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Supplementary Material

This supplementary article consists of two appendices. In Appendix[S1] we provide the theoretical results,
including proofs of the lemmas and theorems in the equality test in Section (with a list of critical values), GOF
test in Section [3] and distinguishing distributions methods in Section [] in the Manuscript. All supplementary
explanations in the Manuscript are provided in the Remarks. In Appendix we provide a list of critical
values tip,o and ugp,o for the equality test in Section 2] We further include more simulation results, including
comparisons with empirical-likelihood-based tests and p-value adjusted methods (Bonferroni, Benjamini and
Yekutieli’s methods, and Cauchy combination test) of the proposed methods with selected numbers of samples
k = 3,4 and 5, and 10 with equal sample sizes n = 60, 100,200 and p = 1, 2, co.

S1 Proof of Lemmas and Theorems

We provide theoretical justifications for the proposed equality tests, GOF tests, and
distinguishing distribution methods in the following Sections to [S1.3] We denote
n = minj<;<; n; and convergences in probability, in distribution, and in law by 2
i>, and —, respectively. Throughout this work, we assume that the inverse function
F! exists and equals the quantile function.

For 1 < i < k, recall that [F; is the empirical distribution of the ith sample and
Fijrll as the empirical quantile of the (i + 1)th sample. We first demonstrate that the

empirical version of R only depends on the corresponding R;.

Remark S1.1. Assume that all the distributions F; are continuous and invertible,

then the sampling distribution of R; only depends on the sample sizes and R;, but not
directly from the distributions F; or Fiyq.

For 1 < j <k, since {F;(Xj1),...,F;j(Xj,,)} are independent random samples
from the uniform distribution with support (0,1), we can rewrite X;; = F, ' (Uy)
by assuming that the inverse of F; exists such that F; ' is identical to the quantile
function of Fj over (0,1). So, we define Uj,, as the uniform empirical distributions

and Uj_nlj as the corresponding empirical quantile functions from a random sample



{F;(Xj1), ..., F5(Xjn,)}. Therefore,
t)=n; 'Y I(Xy <t)=n;" Y I(F ' (Ux) < 1)
k=1

= ni_l zi:]{Uik < E(t)} = Uj7nj{Fi<t)}’

j=1
ni41
F L (u) = inf{t : Fi1(t) > u} = inf {t tn; ! Z Uitk < Fia(t)} > u}
k=1
Ni4+1
= inf {FZA () nih Y HUGew < w) > 0}
7j=1
Ti+1
= Fd [inf {w: niy > HUpw < wh > u}| = FA{UZ,, ()},
j=1

where the last equality holds because F} 47 is assumed to be continuous. Hence, for
1<i<k,

Ri(u) = Fi{F ) (w)} = Ujn ABIF UG, (@) = Ugn [RAUZ, L, (0],

where 0 < u < 1. In other words, if there exist distributions G; and G, satisfy that
R, = GH{G Jrll}, even G; # F; and G, 1 # F;1, the approach above still follows such
that the distribution of R;(u) are identical.

The following lemma provides the asymptotic joint behavior of the empirical esti-
mators R;(u) = F{F ., (u)} for 0 <u < 1.

Lemma S1.1. Assume that, for all 1 <i < k, R; have continuous first derivatives R,
over [0,1]. There exist independent standard Brownian bridges By, Ba, . .., By such that

sup |Ci{ Ri(u) — Ri(w)} — | N B{ Ri(w)} — (1 - )\i)l/zRQ(U)Bm(U)} ‘

0<u<l

converges to 0 almost surely as n — oo, where C; = \/miniy1/(n; +ni1) and the
sample fractions ;1 /(n; +ni11) converge to 0 < \; <1 as n — oo.

Proof of Lemma|[51.1 Here, we follow the same notations produced in the proof of
Remark [S To study the asymptotic behavior of R;, we subtract and adding
RAU . ()} in Ci{Ri(u) — R;(u)} and obtain

Ci{ Ri(u) = Ri(w)}

N C ( g [R {UZ'H n1+1( )}] R {Uz—‘rl M1 (U)}) (Sll)
+ Gi[RAUZ, e (W} = Riu)]. (S1.2)



According to Theorem 3.1.1 and Theorem 3.1.3 in Shorack and Wellner| (1986)), as
n — 00, we obtain

sup |Ujp, (u) —ul = sup [U;, (u) —ul =0, as., (S1.3)
0<u<l 0<u<l /
sup |vni{Ujn, (u) —u} — Bi(u)] = 0, a.s., (S1.4)
0<u<1
sup |\/n_Z{UJn (u) —u} + Bi(u)] = 0, as., (S1.5)
0<u<l1

where By, Bs, ..., By are the independent standard Brownian bridges since the k sam-

ples are mutually independent. Therefore, combining (S1.3)) and (| -, - con-
verges to )\ ’B; {R;(u)} in sup-norm over [0, 1] a.s.. On the other hand, applying the
mean value theorem and (SLH), (S1.2) converges to —(1 — X\)V2Ri(u) - Bi1(u) in

sup-norm over [0, 1] a.s.. Hence,

sup [Ciffi(w) = Rifw)} = [NBRi(w)} = (1= )2 Ri(0)Bia ()|

0<u<1

converges to 0 almost surely as n — oo.
[

Lemma gives the foundation of all the asymptotic results in this work, the
asymptotic joint behavior of Ry, Ry ..., Ri_1 through By, ..., By. Hereafter, we denote
Ti(u) = Ag/zBi{Ri(u)} — (1= X)Y2Ri(u) By 1 (u) for 0 < u < 1. Comparing with Theo-
rem 2.2 in Hsieh and Turnbull| (1996), the negative sign before (1 — \;)Y2R}(u)Biy1(u)
in 7; is required when k > 2 because the quantile function approximation in and
the empirical distribution approximation in share the same Brownian bridge B;
but with opposite sign.

S1.1 Proofs and Lemmas in Section [2|
Define T;p and J;o by

Zo(u) = )\3/281(16) — (1 — )\i>1/28i+1(u)70 S u S 1,
Jo(w) ={sup Tp)/(1—-v)}(1—-u),0<u<1l, and Jp(l)=0

0<v<u

When F; = F;;; such that R; = Ry, Lemma gives

sup ‘C’l{f%l(u) — Ri(u)} — ﬁo(u)‘ — 0 as..

0<u<l1

as n — oo. The following Lemma provides the limiting distributions of T}, =
Zlgkk Ay, and Uy, = max;<;< Ay under Hy, where A;, = C;||MR; — Ry||p-

Lemma S1.2. Under Hy, for every p € [1,00], Ty, and Uy, converge in distribution
to 1 cick | Tiollp and maxy<i<y. || Tiollp, respectively, as n — oo.
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Proof of Lemma[S1.9. Under Hy : Fy = Fy = --- = F},, we have R; = Ry and MR; =
Ry for all 1 < i < k where Ry(u) = u over u € [0,1] is the equal distribution line.
According to Lemma 5 in [Tang et al.| (2017)), the functional operator M is Hadamard
directional differentiable, so the functional delta method and the continuous mapping
theorem can be applied. Therefore, apply Lemma 4 in [Tang et al. (2017), as n — oo,
the difference A;, = Ci|MR; — Roll, = Ci||MR; — MR;]|, converges to ||Jioll, in
distribution for 1 < p < oco. Applying continuous mapping theorem again, 7}, and
Uyp converge to >, [[Jiollp and maxi<i, || Jiol[, in distribution, respectively, as
n — 00. [

Proof of Theorem[l. Under Hy, from Lemma , it is clear that both pr(Uy, >
Ukpo) = o and pr(Ty, > ty, o) = a by definition. Under Hy, to show the consistency for
proposed equal tests, we first show that the quantile values t, , and ug, o are bounded
asymptotically. It suffices to show that both »,_._. ||Jioll, and maxi<;< | Jiol|, are
bounded in probability. By definition, it is clear that J(u) > 0 for all 0 < u < 1,
then we have

0 < Jio(u) = sup {Tio(v)/(1 = v)}(1 —u)

0<v<u
< sup {Tio(v)/(1 = u)}(1 —u) = sup Tig(u) < ||Tiolloo-
0<v<u 0<v<u

Hence, [[Tiolly < |Jiolloe < [Tolle < A 1Billoo + (1 = X)Y2[Bisalloc < [1Billoo +
|Bis1]lo because 0 < A\; < 1 for 1 <14 < k. Note that the Brownian bridge is bounded
with probability one. The boundedness holds the same for || Fiollp, D 1<,k || Jiollp and
maxi << || Jio||p- Therefore, both quantile values tx, o, and ug, o are bounded.

Under Hj, there exists at least a pair of consecutive distributions, say F; and Fj 1,
such that F; < Fi1; and ||R; — Rol|, > 0. To show the powers pr(Uy, > ugpo) and
pr(Tk, > trpa) approach 1 as n — oo, it suffices to consider pr(A;, > ug, o) and
pr(Ai, > tipa) because both Ty, and Uy, are larger than A;, almost surely. In general,
we will show that, given ¢ > 0, pr(A;, > t) converges to 1 as n — 0.

Since MR; = R; under Hy, apply the Minkowski inequality and obtain

Aip = Ci||IMR; — MR; + R; — Roll, > Ci||Ri — Rol|, — Ci| MR; — MR,
> Ci||R; — Rollp — Ci|MR; — MRy
> Cil|Ri — Rolly — Cil| Ri — Ril|oo,

where the last inequality holds because of the continuity of M according to Lemma 3
in Tang et al.| (2017). Hence,

pr(A;, > t) > pr (OiHRi — Roll, > t+ Ci||Ri — Ri||oo> .

Since | R;— Ro||, > 0, then C;||R;— Ro||, — oo as C; — oo. Therefore, to show pr(A;, >
t) — 1, it suffices to show that C;||R; — Ri|l.c = Op(1), that is, the boundedness



of ||Tilloo equivalently by Lemma . Recall that Ti(u) = A/?Bi{R;(u)} + (1 —
N)Y2 R (u)Bi(u), we have

1Telloo < N2 1Billoo + (1= XY Billoo |1 Bt e

Therefore, ||7;||o is bounded in probability since B; and B, are bounded with prob-
ability one and R; is bounded as well.
[l

Lastly, we provide the critical values tj,, and wuy,, at significance level o = 0.05
mentioned in Section [2] and applied in Section [5.3}

Table S1.1: Critical values tjp, o and ug, o at significance level aw = 0.05.

tkp,a Ukp,a

p=1 p=2 p=oc0 p=1 p=2 p=o

n=60 0916 1.040 1826 0.704 0.784 1.278

k=3 n=100 0915 1.036 1838 0.716 0.793 1.343
n=200 0.936 1.059 1.850 0.720 0.801 1.350

n=060 1217 1.388 2465 0.748 0.833 1.369

k=4 n=100 1.236 1.407 2475 0.758 0.843 1.414
n =200 1.268 1436 2550 0.768 0.851 1.400

n=060 1530 1.751 3.104 0.774 0.859 1.461

k=5 n=100 1.549 1.763 3.111 0.785 0.870 1.414
n =200 1.587 1.801 3.200 0.797 0.883 1.450

S1.2 Proofs and Lemmas for GOF tests in Section [3

Recall that M;, = C’ZH/\/U%Z — Rin, according to Tang et al.| (2017), the asymptotic
distribution of the test statistics Sk, = >, <x Mip and Wy, = maxi<;<x M;, both
depend on the shape of the ODCs R;. Recall r;(u) = {1—R;(u)}/(1—u) for 0 <u <1
and r;(1) = lim, ;- 7(u) for 1 <i < k. Under H} : F; = --- < Fy, all ODCs R; are
star-shaped for 1 < ¢ < k. For each star-shaped R;, define the non-strictly-star-shaped
region S;o = {u € [0,1] : r;(u) = r;(u—) or r;(u) = r;(u+)}. The strictly-star-shaped
region is defined by S;; = [0,1] N S5, that is, r;(u) decreases strictly in v € S;;. If
the non-strictly star-shaped region S,y is nonempty, that is, there exists at least a
nonempty closed interval, say [a,b] with 0 < a < b < 1, such that r;(u) = r;(v) when
u,v € [a,b], then R; is called non-strictly star-shaped. If S;g is empty, then R; is called
strictly star-shaped. One can further write S,y in terms of a countable union of disjoint
closed intervals; i.e., Sio = U[ay;, byy] where r; takes distinctive values among different
interval [a;, by|. For example, if R; = Ry, then S;0 = [0, 1] because r;(u) is constant
over [0,1]. Hence R; is non-strictly star-shaped. If R;(u) = u'/2, then Sy = §) because



ri(u) = (1 —u'?)/(1 —u) = (1 4+ u'/?)~" is strictly decreasing over [0, 1] and therefore
R; is strictly star-shaped.

Following the same proof of Theorem 1 in Tang et al.| (2017), we obtain the limiting
distribution of M;, stated in the following Lemma.

Lemma S1.3. Under Hj, for 1 <p < oo,
(a) if R; is strictly star-shaped, then M;, 250 asn — oo;

(b) if R; is non-strictly star-shaped with nonempty non-strictly-star-shaped region
Sio = Uilai, by|, then M, SN [Willp as n — oo, where W;. = >, Wy and

Wata) = |{ sup Ty =00} (1= ) = )| Haw < < ),

a;<v<u
where 1(-) is the indicator function.

Lemma not only suggests the asymptotic marginal distribution of M;, under Hg,
it gives asymptotic joint behavior of M, ..., My_1, though Ti,...,Tz_1, where T;
and 7T;,1 are not necessarily independent because they share the same Brownian bridge
B;11. In addition, since W;; are constantly zero outside of the non-strictly star-shaped
regions, the test statistics Sy, and W, only depend on the non-strictly-star-shaped
region U; U; [a, by.

Next, the asymptotic distribution of Sy, and W}, under H; can be obtained by
applying the continuous mapping theorem. We state the results as a lemma below.

Lemma S1.4. Under H, as n — oo,

k—1
d d
Skp == D IWally and Wiy, == max [W, ||,
P 1<i<k

where W;. are defined in Lemma[S1.3 when R; is non-strictly star-shaped and we define
IWill, = 0 if R; is strictly star-shaped.

Next, we provide the proof of Theorem [2[ that the surrogate random variables S'kp
and Wy, defined in Section 2 are stochastically larger than Sy, and W, respectively.

