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Supplementary Material

This supplementary article consists of two appendices. In Appendix S1, we provide the theoretical results,

including proofs of the lemmas and theorems in the equality test in Section 2 (with a list of critical values), GOF

test in Section 3, and distinguishing distributions methods in Section 4 in the Manuscript. All supplementary

explanations in the Manuscript are provided in the Remarks. In Appendix S2, we provide a list of critical

values tkp,α and ukp,α for the equality test in Section 2. We further include more simulation results, including

comparisons with empirical-likelihood-based tests and p-value adjusted methods (Bonferroni, Benjamini and

Yekutieli’s methods, and Cauchy combination test) of the proposed methods with selected numbers of samples

k = 3, 4 and 5, and 10 with equal sample sizes n = 60, 100, 200 and p = 1, 2,∞.

S1 Proof of Lemmas and Theorems

We provide theoretical justifications for the proposed equality tests, GOF tests, and
distinguishing distribution methods in the following Sections S1.1 to S1.3. We denote

n = min1≤i≤k ni and convergences in probability, in distribution, and in law by
p−→,

d−→, and
w−→, respectively. Throughout this work, we assume that the inverse function

F−1
i exists and equals the quantile function.

For 1 ≤ i < k, recall that Fi is the empirical distribution of the ith sample and
F−1
i+1 as the empirical quantile of the (i + 1)th sample. We first demonstrate that the

empirical version of R̂i only depends on the corresponding Ri.

Remark S1.1. Assume that all the distributions Fj are continuous and invertible,

then the sampling distribution of R̂i only depends on the sample sizes and Ri, but not
directly from the distributions Fi or Fi+1.

For 1 ≤ j ≤ k, since {Fj(Xj1), . . . , Fj(Xjnj)} are independent random samples

from the uniform distribution with support (0, 1), we can rewrite Xij = F−1
i (Uij)

by assuming that the inverse of Fi exists such that F−1
i is identical to the quantile

function of Fi over (0, 1). So, we define Ujnj as the uniform empirical distributions

and U−1
jnj

as the corresponding empirical quantile functions from a random sample
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{Fj(Xj1), . . . , Fj(Xjnj)}. Therefore,

Fi(t) = n−1
i

ni∑
k=1

I(Xik ≤ t) = n−1
i

ni∑
k=1

I(F−1
i (Uik) ≤ t)

= n−1
i

ni∑
j=1

I{Uik ≤ Fi(t)} = Uj,nj{Fi(t)},

F−1
i+1(u) = inf{t : Fi+1(t) ≥ u} = inf

{
t : n−1

i

ni+1∑
k=1

I{U(i+1)k ≤ Fi+1(t)} ≥ u
}

= inf
{
F−1
i+1(w) : n−1

i+1

ni+1∑
j=1

I{U(i+1)k ≤ w} ≥ u
}

= F−1
i+1

[
inf
{
w : n−1

i+1

ni+1∑
j=1

I{U(i+1)k ≤ w} ≥ u
}]

= F−1
i+1{U−1

i+1,ni+1
(u)},

where the last equality holds because F−1
i+1 is assumed to be continuous. Hence, for

1 ≤ i < k,

R̂i(u) = Fi{F−1
i+1(u)} = Uj,nj{Fi[F−1

i+1{U−1
i+1,ni+1

(u)}]} = Uj,nj [Ri{U−1
i+1,ni+1

(u)}],

where 0 ≤ u ≤ 1. In other words, if there exist distributions Gi and Gi+1 satisfy that
Ri = Gi{G−1

i+1}, even Gi 6= Fi and Gi+1 6= Fi+1, the approach above still follows such

that the distribution of R̂i(u) are identical.
The following lemma provides the asymptotic joint behavior of the empirical esti-

mators R̂i(u) = Fi{F−1
i+1(u)} for 0 ≤ u ≤ 1.

Lemma S1.1. Assume that, for all 1 ≤ i < k, Ri have continuous first derivatives R′i
over [0, 1]. There exist independent standard Brownian bridges B1,B2, . . . ,Bk such that

sup
0≤u≤1

∣∣∣Ci{R̂i(u)−Ri(u)} −
[
λ

1/2
i Bi{Ri(u)} − (1− λi)1/2R′i(u)Bi+1(u)

]∣∣∣
converges to 0 almost surely as n → ∞, where Ci =

√
nini+1/(ni + ni+1) and the

sample fractions ni+1/(ni + ni+1) converge to 0 < λi < 1 as n →∞.

Proof of Lemma S1.1. Here, we follow the same notations produced in the proof of
Remark S1.1. To study the asymptotic behavior of R̂i, we subtract and adding
Ri{U−1

i+1,ni+1
(u)} in Ci{R̂i(u)−Ri(u)} and obtain

Ci{R̂i(u)−Ri(u)}

= Ci

(
Uj,nj [Ri{U−1

i+1,ni+1
(u)}]−Ri{U−1

i+1,ni+1
(u)}

)
(S1.1)

+ Ci[Ri{U−1
i+1,ni+1

(u)} −Ri(u)]. (S1.2)
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According to Theorem 3.1.1 and Theorem 3.1.3 in Shorack and Wellner (1986), as
n →∞, we obtain

sup
0≤u≤1

|Uj,nj(u)− u| = sup
0≤u≤1

|U−1
j,nj

(u)− u| → 0, a.s., (S1.3)

sup
0≤u≤1

|
√
ni{Uj,nj(u)− u} − Bi(u)| → 0, a.s., (S1.4)

sup
0≤u≤1

|
√
ni{U−1

j,nj
(u)− u}+ Bi(u)| → 0, a.s., (S1.5)

where B1,B2, . . . ,Bk are the independent standard Brownian bridges since the k sam-
ples are mutually independent. Therefore, combining (S1.3) and (S1.4), (S1.1) con-

verges to λ
1/2
i Bi{Ri(u)} in sup-norm over [0, 1] a.s.. On the other hand, applying the

mean value theorem and (S1.5), (S1.2) converges to −(1 − λi)
1/2R′i(u) · Bi+1(u) in

sup-norm over [0, 1] a.s.. Hence,

sup
0≤u≤1

∣∣∣Ci{R̂i(u)−Ri(u)} −
[
λ

1/2
i Bi{Ri(u)} − (1− λi)1/2R′i(u)Bi+1(u)

]∣∣∣
converges to 0 almost surely as n →∞.

Lemma S1.1 gives the foundation of all the asymptotic results in this work, the
asymptotic joint behavior of R̂1, R̂2 . . . , R̂k−1 through B1, . . . ,Bk. Hereafter, we denote

Ti(u) = λ
1/2
i Bi{Ri(u)}− (1−λi)1/2R′i(u)Bi+1(u) for 0 ≤ u ≤ 1. Comparing with Theo-

rem 2.2 in Hsieh and Turnbull (1996), the negative sign before (1− λi)1/2R′i(u)Bi+1(u)
in Ti is required when k > 2 because the quantile function approximation in (S1.5) and
the empirical distribution approximation in (S1.4) share the same Brownian bridge Bi
but with opposite sign.

S1.1 Proofs and Lemmas in Section 2

Define Ti0 and Ji0 by

Ti0(u) = λ
1/2
i Bi(u)− (1− λi)1/2Bi+1(u), 0 ≤ u ≤ 1,

Ji0(u) = { sup
0≤v≤u

Ti0(v)/(1− v)}(1− u), 0 ≤ u < 1, and Ji0(1) = 0.

When Fi = Fi+1 such that Ri = R0, Lemma S1.1 gives

sup
0≤u≤1

∣∣∣Ci{R̂i(u)−Ri(u)} − Ti0(u)
∣∣∣→ 0 a.s..

as n → ∞. The following Lemma S1.2 provides the limiting distributions of Tkp =∑
1≤i<k ∆ip and Ukp = max1≤i<k ∆ip under H0, where ∆ip = Ci‖MR̂i −R0‖p.

Lemma S1.2. Under H0, for every p ∈ [1,∞], Tkp and Ukp converge in distribution
to
∑

1≤i<k ‖Ji0‖p and max1≤i<k ‖Ji0‖p, respectively, as n →∞.
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Proof of Lemma S1.2. Under H0 : F1 = F2 = · · · = Fk, we have Ri = R0 and MRi =
R0 for all 1 ≤ i < k where R0(u) = u over u ∈ [0, 1] is the equal distribution line.
According to Lemma 5 in Tang et al. (2017), the functional operator M is Hadamard
directional differentiable, so the functional delta method and the continuous mapping
theorem can be applied. Therefore, apply Lemma 4 in Tang et al. (2017), as n→∞,

the difference ∆ip = Ci‖MR̂i − R0‖p = Ci‖MR̂i − MRi‖p converges to ‖Ji0‖p in
distribution for 1 ≤ p ≤ ∞. Applying continuous mapping theorem again, Tkp and
Ukp converge to

∑
1≤i<k ‖Ji0‖p and max1≤i<k ‖Ji0‖p in distribution, respectively, as

n→∞.

Proof of Theorem 1. Under H0, from Lemma S1.1, it is clear that both pr(Ukp >
ukp,α) = α and pr(Tkp > tkp,α) = α by definition. Under H1, to show the consistency for
proposed equal tests, we first show that the quantile values tkp,α and ukp,α are bounded
asymptotically. It suffices to show that both

∑
1≤i<k ‖Ji0‖p and max1≤i<k ‖Ji0‖p are

bounded in probability. By definition, it is clear that Ji0(u) ≥ 0 for all 0 ≤ u ≤ 1,
then we have

0 ≤ Ji0(u) = sup
0≤v≤u

{Ti0(v)/(1− v)}(1− u)

≤ sup
0≤v≤u

{Ti0(v)/(1− u)}(1− u) = sup
0≤v≤u

Ti0(u) ≤ ‖Ti0‖∞.

Hence, ‖Ji0‖p ≤ ‖Ji0‖∞ ≤ ‖Ti0‖∞ ≤ λ
1/2
i ‖Bi‖∞ + (1 − λi)

1/2‖Bi+1‖∞ ≤ ‖Bi‖∞ +
‖Bi+1‖∞ because 0 < λi < 1 for 1 ≤ i < k. Note that the Brownian bridge is bounded
with probability one. The boundedness holds the same for ‖Ji0‖p,

∑
1≤i<k ‖Ji0‖p and

max1≤i<k ‖Ji0‖p. Therefore, both quantile values tkp,α and ukp,α are bounded.
Under H1, there exists at least a pair of consecutive distributions, say Fi and Fi+1,

such that Fi ≺ Fi+1 and ‖Ri − R0‖p > 0. To show the powers pr(Ukp > ukp,α) and
pr(Tkp > tkp,α) approach 1 as n → ∞, it suffices to consider pr(∆ip > ukp,α) and
pr(∆ip > tkp,α) because both Tkp and Ukp are larger than ∆ip almost surely. In general,
we will show that, given t > 0, pr(∆ip > t) converges to 1 as n →∞.

Since MRi = Ri under H1, apply the Minkowski inequality and obtain

∆ip = Ci‖MR̂i −MRi +Ri −R0‖p ≥ Ci‖Ri −R0‖p − Ci‖MR̂i −MRi‖p
≥ Ci‖Ri −R0‖p − Ci‖MR̂i −MRi‖∞
≥ Ci‖Ri −R0‖p − Ci‖R̂i −Ri‖∞,

where the last inequality holds because of the continuity of M according to Lemma 3
in Tang et al. (2017). Hence,

pr(∆ip > t) ≥ pr
(
Ci‖Ri −R0‖p > t+ Ci‖R̂i −Ri‖∞

)
.

Since ‖Ri−R0‖p > 0, then Ci‖Ri−R0‖p →∞ as Ci →∞. Therefore, to show pr(∆ip >

t) → 1, it suffices to show that Ci‖R̂i − Ri‖∞ = OP (1), that is, the boundedness
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of ‖Ti‖∞ equivalently by Lemma S1.1. Recall that Ti(u) = λ
1/2
i Bi{Ri(u)} + (1 −

λi)
1/2R′i(u)Bi(u), we have

‖Ti‖∞ ≤ λ
1/2
i ‖Bi‖∞ + (1− λi)1/2‖R′i‖∞‖Bi+1‖∞.

Therefore, ‖Ti‖∞ is bounded in probability since Bi and Bi+1 are bounded with prob-
ability one and R′i is bounded as well.

Lastly, we provide the critical values tkp,α and ukp,α at significance level α = 0.05
mentioned in Section 2 and applied in Section 5.3.

Table S1.1: Critical values tkp,α and ukp,α at significance level α = 0.05.

tkp,α ukp,α
p = 1 p = 2 p =∞ p = 1 p = 2 p =∞

k = 3
n = 60 0.916 1.040 1.826 0.704 0.784 1.278
n = 100 0.915 1.036 1.838 0.716 0.793 1.343
n = 200 0.936 1.059 1.850 0.720 0.801 1.350

k = 4
n = 60 1.217 1.388 2.465 0.748 0.833 1.369
n = 100 1.236 1.407 2.475 0.758 0.843 1.414
n = 200 1.268 1.436 2.550 0.768 0.851 1.400

k = 5
n = 60 1.530 1.751 3.104 0.774 0.859 1.461
n = 100 1.549 1.763 3.111 0.785 0.870 1.414
n = 200 1.587 1.801 3.200 0.797 0.883 1.450

S1.2 Proofs and Lemmas for GOF tests in Section 3

Recall that Mip = Ci‖MR̂i − R̂i‖p, according to Tang et al. (2017), the asymptotic
distribution of the test statistics Skp =

∑
1≤i<kMip and Wkp = max1≤i<kMip both

depend on the shape of the ODCs Ri. Recall ri(u) = {1−Ri(u)}/(1−u) for 0 ≤ u < 1
and ri(1) = limu→1− ri(u) for 1 ≤ i < k. Under H∗0 : F1 � · · · � Fk, all ODCs Ri are
star-shaped for 1 ≤ i < k. For each star-shaped Ri, define the non-strictly-star-shaped
region Si0 = {u ∈ [0, 1] : ri(u) = ri(u−) or ri(u) = ri(u+)}. The strictly-star-shaped
region is defined by Si1 = [0, 1] ∩ Sci0, that is, ri(u) decreases strictly in u ∈ Si1. If
the non-strictly star-shaped region Si0 is nonempty, that is, there exists at least a
nonempty closed interval, say [a, b] with 0 ≤ a < b ≤ 1, such that ri(u) = ri(v) when
u, v ∈ [a, b], then Ri is called non-strictly star-shaped. If Si0 is empty, then Ri is called
strictly star-shaped. One can further write Si0 in terms of a countable union of disjoint
closed intervals; i.e., Si0 = ∪l[ail, bil] where ri takes distinctive values among different
interval [ail, bil]. For example, if Ri = R0, then Si0 = [0, 1] because ri(u) is constant
over [0, 1]. Hence Ri is non-strictly star-shaped. If Ri(u) = u1/2, then Si0 = ∅ because
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ri(u) = (1− u1/2)/(1− u) = (1 + u1/2)−1 is strictly decreasing over [0, 1] and therefore
Ri is strictly star-shaped.

Following the same proof of Theorem 1 in Tang et al. (2017), we obtain the limiting
distribution of Mip stated in the following Lemma.

