Tamer, E. (2007), 'Partial rank estimation of duration models with general forms of censoring', *Journal of Econometrics* 136(1), 251–280.
- Pakes, A., Pollard, D. et al. (1989), 'Simulation and the asymptotics of optimization estimators', *Econometrica* 57(5), 1027–1057.
- Robins, J. M., Rotnitzky, A. & Zhao, L. P. (1995), 'Analysis of semiparametric regression models for repeated outcomes in the presence of missing data', *Journal of the American Statistical Association* **90**(429), 106–121.
- Sherman, R. P. (1993), 'The limiting distribution of the maximum rank correlation estimator', *Econometrica* 61(1), 123–37.
- Sherman, R. P. (1994), 'Maximal inequalities for degenerate u-processes with applications to optimization estimators', *The Annals of Statistics* **22**(1), 439–459.

Van der Vaart, A. W. (2000), Asymptotic Statistics, Vol. 3, Cambridge university press.