Proof of Theorem[Z Under Hf, to show Sk,p and Wkp are stochastically larger than
Skp and Wy, respectively, it suffices to consider non-strictly star-shaped R; because
A, converges to 0 in probability when R; is strictly star-shaped. Given non-strictly
star-shaped R; for 1 < ¢ < k with nonempty non-strictly star-shaped region S;y, one
can check that R(u) = r;(u) when u € S;p. We replace R; and R, by MR; and r; in
T;, respectively, and define

Li(u) = N2 BAMB;(u)} — (1 — X)Y2ri(u) By (u),



for 0 <w < 1and £;(1) = 0. Hence, £;(u) agrees with T;(u) over S, that is,
Li(u)I(u € Si) = Ti(u)l(u € S).

Next, recall

Wi = { sup £/ -0 b0 - 4w

0<v<u

for 0 <wu < 1 and V;(1) = 0. By definition, we have

Vi(u)I (aq < u < by)
- Hafllﬁuﬁ /(= ”)} (1—u)- @(u)] I{ag < u < by)

= H sup 7;@)/(1-@} (1—u) —ﬂ(u)} Iag < u < by)

a;<v<u

Hence, V;(u) > W;.(u) when u € Sjp. On the other hand, since V;(u) > 0 and Wy (u) =
0 when u € S;1. Therefore, Vi(u) > Wi.(u) for 0 < u < 1 such that [|[Vifl, > [[Willp,
Sip = Lrcicn Villy = Xicici Willp, and Wi, = maxi<icr [[Vill, > maxicice [Welp.

Recall that sp,, and Wy, o are a-th upper quantile of S;ma and Wkp@, hence,

nh—r)rolo pr (Skp,oé > Skp,a) = pr( Z ||WZ||p > Skp,a)

1<i<k
< pr( Z Villp > Skp.a) = pr<gkp,a > Skpa) = @,
1<i<k

lim pr (Wipa > Wkpa) = pr(maX IWillp > Wkpa)

n—0o0

< pr (1r£1ax Vill, > Wipa) = pr(Wkpa > Wpa) = Q.

Under HY, we wish to show that the critical values sy, o, and Wy, o are bounded. To
show the boundedness of the critical values 8y, o and Wy, 4, it suffices to consider the

boundedness of ||V;]|,. We define a functional operator ./\/lfé ’%) as the least star-shaped
majorant with kernel (1,0), that is, given any bounded function h with support [0, 1],

Migiyh(u) =0 inf {0—h(v)/(1=0)} (1 ~u)

= sup {h(v)/(1 =)} (1 —-u)

0<v<u

and ME&’%)h(l) =0 (see Lemma 1 in [Tang et al.| (2017))). Therefore, we can write

Vi(u) = M) Li(u) = Liu).



Now, define Z(u) = 0 for u € [0,1] and one can check that ./\/lfo1 f] Z(u) = Z(u) over
u € [0,1]. Therefore,

(1,0 1,0)
Villy < Vil = ||M[0 DL = Lilloo = IMOD L~ MU Z 1 2, - L]

10 1,0
< IMGDL = MGV Z oo + 112 = Lilloo < 20ILi = Zlloo = 20| L3

because of the triangle inequality and the Lipschitz continuity of the operator ./\/l[é f])
(Lemma 3 in Tang et al. (2017)). From the definition of £;, we can further bound
1£ilo by
1/2
[£illo < NZIBAMRY oo + (1= X2 rilloo B [l
1/2
= N 1Billoe + (1= 273l | Bis | oo

One can check that 1 > MR;(u) > Ry(u) = u for all u € [0, 1], therefore,

0< sup _
u€l0,1) I—u u€l0,1) l—u u€l0,1) I—u

for u € [0,1). Therefore, r;(1) = r;(1—) is between 0 and 1. Hence, 0 < r;(u) <1 for
0 < u < 1such that ||7;]|o < 1. Since the standard Brownian bridges are bounded with
probability one, then ||L;|| = Op(1) such that ||V;||cc = Op(1), Sk, = > [|[Vill, =

1<i<k
Op(1), and Wy, = gi}%]\Vin = Op(1). Therefore, 5i,, and Wy, are bounded under
H. -

To show the consistency of the proposed GOF tests, we follow a similar idea in the
proof of Theorem [I] Under Hy, there exists at least a pair of consecutive distributions,
say F; and Fjyq, such that F; and Fji; are not USO with || MR; — R;||, > 0. Apply
the Minkowski inequality and obtain

My = Ci| MR; = MR; + MR; — R; + R, — Ri|,
— Ci|MR; = MR,||, + Ci||MR; = Ril, — Ci|| Ri — Ryl

>
> —2C,||R; — Rill, + Cil| MR; — Ry, (S1.7)

where the last inequality holds because of the Lipschitz continuity of M according to
Lemma 3 in [Tang et al.| (2017). Hence, we have the lower bound of the probability of
event M;, >t below:

pr(M;, > t) > pr (CZ-HMRZ- ~ Ry||, >t + 20| R, — Riup) . (S1.8)

Since ||[MR; — R;||, > 0, then C;||MR; — R;||, — oo as n — oo. To further show
that pr(M;, > t) — 1 as n — oo, it suffices to show that C;||R; — R;|l« = Op(1),



or equivalently, the boundedness of ||7;||s. Recall that Ti(u) = A*B{Ri(u)} + (1 —
N)Y2 R (u)Bi(u), we have

1Telloo < N2 - 1Billoo + (1= 2) - [ Rillos - 1By oo

Therefore, ||7;|| is bounded in probability since B; and B;;, are bounded with prob-
ability one and R; is bounded as well. Subsequently, since S, , and Wy, , are fixed
and bounded, we have pr(Sk, > Skpa) > pPr(Mip > Skpa) — 1 and pr(Wy, > Wipa) >
pr(M;, > Wypo) — 1 as n — oo.

[

In the following, we use the same relationship between V; and W; in [S1.6] to show
that M,p defined in Section is asymptotically larger than M;, stochastically.

Remark S1.2. Under Hf, lim, o pr(M;, > t) < pr(M;, > t) holds at any t.

Proof of Remark[S1.9 Here we follow the same notations and assumptions in Lemma
[SI.3l By continuous mapping theorem, for finite p > 1, we have

s[5 (B2 0o ]
- Z/ o, (P 0w -cw) d“] ’

< [[ o () 00 -0} ] "

Moo -5 mI?X{ sup  sup <;r(—“>) (1—u) —ﬂ(u)}

ap<u<bg ap<v<u -V

(72(0)

— v

) (1= ) = T = Vi,

< sup sup
0<u<1 0<v<u

where 0/0 is defined by 0 in the supremum, and both the inequalities above are because
of the definition of the supremum. Therefore, we can conclude that

lim pr(M;, > t) < pr(M,;, > t) holds at any ¢.
n—oo

Similarly, we can define

Miso = sup [ sup <£Z(U)) (1—wu)— ﬁz(u)] ;
0<u<1 |0<v<u \ 1 — v
such that lim,, o pr(Min, > t) < pr(]\Zfioo > t) for all ¢t > 0. O

Lemma S1.5. Under H{, for every 1 < p < oo, as n — 0o,
SZp i) gk’p and W];kp i) Wkp.

9



Proof of Lemma [S1.5 Define V; (u) = supgc,<, {£;(v)/(1 —v)} (1 —u) — L} (u) where
Lr(u) = NPBHAMR;(u)} — (1 — M)V (u) By, (u) for 0 < u < 1 and corresponding
Sip = 2<icr VIl and Wi = maxi<i<, |[V/]|. By construction, Sy, and Sy, share
the same distribution. Similarly, Wy, and Wy, share the same distribution. Therefore,
it suffices to show that S’Zp N Sp, and W,jp N Wi, as n — oo.

Since Sy, and Wy, contain L7 and S'Zp and W,jp contains /3;?, we firstly show that

the difference between £ and L7 are negligible, that is, |£F — £I]ls = op(1). Note
that

1L = Lilloe = sup (Cilny *BHAMBR ()} = i {?#(u) By ()]

0<u<l1

~ INPBHRi(w)} = (1= A 2ri(w)B (w)]|

< sup |Ciny PBHMR;(w)} — N2Bi{Ri(u)}

T o0<u<t

+ sup | =CinZ i (w)Bi () + (1= 0)2ri(w) By u)|

= [1n —|— ]2n-

For the first term I, since C’in;l/Q converges to a constant /\il/2 as n — 00 by as-
sumption, it suffices to show that supge,<, |[B-{MR;(u)} — B{R;(u)}| = op(1), un-
der Hi. According to the Lipschitz continuity of M, |MR; — Rillec = |[MR; —
MRl < HRz — Ri||o since R; = MR;. On the other hand, from Theorem 2.1
in [Hsieh and Turnbull (1996), ||R; — Rille converges to zero almost surely, then
SUDgeyet |BI{MR; (1)} — BF{R;(u)}| converges to zero almost surely because of B
is uniformly continuous almost surely, hence, I1,, = op(1).

For the second term I, since C’m;rll/z converges to (1 — )\,~)1/2 as n — 00, it
suffices to show that supg<,<; [{7s(u) — 73(u)}B; (u)] = op(1). Given 0 < 0 < 1,
because 0 < 7; < 1 and 0 < r; < 1, then sup; s, [{7i(u) — ri(w)}B; (u)| <
25Up;_s5<y<1 |Bj(u)]. Define Wy (u) = B;(u) + (u for v € [0,1] where ¢ follows the
standard normal distribution and is independent of Bf. One can show that W is
the standard Wiener process over [0,1]. Because of the symmetry of B}, we have

SUp; <<y |B ()] 4 SUPg<,<s | Bj (v)|. Therefore, given n > 0,

pr( swp [B(u)] > n) - ( sup |B;(w)] > n)

1-0<u<l 0<u<s

<o sup 0] +01¢] > )

0<u<

—pr (V5 (sup i) 4016 > 1)

0<u<1

10



where the last equality holds because W} is a standard Wiener process and independent
from ¢. Note that both supy<,<; |W;(u)| and |¢| are bounded in probability, then given
e >0 and n > 0, we can choose small enough 6 = §(n, €) such that

pr( sup IBIOU\>>U><<6
1-6<u<l

Then we conclude that sup; s<,<; [{7i(u) — 7:(u) } B; (u)| = op(1).
On the other hand, with the same choice of § above, note that

1— MRi(u) 1—Ri(u)

1—u 1—u

{7i(w) = ri(w)}Bi (w)] < |B; (u)|

_ IMPRBi(w) — R

1—u

(Ol e ).

Therefore,

A . 1 .
sup [{75(u) = ri(u)}B; (u)] < S| ME; = Rilloo| Bl

0<u<1-6
1 .
< 518 = Rilloo|[Bi o,

where the last inequality is because of M R; = R; under Hj and the Lipschitz continuity
of M. Since ||R; — Ry||o converges to zero almost surely from Theorem 2.1 Hsieh and
Turnbull (1996)) and B; is bounded almost surely, we conclude that supg<,<; s [{7i(u) —

ri(u)}B;(u)| = op(1) and I, = op(1). Subsequently, we have || £ — Lo = 0p(1).
Next, we will show that ||V — V||, = op(1). From the definitions of V; and V;,
we can write V' (u) and V' (u) in terms of the functional operator /\/l[(o1 ’f]) defined in the

proof of Theorem [3}
Vi (u) = Vi (u) = ML (u) = M) L5 (u) = {25 (w) = £ (u)}
and then we have
IV =Vl < 1V = Vil < MG E: = MigH ]|
< 2| L) — L]

+ 147 = Lill

where the last inequality holds because of the Lipschitz continuity of ./\/l[0 1 -
Lastly, because of the triangle inequality, we have

Vil = Vil | < 1V =Ville < 1Vi = Villeo = 0p(1),

which implies that 1V, and ||V*||p are asymptotic identical in distribution. Re-
call that S* is the sum and Wkp is the maximum of HV*Hp, respectlvely There-

fore, applymg the continuous mapping theorem, S;p N Z Vil = S, and

Wkp -4 maxi<i<k | Vi |l = Wi,
UJ
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From Theorem [2 and Lemma [S1.5[ the upper a-th quantile values of S’Zp and W,jp
are reasonable choices of critical values of the GOF tests. We conclude this section
by providing the proof of Theorem 3| that the upper a-th quantiles s} , , and wy, , , of

S’,jp and W,;“p, respectively, control the type I error under o asymptotically and provide
consistency of the proposed tests.

Proof of Theorem[3 Under Hj, Lemma [S1.5] shows that S',jp and W,:fp converges in
distribution to S’kp and Wkp, respectively. For consistency of the proposed GOF tests,
we wish to show that the critical values §;, , and wy, , are finite with probability
one and the test statistics diverge to positive infinity. To show the boundedness of the
critical values 8;, , and 1y, ,, it suffices to show the boundedness of 1V; ||, Recall that

the process V7 is defined by V7 (u) = MS%)EA;"(U) — L3 (u) for 0 <u < 1 and 171*(1) = 0.

The process LF is defined by Lf(u) = C’,-[ni_lml')’i{./\/lfii(u)} — n:fﬂ(u)&ﬂ(u)] for

0 <u<1. Itis clear that HM[%;)])E;*HOO is bounded by ||£:(w)]|s, then we have

{5 {5 1,0) A% Sk Sk
Vil < 1V lloo < IMGD L lloo + 127 e < 20125 [|oc-

Because 0 < #; < 1, B; and B, are bounded with probability one, then ||V} ||« is

bounded with probability one since Cjn, Y2 and Cin,. +11/ * are bounded, too. Therefore,

the asymptotic distribution of S*]:p and W,:‘p are bounded such that the corresponding
upper a-th quantile; i.e., the critical values §;, and Wy, are bounded, too.

Now, we follow the same proof in Theorem [2[ to show the consistency of the GOF
test. Under Hj, there exists at least one i such that [|MR; — Ri[[, > 0. Set t = 5}, ,,
according to (SL.7) and (S18), we have pr(Sy, > $8;,.) > pr(Miy > 85,,) — 1.
Similarly, set t = @y, ,, we have pr(Wy, > @y, ) > pr(My >y, ,) — 1 asn — oo.