Lemma S1.3. Under H∗0 , for 1 ≤ p ≤ ∞,

(a) if Ri is strictly star-shaped, then Mip
p−→ 0 as n→∞;

(b) if Ri is non-strictly star-shaped with nonempty non-strictly-star-shaped region

Si0 = ∪l[ail, bil], then Mip
d−→ ‖Wi·‖p as n→∞, where Wi· =

∑
lWil and

Wil(u) =

[{
sup

ail≤v≤u
Ti(v)/(1− v)

}
(1− u)− Ti(u)

]
I(ail ≤ u ≤ bil),

where I(·) is the indicator function.

Lemma S1.3 not only suggests the asymptotic marginal distribution of Mip under H∗0 ,
it gives asymptotic joint behavior of M1p, . . . ,Mk−1,p though T1, . . . , Tk−1, where Ti
and Ti+1 are not necessarily independent because they share the same Brownian bridge
Bi+1. In addition, since Wil are constantly zero outside of the non-strictly star-shaped
regions, the test statistics Skp and Wkp only depend on the non-strictly-star-shaped
region ∪i ∪l [ail, bil].

Next, the asymptotic distribution of Skp and Wkp under H∗0 can be obtained by
applying the continuous mapping theorem. We state the results as a lemma below.

Lemma S1.4. Under H∗0 , as n→∞,

Skp
d−→

k−1∑
i=1

‖Wi·‖p and Wkp
d−→ max

1≤i<k
‖Wi·‖p,

whereWi· are defined in Lemma S1.3 when Ri is non-strictly star-shaped and we define
‖Wi·‖p = 0 if Ri is strictly star-shaped.

Next, we provide the proof of Theorem 2 that the surrogate random variables S̃kp
and W̃kp defined in Section 2 are stochastically larger than Skp and Wkp, respectively.

Proof of Theorem 2. Under H∗0 , to show S̃kp and W̃kp are stochastically larger than
Skp and Wkp, respectively, it suffices to consider non-strictly star-shaped Ri because
∆ip converges to 0 in probability when Ri is strictly star-shaped. Given non-strictly
star-shaped Ri for 1 ≤ i < k with nonempty non-strictly star-shaped region Si0, one
can check that R′i(u) = ri(u) when u ∈ Si0. We replace Ri and R′i by MRi and ri in
Ti, respectively, and define

Li(u) = λ
1/2
i Bi{MRi(u)} − (1− λi)1/2ri(u)Bi+1(u),
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for 0 ≤ u < 1 and Li(1) = 0. Hence, Li(u) agrees with Ti(u) over Si0, that is,

Li(u)I(u ∈ Si0) = Ti(u)I(u ∈ Si0).

Next, recall

Vi(u) =

{
sup

0≤v≤u
Li(v)/(1− v)

}
(1− u)− Li(u)

for 0 ≤ u < 1 and Vi(1) = 0. By definition, we have

Vi(u)I(ail ≤ u ≤ bil)

≥
[{

sup
ail≤v≤u

Li(v)/(1− v)

}
(1− u)− Li(u)

]
I(ail ≤ u ≤ bil)

=

[{
sup

ail≤v≤u
Ti(v)/(1− v)

}
(1− u)− Ti(u)

]
I(ail ≤ u ≤ bil)

= Wi·(u)I(ail ≤ u ≤ bil). (S1.6)

Hence, Vi(u) ≥ Wi·(u) when u ∈ Si0. On the other hand, since Vi(u) ≥ 0 andWil(u) =
0 when u ∈ Si1. Therefore, Vi(u) ≥ Wi·(u) for 0 ≤ u ≤ 1 such that ‖Vi‖p ≥ ‖Wi·‖p,
S̃kp =

∑
1≤i<k ‖Vi‖p ≥

∑
1≤i<k ‖Wi·‖p, and W̃kp = max1≤i<k ‖Vi‖p ≥ max1≤i<k ‖Wi·‖p.

Recall that s̃kp,α and w̃kp,α are α-th upper quantile of S̃kp,α and W̃kp,α, hence,

lim
n→∞

pr (Skp,α > s̃kp,α) = pr(
∑

1≤i<k

‖Wi·‖p > s̃kp,α)

≤ pr(
∑

1≤i<k

‖Vi‖p > s̃kp,α) = pr(S̃kp,α > s̃kp,α) = α,

lim
n→∞

pr (Wkp,α > w̃kp,α) = pr(max
1≤i<k

‖Wi·‖p > w̃kp,α)

≤ pr(max
1≤i<k

‖Vi‖p > w̃kp,α) = pr(W̃kp,α > w̃kp,α) = α.

Under H∗1 , we wish to show that the critical values s̃kp,α and w̃kp,α are bounded. To
show the boundedness of the critical values s̃kp,α and w̃kp,α, it suffices to consider the

boundedness of ‖Vi‖p. We define a functional operatorM(1,0)
[0,1] as the least star-shaped

majorant with kernel (1, 0), that is, given any bounded function h with support [0, 1],

M(1,0)
[0,1] h(u) = 0− inf

0≤v≤u
{0− h(v)/(1− v)} (1− u)

= sup
0≤v≤u

{h(v)/(1− v)} (1− u)

and M(1,0)
[0,1] h(1) = 0 (see Lemma 1 in Tang et al. (2017)). Therefore, we can write

Vi(u) =M(1,0)
[0,1]Li(u)− Li(u).

7



Now, define Z(u) = 0 for u ∈ [0, 1] and one can check that M(1,0)
[0,1]Z(u) = Z(u) over

u ∈ [0, 1]. Therefore,

‖Vi‖p ≤ ‖Vi‖∞ = ‖M(1,0)
[0,1]Li − Li‖∞ = ‖M(1,0)

[0,1]Li −M
(1,0)
[0,1]Z + Zi − Li‖∞

≤ ‖M(1,0)
[0,1]Li −M

(1,0)
[0,1]Z‖∞ + ‖Z − Li‖∞ ≤ 2‖Li −Z‖∞ = 2‖Li‖∞,

because of the triangle inequality and the Lipschitz continuity of the operator M(1,0)
[0,1]

(Lemma 3 in Tang et al. (2017)). From the definition of Li, we can further bound
‖Li‖∞ by

‖Li‖∞ ≤ λ
1/2
i ‖Bi{MRi}‖∞ + (1− λi)1/2‖ri‖∞‖Bi+1‖∞

= λ
1/2
i ‖Bi‖∞ + (1− λi)1/2‖ri‖∞‖Bi+1‖∞.

One can check that 1 ≥MRi(u) ≥ R0(u) = u for all u ∈ [0, 1], therefore,

0 ≤ sup
u∈[0,1)

1− 1

1− u
≤ sup

u∈[0,1)

1−MRi(u)

1− u
≤ sup

u∈[0,1)

1− u
1− u

= 1

for u ∈ [0, 1). Therefore, ri(1) = ri(1−) is between 0 and 1. Hence, 0 ≤ ri(u) ≤ 1 for
0 ≤ u ≤ 1 such that ‖ri‖∞ ≤ 1. Since the standard Brownian bridges are bounded with
probability one, then ‖Li‖∞ = OP (1) such that ‖Vi‖∞ = OP (1), S̃kp =

∑
1≤i<k

‖Vi‖p =

OP (1), and W̃kp = max
1≤i<k

‖Vi‖p = OP (1). Therefore, s̃kp,α and w̃kp,α are bounded under

H∗1 .
To show the consistency of the proposed GOF tests, we follow a similar idea in the

proof of Theorem 1. Under H∗1 , there exists at least a pair of consecutive distributions,
say Fi and Fi+1, such that Fi and Fi+1 are not USO with ‖MRi − Ri‖p > 0. Apply
the Minkowski inequality and obtain

Mip = Ci‖MR̂i −MRi +MRi −Ri +Ri − R̂i‖p
≥ − Ci‖MR̂i −MRi‖p + Ci‖MRi −Ri‖p − Ci‖Ri − R̂i‖p
≥ − 2Ci‖R̂i −Ri‖p + Ci‖MRi −Ri‖p, (S1.7)

where the last inequality holds because of the Lipschitz continuity of M according to
Lemma 3 in Tang et al. (2017). Hence, we have the lower bound of the probability of
event Mip > t below:

pr(Mip > t) ≥ pr
(
Ci‖MRi −Ri‖p > t+ 2Ci‖R̂i −Ri‖p

)
. (S1.8)

Since ‖MRi − Ri‖p > 0, then Ci‖MRi − Ri‖p → ∞ as n → ∞. To further show

that pr(Mip > t) → 1 as n → ∞, it suffices to show that Ci‖R̂i − Ri‖∞ = OP (1),
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or equivalently, the boundedness of ‖Ti‖∞. Recall that Ti(u) = λ
1/2
i Bi{Ri(u)} + (1 −

λi)
1/2R′i(u)Bi(u), we have

‖Ti‖∞ ≤ λ
1/2
i · ‖Bi‖∞ + (1− λi)1/2 · ‖R′i‖∞ · ‖Bi+1‖∞.

Therefore, ‖Ti‖∞ is bounded in probability since Bi and Bi+1 are bounded with prob-
ability one and R′i is bounded as well. Subsequently, since s̃kp,α and w̃kp,α are fixed
and bounded, we have pr(Skp > s̃kp,α) ≥ pr(Mip > s̃kp,α) → 1 and pr(Wkp > w̃kp,α) ≥
pr(Mip > w̃kp,α)→ 1 as n →∞.

In the following, we use the same relationship between Vi and Wi in S1.6 to show
that M̃ip defined in Section 3.2 is asymptotically larger than Mip stochastically.

Remark S1.2. Under H∗0 , limn→∞ pr(Mip > t) ≤ pr(M̃ip > t) holds at any t.

Proof of Remark S1.2. Here we follow the same notations and assumptions in Lemma
S1.3. By continuous mapping theorem, for finite p ≥ 1, we have

Mip
d→

[∑
k

∫ bk

ak

{
sup

ak≤v≤u

(
Ti(v)

1− v

)
(1− u)− Ti(u)

}p
du

]1/p

=

[∑
k

∫ bk

ak

{
sup

ak≤v≤u

(
Li(v)

1− v

)
(1− u)− Li(u)

}p
du

]1/p

≤
[∫ 1

0

{
sup

0≤v≤u

(
Li(v)

1− v

)
(1− u)− Li(u)

}p
du

]1/p

= M̃ip,

Mi∞
d→ max

k

{
sup

ak≤u≤bk
sup

ak≤v≤u

(
Ti(v)

1− v

)
(1− u)− Ti(u)

}
≤ sup

0≤u≤1
sup

0≤v≤u

(
Ti(v)

1− v

)
(1− u)− Ti(u) = M̃i∞,

where 0/0 is defined by 0 in the supremum, and both the inequalities above are because
of the definition of the supremum. Therefore, we can conclude that

lim
n→∞

pr(Mip > t) ≤ pr(M̃ip > t) holds at any t.

Similarly, we can define

M̃i∞ = sup
0≤u≤1

[
sup

0≤v≤u

(
Li(v)

1− v

)
(1− u)− Li(u)

]
,

such that limn→∞ pr(Mi∞ > t) ≤ pr(M̃i∞ > t) for all t ≥ 0.

Lemma S1.5. Under H∗0 , for every 1 ≤ p ≤ ∞, as n→∞,

Ŝ∗kp
d−→ S̃kp and Ŵ ∗

kp
d−→ W̃kp.

9



Proof of Lemma S1.5. Define V∗i (u) = sup0≤v≤u {L∗i (v)/(1− v)} (1−u)−L∗i (u) where

L∗i (u) = λ
1/2
i B∗i {MRi(u)} − (1 − λi)1/2ri(u)B∗i+1(u) for 0 ≤ u ≤ 1 and corresponding

S∗kp =
∑

1≤i<k ‖V∗i ‖, and W ∗
kp = max1≤i<k ‖V∗i ‖. By construction, S̃kp and S∗kp share

the same distribution. Similarly, W̃kp and W ∗
kp share the same distribution. Therefore,

it suffices to show that Ŝ∗kp
d−→ S∗kp and Ŵ ∗

kp
d−→ W ∗

kp as n →∞.

Since S∗kp and W ∗
kp contain L∗i and Ŝ∗kp and Ŵ ∗

kp contains L̂∗i , we firstly show that

the difference between L̂∗i and L∗i are negligible, that is, ‖L̂∗i − L∗i ‖∞ = oP (1). Note
that

‖L̂∗i − L∗i ‖∞ = sup
0≤u≤1

∣∣∣Ci[n−1/2
i B∗i {MR̂i(u)} − n−1/2

i+1 r̂i(u)B∗i+1(u)]

− [λ
1/2
i B∗i {Ri(u)} − (1− λi)1/2ri(u)B∗i+1(u)]

∣∣∣
≤ sup

0≤u≤1

∣∣∣Cin−1/2
i B∗i {MR̂i(u)} − λ1/2

i B∗i {Ri(u)}
∣∣∣

+ sup
0≤u≤1

∣∣∣−Cin−1/2
i+1 r̂i(u)B∗i+1(u) + (1− λi)1/2ri(u)B∗i+1(u)

∣∣∣
=: I1n + I2n.

For the first term I1n, since Cin
−1/2
i converges to a constant λ

1/2
i as n → ∞ by as-

sumption, it suffices to show that sup0≤u≤1 |B∗i {MR̂i(u)} − B∗i {Ri(u)}| = oP (1), un-

der H∗0 . According to the Lipschitz continuity of M, ‖MR̂i − Ri‖∞ = ‖MR̂i −
MRi‖∞ ≤ ‖R̂i − Ri‖∞ since Ri = MRi. On the other hand, from Theorem 2.1

in Hsieh and Turnbull (1996), ‖R̂i − Ri‖∞ converges to zero almost surely, then

sup0≤u≤1 |B∗i {MR̂i(u)} − B∗i {Ri(u)}| converges to zero almost surely because of B∗i
is uniformly continuous almost surely, hence, I1n = oP (1).

For the second term I2n, since Cin
−1/2
i+1 converges to (1 − λi)

1/2 as n → ∞, it
suffices to show that sup0≤u≤1 |{r̂i(u) − ri(u)}B∗i (u)| = oP (1). Given 0 < δ < 1,
because 0 ≤ r̂i ≤ 1 and 0 ≤ ri ≤ 1, then sup1−δ≤u≤1 |{r̂i(u) − ri(u)}B∗i (u)| ≤
2 sup1−δ≤u≤1 |B∗i (u)|. Define W∗i (u) = B∗i (u) + ζu for u ∈ [0, 1] where ζ follows the
standard normal distribution and is independent of B∗i . One can show that W∗i is
the standard Wiener process over [0, 1]. Because of the symmetry of B∗i , we have

sup1−δ≤u≤1 |B∗i (u)| d= sup0≤u≤δ |B∗i (u)|. Therefore, given η > 0,

pr

(
sup

1−δ≤u≤1
|B∗i (u)| > η

)
= pr

(
sup

0≤u≤δ
|B∗i (u)| > η

)
≤ pr

(
sup

0≤u≤δ
|W∗i (u)|+ δ|ζ| > η

)
= pr

(√
δ

(
sup

0≤u≤1
|W∗i (u)|

)
+ δ|ζ| > η

)
,
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where the last equality holds becauseW∗i is a standard Wiener process and independent
from ζ. Note that both sup0≤u≤1 |W∗i (u)| and |ζ| are bounded in probability, then given
ε > 0 and η > 0, we can choose small enough δ = δ(η, ε) such that

pr

(
sup

1−δ≤u≤1
|B∗i (u)| > η

)
< ε.