O

S1.3 Proofs and Lemmas for Jump Detection in Section
Proof of Theorem [}l Under H{, recall that J = {1 <i < k: F; < F;;1}. By definition
of Uy, the probability that JI? incorrectly detects jump points with probability
pr(J) # 0) = pr(Ay > tgp,q for some 1 < i < k)
=1—-pr(Ay <uge foralll <i<k)=1-a

for all finite sample sizes.
If J # (), that is H; true, then

pr(Jg D J) = pr(Aip > Upa, forallieJ)
=1 —pr(A;, < upp, for some j € J)
>1-— Zpr(Aip < Upp o for j e J), (51.9)

jeJ
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where pr(A;, < ug,o) — 0 as n — oo since A;, is a consistent test statistic against
F; = Fi11. Therefore, pr(J) 2 J) — 1 asn — oo. Further, we denote J¢ = {1,..., (k—
D}/J. It Je =10, then J={1,...,(k—1)} and

k—1
pr(J) = J) = pr(Agp > o forall i € J) > Zpr(Aip > Ukpa) — (K —2).

i=1
Note that pr(Ai, > tgpa) = 1 as n — oo, pr(J) = J) = 1 as well. If J¢ # 0, then

pr(JS D J) = pr(Aip > upgp for all i € J and Ay, > uyy o for some [ € J¢)
< pr(Ay, > ugp o for some I € J°)
= pr(?l%x Ay > Ugpa)-
e c

Now, we generate k random samples independently with sample sizes n; from U(0, 1)
and obtain A} for 1 <1 < k. Therefore, pr(maxe je Ay > Upp o) = pr(maxe e Aj >
Ukpo) because maxeye Ay, is clearly distribution free when all R, = Ry for [ € J°.
Then we have

0 _
pr(J, D J) < pr(rré%i(Alp > Ukpa) < pr(lrglag}; Al > Uppa) = . (S1.10)
since maxi<;< Aj, under Fy = Fy = --- = F} is distribution-free, too. From (S1.9)

and (ST10).

lim pr(J) =J) = lim pr(J) 2 J) — lim pr(Jy > J) >1— o

n—oo n—00 n—00

]

Proof of Theorem[J. Recall that J = {1 <i<k:F, < Fh tand E={1<i<k:
F; = F;11}. Tt suffices to consider J # () and € # (). When ¢ € J, the probability of
the event A;, > d; can be bounded below by:

pr(Ay > 6;) = pr(Gi|MR; — Rol, > 6)
= pr(Ci|MR; — R; + R; — Ry||, > ;)
> pr(|Gi|ME; — Rill, — Ci|| Ri = Roll,| > 6:)
> pr(Cil|MR; — Rill, + 6 < Cil| R — Roll,)
= pr([|MR; — Rill, + 0,/C; < ||R: — Roll,)-

From Lemma 3 in Tang et al.| (2017)), since i € J such that MR; = R; and ||/\/l}?iz —
Ri|lo = [[MR; = MR;||oo < ||Ri — Ril|co, then

| MR, = Rill, < IMR; = Rillas < | B — Rilloc = 0(1). (SL.11)

13



Note that 6;/C; — 0, then || MR; — R;||, 4 0;/C; = 0p(1), too. Because ||R; — Ry, > 0,
the probability pr(H/\/l]:?Z — Ri|lp, + 0:;/C; < Ci||R; — Ryl|,) converges to 1 as n — oo.
Since the number of elements in J is finite, pr(N;e ;{Ai, > 6;}) — 1, too. On the other
hand, when i € £, A, = Cj|| MR; — Rol|, = Op(1), therefore, pr(Mice{A;, < 6;}) — 1
since 0; — oo and number of elements in £ is finite. Then

pr(Jg =J)
= pr(Nics{Aip > i}, NMice{Aip < 6;})
> [pr(ﬂieJ{Aip > 51}) — 1] + pr(ﬂieg{Aip < (Sl}) — 1, as n — Q.

Proof of Theorem[f]. Here we define

Qip(n) = | MPR; = Ro||,I{i & J,(n)}
log C;

# (It + 2500, ) i € 5000

such that Q,(n) = Y27 Qi (n). Recall Section [} since Q,(n) is a step function of 7,
it suffices to consider

nt = arg min Qp(n)
» nelnanl vt}

where 5l = A, for 1 <i < k and 5} = 0.

When all distributions are identical (J = (), according to previous discussion in
Theorems |1| and , we have |MR; — R;||, = Op(C;?) and ||MR; — Ry||, = Op(C;Y),
for all 1 < i < k, Therefore, |MR; — Ril|, = op(logC;/C;) and |MR; — Ryl|, =
op(log C;/C;) such that the penalty term d;, log C;/C;, where d;;, > ¢ for some ¢ > 0,
dominates Q;,. Therefore, I{i € J3(n;)} = 0 is preferred and then ) > n! is suggested.
Hence, the largest 5| minimizes Q(n) with n, = max;(n!) such that Jy = 0 with
probability approaches 1 as n — oo.

When J is not empty, assume that ¢ € J. According to previous discussion in
Theorem (1| and [3| we have H/\/IRZ — Ri|l, = Op(C;) but not op(C;) because | MR; —
Rill, > 0. On the other hand, in Qi(n), |[MR; — Rill, = Op(C:Y) = 0p(C;) and
diplog C;/C; = op(C;) because d;;, = op(log C;). Therefore, ||MR1 — R;||, dominates
Qip so that I{i € J:(n;)} = 1 is preferred such that 1 < nZ-T is suggested. Therefore,
ny < Ilrél}l{nj } with large probability approaching 1. On the other hand, if ¢ ¢ J.

Then we have we have |MR; — R;||, = op(log C;/C5), [|MR; — Ry||, = op(log C;/C}).
Therefore, dy, log C;/C; dominates @y, such that I{i € J(n})} = 0 is preferred such

that n, > 1724T is suggested. Therefore, n; > igé‘r]’rﬁ);k{nj ,0} with large probability
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approaching 1 as n — oo. Here we define g‘r]nax k{n;r,()} =0if J={1,...,(k—1)}.
igJ1<i<

In conclusion, the optimized 7 satisfies

I,0} <t < min{n)]
e gy, 0} <, < mindo, }

with probability approaching 1 as n — oo, where 7 exists because 7]; = 0,(1) for

j ¢ J but n]T- diverges to oo for j € J. Therefore, max {n7,0} < min{n/} with
i¢J1<i<k icJ

probability approaching 1 as n — oo. O

S2 Supplementary numerical results

In this section, we provide more simulation comparisons for £ = 3,4,5 and 10 with
sample sizes n = 60, 100,200 and p = 1, 2, 0o for the proposed equal tests, GOF tests,
and distinguish distribution methods in Sections [2] [3| and [ respectively.

p-value Adjusted Methods

Here, we include how to calculate p-value for the equality and GOF tests. For the equal-
ity test, the two-sample equality test examines the hypotheses Hy; : F; = F;;, versus
Hy; : Fy = Fiyy but not F; = Fi ;. Recall that the scaled L difference between the
star-shaped estimator and the equal distribution line is given by A;, = | MR; — Rol,,
which is also the test statistic for Hy; versus Hy;. According to the data, denote
the observed test statistic by d;,, then the p-value is given by pa,, = pr(Ay > d;)
when F; = F;;;. Since we reject the null hypothesis when any consecutive pairs
of samples reject the null hypothesis, Holm—Bonferroni method, Hochberg’s correc-
tion, Benjamini-Hochberg adjustment, and Bonferroni’s methods are identical. We
also compare Bonferroni’s methods with Benjamini and Yekutieli’s (BY) (Benjamini
and Yekutieli, 2001) adjustment. From the p-value pa,,, we also consider the equally
weighted Cauchy combination (Liu and Xie| 2020)) test statistic by

§ tan{(0.5 — pa,, )7}
a k—1 '

and reject Hy when the test statistic is larger than the upper ath quantile of the
standard Cauchy distribution.

For the GOF test, we follow the same idea in Section to obtain the p-value
based on the least favorable configuration when testing H, versus H;,. For each test
for Hg;, one can obtain p-values according to F; = Fiy1 by pa,, = pr(||Dl], > dip),
where m;, is a realization of M;,. Similar to the quality test, we consider Bonferroni’s
and BY’s p-value adjustment methods. Then, one can consider the equally weighted
Cauchy combination test statistic by
S tan{(0.5 — pas,, )7}

kE—1 '

i=1
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Again, we reject Hj when the test statistic is larger than the upper ath quantile of the
standard Cauchy distribution.

Data generation and ODCs

For the assessments of the proposed equality tests, GOF tests, and jump detection
method, we follow the same idea in Sections to generate data. We also choose
ODCs (Ry, Ry, ..., Rp1) = (G, Ggys - -, Gy _,) from the family of ODC G, with
—1 < ¢ < 1. For power curve comparisons for GOF tests, we extend the three-sample

cases {(Kjs, Ro)}_, and {(Ks, Ks5)}I_, to k = 4,5 cases by adding equal distributions,
that iS, {(K(;,Ro,Ro)}g:O and {(K(;,Kg,Ro)}gzo fOI‘ k? = 4, {(Kg,Ro,Ro,Ro)}gzo and
{(Kg, K(;, Ro, RU)}gzo for k = 5.

S2.1 Equality Tests

Here, we provide extra numerical comparisons for our proposed methods, 7%, and U,
see Tables [S2.1], [S2.4] [S2.7, and [S2.10] for & = 3,4, 5, and 10, respectively. In general,
a larger number of samples k leads to lower power. Similar to the discussion in Section
, both T}, and Uy, have reasonable sizes. But Ty, has better power than Uy, of
gathering departure from Hy. Interestingly, when it comes to the robustness, Uy, has
better power than T}, if the last ODC is non-star-shaped and violates both H, and
H;. See Tables[S2.3] and for k = 3,4, and 5, respectively. .

We also compare with the empirical likelihood approach proposed by |[El Barmi and
McKeague| (2016)), denoted by ME-B. See Tables[S2.1], [S2.4] and [S2.7 In general, ME-
B outperforms when the departure from the null hypothesis is significant. However,
when the departure is mild and harder to detect, our tests perform better than ME-B.
One can also find similar powers of T, when the accumulated departure ) Do(R;, p),
defined in the Manuscript, are close. For Uy, with the same max Dy(R;, p), the power
is lower when the number of zero individual departure Dy(R;, p) is larger.

In addition, we compare the p-value adjusted tests, including the Cauchy combi-
nation test, BY, and Bonferroni adjustments. See Tables [S2.2], [S2.5] [S2.8] and [S2.11]
Bonferroni methods outperformed the BY p-value adjustment methods, and under
most scenarios, especially when there is more than one ODC violating Hy, the Cauchy
combination tests were better than the Bonferroni method. Lastly, neither of these
two methods surpasses our proposed tests.

S2.2 GOF Tests

For GOF tests, we provide more power comparisons for Sy, and Wy, with k = 3,4, 5,
and 10 [S2.12] [S2.14] [S2.16] and [S2.18. Similar to Section the sizes of both tests
are well-controlled. A larger number of samples k leads to lower power, and Sy, has
better power of gathering departure from H.

We also compare the p-value adjusted tests, including the Cauchy combination test,

BY, and Bonferroni adjustments for the GOF tests. See Tables [52.13] [S2.15] [S2.17],
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and for £ = 3,4,5, and 10, respectively. Similar to the equality test, Bonferroni’s
methods outperformed the BY methods. When more than one ODC violates H;, the

Cauchy combination tests have better
neither of these two methods surpasses

power than the Bonferroni methods. Again,
our proposed tests.

A similar discussion of accumulated departure can be applied here. Similar powers
of Sip, can be found when the accumulated departure ) D*(R;,p), defined in the
Manuscript, are close. For Wy, with the same max D*(R;, p), the power is lower when
the number of zero individual departure D*(R;, p) is larger.

S2.3 Jumps detection

Lastly, Tables [52.20] [52.22] and [52.24

provide detailed assessment for the jump de-

tection method .J) while Tables [S2.21]

S2.23|, and [S2.25( report the assessment for J;.

Similar to the equality test, the larger number of samples k leads to lower correctness.

Larger sample sizes help to have better

performance as expected. Most of the findings

are similar to the discussion in Section [5.5]in the Manuscript,
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Table S2.1: Size and power comparisons for equality tests with k = 3 test statistics

Tip, Ugp, and ME-B.

n_ (q1, ) T3 Us; 139 Uy, T3 Usee ME-B
0.0,0.0) 0.051 0.048 0.043 0.049 0.044 0.051 0.050
0.2,0.0) 0.184 0.152 0.196 0.170 0.209 0.197 0.183
0.6,0.0) 0.678 0.573 0.746 0.673 0.781 0.750 0.811

60 1.0,0.0) 0.948 0.887 0.973 0.936 0.990 0.973 0.995
0.2,0.2) 0.428 0.230 0.462 0.269 0.466 0.312 0.458

(0.4,0.2) 0.700 0.412 0.734 0.482 0.747 0.567 0.777
(0.6,0.4) 0.954 0.758 0.974 0.856 0.974 0.907 0.990
0.0,0.0) 0.067 0.051 0.067 0.059 0.065 0.047 0.058
0.2,0.0) 0.273 0.173 0.302 0.212 0.324 0.213 0.260
0.6,0.0) 0.901 0.781 0.944 0.863 0.957 0.911 0.963
100 1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2,0.2) 0.599 0.337 0.648 0.403 0.657 0.399 0.672
0.4,0.2) 0.893 0.600 0.929 0.711 0.934 0.741 0.948
0.6,0.4) 0.998 0.940 1.000 0.975 1.000 0.990 1.000
0.0,0.0) 0.048 0.053 0.046 0.056 0.050 0.0564 0.042
0.2,0.0) 0.432 0.340 0.476 0.404 0.506 0.443 0.474
0.6,0.0) 0.998 0.984 1.000 0.995 1.000 0.999 1.000
200 1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2,0.2) 0.889 0.574 0.921 0.678 0.927 0.720 0.948
0.4,0.2) 0.995 0.924 0.997 0.966 0.997 0.989 1.000
0.6,0.4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.2: Size and power comparisons with £ = 3 and p = 1,2, oo for equality tests
with adjusted p-values, including Cauchy, BY, and Bonferroni.

n ( ) Cs Y3 B3y Csy Y3 B3y Uz Yo  Bswo
0.042 0.031 0.047 0.042 0.031 0.047 0.048 0.047 0.051
0.138 0.108 0.150 0.162 0.126 0.167 0.184 0.169 0.197
0.575 0.500 0.571 0.682 0.593 0.667 0.759 0.718 0.750
0.894 0.850 0.883 0.943 0.917 0.935 0.975 0.964 0.973
0.234 0.167 0.226 0.278 0.202 0.263 0.332 0.269 0.312
0.449 0.341 0.405 0.522 0.400 0.472 0.607 0.526 0.567
0.811 0.688 0.757 0.879 0.793 0.846 0.926 0.886 0.907
0.048 0.037 0.054 0.052 0.032 0.060 0.049 0.033 0.055
0.178 0.139 0.184 0.209 0.156 0.216 0.245 0.186 0.241
0.807 0.740 0.788 0.882 0.833 0.868 0.927 0.900 0.919
0.990 0974 0983 0.999 0.996 0.997 1.000 0.999 0.999
0.380 0.274 0.359 0.438 0.318 0.409 0471 0.368 0.442
0.676 0.535 0.623 0.766 0.632 0.719 0.817 0.703 0.785
0.970 0.927 0945 0.992 0973 0976 0.997 0.989 0.992
0.039 0.035 0.053 0.041 0.038 0.055 0.047 0.037 0.054
0.326 0.250 0.333 0.385 0.310 0.402 0.439 0.364 0.443
0.989 0974 0983 0.996 0.990 0.995 0.999 0.996 0.999
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.633 0.461 0.570 0.715 0.553 0.676 0.766 0.643 0.720
0.952 0.877 0.924 0.985 0.950 0.966 0.995 0.976 0.989
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 52.3: Robustness comparisons for equality tests with k = 3 test statistics T},
Ukp, and ME-B.

n T5 Us, T5y Usy Tsoo Us.o ME-B
0.018 0.030 0.016 0.028 0.018 0.031 0.014

0.0,-0.2
60 (0.2-0.2) 0.109 0.134 0.116 0.149 0.121 0.177 0.062
0.4-0.2) 0299 0.323 0.348 0.371 0.374 0.450 0.247
0.6-0.2) 0.541 0.559 0.623 0.657 0.669 0.735 0.599
0.0,-0.2) 0.020 0.023 0.020 0.026 0.022 0.020 0.012
100 (0.2-0.2) 0.153 0.145 0.163 0.179 0.184 0.186 0.082
0.4,-0.2) 0.464 0.442 0527 0549 0.573 0.602 0.398
0.6,-0.2) 0.796 0.769 0.862 0.848 0.892 0.898 0.831
0.0,-0.2) 0.016 0.031 0.016 0.032 0.017 0.035 0.006
200 (0.2-0.2) 0.263 0.318 0.314 0.381 0.321 0425 0.121
0.4,-0.2) 0.795 0.807 0.870 0.883 0.907 0.937 0.760
0.6,-0.2) 0.986 0.980 0.995 0.991 1.000 0.998 0.995
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Table S2.4: Size and power comparisons for equality tests with & = 4 test statistics
Tip, Ukp, and ME-B.

n ((]1,%7(]3) Ty Uy Tyo Ui Tyoo Uso ME-B
0.0,0.0,0.0) 0.048 0.054 0.047 0.049 0.051 0.049 0.064
go.z,o.o,o.o 0.174 0.116 0.181 0.127 0.171 0.130 0.185
0.6,0.0,0.0) 0.634 0.466 0.697 0.570 0.700 0.668 0.795
(1.0,0.0,0.0) 0.934 0.846 0.961 0.916 0.973 0.959 0.995

60 (0.4,0.2,0.0) 0.656 0.317 0.695 0.383 0.680 0.444 0.821
20.6,0.4,0.0 0.945 0.648 0.963 0.746 0.964 0.830 0.994
0.6,0.4,0.2) 0.979 0.684 0.988 0.776 0.988 0.856 1.000
(0.0,0.0,0.0) 0.050 0.053 0.053 0.050 0.046 0.039 0.042
0.2,0.0,0.0) 0.233 0.157 0.261 0.167 0.240 0.163 0.247
0.6,0.0,0.0) 0.846 0.730 0.898 0.825 0.914 0.880 0.963
1.0,0.0,0.0) 0.995 0.981 0.999 0.996 0.999 1.000 1.000

100 (0.4,0.2,0.0) 0.858 0.525 0.883 0.625 0.872 0.672 0.960
(0.6,0.4,0.0) 0.997 0.894 0.998 0.952 0.999 0.972 1.000
(0.6,0.4,0.2) 1.000 0.909 1.000 0.963 1.000 0.979 1.000
0.0,0.0,0.0) 0.057 0.052 0.055 0.057 0.059 0.057 0.058
0.2,0.0,0.0) 0.372 0.262 0.417 0.317 0.401 0.355 0.453
(0.6,0.0,0.0) 0.995 0.966 0.997 0.985 0.998 0.995 1.000
1.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 (0.4,0.2,0.0) 0.998 0.859 0.998 0.931 0.998 0.969 1.000
0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.5: Size and power comparisons with £ = 4 and p = 1,2, oo for equality tests
with adjusted p-values, including Cauchy combination (Cy,), BY (Y},), and Bonferroni
corrected methods (Byy).

n

(

—_

X
)

X

041

Y

By

Ciyo

Yio

By

0400

Yioo

B4oo

0.045
0.117
0.476
0.854
0.336
0.704
0.762

0.036
0.088
0.396
0.784
0.250
0.556
0.587

0.056
0.120
0.469
0.848
0.320
0.652
0.686

0.045
0.122
0.582
0.925
0.411
0.810
0.865

0.028
0.086
0.459
0.875
0.279
0.636
0.671

0.050
0.129
0.578
0.917
0.385
0.753
0.783

0.049
0.143
0.695
0.965
0.504
0.892
0.921

0.031
0.099
0.600
0.946
0.362
0.770
0.802

0.069
0.163
0.712
0.965
0.496
0.871
0.892

0.051
0.149
0.741
0.985
0.578
0.930
0.960

0.026
0.104
0.638
0.960
0.376
0.826
0.850

0.054
0.158
0.731
0.981
0.530
0.894
0.909

0.046
0.164
0.834
0.995
0.674
0.973
0.986

0.029
0.125
0.766
0.991
0.499
0.919
0.932

0.050
0.169
0.828
0.996
0.627
0.954
0.965

0.043
0.179
0.897
1.000
0.750
0.990
0.995

0.026
0.127
0.855
1.000
0.602
0.963
0.973

0.048
0.184
0.892
1.000
0.717
0.982
0.987

60
100
200

9
?
5
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0.046
0.251
0.971
1.000
0.893
1.000
1.000

0.031
0.179
0.942
1.000
0.734
0.997
1.000

0.051
0.261
0.966
1.000
0.857
1.000
1.000

0.041
0.294
0.986
1.000
0.960
1.000
1.000

0.029
0.223
0.973
1.000
0.871
1.000
1.000

0.051
0.300
0.984
1.000
0.924
1.000
1.000

0.050
0.343
0.997
1.000
0.983
1.000
1.000

0.033
0.259
0.992
1.000
0.932
1.000
1.000

0.054
0.345
0.995
1.000
0.965
1.000
1.000

Table S2.6: Robustness comparisons for equality tests

Ukp, and ME-B.

with &

= 4 test statistics Ty,

n

N
fin

RS

\)

L)

w

T41

U41

T42

U42

T4oo

U4oo

ME-B

60

0.021
0.088
0.259
0.247
0.912

0.039
0.104
0.244
0.168
0.641

0.024
0.095
0.292
0.271
0.935

0.037
0.118
0.296
0.198
0.743

0.023
0.098
0.283
0.257
0.936

0.037
0.120
0.346
0.215
0.828

0.023
0.098
0.320
0.304
0.975

100

0.019
0.131
0.420
0.409
0.992

0.037
0.141
0.413
0.260
0.888

0.016
0.147
0.472
0.450
0.995

0.036
0.153
0.502
0.293
0.949

0.017
0.138
0.482
0.428
0.997

0.031
0.156
0.570
0.300
0.972

0.011
0.121
0.503
0.453
1.000
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0.018
0.199
0.720
0.706
1.000

0.032
0.247
0.740
0.447
1.000

0.017
0.243
0.806
0.765
1.000

0.037
0.304
0.838
0.534
1.000

0.020
0.232
0.825
0.767
1.000

0.038
0.344
0.892
0.608
1.000

0.011
0.177
0.817
0.769
1.000
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Table S2.7: Size and power comparisons for equality tests with k = 5 test statistics
Tip, Ugp, and ME-B.

(q1, G2, 93, Ga) T5 Us: T5o Usa  T5oe  Usoe ME-B
0.0,0.0,0.0,0.0) 0.048 0.054 0.051 0.0561 0.051 0.048 0.058
0.2,0.0,0.0,0.0) 0.158 0.103 0.164 0.112 0.161 0.125 0.179
0.6,0.0,0.0,0.0) 0.585 0.466 0.641 0.565 0.640 0.665 0.784
1.0,0.0,0.0,0.0) 0.892 0.818 0.930 0.896 0.947 0.948 0.997
0.4,0.2,0.0,0.0) 0.611 0.313 0.632 0.374 0.616 0.432 0.818
0.6,0.4,0.0,0.0) 0.934 0.609 0.959 0.721 0.951 0.816 0.998
0.8,0.6,0.4,0.0) 1.000 0.904 1.000 0.966 1.000 0.986 1.000
0.8,0.6,0.4,0.2) 1.000 0.916 1.000 0.972 1.000 0.991 1.000
0.0,0.0,0.0,0.0) 0.044 0.051 0.045 0.052 0.036 0.043 0.047
0.2,0.0,0.0,0.0) 0.204 0.145 0.227 0.171 0.208 0.180 0.252
0.6,0.0,0.0,0.0) 0.803 0.674 0.864 0.802 0.875 0.867 0.959
1.0,0.0,0.0,0.0) 0.990 0.961 1.000 0.996 0.999 1.000 1.000
0.4,0.2,0.0,0.0) 0.814 0.458 0.857 0.561 0.838 0.627 0.969
0.6,0.4,0.0,0.0) 0.997 0.848 1.000 0.940 1.000 0.970 1.000
0.8,0.6,0.4,0.0) 1.000 0.996 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 0.996 1.000 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.0) 0.049 0.059 0.049 0.055 0.045 0.053 0.057
0.2,0.0,0.0,0.0) 0.332 0.246 0.365 0.282 0.373 0.316 0.407
0.6,0.0,0.0,0.0) 0.986 0.959 0.997 0.981 0.996 0.992 1.000
1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.4,0.2,0.0,0.0) 0.992 0.812 0.997 0.896 0.997 0.938 1.000
0.6,0.4,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.8: Size and power comparisons with £k =5 and p = 1,2, oo for equality tests
with adjusted p-values, Cauchy combination (C5,), BY (Y3,), and Bonferroni corrected
methods (Bs)).

n (Qh 92, g3, CJ4) Cs1 Y51 Bsy Csy Yso B Csoo Ysoo  Bseo
0.0,0.0,0.0,0.0) 0.042 0.016 0.047 0.039 0.019 0.047 0.044 0.023 0.048
0.2,0.0,0.0,0.0) 0.088 0.037 0.089 0.097 0.047 0.101 0.117 0.068 0.125
0.6,0.0,0.0,0.0) 0.454 0.300 0.444 0.547 0.403 0.544 0.662 0.553 0.665
1.0,0.0,0.0,0.0) 0.815 0.677 0.797 0.896 0.814 0.886 0.952 0.916 0.948

60 (0.4,0.2,0.0,0.0) 0.296 0.164 0.284 0.360 0.210 0.345 0.443 0.300 0.432
0.6,0.4,0.0,0.0) 0.641 0.410 0.586 0.750 0.539 0.693 0.845 0.703 0.816
0.8,0.6,0.4,0.0) 0.952 0.762 0.884 0.992 0.895 0.951 0.999 0.961 0.986
0.8,0.6,0.4,0.2) 0.971 0.780 0.896 0.996 0.909 0.961 1.000 0.973 0.991
0.0,0.0,0.0,0.0) 0.047 0.032 0.051 0.045 0.029 0.055 0.040 0.029 0.049
0.2,0.0,0.0,0.0) 0.139 0.099 0.146 0.171 0.115 0.176 0.184 0.133 0.191
0.6,0.0,0.0,0.0) 0.678 0.582 0.680 0.805 0.729 0.804 0.878 0.826 0.873
1.0,0.0,0.0,0.0) 0.968 0.941 0.963 0.996 0.983 0.996 1.000 0.999 1.000

100 (0.4,0.2,0.0,0.0) 0.481 0.343 0.460 0.586 0.437 0.569 0.685 0.533 0.644
0.6,0.4,0.0,0.0) 0.897 0.755 0.854 0.966 0.885 0.940 0.987 0.952 0.972
0.8,0.6,0.4,0.0) 1.000 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.0) 0.047 0.026 0.058 0.042 0.024 0.052 0.043 0.031 0.051
0.2,0.0,0.0,0.0) 0.222 0.157 0.240 0.258 0.185 0.270 0.308 0.224 0.309
0.6,0.0,0.0,0.0) 0.960 0.922 0.957 0.985 0.981 0.970 0.994 0.992 0.985
1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 (0.4,0.2,0.0,0.0) 0.845 0.694 0.810 0.920 0.806 0.886 0.955 0.888 0.935
0.6,0.4,0.0,0.0) 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table S2.9: Robustness comparisons for equality

tests with k& = 4 test statistics Ty,

Ukp, and ME-B.

n_ (q1, 92, 43,q) T5 Us: T5o Uss Tsoe  Usee ME-B
0.0,0.0,0.0-0.2) 0.019 0.047 0.016 0.045 0.024 0.041 0.030
0.2,0.0,0.0,-0.2) 0.080 0.096 0.086 0.106 0.086 0.118 0.086

60  (0.2,0.2,0.0-0.2) 0.221 0.153 0.227 0.179 0.223 0.192 0.343
0.4,0.2,0.0,-0.2) 0.472 0.306 0.516 0.368 0.501 0.426 0.694
(0.6,0.4,0.2,-0.2) 0.970 0.631 0.982 0.742 0.976 0.835 0.999
0.0,0.0,0.0,-0.2) 0.016 0.041 0.016 0.045 0.013 0.036 0.015
0.2,0.0,0.0,-0.2) 0.107 0.135 0.113 0.164 0.110 0.174 0.118

100 (0.2,0.2,0.0-0.2) 0.351 0.229 0.387 0.273 0.376 0.294 0.527
Eo.4,o.2,0.0,-0.2 0.722 0.455 0.774 0.559 0.748 0.623 0.897
0.6,0.4,0.2,-0.2) 1.000 0.873 1.000 0.953 1.000 0.977 1.000
(0.0,0.0,0.0-0.2) 0.0I7 0.045 0.016 0.039 0.022 0.038 0.017
(0.2,0.0,0.0-0.2) 0.198 0.237 0.221 0.271 0.235 0.303 0.186

2000 (0.2,0.2,0.0,-0.2) 0.664 0.400 0.718 0.472 0.703 0.534 0.852
0.4,0.2,0.0,-0.2) 0.975 0.809 0.988 0.895 0.981 0.937 0.999
0.6,0.4,0.2,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.10: Size and power comparisons for equality tests with & = 10 test statistics

Tkpa Ukp .