Then we conclude that sup1−δ≤u≤1 |{r̂i(u)− ri(u)}B∗i (u)| = oP (1).
On the other hand, with the same choice of δ above, note that

|{r̂i(u)− ri(u)}B∗i (u)| ≤

∣∣∣∣∣1−MR̂i(u)

1− u
− 1−Ri(u)

1− u

∣∣∣∣∣ |B∗i (u)|

=
|MR̂i(u)−Ri(u)|

1− u
|B∗i (u)|.

Therefore,

sup
0≤u≤1−δ

|{r̂i(u)− ri(u)}B∗i (u)| ≤ 1

δ
‖MR̂i −Ri‖∞‖B∗i ‖∞

≤ 1

δ
‖R̂i −Ri‖∞‖B∗i ‖∞,

where the last inequality is because ofMRi = Ri under H0 and the Lipschitz continuity
ofM. Since ‖R̂i −Ri‖∞ converges to zero almost surely from Theorem 2.1 Hsieh and
Turnbull (1996) and Bi is bounded almost surely, we conclude that sup0≤u≤1−δ |{r̂i(u)−
ri(u)}Bi(u)| = oP (1) and I2n = oP (1). Subsequently, we have ‖L̂∗i − L∗i ‖∞ = oP (1).

Next, we will show that ‖V̂∗i − V∗i ‖p = oP (1). From the definitions of Vi and V̂∗i ,

we can write V̂∗i (u) and V∗i (u) in terms of the functional operatorM(1,0)
[0,1] defined in the

proof of Theorem 3:

V̂∗i (u)− V∗i (u) =M(1,0)
[0,1] L̂

∗
i (u)−M(1,0)

[0,1]L
∗
i (u)− {L̂∗i (u)− L∗i (u)}

and then we have

‖V̂∗i − V∗i ‖p ≤ ‖V̂∗i − V∗i ‖∞ ≤
∥∥∥M(1,0)

[0,1] L̂
∗
i −M

(1,0)
[0,1]L

∗
i

∥∥∥
∞

+ ‖L̂∗i − Li‖∞

≤ 2‖L̂∗i − L∗i ‖∞,

where the last inequality holds because of the Lipschitz continuity of M(1,0)
[0,1] .

Lastly, because of the triangle inequality, we have∣∣∣‖V̂∗i ‖p − ‖V∗i ‖p∣∣∣ ≤ ‖V̂∗i − V∗i ‖p ≤ ‖V̂∗i − V∗i ‖∞ = oP (1),

which implies that ‖V̂∗i ‖p and ‖V∗i ‖p are asymptotic identical in distribution. Re-

call that Ŝ∗kp is the sum and Ŵ ∗
kp is the maximum of ‖V̂∗i ‖p, respectively. There-

fore, applying the continuous mapping theorem, Ŝ∗kp
d−→

∑k−1
i=1 ‖Vi‖p = S∗kp and

Ŵ ∗
kp

d−→ max1≤i<k ‖V∗i ‖p = W ∗
kp.

11



From Theorem 2 and Lemma S1.5, the upper α-th quantile values of Ŝ∗kp and Ŵ ∗
kp

are reasonable choices of critical values of the GOF tests. We conclude this section
by providing the proof of Theorem 3 that the upper α-th quantiles ŝ∗k,p,α and ŵ∗k,p,α of

Ŝ∗kp and Ŵ ∗
kp, respectively, control the type I error under α asymptotically and provide

consistency of the proposed tests.

Proof of Theorem 3. Under H∗0 , Lemma S1.5, shows that Ŝ∗kp and Ŵ ∗
kp converges in

distribution to S̃kp and W̃kp, respectively. For consistency of the proposed GOF tests,
we wish to show that the critical values ŝ∗kp,α and ŵ∗kp,α are finite with probability
one and the test statistics diverge to positive infinity. To show the boundedness of the

critical values ŝ∗kp,α and ŵ∗kp,α, it suffices to show the boundedness of ‖V̂∗i ‖p. Recall that

the process V̂∗i is defined by V̂∗i (u) =M(1,0)
[0,1] L̂∗i (u)−L̂∗i (u) for 0 ≤ u < 1 and V̂∗i (1) = 0.

The process L̂∗i is defined by L̂∗i (u) = Ci[n
−1/2
i Bi{MR̂i(u)} − n

−1/2
i+1 r̂i(u)Bi+1(u)] for

0 ≤ u ≤ 1. It is clear that ‖M(1,0)
[0,1] L̂∗i ‖∞ is bounded by ‖L̂∗i (u)‖∞, then we have

‖V̂∗i ‖p ≤ ‖V̂∗i ‖∞ ≤ ‖M
(1,0)
[0,1] L̂

∗
i ‖∞ + ‖L̂∗i ‖∞ ≤ 2‖L̂∗i ‖∞.

Because 0 ≤ r̂i ≤ 1, Bi and Bi+1 are bounded with probability one, then ‖V̂∗i ‖∞ is

bounded with probability one since Cin
−1/2
i and Cin

−1/2
i+1 are bounded, too. Therefore,

the asymptotic distribution of Ŝ∗kp and Ŵ ∗
kp are bounded such that the corresponding

upper α-th quantile; i.e., the critical values ŝ∗kp and ŵ∗kp are bounded, too.
Now, we follow the same proof in Theorem 2 to show the consistency of the GOF

test. Under H∗1 , there exists at least one i such that ‖MRi − Ri‖p > 0. Set t = ŝ∗kp,α,
according to (S1.7) and (S1.8), we have pr(Skp > ŝ∗kp,α) ≥ pr(Mip > ŝ∗kp,α) → 1.
Similarly, set t = ŵ∗kp,α, we have pr(Wkp > ŵ∗kp,α) ≥ pr(Mip > ŵ∗kp,α)→ 1 as n →∞.

S1.3 Proofs and Lemmas for Jump Detection in Section 4

Proof of Theorem 4. Under H∗0 , recall that J = {1 ≤ i < k : Fi ≺ Fi+1}. By definition
of ukp,α, the probability that J0

p incorrectly detects jump points with probability

pr(J0
p 6= ∅) = pr(∆ip > ukp,α for some 1 ≤ i < k)

= 1− pr(∆ip ≤ ukp,α for all 1 ≤ i < k) = 1− α

for all finite sample sizes.
If J 6= ∅, that is H1 true, then

pr(J0
p ⊇ J) = pr(∆ip > ukp,α, for all i ∈ J)

= 1− pr(∆ip ≤ ukp,α for some j ∈ J)

≥ 1−
∑
j∈J

pr(∆ip ≤ ukp,α for j ∈ J), (S1.9)
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where pr(∆ip ≤ ukp,α) → 0 as n → ∞ since ∆ip is a consistent test statistic against
Fi = Fi+1. Therefore, pr(J0

p ⊇ J)→ 1 as n →∞. Further, we denote J c = {1, . . . , (k−
1)}/J . If J c = ∅, then J = {1, . . . , (k − 1)} and

pr(J0
p = J) = pr(∆ip > ukp,α for all i ∈ J) ≥

k−1∑
i=1

pr(∆ip > ukp,α)− (k − 2).

Note that pr(∆ip > ukp,α)→ 1 as n →∞, pr(J0
p = J)→ 1 as well. If J c 6= ∅, then

pr(J0
p ⊃ J) = pr(∆ip > ukp,α for all i ∈ J and ∆lp > ukp,α for some l ∈ J c)

≤ pr(∆lp > ukp,α for some l ∈ J c)
= pr(max

l∈Jc
∆lp > ukp,α).

Now, we generate k random samples independently with sample sizes ni from U(0, 1)
and obtain ∆∗lp for 1 ≤ l < k. Therefore, pr(maxl∈Jc ∆lp > ukp,α) = pr(maxl∈Jc ∆∗lp >
ukp,α) because maxl∈Jc ∆lp is clearly distribution free when all Rl = R0 for l ∈ J c.
Then we have

pr(J0
p ⊃ J) ≤ pr(max

l∈Jc
∆∗lp > ukp,α) ≤ pr(max

1≤l<k
∆∗lp > ukp,α) = α. (S1.10)

since max1≤l<k ∆∗lp under F1 = F2 = · · · = Fk is distribution-free, too. From (S1.9)
and (S1.10),

lim
n→∞

pr(J0
p = J) = lim

n→∞
pr(J0

p ⊇ J)− lim
n→∞

pr(J0
p ⊃ J) ≥ 1− α.

Proof of Theorem 5. Recall that J = {1 ≤ i < k : Fi ≺ Fi+1} and E = {1 ≤ i < k :
Fi = Fi+1}. It suffices to consider J 6= ∅ and E 6= ∅. When i ∈ J , the probability of
the event ∆ip > δi can be bounded below by:

pr(∆ip > δi) = pr(Ci‖MR̂i −R0‖p > δi)

= pr(Ci‖MR̂i −Ri +Ri −R0‖p > δi)

≥ pr(
∣∣Ci‖MR̂i −Ri‖p − Ci‖Ri −R0‖p

∣∣ > δi)

≥ pr(Ci‖MR̂i −Ri‖p + δi < Ci‖Ri −R0‖p)
= pr(‖MR̂i −Ri‖p + δi/Ci < ‖Ri −R0‖p).

From Lemma 3 in Tang et al. (2017), since i ∈ J such that MRi = Ri and ‖MR̂i −
Ri‖∞ = ‖MR̂i −MRi‖∞ ≤ ‖R̂i −Ri‖∞, then

‖MR̂i −Ri‖p ≤ ‖MR̂i −Ri‖∞ ≤ ‖R̂i −Ri‖∞ = oP (1). (S1.11)
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Note that δi/Ci → 0, then ‖MR̂i−Ri‖p+δi/Ci = oP (1), too. Because ‖Ri−R0‖p > 0,

the probability pr(‖MR̂i − Ri‖p + δi/Ci < Ci‖Ri − R0‖p) converges to 1 as n → ∞.
Since the number of elements in J is finite, pr(∩i∈J{∆ip > δi})→ 1, too. On the other

hand, when i ∈ E , ∆ip = Ci‖MR̂i −R0‖p = OP (1), therefore, pr(∩i∈E{∆ip ≤ δi})→ 1
since δi →∞ and number of elements in E is finite. Then

pr(J0
p = J)

= pr(∩i∈J{∆ip > δi},∩i∈E{∆ip ≤ δi})
≥ [pr(∩i∈J{∆ip > δi})− 1] + pr(∩i∈E{∆ip ≤ δi})→ 1, as n →∞.

Proof of Theorem 6. Here we define

Qip(η) = ‖MR̂i −R0‖pI{i /∈ Jp(η)}

+

(
‖MR̂i − R̂i‖p +

logCi
Ci

dip

)
I{i ∈ Jp(η)}

such that Qp(η) =
∑k−1

i=1 Qip(η). Recall Section 4, since Qp(η) is a step function of η,
it suffices to consider

η∗p = arg min
η∈{η†0,η

†
1,...,η

†
k−1}

Qp(η)

where η†i = ∆ip for 1 ≤ i < k and η†0 = 0.
When all distributions are identical (J = ∅), according to previous discussion in

Theorems 1 and 3, we have ‖MR̂i − Ri‖p = OP (C−1
i ) and ‖MR̂i − R̂i‖p = OP (C−1

i ),

for all 1 ≤ i < k, Therefore, ‖MR̂i − Ri‖p = oP (logCi/Ci) and ‖MR̂i − R̂i‖p =
oP (logCi/Ci) such that the penalty term dip logCi/Ci, where dip > c for some c > 0,

dominates Qip. Therefore, I{i ∈ J∗p (η∗p)} = 0 is preferred and then η∗p ≥ η†i is suggested.

Hence, the largest η†i minimizes Q(η) with η∗p = maxi(η
†
i ) such that J∗p = ∅ with

probability approaches 1 as n →∞.
When J is not empty, assume that i ∈ J . According to previous discussion in

Theorem 1 and 3, we have ‖MR̂i − Ri‖p = OP (Ci) but not oP (Ci) because ‖MRi −
Ri‖p > 0. On the other hand, in Qip(η), ‖MR̂i − R̂i‖p = OP (C−1

i ) = oP (Ci) and

dip logCi/Ci = oP (Ci) because dip = oP (logCi). Therefore, ‖MR̂i − Ri‖p dominates

Qip so that I{i ∈ J∗p (η∗p)} = 1 is preferred such that η∗p < η†i is suggested. Therefore,

η∗p < min
i∈J
{η†i } with large probability approaching 1. On the other hand, if i /∈ J .

Then we have we have ‖MR̂i − Ri‖p = oP (logCi/Ci), ‖MR̂i − R̂i‖p = oP (logCi/Ci).
Therefore, dip logCi/Ci dominates Qip such that I{i ∈ J∗p (η∗p)} = 0 is preferred such

that η∗p ≥ η†i is suggested. Therefore, η∗p ≥ max
i/∈J,1≤i<k

{η†i , 0} with large probability
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approaching 1 as n → ∞. Here we define max
i/∈J,1≤i<k

{η†i , 0} = 0 if J = {1, . . . , (k − 1)}.
In conclusion, the optimized η∗p satisfies

max
i/∈J,1≤i<k

{η†i , 0} ≤ η∗p < min
i∈J
{η†i }

with probability approaching 1 as n → ∞, where η∗p exists because η†j = Op(1) for

j /∈ J but η†j diverges to ∞ for j ∈ J . Therefore, max
i/∈J,1≤i<k

{η∗i , 0} < min
i∈J
{η∗i } with

probability approaching 1 as n →∞.

S2 Supplementary numerical results

In this section, we provide more simulation comparisons for k = 3, 4, 5 and 10 with
sample sizes n = 60, 100, 200 and p = 1, 2,∞ for the proposed equal tests, GOF tests,
and distinguish distribution methods in Sections 2, 3, and 4, respectively.

p-value Adjusted Methods

Here, we include how to calculate p-value for the equality and GOF tests. For the equal-
ity test, the two-sample equality test examines the hypotheses H0i : Fi = Fi+1 versus
H1i : Fi � Fi+1 but not Fi = Fi+1. Recall that the scaled Lp difference between the
star-shaped estimator and the equal distribution line is given by ∆ip = ‖MR̂i −R0‖p,
which is also the test statistic for H0i versus H1i. According to the data, denote
the observed test statistic by δip, then the p-value is given by p∆ip

= pr(∆ip > δip)
when Fi = Fi+1. Since we reject the null hypothesis when any consecutive pairs
of samples reject the null hypothesis, Holm–Bonferroni method, Hochberg’s correc-
tion, Benjamini-Hochberg adjustment, and Bonferroni’s methods are identical. We
also compare Bonferroni’s methods with Benjamini and Yekutieli’s (BY) (Benjamini
and Yekutieli, 2001) adjustment. From the p-value p∆ip

, we also consider the equally
weighted Cauchy combination (Liu and Xie, 2020) test statistic by

k−1∑
i=1

tan{(0.5− p∆ip
)π}

k − 1
.

and reject H0 when the test statistic is larger than the upper αth quantile of the
standard Cauchy distribution.