=
N

=)
w

=

TIO 1

UIO 1

TIO 2

UlO 2

TIO o0

UlO,oo

60

g =

0.049
0.129
0.440
0.774
0.443
0.831
1.000
1.000

0.049
0.074
0.345
0.724
0.207
0.456
0.792
0.805

0.048
0.115
0.476
0.822
0.469
0.863
1.000
1.000

0.047
0.079
0.455
0.846
0.256
0.566
0.886
0.893

0.050
0.118
0.454
0.820
0.418
0.818
0.999
1.000

0.040
0.079
0.511
0.918
0.277
0.634
0.932
0.942

100

0.041
0.156
0.633
0.942
0.651
0.972
1.000
1.000

0.061
0.118
0.576
0.937
0.339
0.736
0.981
1.000

0.044
0.159
0.698
0.972
0.695
0.985
1.000
1.000

0.058
0.130
0.705
0.980
0.409
0.855
0.999
1.000

0.039
0.160
0.690
0.967
0.652
0.974
1.000
1.000

0.055
0.132
0.815
0.998
0.501
0.932
1.000
1.000
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0.057
0.275
0.927
1.000
0.944
1.000
1.000
1.000

0.056
0.180
0.931
0.999
0.698
0.997
1.000
1.000

0.055
0.276
0.954
1.000
0.962
1.000
1.000
1.000

0.055
0.205
0.968
1.000
0.812
0.999
1.000
1.000

0.055
0.248
0.946
1.000
0.932
1.000
1.000
1.000

0.059
0.249
0.985
1.000
0.891
1.000
1.000
1.000
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Table S2.11: Size and power comparisons with £ = 10 and p = 1,2, 00 for equality
tests with adjusted p-values, Cauchy combination (Cyg,), BY (Yig,), and Bonferroni

corrected methods (Byg,). For simplicity, we set R; = Ry for i = 6,...,9 for all cases.

n (Qh g2, g3, Q4) Cioa  Yioa Bioa 010,2 Yioe Bz Choso Yi0,0o Bioss
0.0,0.0,0.0,0.0) 0.032 0.012 0.036 0.036 0.012 0.041 0.044 0.022 0.049
0.2,0.0,0.0,0.0) 0.054 0.026 0.055 0.067 0.029 0.071 0.094 0.040 0.094
0.6,0.0,0.0,0.0) 0.305 0.208 0.297 0.406 0.284 0.411 0.552 0.421 0.556
1.0,0.0,0.0,0.0) 0.690 0.578 0.689 0.830 0.724 0.825 0.933 0.873 0.927

60 (0.4,0.2,0.0,0.0) 0.182 0.103 0.179 0.237 0.136 0.234 0.339 0.188 0.330
0.6,0.4,0.0,0.0) 0.434 0.279 0.397 0.552 0.365 0.521 0.709 0.523 0.694
0.8,0.6,0.4,0.0) 0.822 0.568 0.733 0.919 0.729 0.867 0.972 0.887 0.947
0.8,0.6,0.4,0.2) 0.840 0.577 0.746 0.937 0.739 0.874 0.980 0.895 0.956
0.0,0.0,0.0,0.0) 0.056 0.020 0.064 0.054 0.021 0.058 0.050 0.023 0.055
0.2,0.0,0.0,0.0) 0.115 0.052 0.124 0.123 0.058 0.130 0.129 0.078 0.132
0.6,0.0,0.0,0.0) 0.584 0.387 0.584 0.709 0.532 0.707 0.822 0.712 0.815
1.0,0.0,0.0,0.0) 0.946 0.860 0.942 0.981 0.952 0.981 0.999 0.989 0.998

100 (0.4,0.2,0.0,0.0) 0.347 0.175 0.346 0.434 0.222 0.414 0.537 0.345 0.501
0.6,0.4,0.0,0.0) 0.774 0.531 0.742 0.886 0.685 0.858 0.953 0.856 0.932
0.8,0.6,0.4,0.0) 0.991 0.920 0.982 1.000 0.983 0.999 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 0.924 1.000 1.000 0.984 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.0) 0.048 0.026 0.054 0.050 0.026 0.061 0.051 0.024 0.063
0.2,0.0,0.0,0.0) 0.172 0.098 0.170 0.209 0.120 0.219 0.254 0.132 0.264
0.6,0.0,0.0,0.0) 0.927 0.858 0.925 0.970 0.939 0.968 0.989 0.973 0.987
1.0,0.0,0.0,0.0) 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

200 (0.4,0.2,0.0,0.0) 0.730 0.520 0.676 0.848 0.668 0.824 0.925 0.769 0.901
0.6,0.4,0.0,0.0) 0.998 0.995 0.995 1.000 0.999 0.999 1.000 1.000 1.000
0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 52.12: Size and power comparisons for GOF tests with test statistics Sy, and
Wi, when k = 3.

Sz Wi Sza  Wsy S350 Wiy
0.066 0.067 0.062 0.062 0.027 0.053
0.033 0.045 0.028 0.037 0.012 0.032
0.021 0.048 0.022 0.040 0.009 0.030
0.004 0.012 0.005 0.011 0.001 0.008
0.220 0.205 0.205 0.216 0.130 0.178
0.791 0.711 0.819 0.765 0.768 0.798
0.984 0.969 0.993 0.984 0.984 0.989
0.149 0.199 0.141 0.207 0.083 0.168
0.425 0.450 0.430 0.505 0.343 0.484

§ 0.449 0.309 0.466 0.326 0.357 0.284
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0.754 0.533 0.772 0.574 0.696 0.568
0.980 0.871 0.986 0.909 0.979 0.920
0.048 0.060 0.041 0.057 0.023 0.048
0.023 0.037 0.018 0.037 0.014 0.034
0.018 0.035 0.016 0.036 0.010 0.034
0.001 0.004 0.002 0.006 0.005 0.006
0.285 0.260 0.292 0.269 0.216 0.256
0.953 0915 0.974 0.950 0.968 0.970
1.000 1.000 1.000 1.000 1.000 1.000
0.197 0.254 0.202 0.258 0.151 0.250
0.619 0.645 0.662 0.720 0.609 0.751
§ 0.653 0.419 0.669 0.456 0.607 0.426

A OO O
SO0 LTy

coooo;

|
SO OoOOoOHROO

Coo2
o
Moo oooo

100

NN OOO
~— T

0.927 0.744 0.950 0.799 0.924 0.815
0.998 0.982 0.999 0.993 1.000 0.995
0.063 0.059 0.052 0.057 0.049 0.048
0.018 0.036 0.022 0.037 0.021 0.038
0.015 0.040 0.018 0.039 0.016 0.042
0.000 0.001 0.001 0.002 0.004 0.009
0.500 0.402 0.530 0.464 0.492 0.508
1.000 0.999 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
0.357 0.405 0.395 0.464 0.379 0.511
0.905 0.906 0.933 0.945 0.937 0.976
§ 0.905 0.649 0.939 0.740 0.928 0.786
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Table 52.13: Size comparisons with £ = 3 and p = 1, 2, 00 for GOF tests with adjusted
p-values, including Cauchy combination (C3,), BY (Y3;,), and Bonferroni corrected
methods (B3,).

Cy Yy By Oy Yy By G Yo, DBy
0.040 0.037 0.047 0.044 0.035 0.049 0.046 0.032 0.053
0.024 0.022 0.028 0.021 0.020 0.026 0.026 0.021 0.030
0.020 0.021 0.026 0.019 0.020 0.024 0.023 0.021 0.029
0.004 0.004 0.006 0.004 0.005 0.006 0.004 0.003 0.007
0.162 0.113 0.165 0.169 0.117 0.172 0.176 0.108 0.177
0.685 0.605 0.669 0.755 0.684 0.749 0.822 0.745 0.815
0.964 0.929 0956 0.983 0.962 0.981 0.992 0.976 0.991
0.122 0.113 0.145 0.134 0.117 0.154 0.136 0.108 0.155
0.350 0.317 0.371 0.408 0.364 0.449 0.469 0.419 0.497
0.280 0.217 0.256 0.301 0.232 0.291 0.340 0.229 0.310
0.528 0.416 0.473 0.603 0.472 0.563 0.653 0.526 0.613
0.888 0.787 0.835 0.930 0.863 0.910 0.957 0.894 0.933
0.042 0.036 0.048 0.041 0.032 0.048 0.039 0.033 0.043
0.022 0.021 0.026 0.023 0.019 0.029 0.023 0.020 0.028
0.019 0.020 0.025 0.018 0.019 0.028 0.018 0.026 0.026
0.001 0.002 0.003 0.002 0.001 0.003 0.004 0.003 0.004
0.201 0.117 0.215 0.232 0.194 0.249 0.250 0.205 0.259
0.895 0.847 0.890 0.944 0.914 0.936 0.976 0.952 0.973
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.158 0.159 0.193 0.187 0.175 0.225 0.213 0.191 0.238
0.551 0.524 0.574 0.642 0.598 0.672 0.708 0.659 0.735
0.424 0.322 0.379 0.474 0.349 0.433 0496 0.362 0.453
0.762 0.658 0.701 0.835 0.723 0.787 0.875 0.752 0.831
0.991 0.958 0.974 0.998 0.984 0.990 0.998 0.992 0.995
0.036 0.027 0.046 0.037 0.030 0.044 0.039 0.026 0.043
0.012 0.015 0.023 0.014 0.017 0.023 0.019 0.015 0.027
0.011 0.014 0.022 0.012 0.016 0.022 0.015 0.013 0.025
0.000 0.000 0.000 0.001 0.000 0.001 0.004 0.002 0.006
0.369 0.302 0.373 0.441 0.360 0.432 0.505 0.423 0.503
0.999 0.991 0.997 1.000 0.999 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.305 0.288 0.352 0.372 0.344 0.412 0.458 0.411 0.486
0.869 0.830 0.884 0.926 0.910 0.937 0.965 0.954 0.972
0.711 0.550 0.633 0.774 0.644 0.715 0.85 0.717 0.788
0.976 0.930 0.953 0.989 0.970 0.980 0.998 0.989 0.996
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 52.14: Size and power comparisons for GOF tests with test statistics Sk, and
Wi, for k = 4.

n (QI7QQaq3> Sai Wan Sao Wi Sico . Wiso
0.0,0.0,0.0 0.054 0.075 0.043 0.067 0.024 0.046
0.2,0.0,0.0 0.018 0.051 0.014 0.045 0.010 0.031
0.4,0.0,0.0 0.011 0.052 0.011 0.044 0.010 0.032
0.4,0.2,0.0 0.003 0.025 0.004 0.023 0.002 0.019
0.2,0.2,0.2 0.001  0.009 0.002 0.008 0.001 0.009
-0.2,0.0,0.0)  0.190 0.179 0.180 0.182 0.093 0.151

60  (-0.6,0.0,0.0) 0.713 0.652 0.730 0.708 0.592 0.743
-1.0,0.0,0.0)  0.959 0.950 0.968 0.977 0.939 0.985
-0.2,0.0,0.2)  0.126 0.171 0.112 0.178 0.051 0.151
-0.4,0.0,0.2)  0.363 0.418 0.359 0.461 0.229 0.461
0.2,-0.2,0.0)  0.404 0.280 0.394 0.283 0.258 0.246
0.4,-0.2,0.0)  0.710 0.494 0.711 0.530 0.557 0.523
-0.6-0.4-0.2) 0.986 0.822 0.989 0.871 0.981 0.885
0.0,0.0,0.0 0.045 0.065 0.041 0.062 0.020 0.042
0.2,0.0,0.0 0.022 0.051 0.023 0.046 0.013 0.039
0.4,0.0,0.0 0.019 0.054 0.016 0.048 0.006 0.043
0.4,0.2,0.0 0.008 0.028 0.010 0.027 0.000 0.025
0.2,0.2,0.2 0.000 0.002 0.000 0.006 0.001 0.004
-0.2,0.0,0.0)  0.254 0.216 0.251 0.232 0.165 0.223

100 (-0.6,0.0,0.0) 0.911 0.875 0.936 0.927 0.898 0.955
-1.0,0.0,0.0 1.000 0.998 1.000 1.000 0.999 1.000
-0.2,0.0,0.2)  0.165 0.209 0.154 0.226 0.109 0.223
-0.4,0.0,0.2)  0.563 0.613 0.599 0.675 0.455 0.696
-0.2,-0.2,0.0)  0.611 0.362 0.619 0.392 0.488 0.390
0.4,-0.2,0.0) 0.913 0.695 0.927 0.747 0.867 0.768
-0.6-0.4-0.2) 1.000 0.982 1.000 0.994 1.000 0.997
0.0,0.0,0.0 0.059 0.062 0.051 0.060 0.035 0.044
0.2,0.0,0.0 0.018 0.051 0.017 0.045 0.014 0.039
0.4,0.0,0.0 0.011 0.056 0.014 0.051 0.011 0.041
0.4,0.2,0.0 0.003 0.023 0.004 0.027 0.004 0.031
0.2,0.2,0.2 0.000 0.003 0.000 0.003 0.001 0.016
-0.2,0.0,0.0)  0.448 0.336 0.460 0.390 0.384 0.434

200 (-0.6,0.0,0.0)  1.000 0.993 1.000 0.998 1.000 1.000
-1.0,0.0,0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.2,0.0,0.2)  0.328 0.332 0.347 0.394 0.201 0.437
-0.4,0.0,0.2)  0.883 0.862 0.912 0.925 0.889  0.96
-0.2,-0.2,0.0) 0.923 0.609 0.924 0.68 0.885 0.716
-0.4,-0.2,0.0) 1.000 0.937 1.000 0.969 0.999 0.989
-0.6,-0.4,-0.2)  1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.15: Size comparisons with £ = 4 and p = 1, 2, 0o for GOF tests with adjusted
p-values, including Cauchy combination (C}), BY (Y}), and Bonferroni corrected
methods (B},).

n (. 0.05) Ch Y5 DBn C, Yy DB G Y; B
0.0,0.0,0.0 0.039 0.026 0.054 0.041 0.025 0.052 0.043 0.024 0.051
0.2,0.0,0.0 0.020 0.015 0.037 0.021 0.013 0.031 0.024 0.017 0.032
0.4,0.0,0.0 0.014 0.014 0.034 0.016 0.012 0.029 0.019 0.017 0.031
0.4,0.2,0.0 0.006 0.006 0.018 0.005 0.005 0.015 0.007 0.009 0.018
0.2,0.2,0.2 0.002 0.002 0.005 0.001 0.002 0.003 0.004 0.004 0.006
-0.2,0.0,0.0 0.124 0.092 0.140 0.132 0.097 0.141 0.162 0.111 0.167

60 -0.6,0.0,0.0 0.609 0.527 0.613 0.677 0.600 0.675 0.755 0.666 0.755
-1.0,0.0,0.0 0.927 0.889 0.926 0.970 0.940 0.965 0.987 0.974 0.988
-0.2,0.0,0.2 0.104 0.086 0.127 0.115 0.093 0.130 0.143 0.106 0.157
-0.4,0.0,0.2 0.319 0.259 0.345 0.370 0.304 0.392 0.426 0.308 0.456
-0.2,-0.2,0.0 0.220 0.154 0.226 0.240 0.172 0.237 0.285 0.189 0.279
-0.4,-0.2,0.0 0.452 0.318 0.429 0.500 0.376 0.484 0.584 0.424 0.553
-0.6,-0.4,-0.2) 0.873 0.703 0.788 0.920 0.787 0.851 0.954 0.847 0.912
0.0,0.0,0.0 0.036 0.024 0.049 0.037 0.027 0.045 0.036 0.021 0.045
0.2,0.0,0.0 0.020 0.019 0.037 0.024 0.022 0.034 0.027 0.018 0.036
0.4,0.0,0.0 0.018 0.019 0.037 0.022 0.022 0.034 0.023 0.018 0.035
0.4,0.2,0.0 0.010 0.010 0.019 0.012 0.013 0.018 0.011 0.011 0.022
0.2,0.2,0.2 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.004

-0.2,0.0,0.0)  0.170 0.120 0.189 0.190 0.138 0.201 0.216 0.135 0.235
100 (-0.6,0.0,0.0 0.860 0.755 0.855 0.916 0.866 0.913 0.956 0.923 0.955
-1.0,0.0,0.0)  0.997 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000
-0.2,0.0,0.2)  0.133 0.112 0.174 0.158 0.127 0.187 0.190 0.125 0.220
-0.4,0.0,0.2)  0.487 0.380 0.543 0.579 0.490 0.626 0.666 0.556 0.683
-0.2,-0.2,0.0) 0.342 0.209 0.329 0.374 0.249 0.362 0.450 0.270 0.423
-0.4,-0.2,0.0) 0.692 0.472 0.650 0.775 0.585 0.729 0.834 0.652 0.791
0.6-0.4-0.2)  0.994 0.943 0.976 0.999 0.983 0.994 0.999 0.993 0.998
0.0,0.0,0.0 0.035 0.022 0.043 0.032 0.025 0.044 0.031 0.025 0.037
0.2,0.0,0.0 0.020 0.013 0.028 0.020 0.016 0.030 0.021 0.017 0.029
0.4,0.0,0.0 0.017 0.013 0.028 0.018 0.016 0.030 0.019 0.017 0.028
0.4,0.2,0.0 0.007 0.006 0.016 0.008 0.009 0.016 0.010 0.009 0.018
0.2,0.2,0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.006
-0.2,0.0,0.0) 0273 0.195 0.285 0.338 0.256 0.348 0.418 0.314 0.423
200 (-0.6,0.0,0.0)  0.993 0.974 0.990 0.999 0.993 0.998 1.000 1.000 1.000
-1.0,0.0,0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2,0.0,0.2)  0.240 0.188 0.271 0.311 0.246 0.334 0.373 0.309 0.413
-0.4,0.0,0.2)  0.784 0.740 0.817 0.890 0.824 0.901 0.946 0.919 0.951
-0.2,-0.2,0.0) 0.609 0.387 0.538 0.698 0.512 0.638 0.781 0.598 0.718
-0.4,-0.2,0.0) 0956 0.854 0.913 0.983 0.927 0.958 0.993 0.965 0.987
-0.6,-0.4,-0.2)  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 52.16: Size and power comparisons for GOF tests with test statistics Sy, and

Wi, for k= 5.

n (CI17Q2,CJ37Q4) Ss1 Wy Ss2 Wia Sice . Wise
0.0,0.0,0.0,0.0 0.046 0.073 0.038 0.062 0.020 0.049
0.2,0.0,0.0,0.0 0.020 0.056 0.019 0.050 0.009 0.043
0.4,0.0,0.0,0.0 0.020 0.058 0.014 0.047 0.005 0.042
0.4,0.2,0.0,0.0 0.008 0.044 0.010 0.041 0.003 0.033
0.2,0.2,0.2,0.2 0.002 0.012 0.002 0.012 0.000 0.009
-0.2,0.0,0.0,0.0 0.176 0.156 0.151 0.146 0.082 0.117

60 (-0.6,0.0,0.0,0.0 0.655 0.636 0.652 0.689 0.477 0.702
-1.0,0.0,0.0,0.0 0.946 0.941 0.959 0.967 0.895 0.978
-0.2,0.0,0.0,0.2 0.110 0.147 0.096 0.141 0.044 0.113
-0.4,0.0,0.0,0.2 0.312 0.361 0.301 0.399 0.160 0.388
0.2,-0.2,0.0,0.0)  0.371 0.231 0.359 0.233 0.176 0.194
0.4,-0.2,0.0,0.0)  0.645 0.427 0.634 0.463 0.436 0.446
-0.6,-0.4-0.2,0.0)  0.991 0.800 0.994 0.847 0.973 0.851
-0.8,-0.6,-0.4-0.2)  1.000 0.979 1.000 0.993 1.000 0.988
0.0,0.0,0.0,0.0 0.042 0.072 0.037 0.064 0.019 0.044
0.2,0.0,0.0,0.0 0.016 0.059 0.013 0.058 0.004 0.042
0.4,0.0,0.0,0.0 0.015 0.061 0.012 0.060 0.003 0.044
0.4,0.2,0.0,0.0 0.005 0.043 0.004 0.047 0.001 0.037
0.2,0.2,0.2,0.2 0.000 0.003 0.000 0.004 0.000 0.008
-0.2,0.0,0.0,0.0 0.224 0.183 0.210 0.201 0.133 0.187

100 (-0.6,0.0,0.0,0.0 0.870 0.841 0.897 0.906 0.812 0.937
-1.0,0.0,0.0,0.0 0.996 0.995 1.000 0.999 0.992 0.999
-0.2,0.0,0.0,0.2 0.130 0.178 0.132 0.196 0.085 0.183
-0.4,0.0,0.0,0.2 0.481 0.534 0.495 0.596 0.359 0.625
0.2,-0.2,0.0,0.0)  0.553 0.317 0.534 0.339 0.374 0.323
0.4,-0.2,0.0,0.0)  0.868 0.632 0.885 0.691 0.768 0.710
-0.6,-0.4,-0.2,0.0)  1.000 0.956 1.000 0.983 1.000 0.989
-0.8,-0.6,-0.4,-0.2)  1.000 1.000 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.0 0.040 0.065 0.045 0.060 0.035 0.060
0.2,0.0,0.0,0.0 0.023 0.051 0.016 0.048 0.021 0.049
0.4,0.0,0.0,0.0 0.022 0.054 0.016 0.049 0.016 0.051
0.4,0.2,0.0,0.0 0.005 0.040 0.005 0.037 0.008 0.037
0.2,0.2,0.2,0.2 0.007 0.038 0.005 0.036 0.010 0.035
-0.2,0.0,0.0,0.0 0.408 0.322 0.394 0.355 0.294 0.391

200 (-0.6,0.0,0.0,0.0 0.995 0.989 0.998 0.996 0.995 0.999
-1.0,0.0,0.0,0.0 1.000 1.000 1.000 1.000 1.000 1.000
-0.2,0.0,0.0,0.2 0.281 0.325 0.286 0.356 0.203 0.400
-0.4,0.0,0.0,0.2 0.828 0.832 0.879 0.902 0.821 0.945
0.2,-0.2,0.0,0.0)  0.890 0.571 0.904 0.640 0.820 0.679
0.4,-0.2,0.0,0.0)  0.994 0.920 0.998 0.962 0.996 0.985
-0.6,-0.4,-0.2,0.0)  1.000 1.000 1.000 1.000 1.000 1.000
-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.17: Size comparisons with £ =5 and p = 1, 2, co for GOF tests with adjusted
p-values, including Cauchy combination (C3)), BY (Yj;), and Bonferroni corrected
methods (B3,).

n_ (q1,¢2: 43, q4) Csy Y1 By Csy Y, By Cin  Yi, Big
0.0,0.0,0.0,0.0 0.040 0.098 0.043 0040 0021 0045 0.048 0.0%6 0.059
0.2,0.0,0.0,0.0 0.030 0.021 0.033 0.028 0.018 0.035 0.037 0.020 0.042
0.4,0.0,0.0,0.0 0.026 0.020 0.031 0.024 0.017 0.032 0.032 0.020 0.039
0.4,0.2,0.0,0.0 0.018 0.012 0.022 0.015 0.011 0.023 0.023 0.015 0.031
0.2,0.2,0.2,0.2 0.002 0.004 0.009 0.004 0.002 0.008 0.005 0.003 0.009
-0.2,0.0,0.0,0.0 0.102 0.064 0.104 0.114 0.065 0.116 0.131 0.072 0.129

60 (-0.6,0.0,0.0,0.0 0.567 0.454 0.567 0.647 0.530 0.645 0.727 0.623 0.725
-1.0,0.0,0.0,0.0 0.922 0.874 0.919 0.957 0.926 0.958 0.985 0.963 0.982
-0.2,0.0,0.0,0.2 0.086 0.057 0.093 0.096 0.059 0.105 0.112 0.063 0.117
-0.4,0.0,0.0,0.2 0.276 0.205 0.293 0.325 0.233 0.339 0.388 0.295 0.392
-0.2,-0.2,0.0,0.0)  0.174 0.102 0.176 0.190 0.105 0.197 0.228 0.117 0.219
-0.4,-0.2,0.0,0.0)  0.373 0.248 0.363 0.430 0.283 0.416 0.494 0.341 0.475
0.6-0.4-0.2,0.0) 0.824 0.614 0.752 0.884 0.706 0.832 0.928 0.795 0.887
-0.8-0.6-0.4,-0.2) 0.996 0.914 0.968 0.999 0.963 0.989 1.000 0.988 0.993
0.0,0.0,0.0,0.0 0.039 0.025 0.046 0.034 0.025 0.045 0.036 0.018 0.044
0.2,0.0,0.0,0.0 0.024 0.021 0.037 0.023 0.019 0.038 0.022 0.012 0.036
0.4,0.0,0.0,0.0 0.023 0.021 0.037 0.022 0.019 0.038 0.020 0.012 0.035
0.4,0.2,0.0,0.0 0.010 0.013 0.022 0.012 0.012 0.024 0.015 0.008 0.027
0.2,0.2,0.2,0.2 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.000 0.004
-0.2,0.0,0.0,0.0 0.137 0.084 0.149 0.159 0.094 0.168 0.191 0.107 0.199

100 (-0.6,0.0,0.0,0.0 0.791 0.698 0.787 0.886 0.799 0.886 0.945 0.884 0.944
-1.0,0.0,0.0,0.0 0.993 0.987 0.992 0.999 0.996 0.999 0.999 0.999 0.999
-0.2,0.0,0.0,0.2 0.121 0.080 0.141 0.142 0.090 0.159 0.171 0.105 0.189
-0.4,0.0,0.0,0.2 0.433 0.323 0.454 0511 0.320 0.540 0.607 0.499 0.624
-0.2,-0.2,0.0,0.0)  0.263 0.155 0.255 0.318 0.180 0.301 0.359 0.209 0.341
-0.4-0.2,0.0,0.0)  0.596 0.390 0.553 0.687 0.505 0.651 0.741 0.590 0.718
-0.6,-0.4,-0.2,0.0)  0.975 0.880 0.937 0.991 0.952 0.982 0.996 0.978 0.991
-0.8-0.6-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.0 0.043 0.033 0.046 0.043 0.029 0.050 0.054 0.030 0.058
0.2,0.0,0.0,0.0 0.027 0.024 0.035 0.031 0.021 0.037 0.038 0.021 0.046
0.4,0.0,0.0,0.0 0.025 0.024 0.035 0.030 0.021 0.037 0.033 0.021 0.046
0.4,0.2,0.0,0.0 0.016 0.014 0.022 0.016 0.012 0.024 0.018 0.011 0.031
0.2,0.2,0.2,0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
-0.2,0.0,0.0,0.0 0.248 0.163 0.253 0.307 0.221 0.318 0.388 0.277 0.394

200 (-0.6,0.0,0.0,0.0 0.989 0.974 0.985 0.996 0.991 0.996 0.998 0.999 0.999
-1.0,0.0,0.0,0.0 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
-0.2,0.0,0.0,0.2 0.217 0.156 0.245 0.282 0.214 0.309 0.358 0.274 0.385
-0.4,0.0,0.0,0.2 0.768 0.683 0.788 0.868 0.805 0.880 0.938 0.910 0.944
-0.2,-0.2,0.0,0.0)  0.529 0.340 0.479 0.644 0.439 0.590 0.745 0.558 0.694
-0.4-0.2,0.0,0.0)  0.930 0.794 0.895 0.970 0.898 0.955 0.993 0.968 0.985
-0.6,-0.4-0.2,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.8,-0.6-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