For the GOF test, we follow the same idea in Section 3.1 to obtain the p-value
based on the least favorable configuration when testing H∗0i versus H∗1i. For each test
for H∗0i, one can obtain p-values according to Fi = Fi+1 by pMip

= pr(‖D‖p > dip),
where mip is a realization of Mip. Similar to the quality test, we consider Bonferroni’s
and BY’s p-value adjustment methods. Then, one can consider the equally weighted
Cauchy combination test statistic by

k−1∑
i=1

tan{(0.5− pMip
)π}

k − 1
.
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Again, we reject H∗0 when the test statistic is larger than the upper αth quantile of the
standard Cauchy distribution.

Data generation and ODCs

For the assessments of the proposed equality tests, GOF tests, and jump detection
method, we follow the same idea in Sections 5.2 to generate data. We also choose
ODCs (R1, R2, . . . , Rk−1) = (Gq1 , Gq2 , . . . , Gqk−1

) from the family of ODC Gq with
−1 ≤ q ≤ 1. For power curve comparisons for GOF tests, we extend the three-sample
cases {(Kδ, R0)}9

δ=0 and {(Kδ, Kδ)}0
δ=0 to k = 4, 5 cases by adding equal distributions,

that is, {(Kδ, R0, R0)}9
δ=0 and {(Kδ, Kδ, R0)}0

δ=0 for k = 4; {(Kδ, R0, R0, R0)}9
δ=0 and

{(Kδ, Kδ, R0, R0)}0
δ=0 for k = 5.

S2.1 Equality Tests

Here, we provide extra numerical comparisons for our proposed methods, Tkp and Uip,
see Tables S2.1, S2.4, S2.7, and S2.10, for k = 3, 4, 5, and 10, respectively. In general,
a larger number of samples k leads to lower power. Similar to the discussion in Section
5.3, both Tkp and Ukp have reasonable sizes. But Tkp has better power than Ukp of
gathering departure from H0. Interestingly, when it comes to the robustness, Ukp has
better power than Tkp if the last ODC is non-star-shaped and violates both H0 and
H1. See Tables S2.3, S2.6, and S2.9 for k = 3, 4, and 5, respectively. .

We also compare with the empirical likelihood approach proposed by El Barmi and
McKeague (2016), denoted by ME-B. See Tables S2.1, S2.4, and S2.7. In general, ME-
B outperforms when the departure from the null hypothesis is significant. However,
when the departure is mild and harder to detect, our tests perform better than ME-B.
One can also find similar powers of Tkp when the accumulated departure

∑
D0(Ri, p),

defined in the Manuscript, are close. For Ukp with the same maxD0(Ri, p), the power
is lower when the number of zero individual departure D0(Ri, p) is larger.

In addition, we compare the p-value adjusted tests, including the Cauchy combi-
nation test, BY, and Bonferroni adjustments. See Tables S2.2, S2.5, S2.8, and S2.11.
Bonferroni methods outperformed the BY p-value adjustment methods, and under
most scenarios, especially when there is more than one ODC violating H0, the Cauchy
combination tests were better than the Bonferroni method. Lastly, neither of these
two methods surpasses our proposed tests.

S2.2 GOF Tests

For GOF tests, we provide more power comparisons for Skp and Wkp with k = 3, 4, 5,
and 10 S2.12, S2.14, S2.16, and S2.18. Similar to Section 5.4, the sizes of both tests
are well-controlled. A larger number of samples k leads to lower power, and Skp has
better power of gathering departure from H∗0 .

We also compare the p-value adjusted tests, including the Cauchy combination test,
BY, and Bonferroni adjustments for the GOF tests. See Tables S2.13, S2.15, S2.17,
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and S2.19 for k = 3, 4, 5, and 10, respectively. Similar to the equality test, Bonferroni’s
methods outperformed the BY methods. When more than one ODC violates H1, the
Cauchy combination tests have better power than the Bonferroni methods. Again,
neither of these two methods surpasses our proposed tests.

A similar discussion of accumulated departure can be applied here. Similar powers
of Skp can be found when the accumulated departure

∑
D∗(Ri, p), defined in the

Manuscript, are close. For Wkp with the same maxD∗(Ri, p), the power is lower when
the number of zero individual departure D∗(Ri, p) is larger.

S2.3 Jumps detection

Lastly, Tables S2.20, S2.22, and S2.24 provide detailed assessment for the jump de-
tection method J0

p while Tables S2.21, S2.23, and S2.25 report the assessment for J∗p .
Similar to the equality test, the larger number of samples k leads to lower correctness.
Larger sample sizes help to have better performance as expected. Most of the findings
are similar to the discussion in Section 5.5 in the Manuscript,
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Table S2.1: Size and power comparisons for equality tests with k = 3 test statistics
Tkp, Ukp, and ME-B.

n (q1, q2) T31 U31 T32 U32 T3∞ U3∞ ME-B

60

(0.0,0.0) 0.051 0.048 0.043 0.049 0.044 0.051 0.050
(0.2,0.0) 0.184 0.152 0.196 0.170 0.209 0.197 0.183
(0.6,0.0) 0.678 0.573 0.746 0.673 0.781 0.750 0.811
(1.0,0.0) 0.948 0.887 0.973 0.936 0.990 0.973 0.995
(0.2,0.2) 0.428 0.230 0.462 0.269 0.466 0.312 0.458
(0.4,0.2) 0.700 0.412 0.734 0.482 0.747 0.567 0.777
(0.6,0.4) 0.954 0.758 0.974 0.856 0.974 0.907 0.990

100

(0.0,0.0) 0.067 0.051 0.067 0.059 0.065 0.047 0.058
(0.2,0.0) 0.273 0.173 0.302 0.212 0.324 0.213 0.260
(0.6,0.0) 0.901 0.781 0.944 0.863 0.957 0.911 0.963
(1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.2) 0.599 0.337 0.648 0.403 0.657 0.399 0.672
(0.4,0.2) 0.893 0.600 0.929 0.711 0.934 0.741 0.948
(0.6,0.4) 0.998 0.940 1.000 0.975 1.000 0.990 1.000

200

(0.0,0.0) 0.048 0.053 0.046 0.056 0.050 0.054 0.042
(0.2,0.0) 0.432 0.340 0.476 0.404 0.506 0.443 0.474
(0.6,0.0) 0.998 0.984 1.000 0.995 1.000 0.999 1.000
(1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.2) 0.889 0.574 0.921 0.678 0.927 0.720 0.948
(0.4,0.2) 0.995 0.924 0.997 0.966 0.997 0.989 1.000
(0.6,0.4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.2: Size and power comparisons with k = 3 and p = 1, 2,∞ for equality tests
with adjusted p-values, including Cauchy, BY, and Bonferroni.

n (q1, q2) C31 Y31 B31 C32 Y32 B32 C3∞ Y3∞ B3∞

60

(0.0, 0.0) 0.042 0.031 0.047 0.042 0.031 0.047 0.048 0.047 0.051
(0.2, 0.0) 0.138 0.108 0.150 0.162 0.126 0.167 0.184 0.169 0.197
(0.6, 0.0) 0.575 0.500 0.571 0.682 0.593 0.667 0.759 0.718 0.750
(1.0, 0.0) 0.894 0.850 0.883 0.943 0.917 0.935 0.975 0.964 0.973
(0.2, 0.2) 0.234 0.167 0.226 0.278 0.202 0.263 0.332 0.269 0.312
(0.4, 0.2) 0.449 0.341 0.405 0.522 0.400 0.472 0.607 0.526 0.567
(0.6, 0.4) 0.811 0.688 0.757 0.879 0.793 0.846 0.926 0.886 0.907

100

(0.0, 0.0) 0.048 0.037 0.054 0.052 0.032 0.060 0.049 0.033 0.055
(0.2, 0.0) 0.178 0.139 0.184 0.209 0.156 0.216 0.245 0.186 0.241
(0.6, 0.0) 0.807 0.740 0.788 0.882 0.833 0.868 0.927 0.900 0.919
(1.0, 0.0) 0.990 0.974 0.983 0.999 0.996 0.997 1.000 0.999 0.999
(0.2, 0.2) 0.380 0.274 0.359 0.438 0.318 0.409 0.471 0.368 0.442
(0.4, 0.2) 0.676 0.535 0.623 0.766 0.632 0.719 0.817 0.703 0.785
(0.6, 0.4) 0.970 0.927 0.945 0.992 0.973 0.976 0.997 0.989 0.992

200

(0.0, 0.0) 0.039 0.035 0.053 0.041 0.038 0.055 0.047 0.037 0.054
(0.2, 0.0) 0.326 0.250 0.333 0.385 0.310 0.402 0.439 0.364 0.443
(0.6, 0.0) 0.989 0.974 0.983 0.996 0.990 0.995 0.999 0.996 0.999
(1.0, 0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.2, 0.2) 0.633 0.461 0.570 0.715 0.553 0.676 0.766 0.643 0.720
(0.4, 0.2) 0.952 0.877 0.924 0.985 0.950 0.966 0.995 0.976 0.989
(0.6, 0.4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table S2.3: Robustness comparisons for equality tests with k = 3 test statistics Tkp,
Ukp, and ME-B.

n T31 U31 T32 U32 T3∞ U3∞ ME-B

60
(0.0,-0.2) 0.018 0.030 0.016 0.028 0.018 0.031 0.014
(0.2,-0.2) 0.109 0.134 0.116 0.149 0.121 0.177 0.062
(0.4,-0.2) 0.299 0.323 0.348 0.371 0.374 0.450 0.247
(0.6,-0.2) 0.541 0.559 0.623 0.657 0.669 0.735 0.599

100
(0.0,-0.2) 0.020 0.023 0.020 0.026 0.022 0.020 0.012
(0.2,-0.2) 0.153 0.145 0.163 0.179 0.184 0.186 0.082
(0.4,-0.2) 0.464 0.442 0.527 0.549 0.573 0.602 0.398
(0.6,-0.2) 0.796 0.769 0.862 0.848 0.892 0.898 0.831

200
(0.0,-0.2) 0.016 0.031 0.016 0.032 0.017 0.035 0.006
(0.2,-0.2) 0.263 0.318 0.314 0.381 0.321 0.425 0.121
(0.4,-0.2) 0.795 0.807 0.870 0.883 0.907 0.937 0.760
(0.6,-0.2) 0.986 0.980 0.995 0.991 1.000 0.998 0.995
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Table S2.4: Size and power comparisons for equality tests with k = 4 test statistics
Tkp, Ukp, and ME-B.

n (q1, q2, q3) T41 U41 T42 U42 T4∞ U4∞ ME-B

60

(0.0,0.0,0.0) 0.048 0.054 0.047 0.049 0.051 0.049 0.064
(0.2,0.0,0.0) 0.174 0.116 0.181 0.127 0.171 0.130 0.185
(0.6,0.0,0.0) 0.634 0.466 0.697 0.570 0.700 0.668 0.795
(1.0,0.0,0.0) 0.934 0.846 0.961 0.916 0.973 0.959 0.995
(0.4,0.2,0.0) 0.656 0.317 0.695 0.383 0.680 0.444 0.821
(0.6,0.4,0.0) 0.945 0.648 0.963 0.746 0.964 0.830 0.994
(0.6,0.4,0.2) 0.979 0.684 0.988 0.776 0.988 0.856 1.000

100

(0.0,0.0,0.0) 0.050 0.053 0.053 0.050 0.046 0.039 0.042
(0.2,0.0,0.0) 0.233 0.157 0.261 0.167 0.240 0.163 0.247
(0.6,0.0,0.0) 0.846 0.730 0.898 0.825 0.914 0.880 0.963
(1.0,0.0,0.0) 0.995 0.981 0.999 0.996 0.999 1.000 1.000
(0.4,0.2,0.0) 0.858 0.525 0.883 0.625 0.872 0.672 0.960
(0.6,0.4,0.0) 0.997 0.894 0.998 0.952 0.999 0.972 1.000
(0.6,0.4,0.2) 1.000 0.909 1.000 0.963 1.000 0.979 1.000

200

(0.0,0.0,0.0) 0.057 0.052 0.055 0.057 0.059 0.057 0.058
(0.2,0.0,0.0) 0.372 0.262 0.417 0.317 0.401 0.355 0.453
(0.6,0.0,0.0) 0.995 0.966 0.997 0.985 0.998 0.995 1.000
(1.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.4,0.2,0.0) 0.998 0.859 0.998 0.931 0.998 0.969 1.000
(0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.5: Size and power comparisons with k = 4 and p = 1, 2,∞ for equality tests
with adjusted p-values, including Cauchy combination (C4p), BY (Y4p), and Bonferroni
corrected methods (B4p).

n (q1, q2, q3) C41 Y41 B41 C42 Y42 B42 C4∞ Y4∞ B4∞

60

(0.0,0.0,0.0) 0.045 0.036 0.056 0.045 0.028 0.050 0.049 0.031 0.069
(0.2,0.0,0.0) 0.117 0.088 0.120 0.122 0.086 0.129 0.143 0.099 0.163
(0.6,0.0,0.0) 0.476 0.396 0.469 0.582 0.459 0.578 0.695 0.600 0.712
(1.0,0.0,0.0) 0.854 0.784 0.848 0.925 0.875 0.917 0.965 0.946 0.965
(0.4,0.2,0.0) 0.336 0.250 0.320 0.411 0.279 0.385 0.504 0.362 0.496
(0.6,0.4,0.0) 0.704 0.556 0.652 0.810 0.636 0.753 0.892 0.770 0.871
(0.6,0.4,0.2) 0.762 0.587 0.686 0.865 0.671 0.783 0.921 0.802 0.892

100

(0.0,0.0,0.0) 0.051 0.026 0.054 0.046 0.029 0.050 0.043 0.026 0.048
(0.2,0.0,0.0) 0.149 0.104 0.158 0.164 0.125 0.169 0.179 0.127 0.184
(0.6,0.0,0.0) 0.741 0.638 0.731 0.834 0.766 0.828 0.897 0.855 0.892
(1.0,0.0,0.0) 0.985 0.960 0.981 0.995 0.991 0.996 1.000 1.000 1.000
(0.4,0.2,0.0) 0.578 0.376 0.530 0.674 0.499 0.627 0.750 0.602 0.717
(0.6,0.4,0.0) 0.930 0.826 0.894 0.973 0.919 0.954 0.990 0.963 0.982
(0.6,0.4,0.2) 0.960 0.850 0.909 0.986 0.932 0.965 0.995 0.973 0.987

200

(0.0,0.0,0.0) 0.046 0.031 0.051 0.041 0.029 0.051 0.050 0.033 0.054
(0.2,0.0,0.0) 0.251 0.179 0.261 0.294 0.223 0.300 0.343 0.259 0.345
(0.6,0.0,0.0) 0.971 0.942 0.966 0.986 0.973 0.984 0.997 0.992 0.995
(1.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.4,0.2,0.0) 0.893 0.734 0.857 0.960 0.871 0.924 0.983 0.932 0.965
(0.6,0.4,0.0) 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table S2.6: Robustness comparisons for equality tests with k = 4 test statistics Tkp,
Ukp, and ME-B.

n (q1, q2, q3) T41 U41 T42 U42 T4∞ U4∞ ME-B

60

(0.0,0.0,-0.2) 0.021 0.039 0.024 0.037 0.023 0.037 0.023
(0.2,0.0,-0.2) 0.088 0.104 0.095 0.118 0.098 0.120 0.098
(0.4,0.0,-0.2) 0.259 0.244 0.292 0.296 0.283 0.346 0.320
(0.2,0.2,-0.2) 0.247 0.168 0.271 0.198 0.257 0.215 0.304
(0.6,0.4,-0.2) 0.912 0.641 0.935 0.743 0.936 0.828 0.975

100

(0.0,0.0,-0.2) 0.019 0.037 0.016 0.036 0.017 0.031 0.011
(0.2,0.0,-0.2) 0.131 0.141 0.147 0.153 0.138 0.156 0.121
(0.4,0.0,-0.2) 0.420 0.413 0.472 0.502 0.482 0.570 0.503
(0.2,0.2,-0.2) 0.409 0.260 0.450 0.293 0.428 0.300 0.453
(0.6,0.4,-0.2) 0.992 0.888 0.995 0.949 0.997 0.972 1.000

200

(0.0,0.0,-0.2) 0.018 0.032 0.017 0.037 0.020 0.038 0.011
(0.2,0.0,-0.2) 0.199 0.247 0.243 0.304 0.232 0.344 0.177
(0.4,0.0,-0.2) 0.720 0.740 0.806 0.838 0.825 0.892 0.817
(0.2,0.2,-0.2) 0.706 0.447 0.765 0.534 0.767 0.608 0.769
(0.6,0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.7: Size and power comparisons for equality tests with k = 5 test statistics
Tkp, Ukp, and ME-B.

n (q1, q2, q3, q4) T51 U51 T52 U52 T5∞ U5∞ ME-B

60

(0.0,0.0,0.0,0.0) 0.048 0.054 0.051 0.051 0.051 0.048 0.058
(0.2,0.0,0.0,0.0) 0.158 0.103 0.164 0.112 0.161 0.125 0.179
(0.6,0.0,0.0,0.0) 0.585 0.466 0.641 0.565 0.640 0.665 0.784
(1.0,0.0,0.0,0.0) 0.892 0.818 0.930 0.896 0.947 0.948 0.997
(0.4,0.2,0.0,0.0) 0.611 0.313 0.632 0.374 0.616 0.432 0.818
(0.6,0.4,0.0,0.0) 0.934 0.609 0.959 0.721 0.951 0.816 0.998
(0.8,0.6,0.4,0.0) 1.000 0.904 1.000 0.966 1.000 0.986 1.000
(0.8,0.6,0.4,0.2) 1.000 0.916 1.000 0.972 1.000 0.991 1.000

100

(0.0,0.0,0.0,0.0) 0.044 0.051 0.045 0.052 0.036 0.043 0.047
(0.2,0.0,0.0,0.0) 0.204 0.145 0.227 0.171 0.208 0.180 0.252
(0.6,0.0,0.0,0.0) 0.803 0.674 0.864 0.802 0.875 0.867 0.959
(1.0,0.0,0.0,0.0) 0.990 0.961 1.000 0.996 0.999 1.000 1.000
(0.4,0.2,0.0,0.0) 0.814 0.458 0.857 0.561 0.838 0.627 0.969
(0.6,0.4,0.0,0.0) 0.997 0.848 1.000 0.940 1.000 0.970 1.000
(0.8,0.6,0.4,0.0) 1.000 0.996 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 0.996 1.000 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.049 0.059 0.049 0.055 0.045 0.053 0.057
(0.2,0.0,0.0,0.0) 0.332 0.246 0.365 0.282 0.373 0.316 0.407
(0.6,0.0,0.0,0.0) 0.986 0.959 0.997 0.981 0.996 0.992 1.000
(1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.4,0.2,0.0,0.0) 0.992 0.812 0.997 0.896 0.997 0.938 1.000
(0.6,0.4,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.8: Size and power comparisons with k = 5 and p = 1, 2,∞ for equality tests
with adjusted p-values, Cauchy combination (C5p), BY (Y5p), and Bonferroni corrected
methods (B5p).

n (q1, q2, q3, q4) C51 Y51 B51 C52 Y52 B52 C5∞ Y5∞ B5∞

60

(0.0,0.0,0.0,0.0) 0.042 0.016 0.047 0.039 0.019 0.047 0.044 0.023 0.048
(0.2,0.0,0.0,0.0) 0.088 0.037 0.089 0.097 0.047 0.101 0.117 0.068 0.125
(0.6,0.0,0.0,0.0) 0.454 0.300 0.444 0.547 0.403 0.544 0.662 0.553 0.665
(1.0,0.0,0.0,0.0) 0.815 0.677 0.797 0.896 0.814 0.886 0.952 0.916 0.948
(0.4,0.2,0.0,0.0) 0.296 0.164 0.284 0.360 0.210 0.345 0.443 0.300 0.432
(0.6,0.4,0.0,0.0) 0.641 0.410 0.586 0.750 0.539 0.693 0.845 0.703 0.816
(0.8,0.6,0.4,0.0) 0.952 0.762 0.884 0.992 0.895 0.951 0.999 0.961 0.986
(0.8,0.6,0.4,0.2) 0.971 0.780 0.896 0.996 0.909 0.961 1.000 0.973 0.991

100

(0.0,0.0,0.0,0.0) 0.047 0.032 0.051 0.045 0.029 0.055 0.040 0.029 0.049
(0.2,0.0,0.0,0.0) 0.139 0.099 0.146 0.171 0.115 0.176 0.184 0.133 0.191
(0.6,0.0,0.0,0.0) 0.678 0.582 0.680 0.805 0.729 0.804 0.878 0.826 0.873
(1.0,0.0,0.0,0.0) 0.968 0.941 0.963 0.996 0.983 0.996 1.000 0.999 1.000
(0.4,0.2,0.0,0.0) 0.481 0.343 0.460 0.586 0.437 0.569 0.685 0.533 0.644
(0.6,0.4,0.0,0.0) 0.897 0.755 0.854 0.966 0.885 0.940 0.987 0.952 0.972
(0.8,0.6,0.4,0.0) 1.000 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.047 0.026 0.058 0.042 0.024 0.052 0.043 0.031 0.051
(0.2,0.0,0.0,0.0) 0.222 0.157 0.240 0.258 0.185 0.270 0.308 0.224 0.309
(0.6,0.0,0.0,0.0) 0.960 0.922 0.957 0.985 0.981 0.970 0.994 0.992 0.985
(1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.4,0.2,0.0,0.0) 0.845 0.694 0.810 0.920 0.806 0.886 0.955 0.888 0.935
(0.6,0.4,0.0,0.0) 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table S2.9: Robustness comparisons for equality tests with k = 4 test statistics Tkp,
Ukp, and ME-B.

n (q1, q2, q3, q4) T51 U51 T52 U52 T5∞ U5∞ ME-B

60

(0.0,0.0,0.0,-0.2) 0.019 0.047 0.016 0.045 0.024 0.041 0.030
(0.2,0.0,0.0,-0.2) 0.080 0.096 0.086 0.106 0.086 0.118 0.086
(0.2,0.2,0.0,-0.2) 0.221 0.153 0.227 0.179 0.223 0.192 0.343
(0.4,0.2,0.0,-0.2) 0.472 0.306 0.516 0.368 0.501 0.426 0.694
(0.6,0.4,0.2,-0.2) 0.970 0.631 0.982 0.742 0.976 0.835 0.999

100

(0.0,0.0,0.0,-0.2) 0.016 0.041 0.016 0.045 0.013 0.036 0.015
(0.2,0.0,0.0,-0.2) 0.107 0.135 0.113 0.164 0.110 0.174 0.118
(0.2,0.2,0.0,-0.2) 0.351 0.229 0.387 0.273 0.376 0.294 0.527
(0.4,0.2,0.0,-0.2) 0.722 0.455 0.774 0.559 0.748 0.623 0.897
(0.6,0.4,0.2,-0.2) 1.000 0.873 1.000 0.953 1.000 0.977 1.000

200

(0.0,0.0,0.0,-0.2) 0.017 0.045 0.016 0.039 0.022 0.038 0.017
(0.2,0.0,0.0,-0.2) 0.198 0.237 0.221 0.271 0.235 0.303 0.186
(0.2,0.2,0.0,-0.2) 0.664 0.400 0.718 0.472 0.703 0.534 0.852
(0.4,0.2,0.0,-0.2) 0.975 0.809 0.988 0.895 0.981 0.937 0.999
(0.6,0.4,0.2,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.10: Size and power comparisons for equality tests with k = 10 test statistics
Tkp, Ukp.

n (q1, q2, q3, q4) T10,1 U10,1 T10,2 U10,2 T10,∞ U10,∞

60

(0.0,0.0,0.0,0.0) 0.049 0.049 0.048 0.047 0.050 0.040
(0.2,0.0,0.0,0.0) 0.129 0.074 0.115 0.079 0.118 0.079
(0.6,0.0,0.0,0.0) 0.440 0.345 0.476 0.455 0.454 0.511
(1.0,0.0,0.0,0.0) 0.774 0.724 0.822 0.846 0.820 0.918
(0.4,0.2,0.0,0.0) 0.443 0.207 0.469 0.256 0.418 0.277
(0.6,0.4,0.0,0.0) 0.831 0.456 0.863 0.566 0.818 0.634
(0.8,0.6,0.4,0.0) 1.000 0.792 1.000 0.886 0.999 0.932
(0.8,0.6,0.4,0.2) 1.000 0.805 1.000 0.893 1.000 0.942

100

(0.0,0.0,0.0,0.0) 0.041 0.061 0.044 0.058 0.039 0.055
(0.2,0.0,0.0,0.0) 0.156 0.118 0.159 0.130 0.160 0.132
(0.6,0.0,0.0,0.0) 0.633 0.576 0.698 0.705 0.690 0.815
(1.0,0.0,0.0,0.0) 0.942 0.937 0.972 0.980 0.967 0.998
(0.4,0.2,0.0,0.0) 0.651 0.339 0.695 0.409 0.652 0.501
(0.6,0.4,0.0,0.0) 0.972 0.736 0.985 0.855 0.974 0.932
(0.8,0.6,0.4,0.0) 1.000 0.981 1.000 0.999 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.057 0.056 0.055 0.055 0.055 0.059
(0.2,0.0,0.0,0.0) 0.275 0.180 0.276 0.205 0.248 0.249
(0.6,0.0,0.0,0.0) 0.927 0.931 0.954 0.968 0.946 0.985
(1.0,0.0,0.0,0.0) 1.000 0.999 1.000 1.000 1.000 1.000
(0.4,0.2,0.0,0.0) 0.944 0.698 0.962 0.812 0.932 0.891
(0.6,0.4,0.0,0.0) 1.000 0.997 1.000 0.999 1.000 1.000
(0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.11: Size and power comparisons with k = 10 and p = 1, 2,∞ for equality
tests with adjusted p-values, Cauchy combination (C10,p), BY (Y10,p), and Bonferroni
corrected methods (B10,p). For simplicity, we set Ri = R0 for i = 6, . . . , 9 for all cases.

n (q1, q2, q3, q4) C10,1 Y10,1 B10,1 C10,2 Y10,2 B10,2 C10,∞ Y10,∞ B10,∞

60

(0.0,0.0,0.0,0.0) 0.032 0.012 0.036 0.036 0.012 0.041 0.044 0.022 0.049
(0.2,0.0,0.0,0.0) 0.054 0.026 0.055 0.067 0.029 0.071 0.094 0.040 0.094
(0.6,0.0,0.0,0.0) 0.305 0.208 0.297 0.406 0.284 0.411 0.552 0.421 0.556
(1.0,0.0,0.0,0.0) 0.690 0.578 0.689 0.830 0.724 0.825 0.933 0.873 0.927
(0.4,0.2,0.0,0.0) 0.182 0.103 0.179 0.237 0.136 0.234 0.339 0.188 0.330
(0.6,0.4,0.0,0.0) 0.434 0.279 0.397 0.552 0.365 0.521 0.709 0.523 0.694
(0.8,0.6,0.4,0.0) 0.822 0.568 0.733 0.919 0.729 0.867 0.972 0.887 0.947
(0.8,0.6,0.4,0.2) 0.840 0.577 0.746 0.937 0.739 0.874 0.980 0.895 0.956

100

(0.0,0.0,0.0,0.0) 0.056 0.020 0.064 0.054 0.021 0.058 0.050 0.023 0.055
(0.2,0.0,0.0,0.0) 0.115 0.052 0.124 0.123 0.058 0.130 0.129 0.078 0.132
(0.6,0.0,0.0,0.0) 0.584 0.387 0.584 0.709 0.532 0.707 0.822 0.712 0.815
(1.0,0.0,0.0,0.0) 0.946 0.860 0.942 0.981 0.952 0.981 0.999 0.989 0.998
(0.4,0.2,0.0,0.0) 0.347 0.175 0.346 0.434 0.222 0.414 0.537 0.345 0.501
(0.6,0.4,0.0,0.0) 0.774 0.531 0.742 0.886 0.685 0.858 0.953 0.856 0.932
(0.8,0.6,0.4,0.0) 0.991 0.920 0.982 1.000 0.983 0.999 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 0.924 1.000 1.000 0.984 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.048 0.026 0.054 0.050 0.026 0.061 0.051 0.024 0.063
(0.2,0.0,0.0,0.0) 0.172 0.098 0.170 0.209 0.120 0.219 0.254 0.132 0.264
(0.6,0.0,0.0,0.0) 0.927 0.858 0.925 0.970 0.939 0.968 0.989 0.973 0.987
(1.0,0.0,0.0,0.0) 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
(0.4,0.2,0.0,0.0) 0.730 0.520 0.676 0.848 0.668 0.824 0.925 0.769 0.901
(0.6,0.4,0.0,0.0) 0.998 0.995 0.995 1.000 0.999 0.999 1.000 1.000 1.000
(0.8,0.6,0.4,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0.8,0.6,0.4,0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.12: Size and power comparisons for GOF tests with test statistics Skp and
Wkp when k = 3.

n (q1, q2) S31 W31 S32 W32 S3∞ W3∞

60

(0.0,0.0) 0.066 0.067 0.062 0.062 0.027 0.053
(0.2,0.0) 0.033 0.045 0.028 0.037 0.012 0.032
(0.4,0.0) 0.021 0.048 0.022 0.040 0.009 0.030
(0.4,0.2) 0.004 0.012 0.005 0.011 0.001 0.008
(-0.2,0.0) 0.220 0.205 0.205 0.216 0.130 0.178
(-0.6,0.0) 0.791 0.711 0.819 0.765 0.768 0.798
(-1.0,0.0) 0.984 0.969 0.993 0.984 0.984 0.989
(-0.2,0.2) 0.149 0.199 0.141 0.207 0.083 0.168
(-0.4,0.2) 0.425 0.450 0.430 0.505 0.343 0.484
(-0.2,-0.2) 0.449 0.309 0.466 0.326 0.357 0.284
(-0.4,-0.2) 0.754 0.533 0.772 0.574 0.696 0.568
(-0.6,-0.4) 0.980 0.871 0.986 0.909 0.979 0.920