31



Table 52.18: Size and power comparisons for GOF tests with test statistics Sy, and
Wi, for k = 10.

n (Q17q27Q37q4) 510,1 Wioa 510,2 Wio2 SlO,oo Wio,00
0.0,0.0,0.0,0.0 0.042 0.070 0.038 0.061 0.007 0.045
0.2,0.070.0,0.03 0.022 0.068 0.017 0.053 0.006  0.04
0.4,0.0,0.0,0.0) 0.017 0.069 0.012 0.056 0.006 0.041
0.4,0.2,00,0.0; 0.009 0.062 0.008 0.051 0.005 0.038
0.2,0.2,0.2,0.2 0.000 0.011 0.000 0.007 0.000 0.007
-0.2,0.0,0.0,0.0 0.124 0.118 0.096 0.110 0.024 0.097

60 (-0.6,0.0,0.0,0.0 0.448 0.523 0.421 0.589 0.172  0.620
-1.0,0.0,0.0,0.0 0.795 0.897 0.791 0.943 0.479 0.957
-0.2,0.0,0.0,0.2 0.084 0.115 0.072 0.111 0.014 0.097
-0.4,0.0,0.0,0.2 0.200 0.285 0.179 0.307 0.058  0.300
-0.2,-0.2,0.0,0.0) 0236 0.172 0.201 0.179 0.062 0.145
-0.4,-0.2,0.0,0.0) 0439 0.330 0.394 0.365 0.161 0.334
-0.6,-0.4,-0.2,0.0)  0.926 0.681 0.922 0.760 0.670 0.781
-0.8-0.6,-0.4,-0.2)  1.000 0.935 1.000 0.975 0.990 0.974
o.o,o.o,o.o,o.og 0.062 0.088 0.046 0.077 0.010 0.051
0.2,0.0,0.0,0.0 0.029 0.081 0.026 0.073 0.006 0.049
0.4,0.0,0.0,0.0) 0.028 0.081 0.024 0.076 0.007 0.049
0.4,0.2,0.0,0.0; 0.014 0.078 0.010 0.070 0.002 0.051
0.2,0.2,0.2,0.2 0.000 0.007 0.000 0.007 0.000 0.005
-0.2,0.0,0.0,0.0 0.171 0.153 0.150 0.159 0.056 0.143

100 (-0.6,0.0,0.0,0.0 0.679 0.743 0.664 0.839 0.432  0.880
-1.0,0.0,0.0,0.0 0.967 0.986 0.967 0.998 0.857 0.999
-0.2,0.0,0.0,0.2 0.129 0.154 0.111 0.159 0.038 0.142
-0.4,0.0,0.0,0.2 0.324 0.416 0.303 0.484 0.142 0.525
-0.2,-0.2,0.0,0.0)  0.365 0.238 0.319 0.252 0.147 0.244
-0.4,-0.2,0.0,0.0)  0.669 0.488 0.647 0.558 0.371 0.601
-0.6,-0.4,-0.2,0.0)  0.998 0.904 0.999 0.958 0.970 0.974
-0.8-0.6,-0.4,-0.2)  1.000 0.999 1.000 1.000 1.000 1.000
0.0,0.0,0.0,0.03 0.067 0.076 0.061 0.076 0.034 0.064
0.2,0.0,0.0,0.0 0.037 0.068 0.043 0.071 0.029 0.057
0.4,0.0,0.0,0.0) 0.037 0.070 0.036 0.073 0.024 0.058
0.4,0.2,0.0,0.0% 0.026 0.064 0.025 0.069 0.013 0.053
0.2,0.2,0.2,0.2 0.000 0.001 0.000 0.001 0.000 0.005
-0.2,0.0,0.0,0.0 0.321 0.248 0.291 0.288 0.183 0.322

200 (-0.6,0.0,0.0,0.0 0.961 0.981 0.966 0.992 0.905 0.999
-1.0,0.0,0.0,0.0 1.000 1.000 1.000 1.000 0.999 1.000
-0.2,0.0,0.0,0.2 0.233 0.244 0214 0282 0.141 0.321
-0.4,0.0,0.0,0.2 0.678 0.754 0.680 0.845 0.488 0.904
-0.2,-0.2,0.0,0.0)  0.734 0.420 0.713 0.490 0.489 0.551
-0.4,-0.2,0.0,0.0)  0.966 0.845 0.964 0.919 0.888 0.955
-0.6,-0.4,-0.2,0.0)  1.000 1.000 1.000 1.000 1.000 1.000
-0.8-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.19: Size comparisons with £ = 10 and p = 1, 2, oo for GOF tests with adjusted
p-values, including Cauchy combination (Cf, ), BY (Yy,), and Bonferroni corrected
methods (B, ,). For simplicity, we set R; = Ry for i = 6,...,9 for all cases.

n (CIh 42, 43, Q4) Cfo 1 Yioa Bioa Cfo s Yoo BTO,Q Cfo,oo Yff),oo Blo.oo
0.0,0.0,0.0,0.0 0.040 0.019 0.048 | 0.038 0.019 0.047 | 0.040 0.016 0.045
0.2,0.0,0.0,0.0 0.033 0.015 0.040 | 0.030 0.015 0.040 | 0.032 0.014 0.039
0.4,0.0,0.0,0.0 0.030 0.015 0.039 | 0.029 0.015 0.039 | 0.032 0.014 0.039
0.4,0.2,0.0,0.0 0.023 0.012 0.035 | 0.024 0.012 0.036 | 0.030 0.013 0.035
0.2,0.2,0.2,0.2 0.002 0.000 0.005 | 0.003 0.001 0.004 | 0.003 0.001 0.004
-0.2,0.0,0.0,0.0 0.078 0.039 0.087 | 0.086 0.037 0.094 | 0.084 0.033 0.090

60 -0.6,0.0,0.0,0.0 0.454 0.303 0.469 | 0.539 0.383 0.543 | 0.622 0.440 0.623
-1.0,0.0,0.0,0.0 0.872 0.737 0.870 | 0.926 0.844 0.928 | 0.958 0.907 0.959
-0.2,0.0,0.0,0.2 0.071 0.038 0.083 | 0.077 0.036 0.090 | 0.079 0.033 0.091
-0.4,0.0,0.0,0.2 0.207 0.125 0.221 | 0.254 0.142 0.262 | 0.290 0.157 0.293
-0.2,-0.2,0.0,0.0 0.129 0.061 0.132 | 0.144 0.059 0.146 | 0.145 0.053 0.144
-0.4,-0.2,0.0,0.0 0.267 0.148 0.270 | 0.320 0.166 0.317 | 0.360 0.178 0.300
-0.6,-0.4,-0.2,0.0)  0.663 0.427 0.641 | 0.762 0.516 0.718 | 0.830 0.570 0.791
-0.8,-0.6,-0.4,-0.2)  0.960 0.775 0.904 | 0.988 0.871 0.963 | 0.991 0.933 0.982
0.0,0.0,0.0,0.0 0.050 0.016 0.063 | 0.052 0.019 0.063 | 0.039 0.018 0.039
0.2,0.0,0.0,0.0 0.043 0.015 0.057 | 0.045 0.016 0.057 | 0.034 0.016 0.037
0.4,0.0,0.0,0.0 0.038 0.015 0.056 | 0.041 0.016 0.056 | 0.032 0.016 0.036
0.4,0.2,0.0,0.0 0.031 0.014 0.049 | 0.034 0.015 0.048 | 0.030 0.015 0.035
0.2,0.2,0.2,0.2 0.000 0.000 0.004 | 0.000 0.000 0.002 | 0.001 0.000 0.002

-0.2,0.0,0.0,0.0 0.109 0.039 0.119 | 0.131 0.049 0.134 | 0.132 0.057 0.118
100 (-0.6,0.0,0.0,0.0 0.680 0.476 0.689 | 0.785 0.619 0.798 | 0.866 0.752 0.863
-1.0,0.0,0.0,0.0 0.985 0.939 0.984 | 0.997 0.983 0.998 | 0.998 0.995 0.999
-0.2,0.0,0.0,0.2 0.099 0.037 0.116 | 0.117 0.047 0.131 | 0.120 0.055 0.115
-0.4,0.0,0.0,0.2 0.336 0.170 0.347 | 0.411 0.246 0.433 | 0476 0.315 0.483
-0.2,-0.2,0.0,0.0 0.197 0.078 0.194 | 0.229 0.097 0.223 | 0.247 0.108 0.214
-0.4,-0.2,0.0,0.0 0.421 0.209 0.419 | 0.524 0.294 0.511 | 0.597 0.365 0.559
-0.6,-0.4,-0.2,0.0)  0.900 0.664 0.864 | 0.961 0.799 0.943 | 0.984 0.896 0.969
-0.8,-0.6,-0.4,-0.2)  1.000 0.967 0.996 | 1.000 0.995 1.000 | 0.999 0.999 1.000
0.0,0.0,0.0,0.0 0.050 0.028 0.063 | 0.052 0.025 0.063 | 0.039 0.019 0.039
0.2,0.0,0.0,0.0 0.043 0.025 0.057 | 0.045 0.021 0.057 | 0.034 0.016 0.037
0.4,0.0,0.0,0.0 0.038 0.025 0.056 | 0.041 0.021 0.056 | 0.032 0.016 0.036
0.4,0.2,0.0,0.0 0.031 0.023 0.049 | 0.034 0.018 0.048 | 0.030 0.014 0.035
0.2,0.2,0.2,0.2 0.000 0.001 0.004 | 0.000 0.001 0.002 | 0.001 0.000 0.002
-0.2,0.0,0.0,0.0 0.205 0.118 0.211 | 0.244 0.147 0.241 | 0.322 0.186 0.320
200 (-0.6,0.0,0.0,0.0 0.976 0.944 0979 | 0.990 0.981 0.989 | 0.999 0.994 0.999
-1.0,0.0,0.0,0.0 0.999 1.000 1.000 | 0.999 1.000 1.000 | 1.000 1.000 1.000
-0.2,0.0,0.0,0.2 0.187 0.113 0.201 | 0.224 0.143 0.233 | 0.301 0.183 0.313
-0.4,0.0,0.0,0.2 0.687 0.573 0.703 | 0.815 0.715 0.815| 0.903 0.823 0.902
-0.2,-0.2,0.0,0.0 0.388 0.230 0.374 | 0.478 0.281 0.437 | 0.586 0.358 0.561
-0.4,-0.2,0.0,0.0 0.832 0.662 0.802 | 0.927 0.803 0.901 | 0.964 0.896 0.955
-0.6,-0.4,-0.2,0.0)  1.000 0.997 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
-0.8,-0.6,-0.4,-0.2) 1.000 0.997 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
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Table S2.20: Performance of J evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

p=1 D=2 p = 00
C TA FA C TA FA C TA FA

n (q1,92)
(0.0,0.0) 0.952 0.000 0.048 0.951 0.000 0.049 0.949 0.000 0.051
(0.4,0.0) 0.320 0.320 0.021 0.371 0.371 0.021 0.447 0.449 0.022
0.8,0.0) 0.747 0.752 0.021 0.831 0.840 0.021 0.893 0.904 0.022
60 (1.0,0.0) 0.866 0.874 0.021 0.915 0.929 0.021 0.951 0.969 0.022
0.6,0.4) 0.100 0.858 0.000 0.168 1.024 0.000 0.248 1.155 0.000
0.8,0.6) 0.343 1.275 0.000 0.488 1.464 0.000 0.624 1.616 0.000
1.0,0.8) 0.618 1.609 0.000 0.757 1.755 0.000 0.867 1.867 0.000
1.0,1.0) 0.738 1.731 0.000 0.870 1.869 0.000 0.946 1.946 0.000
E0.0,0.0 0.949 0.000 0.051 0.941 0.000 0.059 0.953 0.000 0.047
0.4,00) 0432 0.439 0.031 0.533 0.546 0.036 0.593 0.599 0.030
0.8,0.0) 0.894 0.912 0.031 0.937 0.965 0.036 0.964 0.990 0.030
100 (1.0,0.0) 0.951 0.977 0.031 0.961 0.996 0.036 0.969 0.998 0.030
0.6,04) 0.340 1.280 0.000 0.471 1.446 0.000 0.579 1.569 0.000
(0.8,0.6) 0.719 1.715 0.000 0.841 1.841 0.000 0.907 1.907 0.000
El.0,0.S 0912 1912 0.000 0.962 1.962 0.000 0.983 1.983 0.000
1.0,1.0) 0.952 1.952 0.000 0.990 1.990 0.000 0.997 1.997 0.000
E0.0,0.0 0.947 0.000 0.053 0.944 0.000 0.056 0.946 0.000 0.054
0.4,0.0) 0.801 0.806 0.023 0.871 0.883 0.025 0.920 0.936 0.022
(0.8,0.0) 0.975 0.996 0.023 0.975 1.000 0.025 0.978 1.000 0.022
200 (1.0,0.0) 0.977 1.000 0.023 0.975 1.000 0.025 0.978 1.000 0.022
0.6,04) 0.754 1.754 0.000 0.845 1.845 0.000 0.900 1.900 0.000
0.8,0.6) 0.965 1.965 0.000 0.986 1.986 0.000 0.992 1.992 0.000
(1.0,0.8) 0.996 1.996 0.000 1.000 2.000 0.000 1.000 2.000 0.000
(1.0,1.0) 1.000 2.000 0.000 1.000 2.000 0.000 1.000 2.000 0.000
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Table 52.21: Performance of J; evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