100

(0.0,0.0) 0.048 0.060 0.041 0.057 0.023 0.048
(0.2,0.0) 0.023 0.037 0.018 0.037 0.014 0.034
(0.4,0.0) 0.018 0.035 0.016 0.036 0.010 0.034
(0.4,0.2) 0.001 0.004 0.002 0.006 0.005 0.006
(-0.2,0.0) 0.285 0.260 0.292 0.269 0.216 0.256
(-0.6,0.0) 0.953 0.915 0.974 0.950 0.968 0.970
(-1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.2) 0.197 0.254 0.202 0.258 0.151 0.250
(-0.4,0.2) 0.619 0.645 0.662 0.720 0.609 0.751
(-0.2,-0.2) 0.653 0.419 0.669 0.456 0.607 0.426
(-0.4,-0.2) 0.927 0.744 0.950 0.799 0.924 0.815
(-0.6,-0.4) 0.998 0.982 0.999 0.993 1.000 0.995

200

(0.0,0.0) 0.063 0.059 0.052 0.057 0.049 0.048
(0.2,0.0) 0.018 0.036 0.022 0.037 0.021 0.038
(0.4,0.0) 0.015 0.040 0.018 0.039 0.016 0.042
(0.4,0.2) 0.000 0.001 0.001 0.002 0.004 0.009
(-0.2,0.0) 0.500 0.402 0.530 0.464 0.492 0.508
(-0.6,0.0) 1.000 0.999 1.000 1.000 1.000 1.000
(-1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.2) 0.357 0.405 0.395 0.464 0.379 0.511
(-0.4,0.2) 0.905 0.906 0.933 0.945 0.937 0.976
(-0.2,-0.2) 0.905 0.649 0.939 0.740 0.928 0.786
(-0.4,-0.2) 0.999 0.959 0.999 0.982 0.999 0.995
(-0.6,-0.4) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.13: Size comparisons with k = 3 and p = 1, 2,∞ for GOF tests with adjusted
p-values, including Cauchy combination (C∗3p), BY (Y ∗3p), and Bonferroni corrected
methods (B∗3p).

n (q1, q2) C∗31 Y ∗31 B∗31 C∗32 Y ∗32 B∗32 C∗3∞ Y ∗3∞ B∗3∞

60

(0.0,0.0) 0.040 0.037 0.047 0.044 0.035 0.049 0.046 0.032 0.053
(0.2,0.0) 0.024 0.022 0.028 0.021 0.020 0.026 0.026 0.021 0.030
(0.4,0.0) 0.020 0.021 0.026 0.019 0.020 0.024 0.023 0.021 0.029
(0.4,0.2) 0.004 0.004 0.006 0.004 0.005 0.006 0.004 0.003 0.007
(-0.2,0.0) 0.162 0.113 0.165 0.169 0.117 0.172 0.176 0.108 0.177
(-0.6,0.0) 0.685 0.605 0.669 0.755 0.684 0.749 0.822 0.745 0.815
(-1.0,0.0) 0.964 0.929 0.956 0.983 0.962 0.981 0.992 0.976 0.991
(-0.2,0.2) 0.122 0.113 0.145 0.134 0.117 0.154 0.136 0.108 0.155
(-0.4,0.2) 0.350 0.317 0.371 0.408 0.364 0.449 0.469 0.419 0.497
(-0.2,-0.2) 0.280 0.217 0.256 0.301 0.232 0.291 0.340 0.229 0.310
(-0.4,-0.2) 0.528 0.416 0.473 0.603 0.472 0.563 0.653 0.526 0.613
(-0.6,-0.4) 0.888 0.787 0.835 0.930 0.863 0.910 0.957 0.894 0.933

100

(0.0,0.0) 0.042 0.036 0.048 0.041 0.032 0.048 0.039 0.033 0.043
(0.2,0.0) 0.022 0.021 0.026 0.023 0.019 0.029 0.023 0.020 0.028
(0.4,0.0) 0.019 0.020 0.025 0.018 0.019 0.028 0.018 0.026 0.026
(0.4,0.2) 0.001 0.002 0.003 0.002 0.001 0.003 0.004 0.003 0.004
(-0.2,0.0) 0.201 0.117 0.215 0.232 0.194 0.249 0.250 0.205 0.259
(-0.6,0.0) 0.895 0.847 0.890 0.944 0.914 0.936 0.976 0.952 0.973
(-1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.2) 0.158 0.159 0.193 0.187 0.175 0.225 0.213 0.191 0.238
(-0.4,0.2) 0.551 0.524 0.574 0.642 0.598 0.672 0.708 0.659 0.735
(-0.2,-0.2) 0.424 0.322 0.379 0.474 0.349 0.433 0.496 0.362 0.453
(-0.4,-0.2) 0.762 0.658 0.701 0.835 0.723 0.787 0.875 0.752 0.831
(-0.6,-0.4) 0.991 0.958 0.974 0.998 0.984 0.990 0.998 0.992 0.995

200

(0.0,0.0) 0.036 0.027 0.046 0.037 0.030 0.044 0.039 0.026 0.043
(0.2,0.0) 0.012 0.015 0.023 0.014 0.017 0.023 0.019 0.015 0.027
(0.4,0.0) 0.011 0.014 0.022 0.012 0.016 0.022 0.015 0.013 0.025
(0.4,0.2) 0.000 0.000 0.000 0.001 0.000 0.001 0.004 0.002 0.006
(-0.2,0.0) 0.369 0.302 0.373 0.441 0.360 0.432 0.505 0.423 0.503
(-0.6,0.0) 0.999 0.991 0.997 1.000 0.999 1.000 1.000 1.000 1.000
(-1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.2) 0.305 0.288 0.352 0.372 0.344 0.412 0.458 0.411 0.486
(-0.4,0.2) 0.869 0.830 0.884 0.926 0.910 0.937 0.965 0.954 0.972
(-0.2,-0.2) 0.711 0.550 0.633 0.774 0.644 0.715 0.85 0.717 0.788
(-0.4,-0.2) 0.976 0.930 0.953 0.989 0.970 0.980 0.998 0.989 0.996
(-0.6,-0.4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.14: Size and power comparisons for GOF tests with test statistics Skp and
Wkp for k = 4.

n (q1, q2, q3) S41 W41 S42 W42 S4∞ W4∞

60

(0.0,0.0,0.0) 0.054 0.075 0.043 0.067 0.024 0.046
(0.2,0.0,0.0) 0.018 0.051 0.014 0.045 0.010 0.031
(0.4,0.0,0.0) 0.011 0.052 0.011 0.044 0.010 0.032
(0.4,0.2,0.0) 0.003 0.025 0.004 0.023 0.002 0.019
(0.2,0.2,0.2) 0.001 0.009 0.002 0.008 0.001 0.009
(-0.2,0.0,0.0) 0.190 0.179 0.180 0.182 0.093 0.151
(-0.6,0.0,0.0) 0.713 0.652 0.730 0.708 0.592 0.743
(-1.0,0.0,0.0) 0.959 0.950 0.968 0.977 0.939 0.985
(-0.2,0.0,0.2) 0.126 0.171 0.112 0.178 0.051 0.151
(-0.4,0.0,0.2) 0.363 0.418 0.359 0.461 0.229 0.461
(-0.2,-0.2,0.0) 0.404 0.280 0.394 0.283 0.258 0.246
(-0.4,-0.2,0.0) 0.710 0.494 0.711 0.530 0.557 0.523
(-0.6,-0.4,-0.2) 0.986 0.822 0.989 0.871 0.981 0.885

100

(0.0,0.0,0.0) 0.045 0.065 0.041 0.062 0.020 0.042
(0.2,0.0,0.0) 0.022 0.051 0.023 0.046 0.013 0.039
(0.4,0.0,0.0) 0.019 0.054 0.016 0.048 0.006 0.043
(0.4,0.2,0.0) 0.008 0.028 0.010 0.027 0.000 0.025
(0.2,0.2,0.2) 0.000 0.002 0.000 0.006 0.001 0.004
(-0.2,0.0,0.0) 0.254 0.216 0.251 0.232 0.165 0.223
(-0.6,0.0,0.0) 0.911 0.875 0.936 0.927 0.898 0.955
(-1.0,0.0,0.0) 1.000 0.998 1.000 1.000 0.999 1.000
(-0.2,0.0,0.2) 0.165 0.209 0.154 0.226 0.109 0.223
(-0.4,0.0,0.2) 0.563 0.613 0.599 0.675 0.455 0.696
(-0.2,-0.2,0.0) 0.611 0.362 0.619 0.392 0.488 0.390
(-0.4,-0.2,0.0) 0.913 0.695 0.927 0.747 0.867 0.768
(-0.6,-0.4,-0.2) 1.000 0.982 1.000 0.994 1.000 0.997

200

(0.0,0.0,0.0) 0.059 0.062 0.051 0.060 0.035 0.044
(0.2,0.0,0.0) 0.018 0.051 0.017 0.045 0.014 0.039
(0.4,0.0,0.0) 0.011 0.056 0.014 0.051 0.011 0.041
(0.4,0.2,0.0) 0.003 0.023 0.004 0.027 0.004 0.031
(0.2,0.2,0.2) 0.000 0.003 0.000 0.003 0.001 0.016
(-0.2,0.0,0.0) 0.448 0.336 0.460 0.390 0.384 0.434
(-0.6,0.0,0.0) 1.000 0.993 1.000 0.998 1.000 1.000
(-1.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.0,0.2) 0.328 0.332 0.347 0.394 0.291 0.437
(-0.4,0.0,0.2) 0.883 0.862 0.912 0.925 0.889 0.96
(-0.2,-0.2,0.0) 0.923 0.609 0.924 0.68 0.885 0.716
(-0.4,-0.2,0.0) 1.000 0.937 1.000 0.969 0.999 0.989
(-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.15: Size comparisons with k = 4 and p = 1, 2,∞ for GOF tests with adjusted
p-values, including Cauchy combination (C∗4p), BY (Y ∗4p), and Bonferroni corrected
methods (B∗4p).

n (q1, q2, q3) C∗41 Y ∗41 B∗41 C∗42 Y ∗42 B∗42 C∗4∞ Y ∗4∞ B∗4∞

60

(0.0,0.0,0.0) 0.039 0.026 0.054 0.041 0.025 0.052 0.043 0.024 0.051
(0.2,0.0,0.0) 0.020 0.015 0.037 0.021 0.013 0.031 0.024 0.017 0.032
(0.4,0.0,0.0) 0.014 0.014 0.034 0.016 0.012 0.029 0.019 0.017 0.031
(0.4,0.2,0.0) 0.006 0.006 0.018 0.005 0.005 0.015 0.007 0.009 0.018
(0.2,0.2,0.2) 0.002 0.002 0.005 0.001 0.002 0.003 0.004 0.004 0.006
(-0.2,0.0,0.0) 0.124 0.092 0.140 0.132 0.097 0.141 0.162 0.111 0.167
(-0.6,0.0,0.0) 0.609 0.527 0.613 0.677 0.600 0.675 0.755 0.666 0.755
(-1.0,0.0,0.0) 0.927 0.889 0.926 0.970 0.940 0.965 0.987 0.974 0.988
(-0.2,0.0,0.2) 0.104 0.086 0.127 0.115 0.093 0.130 0.143 0.106 0.157
(-0.4,0.0,0.2) 0.319 0.259 0.345 0.370 0.304 0.392 0.426 0.308 0.456
(-0.2,-0.2,0.0) 0.220 0.154 0.226 0.240 0.172 0.237 0.285 0.189 0.279
(-0.4,-0.2,0.0) 0.452 0.318 0.429 0.500 0.376 0.484 0.584 0.424 0.553
(-0.6,-0.4,-0.2) 0.873 0.703 0.788 0.920 0.787 0.851 0.954 0.847 0.912

100

(0.0,0.0,0.0) 0.036 0.024 0.049 0.037 0.027 0.045 0.036 0.021 0.045
(0.2,0.0,0.0) 0.020 0.019 0.037 0.024 0.022 0.034 0.027 0.018 0.036
(0.4,0.0,0.0) 0.018 0.019 0.037 0.022 0.022 0.034 0.023 0.018 0.035
(0.4,0.2,0.0) 0.010 0.010 0.019 0.012 0.013 0.018 0.011 0.011 0.022
(0.2,0.2,0.2) 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.004
(-0.2,0.0,0.0) 0.170 0.120 0.189 0.190 0.138 0.201 0.216 0.135 0.235
(-0.6,0.0,0.0) 0.860 0.755 0.855 0.916 0.866 0.913 0.956 0.923 0.955
(-1.0,0.0,0.0) 0.997 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.0,0.2) 0.133 0.112 0.174 0.158 0.127 0.187 0.190 0.125 0.220
(-0.4,0.0,0.2) 0.487 0.380 0.543 0.579 0.490 0.626 0.666 0.556 0.683
(-0.2,-0.2,0.0) 0.342 0.209 0.329 0.374 0.249 0.362 0.450 0.270 0.423
(-0.4,-0.2,0.0) 0.692 0.472 0.650 0.775 0.585 0.729 0.834 0.652 0.791
(-0.6,-0.4,-0.2) 0.994 0.943 0.976 0.999 0.983 0.994 0.999 0.993 0.998

200

(0.0,0.0,0.0) 0.035 0.022 0.043 0.032 0.025 0.044 0.031 0.025 0.037
(0.2,0.0,0.0) 0.020 0.013 0.028 0.020 0.016 0.030 0.021 0.017 0.029
(0.4,0.0,0.0) 0.017 0.013 0.028 0.018 0.016 0.030 0.019 0.017 0.028
(0.4,0.2,0.0) 0.007 0.006 0.016 0.008 0.009 0.016 0.010 0.009 0.018
(0.2,0.2,0.2) 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.006
(-0.2,0.0,0.0) 0.273 0.195 0.285 0.338 0.256 0.348 0.418 0.314 0.423
(-0.6,0.0,0.0) 0.993 0.974 0.990 0.999 0.993 0.998 1.000 1.000 1.000
(-1.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.0,0.2) 0.240 0.188 0.271 0.311 0.246 0.334 0.373 0.309 0.413
(-0.4,0.0,0.2) 0.784 0.740 0.817 0.890 0.824 0.901 0.946 0.919 0.951
(-0.2,-0.2,0.0) 0.609 0.387 0.538 0.698 0.512 0.638 0.781 0.598 0.718
(-0.4,-0.2,0.0) 0.956 0.854 0.913 0.983 0.927 0.958 0.993 0.965 0.987
(-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.16: Size and power comparisons for GOF tests with test statistics Skp and
Wkp for k = 5.

n (q1, q2, q3, q4) S51 W51 S52 W52 S4∞ W4∞

60

(0.0,0.0,0.0,0.0) 0.046 0.073 0.038 0.062 0.020 0.049
(0.2,0.0,0.0,0.0) 0.020 0.056 0.019 0.050 0.009 0.043
(0.4,0.0,0.0,0.0) 0.020 0.058 0.014 0.047 0.005 0.042
(0.4,0.2,0.0,0.0) 0.008 0.044 0.010 0.041 0.003 0.033
(0.2,0.2,0.2,0.2) 0.002 0.012 0.002 0.012 0.000 0.009
(-0.2,0.0,0.0,0.0) 0.176 0.156 0.151 0.146 0.082 0.117
(-0.6,0.0,0.0,0.0) 0.655 0.636 0.652 0.689 0.477 0.702
(-1.0,0.0,0.0,0.0) 0.946 0.941 0.959 0.967 0.895 0.978
(-0.2,0.0,0.0,0.2) 0.110 0.147 0.096 0.141 0.044 0.113
(-0.4,0.0,0.0,0.2) 0.312 0.361 0.301 0.399 0.160 0.388
(-0.2,-0.2,0.0,0.0) 0.371 0.231 0.359 0.233 0.176 0.194
(-0.4,-0.2,0.0,0.0) 0.645 0.427 0.634 0.463 0.436 0.446
(-0.6,-0.4,-0.2,0.0) 0.991 0.800 0.994 0.847 0.973 0.851
(-0.8,-0.6,-0.4,-0.2) 1.000 0.979 1.000 0.993 1.000 0.988

100

(0.0,0.0,0.0,0.0) 0.042 0.072 0.037 0.064 0.019 0.044
(0.2,0.0,0.0,0.0) 0.016 0.059 0.013 0.058 0.004 0.042
(0.4,0.0,0.0,0.0) 0.015 0.061 0.012 0.060 0.003 0.044
(0.4,0.2,0.0,0.0) 0.005 0.043 0.004 0.047 0.001 0.037
(0.2,0.2,0.2,0.2) 0.000 0.003 0.000 0.004 0.000 0.008
(-0.2,0.0,0.0,0.0) 0.224 0.183 0.210 0.201 0.133 0.187
(-0.6,0.0,0.0,0.0) 0.870 0.841 0.897 0.906 0.812 0.937
(-1.0,0.0,0.0,0.0) 0.996 0.995 1.000 0.999 0.992 0.999
(-0.2,0.0,0.0,0.2) 0.130 0.178 0.132 0.196 0.085 0.183
(-0.4,0.0,0.0,0.2) 0.481 0.534 0.495 0.596 0.359 0.625
(-0.2,-0.2,0.0,0.0) 0.553 0.317 0.534 0.339 0.374 0.323
(-0.4,-0.2,0.0,0.0) 0.868 0.632 0.885 0.691 0.768 0.710
(-0.6,-0.4,-0.2,0.0) 1.000 0.956 1.000 0.983 1.000 0.989
(-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.049 0.065 0.045 0.060 0.035 0.060
(0.2,0.0,0.0,0.0) 0.023 0.051 0.016 0.048 0.021 0.049
(0.4,0.0,0.0,0.0) 0.022 0.054 0.016 0.049 0.016 0.051
(0.4,0.2,0.0,0.0) 0.005 0.040 0.005 0.037 0.008 0.037
(0.2,0.2,0.2,0.2) 0.007 0.038 0.005 0.036 0.010 0.035
(-0.2,0.0,0.0,0.0) 0.408 0.322 0.394 0.355 0.294 0.391
(-0.6,0.0,0.0,0.0) 0.995 0.989 0.998 0.996 0.995 0.999
(-1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,0.0,0.0,0.2) 0.281 0.325 0.286 0.356 0.203 0.400
(-0.4,0.0,0.0,0.2) 0.828 0.832 0.879 0.902 0.821 0.945
(-0.2,-0.2,0.0,0.0) 0.890 0.571 0.904 0.640 0.820 0.679
(-0.4,-0.2,0.0,0.0) 0.994 0.920 0.998 0.962 0.996 0.985
(-0.6,-0.4,-0.2,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.17: Size comparisons with k = 5 and p = 1, 2,∞ for GOF tests with adjusted
p-values, including Cauchy combination (C∗5p), BY (Y ∗5p), and Bonferroni corrected
methods (B∗5p).

n (q1, q2, q3, q4) C∗51 Y ∗51 B∗51 C∗52 Y ∗52 B∗52 C∗5∞ Y ∗5∞ B∗5∞

60

(0.0,0.0,0.0,0.0) 0.040 0.028 0.043 0.040 0.024 0.045 0.048 0.026 0.052
(0.2,0.0,0.0,0.0) 0.030 0.021 0.033 0.028 0.018 0.035 0.037 0.020 0.042
(0.4,0.0,0.0,0.0) 0.026 0.020 0.031 0.024 0.017 0.032 0.032 0.020 0.039
(0.4,0.2,0.0,0.0) 0.018 0.012 0.022 0.015 0.011 0.023 0.023 0.015 0.031
(0.2,0.2,0.2,0.2) 0.002 0.004 0.009 0.004 0.002 0.008 0.005 0.003 0.009
(-0.2,0.0,0.0,0.0) 0.102 0.064 0.104 0.114 0.065 0.116 0.131 0.072 0.129
(-0.6,0.0,0.0,0.0) 0.567 0.454 0.567 0.647 0.530 0.645 0.727 0.623 0.725
(-1.0,0.0,0.0,0.0) 0.922 0.874 0.919 0.957 0.926 0.958 0.985 0.963 0.982
(-0.2,0.0,0.0,0.2) 0.086 0.057 0.093 0.096 0.059 0.105 0.112 0.063 0.117
(-0.4,0.0,0.0,0.2) 0.276 0.205 0.293 0.325 0.233 0.339 0.388 0.295 0.392
(-0.2,-0.2,0.0,0.0) 0.174 0.102 0.176 0.190 0.105 0.197 0.228 0.117 0.219
(-0.4,-0.2,0.0,0.0) 0.373 0.248 0.363 0.430 0.283 0.416 0.494 0.341 0.475
(-0.6,-0.4,-0.2,0.0) 0.824 0.614 0.752 0.884 0.706 0.832 0.928 0.795 0.887
(-0.8,-0.6,-0.4,-0.2) 0.996 0.914 0.968 0.999 0.963 0.989 1.000 0.988 0.993

100

(0.0,0.0,0.0,0.0) 0.039 0.025 0.046 0.034 0.025 0.045 0.036 0.018 0.044
(0.2,0.0,0.0,0.0) 0.024 0.021 0.037 0.023 0.019 0.038 0.022 0.012 0.036
(0.4,0.0,0.0,0.0) 0.023 0.021 0.037 0.022 0.019 0.038 0.020 0.012 0.035
(0.4,0.2,0.0,0.0) 0.010 0.013 0.022 0.012 0.012 0.024 0.015 0.008 0.027
(0.2,0.2,0.2,0.2) 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.000 0.004
(-0.2,0.0,0.0,0.0) 0.137 0.084 0.149 0.159 0.094 0.168 0.191 0.107 0.199
(-0.6,0.0,0.0,0.0) 0.791 0.698 0.787 0.886 0.799 0.886 0.945 0.884 0.944
(-1.0,0.0,0.0,0.0) 0.993 0.987 0.992 0.999 0.996 0.999 0.999 0.999 0.999
(-0.2,0.0,0.0,0.2) 0.121 0.080 0.141 0.142 0.090 0.159 0.171 0.105 0.189
(-0.4,0.0,0.0,0.2) 0.433 0.323 0.454 0.511 0.320 0.540 0.607 0.499 0.624
(-0.2,-0.2,0.0,0.0) 0.263 0.155 0.255 0.318 0.180 0.301 0.359 0.209 0.341
(-0.4,-0.2,0.0,0.0) 0.596 0.390 0.553 0.687 0.505 0.651 0.741 0.590 0.718
(-0.6,-0.4,-0.2,0.0) 0.975 0.880 0.937 0.991 0.952 0.982 0.996 0.978 0.991
(-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.043 0.033 0.046 0.048 0.029 0.050 0.054 0.030 0.058
(0.2,0.0,0.0,0.0) 0.027 0.024 0.035 0.031 0.021 0.037 0.038 0.021 0.046
(0.4,0.0,0.0,0.0) 0.025 0.024 0.035 0.030 0.021 0.037 0.033 0.021 0.046
(0.4,0.2,0.0,0.0) 0.016 0.014 0.022 0.016 0.012 0.024 0.018 0.011 0.031
(0.2,0.2,0.2,0.2) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
(-0.2,0.0,0.0,0.0) 0.248 0.163 0.253 0.307 0.221 0.318 0.388 0.277 0.394
(-0.6,0.0,0.0,0.0) 0.989 0.974 0.985 0.996 0.991 0.996 0.998 0.999 0.999
(-1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
(-0.2,0.0,0.0,0.2) 0.217 0.156 0.245 0.282 0.214 0.309 0.358 0.274 0.385
(-0.4,0.0,0.0,0.2) 0.768 0.683 0.788 0.868 0.805 0.880 0.938 0.910 0.944
(-0.2,-0.2,0.0,0.0) 0.529 0.340 0.479 0.644 0.439 0.590 0.745 0.558 0.694
(-0.4,-0.2,0.0,0.0) 0.930 0.794 0.895 0.970 0.898 0.955 0.993 0.968 0.985
(-0.6,-0.4,-0.2,0.0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.18: Size and power comparisons for GOF tests with test statistics Skp and
Wkp for k = 10.

n (q1, q2, q3, q4) S10,1 W10,1 S10,2 W10,2 S10,∞ W10,∞

60

(0.0,0.0,0.0,0.0) 0.042 0.070 0.038 0.061 0.007 0.045
(0.2,0.0,0.0,0.0) 0.022 0.068 0.017 0.053 0.006 0.04
(0.4,0.0,0.0,0.0) 0.017 0.069 0.012 0.056 0.006 0.041
(0.4,0.2,0.0,0.0) 0.009 0.062 0.008 0.051 0.005 0.038
(0.2,0.2,0.2,0.2) 0.000 0.011 0.000 0.007 0.000 0.007
(-0.2,0.0,0.0,0.0) 0.124 0.118 0.096 0.110 0.024 0.097
(-0.6,0.0,0.0,0.0) 0.448 0.523 0.421 0.589 0.172 0.620
(-1.0,0.0,0.0,0.0) 0.795 0.897 0.791 0.943 0.479 0.957
(-0.2,0.0,0.0,0.2) 0.084 0.115 0.072 0.111 0.014 0.097
(-0.4,0.0,0.0,0.2) 0.200 0.285 0.179 0.307 0.058 0.300
(-0.2,-0.2,0.0,0.0) 0.236 0.172 0.201 0.179 0.062 0.145
(-0.4,-0.2,0.0,0.0) 0.439 0.330 0.394 0.365 0.161 0.334
(-0.6,-0.4,-0.2,0.0) 0.926 0.681 0.922 0.760 0.670 0.781
(-0.8,-0.6,-0.4,-0.2) 1.000 0.935 1.000 0.975 0.990 0.974

100

(0.0,0.0,0.0,0.0) 0.062 0.088 0.046 0.077 0.010 0.051
(0.2,0.0,0.0,0.0) 0.029 0.081 0.026 0.073 0.006 0.049
(0.4,0.0,0.0,0.0) 0.028 0.081 0.024 0.076 0.007 0.049
(0.4,0.2,0.0,0.0) 0.014 0.078 0.010 0.070 0.002 0.051
(0.2,0.2,0.2,0.2) 0.000 0.007 0.000 0.007 0.000 0.005
(-0.2,0.0,0.0,0.0) 0.171 0.153 0.150 0.159 0.056 0.143
(-0.6,0.0,0.0,0.0) 0.679 0.743 0.664 0.839 0.432 0.880
(-1.0,0.0,0.0,0.0) 0.967 0.986 0.967 0.998 0.857 0.999
(-0.2,0.0,0.0,0.2) 0.129 0.154 0.111 0.159 0.038 0.142
(-0.4,0.0,0.0,0.2) 0.324 0.416 0.303 0.484 0.142 0.525
(-0.2,-0.2,0.0,0.0) 0.365 0.238 0.319 0.252 0.147 0.244
(-0.4,-0.2,0.0,0.0) 0.669 0.488 0.647 0.558 0.371 0.601
(-0.6,-0.4,-0.2,0.0) 0.998 0.904 0.999 0.958 0.970 0.974
(-0.8,-0.6,-0.4,-0.2) 1.000 0.999 1.000 1.000 1.000 1.000

200

(0.0,0.0,0.0,0.0) 0.067 0.076 0.061 0.076 0.034 0.064
(0.2,0.0,0.0,0.0) 0.037 0.068 0.043 0.071 0.029 0.057
(0.4,0.0,0.0,0.0) 0.037 0.070 0.036 0.073 0.024 0.058
(0.4,0.2,0.0,0.0) 0.026 0.064 0.025 0.069 0.013 0.053
(0.2,0.2,0.2,0.2) 0.000 0.001 0.000 0.001 0.000 0.005
(-0.2,0.0,0.0,0.0) 0.321 0.248 0.291 0.288 0.183 0.322
(-0.6,0.0,0.0,0.0) 0.961 0.981 0.966 0.992 0.905 0.999
(-1.0,0.0,0.0,0.0) 1.000 1.000 1.000 1.000 0.999 1.000
(-0.2,0.0,0.0,0.2) 0.233 0.244 0.214 0.282 0.141 0.321
(-0.4,0.0,0.0,0.2) 0.678 0.754 0.680 0.845 0.488 0.904
(-0.2,-0.2,0.0,0.0) 0.734 0.420 0.713 0.490 0.489 0.551
(-0.4,-0.2,0.0,0.0) 0.966 0.845 0.964 0.919 0.888 0.955
(-0.6,-0.4,-0.2,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(-0.8,-0.6,-0.4,-0.2) 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.19: Size comparisons with k = 10 and p = 1, 2,∞ for GOF tests with adjusted
p-values, including Cauchy combination (C∗10,p), BY (Y ∗10,p), and Bonferroni corrected
methods (B∗10,p). For simplicity, we set Ri = R0 for i = 6, . . . , 9 for all cases.

n (q1, q2, q3, q4) C∗10,1 Y ∗10,1 B∗10,1 C∗10,2 Y ∗10,2 B∗10,2 C∗10,∞ Y ∗10,∞ B∗10,∞

60

(0.0,0.0,0.0,0.0) 0.040 0.019 0.048 0.038 0.019 0.047 0.040 0.016 0.045
(0.2,0.0,0.0,0.0) 0.033 0.015 0.040 0.030 0.015 0.040 0.032 0.014 0.039
(0.4,0.0,0.0,0.0) 0.030 0.015 0.039 0.029 0.015 0.039 0.032 0.014 0.039
(0.4,0.2,0.0,0.0) 0.023 0.012 0.035 0.024 0.012 0.036 0.030 0.013 0.035
(0.2,0.2,0.2,0.2) 0.002 0.000 0.005 0.003 0.001 0.004 0.003 0.001 0.004
(-0.2,0.0,0.0,0.0) 0.078 0.039 0.087 0.086 0.037 0.094 0.084 0.033 0.090
(-0.6,0.0,0.0,0.0) 0.454 0.303 0.469 0.539 0.383 0.543 0.622 0.440 0.623
(-1.0,0.0,0.0,0.0) 0.872 0.737 0.870 0.926 0.844 0.928 0.958 0.907 0.959
(-0.2,0.0,0.0,0.2) 0.071 0.038 0.083 0.077 0.036 0.090 0.079 0.033 0.091
(-0.4,0.0,0.0,0.2) 0.207 0.125 0.221 0.254 0.142 0.262 0.290 0.157 0.293
(-0.2,-0.2,0.0,0.0) 0.129 0.061 0.132 0.144 0.059 0.146 0.145 0.053 0.144
(-0.4,-0.2,0.0,0.0) 0.267 0.148 0.270 0.320 0.166 0.317 0.360 0.178 0.300
(-0.6,-0.4,-0.2,0.0) 0.663 0.427 0.641 0.762 0.516 0.718 0.830 0.570 0.791
(-0.8,-0.6,-0.4,-0.2) 0.960 0.775 0.904 0.988 0.871 0.963 0.991 0.933 0.982