p=1 D=2 p = 00
C TA FA C TA FA C TA FA

n (q1,92)
(0.0,0.0) 0.961 0.000 0.039 0.968 0.000 0.032 0.952 0.000 0.048
(0.4,0.0) 0.263 0.263 0.015 0.258 0.258 0.013 0.349 0.350 0.019
0.8,0.0) 0.670 0.673 0.015 0.713 0.716 0.013 0.806 0.816 0.020
60 (1.0,0.0) 0.811 0.815 0.015 0.858 0.863 0.013 0.899 0.911 0.018
0.6,04) 0.057 0.723 0.000 0.067 0.760 0.000 0.147 0.950 0.000
(0.8,0.6) 0.234 1.114 0.000 0.292 1.205 0.000 0.453 1.414 0.000
El.0,0.S 0.488 1.462 0.000 0.589 1.577 0.000 0.714 1.707 0.000
1.0,1.0) 0.618 1.607 0.000 0.715 1.707 0.000 0.823 1.820 0.000
E0.0,0.0 0.996 0.000 0.004 0.997 0.000 0.003 0.995 0.000 0.005
0.4,0.0) 0.086 0.086 0.002 0.101 0.101 0.002 0.211 0.211 0.003
(0.8,0.0) 0.527 0.527 0.002 0.646 0.646 0.002 0.823 0.823 0.003
100 (1.0,0.0) 0.753 0.753 0.002 0.849 0.849 0.002 0.937 0.937 0.000
0.6,04) 0.011 0.411 0.000 0.020 0.494 0.000 0.093 0.811 0.000
0.8,0.6) 0.115 0.879 0.000 0.209 1.067 0.000 0.481 1.444 0.000
El.0,0.8 0.402 1.348 0.000 0.577 1.558 0.000 0.789 1.788 0.000
1.0,1.0) 0.571 1.550 0.000 0.733 1.727 0.000 0.895 1.895 0.000
E0.0,0.0 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
0.4,0.0) 0.030 0.030 0.000 0.041 0.041 0.000 0.167 0.167 0.000
(0.8,0.0) 0.539 0.539 0.000 0.713 0.713 0.000 0.929 0.929 0.000
200 (1.0,0.0) 0.819 0.819 0.000 0.933 0.933 0.000 0.989 0.989 0.000
0.6,0.4) 0.001 0.224 0.000 0.002 0.343 0.000 0.061 0.801 0.000
0.8,0.6) 0.051 0.722 0.000 0.150 0.991 0.000 0.567 1.552 0.000
(1.0,0.8) 0.382 1.341 0.000 0.630 1.624 0.000 0.902 1.902 0.000
(1.0,1.0) 0.633 1.625 0.000 0.841 1.841 0.000 0.969 1.969 0.000
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Table S2.22: Performance of J) evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

)
w

C

p=1
TA

FA

C

p=72
TA

FA

C

D= 00
TA FA

0.946
0.221
0.655
0.812
0.052
0.257
0.524
0.669
0.215
0.331
0.555

0.000
0.227
0.670
0.833
0.693
1.129
1.498
1.658
1.986
2.193
2.501

0.054
0.034
0.034
0.034
0.017
0.017
0.017
0.017
0.000
0.000
0.000

0.951
0.271
0.762
0.882
0.100
0.402
0.691
0.827
0.389
0.538
0.763

0.000
0.277
0.784
0.911
0.843
1.348
1.688
1.832
2.286
2.493
2.750

0.049
0.034
0.034
0.034
0.015
0.015
0.015
0.015
0.000
0.000
0.000

0.951
0.320
0.835
0.924
0.184
0.533
0.810
0.914
0.544
0.709
0.891

0.000
0.325
0.863
0.956
1.012
1.508
1.815
1.925
2.499
2.692
2.889

0.049
0.035
0.035
0.035
0.014
0.014
0.014
0.014
0.000
0.000
0.000

0.947
0.388
0.869
0.947
0.247
0.637
0.879
0.936
0.599
0.789
0.919

0.000
0.397
0.891
0.977
1.135
1.633
1.889
1.949
2.579
2.784
2.919

0.053
0.034
0.034
0.034
0.017
0.017
0.017
0.017
0.000
0.000
0.000

0.950
0.479
0.934
0.965
0.361
0.788
0.948
0.976
0.764
0.914
0.985

0.000
0.488
0.959
0.996
1.312
1.792
1.959
1.990
2.761
2914
2.985

0.050
0.031
0.031
0.031
0.015
0.015
0.015
0.015
0.000
0.000
0.000

0.961
0.548
0.961
0.976
0.477
0.855
0.973
0.989
0.846
0.960
0.996

0.000
0.561
0.983
1.000
1.451
1.860
1.981
1.998
2.846
2.960
2.996

0.039
0.024
0.024
0.024
0.010
0.010
0.010
0.010
0.000
0.000
0.000

HE R REREFOORROOOORR R FEFEEFREFOOFOOOOFREFEREFEEFEEFEOOFEOOO—
OO ORI DO OO0 O 0 O
HOOHOOOOOOQHOOHOOOOOOHOOROOO00 00Oy
[enNo N0 N No cNe) I es Nes Nes Nanl Fan o o0 cNan N0 s Ne) I "N eo Nes Neo Nen] fan N0 o0 oNer N0 oNe) N A Nar NavNaw Nan)

ettt e I el el e e e e e e e e e e el el et o
[esNo s @) e NenNenNenNen Nen Nen Nen] fen N0 o o) Nen Neo Neo Neo Nen Nen Nen Nen] fan o o o) Nen Nen Nen Neo Neo Neo Nes Nen) g

0.948
0.710
0.965
0.967
0.668
0.942
0.977
0.979
0.956
0.992
1.000

0.000
0.730
0.997
1.000
1.669
1.952
1.996
2.000
2.956
2.992
3.000

0.052
0.033
0.033
0.033
0.021
0.021
0.021
0.021
0.000
0.000
0.000

0.943
0.802
0.963
0.963
0.783
0.963
0.979
0.979
0.988
0.999
1.000

0.000
0.826
1.000
1.000
1.787
1.982
2.000
2.000
2.988
2.999
3.000

0.057
0.037
0.037
0.037
0.021
0.021
0.021
0.021
0.000
0.000
0.000

0.943
0.855
0.962
0.962
0.868
0.973
0.979
0.979
0.995
1.000
1.000

0.000
0.885
1.000
1.000
1.877
1.993
2.000
2.000
2.995
3.000
3.000

0.057
0.038
0.038
0.038
0.021
0.021
0.021
0.021
0.000
0.000
0.000
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Table 52.23: Performance of J evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

)
w

C

p=1
TA

FA

C

p=2
TA

FA

C

p =00
TA FA

0.938
0.217
0.637
0.779
0.050
0.237
0.490
0.613
0.184
0.295
0.493

0.000
0.222
0.655
0.804
0.681
1.107
1.457
1.596
1.922
2.132
2.424

0.062
0.040
0.040
0.039
0.018
0.018
0.017
0.017
0.000
0.000
0.000

0.950
0.225
0.687
0.841
0.056
0.294
0.587
0.717
0.273
0.404
0.630

0.000
0.230
0.704
0.864
0.712
1.188
1.572
1.711
2.093
2.308
2.592

0.050
0.032
0.032
0.031
0.014
0.014
0.014
0.014
0.000
0.000
0.000

0.930
0.296
0.776
0.876
0.151
0.465
0.711
0.826
0.431
0.588
0.777

0.000
0.307
0.813
0.917
0.933
1.420
1.713
1.838
2.343
2.549
2.767

0.070
0.044
0.043
0.043
0.024
0.023
0.023
0.022
0.000
0.000
0.000

0.995
0.108
0.556
0.755
0.014
0.125
0.394
0.565
0.079
0.177
0.419

0.000
0.108
0.556
0.755
0.413
0.887
1.335
1.542
1.633
1.867
2.315

0.005
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.996
0.123
0.660
0.853
0.019
0.208
0.559
0.735
0.159
0.334
0.627

0.000
0.123
0.660
0.854
0.484
1.060
1.538
1.726
1.898
2.182
2.586

0.004
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.993
0.211
0.825
0.948
0.092
0.475
0.808
0.902
0.417
0.635
0.851

0.000
0.212
0.826
0.951
0.807
1.432
1.805
1.902
2.347
2.617
2.848

0.007
0.004
0.004
0.003
0.001
0.001
0.001
0.000
0.000
0.000
0.000
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0.999
0.040
0.525
0.790
0.000
0.045
0.357
0.610
0.035
0.144
0.477

0.000
0.040
0.526
0.791
0.213
0.707
1.308
1.595
1.530
1.862
2.419

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000

0.999
0.051
0.686
0.925
0.002
0.136
0.614
0.840
0.137
0.391
0.771

0.000
0.051
0.687
0.926
0.329
0.960
1.607
1.839
1.925
2.329
2.768

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000

0.999
0.164
0.921
0.985
0.063
0.557
0.892
0.969
0.579
0.825
0.957

0.000
0.165
0.922
0.986
0.781
1.544
1.892
1.969
2.564
2.822
2.957

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
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Table S2.24: Performance of J evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

X
wW
=
N

C

p=1
TA

FA

C

p=2
TA

FA

C

p = 00
TA FA

0.946
0.216
0.624
0.777
0.040
0.192
0.343
0.600
0.355
0.188
0.352

0.000
0.221
0.640
0.801
0.636
1.043
1.261
1.586
2.234
2.846
3.183

0.054
0.041
0.041
0.041
0.024
0.024
0.024
0.024
0.007
0.000
0.000

0.949
0.265
0.735
0.857
0.074
0.337
0.550
0.771
0.588
0.427
0.623

0.000
0.271
0.757
0.887
0.786
1.270
1.522
1.779
2.555
3.300
3.578

0.051
0.039
0.039
0.039
0.023
0.023
0.023
0.023
0.007
0.000
0.000

0.952
0.329
0.808
0.913
0.135
0.466
0.681
0.881
0.763
0.647
0.814

0.000
0.333

0.834
0.944
0.947

1.439
1.688
1.900
2.760
3.606
3.807

0.048
0.035
0.035
0.035
0.022
0.022
0.022
0.020
0.008
0.000
0.000

0.949
0.337
0.846
0.924
0.185
0.569
0.742
0.904
0.784
0.665
0.842

0.000
0.349
0.873
0.954
1.033
1.569
1.755
1.925
2.783
3.654
3.841

0.051
0.037
0.037
0.037
0.025
0.025
0.025
0.025
0.014
0.000
0.000

0.948
0.432
0.917
0.958
0.303
0.738
0.884
0.963
0.920
0.878
0.968

0.000
0.445
0.949
0.996
1.247
1.751
1.902
1.986
2.926
3.876
3.968

0.052
0.038
0.038
0.038
0.023
0.023
0.023
0.023
0.012
0.000
0.000

0.957
0.513
0.952
0.969
0.405
0.839
0.943
0.976
0.962
0.948
0.989

0.000
0.522
0.981
1.000
1.380
1.853
1.961
1.996
2.969
3.948
3.989

0.043
0.031
0.031
0.031
0.020
0.020
0.020
0.020
0.010
0.000
0.000
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0.941
0.664
0.949
0.953
0.630
0.920
0.956
0.970
0.983
0.992
1.000

0.000
0.689
0.992
1.000
1.640
1.940
1.986
2.000
2.996
3.992
4.000

0.059
0.047
0.047
0.047
0.030
0.030
0.030
0.030
0.014
0.000
0.000

0.945
0.763
0.954
0.954
0.761
0.953
0.965
0.968
0.982
0.998
1.000

0.000
0.794
1.000
1.000
1777
1.982
1.997
2.000
2.999
3.998
4.000

0.055
0.046
0.046
0.046
0.032
0.032
0.032
0.032
0.017
0.000
0.000

0.947
0.823
0.955
0.955
0.832
0.958
0.967
0.967
0.982
1.000
1.000

0.000
0.858
1.000
1.000
1.854
1.991
2.000
2.000
3.000
4.000
4.000

0.053
0.045
0.045
0.045
0.033
0.033
0.033
0.033
0.018
0.000
0.000
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Table 52.25: Performance of J evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

X
w
QS
N

C

p=1
TA

FA

C

p=2
TA

FA

C

p = 00
TA FA

0.919
0.242
0.626
0.758
0.045
0.206
0.364
0.599
0.382
0.217
0.380

0.000
0.252
0.656
0.799
0.685
1.084
1.302
1.599
2.271
2.919
3.229

0.081
0.062
0.062
0.063
0.039
0.038
0.038
0.038
0.017
0.000
0.000

0.934
0.245
0.687
0.816
0.054
0.272
0.453
0.700
0.497
0.324
0.521

0.000
0.256
0.714
0.851
0.723
1.194
1.418
1.710
2.439
3.131
3.431

0.066
0.050
0.051
0.049
0.031
0.033
0.032
0.030
0.014
0.000
0.000

0.909
0.326
0.758
0.843
0.119
0.435
0.598
0.795
0.671
0.540
0.702

0.000
0.345

0.807

0.901
0.908
1.403
1.610
1.826
2.649
3.448
3.670

0.091
0.072
0.067
0.064
0.044
0.043
0.042
0.036
0.015
0.000
0.000

0.992
0.118
0.538
0.757
0.009
0.126
0.259
0.562
0.268
0.118
0.286

0.000
0.118
0.542
0.761
0.415
0.865
1.124
1.543
2.077
2.621
3.065

0.008
0.007
0.007
0.007
0.004
0.004
0.004
0.004
0.004
0.000
0.000

0.993
0.135
0.649
0.860
0.012
0.207
0.394
0.741
0.466
0.276
0.512

0.000
0.135
0.653
0.865
0.482
1.050
1.329
1.739
2.389
3.048
3.437

0.007
0.006
0.006
0.006
0.004
0.004
0.004
0.004
0.003
0.000
0.000

0.989
0.233
0.815

0.937

0.091
0.456
0.674
0.899
0.724
0.587
0.799

0.000
0.235
0.822
0.945
0.811
1.419
1.670
1.904
2.708
3.537
3.791

0.011
0.010
0.009
0.008
0.005
0.006
0.007
0.006
0.003
0.000
0.000
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0.999
0.022
0.551
0.810
0.001
0.049
0.217
0.648
0.308
0.113
0.366

0.000
0.022
0.551
0.810
0.225
0.736
1.081
1.637
2.167
2.670
3.215

0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.999
0.030
0.702
0.929
0.001
0.136
0.438
0.849
0.574
0.326
0.715

0.000
0.030
0.702
0.929
0.336
0.975
1.402
1.849
2.548
3.197
3.694

0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.999
0.164
0.920
0.989
0.065
0.573
0.847
0.972
0.905
0.812
0.947

0.000
0.164
0.920
0.989
0.815
1.564
1.846
1.972
2.903
3.805
3.947

0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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