100

(0.0,0.0,0.0,0.0) 0.050 0.016 0.063 0.052 0.019 0.063 0.039 0.018 0.039
(0.2,0.0,0.0,0.0) 0.043 0.015 0.057 0.045 0.016 0.057 0.034 0.016 0.037
(0.4,0.0,0.0,0.0) 0.038 0.015 0.056 0.041 0.016 0.056 0.032 0.016 0.036
(0.4,0.2,0.0,0.0) 0.031 0.014 0.049 0.034 0.015 0.048 0.030 0.015 0.035
(0.2,0.2,0.2,0.2) 0.000 0.000 0.004 0.000 0.000 0.002 0.001 0.000 0.002
(-0.2,0.0,0.0,0.0) 0.109 0.039 0.119 0.131 0.049 0.134 0.132 0.057 0.118
(-0.6,0.0,0.0,0.0) 0.680 0.476 0.689 0.785 0.619 0.798 0.866 0.752 0.863
(-1.0,0.0,0.0,0.0) 0.985 0.939 0.984 0.997 0.983 0.998 0.998 0.995 0.999
(-0.2,0.0,0.0,0.2) 0.099 0.037 0.116 0.117 0.047 0.131 0.120 0.055 0.115
(-0.4,0.0,0.0,0.2) 0.336 0.170 0.347 0.411 0.246 0.433 0.476 0.315 0.483
(-0.2,-0.2,0.0,0.0) 0.197 0.078 0.194 0.229 0.097 0.223 0.247 0.108 0.214
(-0.4,-0.2,0.0,0.0) 0.421 0.209 0.419 0.524 0.294 0.511 0.597 0.365 0.559
(-0.6,-0.4,-0.2,0.0) 0.900 0.664 0.864 0.961 0.799 0.943 0.984 0.896 0.969
(-0.8,-0.6,-0.4,-0.2) 1.000 0.967 0.996 1.000 0.995 1.000 0.999 0.999 1.000

200

(0.0,0.0,0.0,0.0) 0.050 0.028 0.063 0.052 0.025 0.063 0.039 0.019 0.039
(0.2,0.0,0.0,0.0) 0.043 0.025 0.057 0.045 0.021 0.057 0.034 0.016 0.037
(0.4,0.0,0.0,0.0) 0.038 0.025 0.056 0.041 0.021 0.056 0.032 0.016 0.036
(0.4,0.2,0.0,0.0) 0.031 0.023 0.049 0.034 0.018 0.048 0.030 0.014 0.035
(0.2,0.2,0.2,0.2) 0.000 0.001 0.004 0.000 0.001 0.002 0.001 0.000 0.002
(-0.2,0.0,0.0,0.0) 0.205 0.118 0.211 0.244 0.147 0.241 0.322 0.186 0.320
(-0.6,0.0,0.0,0.0) 0.976 0.944 0.979 0.990 0.981 0.989 0.999 0.994 0.999
(-1.0,0.0,0.0,0.0) 0.999 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
(-0.2,0.0,0.0,0.2) 0.187 0.113 0.201 0.224 0.143 0.233 0.301 0.183 0.313
(-0.4,0.0,0.0,0.2) 0.687 0.573 0.703 0.815 0.715 0.815 0.903 0.823 0.902
(-0.2,-0.2,0.0,0.0) 0.388 0.230 0.374 0.478 0.281 0.437 0.586 0.358 0.561
(-0.4,-0.2,0.0,0.0) 0.832 0.662 0.802 0.927 0.803 0.901 0.964 0.896 0.955
(-0.6,-0.4,-0.2,0.0) 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.8,-0.6,-0.4,-0.2) 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table S2.20: Performance of J0
p evaluated with the correct rate (C), true positive

average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2) C TA FA C TA FA C TA FA

60

(0.0,0.0) 0.952 0.000 0.048 0.951 0.000 0.049 0.949 0.000 0.051
(0.4,0.0) 0.320 0.320 0.021 0.371 0.371 0.021 0.447 0.449 0.022
(0.8,0.0) 0.747 0.752 0.021 0.831 0.840 0.021 0.893 0.904 0.022
(1.0,0.0) 0.866 0.874 0.021 0.915 0.929 0.021 0.951 0.969 0.022
(0.6,0.4) 0.100 0.858 0.000 0.168 1.024 0.000 0.248 1.155 0.000
(0.8,0.6) 0.343 1.275 0.000 0.488 1.464 0.000 0.624 1.616 0.000
(1.0,0.8) 0.618 1.609 0.000 0.757 1.755 0.000 0.867 1.867 0.000
(1.0,1.0) 0.738 1.731 0.000 0.870 1.869 0.000 0.946 1.946 0.000

100

(0.0,0.0) 0.949 0.000 0.051 0.941 0.000 0.059 0.953 0.000 0.047
(0.4,0.0) 0.432 0.439 0.031 0.533 0.546 0.036 0.593 0.599 0.030
(0.8,0.0) 0.894 0.912 0.031 0.937 0.965 0.036 0.964 0.990 0.030
(1.0,0.0) 0.951 0.977 0.031 0.961 0.996 0.036 0.969 0.998 0.030
(0.6,0.4) 0.340 1.280 0.000 0.471 1.446 0.000 0.579 1.569 0.000
(0.8,0.6) 0.719 1.715 0.000 0.841 1.841 0.000 0.907 1.907 0.000
(1.0,0.8) 0.912 1.912 0.000 0.962 1.962 0.000 0.983 1.983 0.000
(1.0,1.0) 0.952 1.952 0.000 0.990 1.990 0.000 0.997 1.997 0.000

200

(0.0,0.0) 0.947 0.000 0.053 0.944 0.000 0.056 0.946 0.000 0.054
(0.4,0.0) 0.801 0.806 0.023 0.871 0.883 0.025 0.920 0.936 0.022
(0.8,0.0) 0.975 0.996 0.023 0.975 1.000 0.025 0.978 1.000 0.022
(1.0,0.0) 0.977 1.000 0.023 0.975 1.000 0.025 0.978 1.000 0.022
(0.6,0.4) 0.754 1.754 0.000 0.845 1.845 0.000 0.900 1.900 0.000
(0.8,0.6) 0.965 1.965 0.000 0.986 1.986 0.000 0.992 1.992 0.000
(1.0,0.8) 0.996 1.996 0.000 1.000 2.000 0.000 1.000 2.000 0.000
(1.0,1.0) 1.000 2.000 0.000 1.000 2.000 0.000 1.000 2.000 0.000
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Table S2.21: Performance of J∗p evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2) C TA FA C TA FA C TA FA

60

(0.0,0.0) 0.961 0.000 0.039 0.968 0.000 0.032 0.952 0.000 0.048
(0.4,0.0) 0.263 0.263 0.015 0.258 0.258 0.013 0.349 0.350 0.019
(0.8,0.0) 0.670 0.673 0.015 0.713 0.716 0.013 0.806 0.816 0.020
(1.0,0.0) 0.811 0.815 0.015 0.858 0.863 0.013 0.899 0.911 0.018
(0.6,0.4) 0.057 0.723 0.000 0.067 0.760 0.000 0.147 0.950 0.000
(0.8,0.6) 0.234 1.114 0.000 0.292 1.205 0.000 0.453 1.414 0.000
(1.0,0.8) 0.488 1.462 0.000 0.589 1.577 0.000 0.714 1.707 0.000
(1.0,1.0) 0.618 1.607 0.000 0.715 1.707 0.000 0.823 1.820 0.000

100

(0.0,0.0) 0.996 0.000 0.004 0.997 0.000 0.003 0.995 0.000 0.005
(0.4,0.0) 0.086 0.086 0.002 0.101 0.101 0.002 0.211 0.211 0.003
(0.8,0.0) 0.527 0.527 0.002 0.646 0.646 0.002 0.823 0.823 0.003
(1.0,0.0) 0.753 0.753 0.002 0.849 0.849 0.002 0.937 0.937 0.000
(0.6,0.4) 0.011 0.411 0.000 0.020 0.494 0.000 0.093 0.811 0.000
(0.8,0.6) 0.115 0.879 0.000 0.209 1.067 0.000 0.481 1.444 0.000
(1.0,0.8) 0.402 1.348 0.000 0.577 1.558 0.000 0.789 1.788 0.000
(1.0,1.0) 0.571 1.550 0.000 0.733 1.727 0.000 0.895 1.895 0.000

200

(0.0,0.0) 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
(0.4,0.0) 0.030 0.030 0.000 0.041 0.041 0.000 0.167 0.167 0.000
(0.8,0.0) 0.539 0.539 0.000 0.713 0.713 0.000 0.929 0.929 0.000
(1.0,0.0) 0.819 0.819 0.000 0.933 0.933 0.000 0.989 0.989 0.000
(0.6,0.4) 0.001 0.224 0.000 0.002 0.343 0.000 0.061 0.801 0.000
(0.8,0.6) 0.051 0.722 0.000 0.150 0.991 0.000 0.567 1.552 0.000
(1.0,0.8) 0.382 1.341 0.000 0.630 1.624 0.000 0.902 1.902 0.000
(1.0,1.0) 0.633 1.625 0.000 0.841 1.841 0.000 0.969 1.969 0.000
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Table S2.22: Performance of J0
p evaluated with the correct rate (C), true positive

average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2, q3) C TA FA C TA FA C TA FA

60

(0.0,0.0,0.0) 0.946 0.000 0.054 0.951 0.000 0.049 0.951 0.000 0.049
(0.4,0.0,0.0) 0.221 0.227 0.034 0.271 0.277 0.034 0.320 0.325 0.035
(0.8,0.0,0.0) 0.655 0.670 0.034 0.762 0.784 0.034 0.835 0.863 0.035
(1.0,0.0,0.0) 0.812 0.833 0.034 0.882 0.911 0.034 0.924 0.956 0.035
(0.6,0.4,0.0) 0.052 0.693 0.017 0.100 0.843 0.015 0.184 1.012 0.014
(0.8,0.6,0.0) 0.257 1.129 0.017 0.402 1.348 0.015 0.533 1.508 0.014
(1.0,0.8,0.0) 0.524 1.498 0.017 0.691 1.688 0.015 0.810 1.815 0.014
(1.0,1.0,0.0) 0.669 1.658 0.017 0.827 1.832 0.015 0.914 1.925 0.014
(1.0,0.8,0.6) 0.215 1.986 0.000 0.389 2.286 0.000 0.544 2.499 0.000
(1.0,0.8,0.8) 0.331 2.193 0.000 0.538 2.493 0.000 0.709 2.692 0.000
(1.0,1.0,1.0) 0.555 2.501 0.000 0.763 2.750 0.000 0.891 2.889 0.000

100

(0.0,0.0,0.0) 0.947 0.000 0.053 0.950 0.000 0.050 0.961 0.000 0.039
(0.4,0.0,0.0) 0.388 0.397 0.034 0.479 0.488 0.031 0.548 0.561 0.024
(0.8,0.0,0.0) 0.869 0.891 0.034 0.934 0.959 0.031 0.961 0.983 0.024
(1.0,0.0,0.0) 0.947 0.977 0.034 0.965 0.996 0.031 0.976 1.000 0.024
(0.6,0.4,0.0) 0.247 1.135 0.017 0.361 1.312 0.015 0.477 1.451 0.010
(0.8,0.6,0.0) 0.637 1.633 0.017 0.788 1.792 0.015 0.855 1.860 0.010
(1.0,0.8,0.0) 0.879 1.889 0.017 0.948 1.959 0.015 0.973 1.981 0.010
(1.0,1.0,0.0) 0.936 1.949 0.017 0.976 1.990 0.015 0.989 1.998 0.010
(1.0,0.8,0.6) 0.599 2.579 0.000 0.764 2.761 0.000 0.846 2.846 0.000
(1.0,0.8,0.8) 0.789 2.784 0.000 0.914 2.914 0.000 0.960 2.960 0.000
(1.0,1.0,1.0) 0.919 2.919 0.000 0.985 2.985 0.000 0.996 2.996 0.000

200

(0.0,0.0,0.0) 0.948 0.000 0.052 0.943 0.000 0.057 0.943 0.000 0.057
(0.4,0.0,0.0) 0.710 0.730 0.033 0.802 0.826 0.037 0.855 0.885 0.038
(0.8,0.0,0.0) 0.965 0.997 0.033 0.963 1.000 0.037 0.962 1.000 0.038
(1.0,0.0,0.0) 0.967 1.000 0.033 0.963 1.000 0.037 0.962 1.000 0.038
(0.6,0.4,0.0) 0.668 1.669 0.021 0.783 1.787 0.021 0.868 1.877 0.021
(0.8,0.6,0.0) 0.942 1.952 0.021 0.963 1.982 0.021 0.973 1.993 0.021
(1.0,0.8,0.0) 0.977 1.996 0.021 0.979 2.000 0.021 0.979 2.000 0.021
(1.0,1.0,0.0) 0.979 2.000 0.021 0.979 2.000 0.021 0.979 2.000 0.021
(1.0,0.8,0.6) 0.956 2.956 0.000 0.988 2.988 0.000 0.995 2.995 0.000
(1.0,0.8,0.8) 0.992 2.992 0.000 0.999 2.999 0.000 1.000 3.000 0.000
(1.0,1.0,1.0) 1.000 3.000 0.000 1.000 3.000 0.000 1.000 3.000 0.000
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Table S2.23: Performance of J∗p evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2, q3) C TA FA C TA FA C TA FA

60

(0.0,0.0,0.0) 0.938 0.000 0.062 0.950 0.000 0.050 0.930 0.000 0.070
(0.4,0.0,0.0) 0.217 0.222 0.040 0.225 0.230 0.032 0.296 0.307 0.044
(0.8,0.0,0.0) 0.637 0.655 0.040 0.687 0.704 0.032 0.776 0.813 0.043
(1.0,0.0,0.0) 0.779 0.804 0.039 0.841 0.864 0.031 0.876 0.917 0.043
(0.6,0.4,0.0) 0.050 0.681 0.018 0.056 0.712 0.014 0.151 0.933 0.024
(0.8,0.6,0.0) 0.237 1.107 0.018 0.294 1.188 0.014 0.465 1.420 0.023
(1.0,0.8,0.0) 0.490 1.457 0.017 0.587 1.572 0.014 0.711 1.713 0.023
(1.0,1.0,0.0) 0.613 1.596 0.017 0.717 1.711 0.014 0.826 1.838 0.022
(1.0,0.8,0.6) 0.184 1.922 0.000 0.273 2.093 0.000 0.431 2.343 0.000
(1.0,0.8,0.8) 0.295 2.132 0.000 0.404 2.308 0.000 0.588 2.549 0.000
(1.0,1.0,1.0) 0.493 2.424 0.000 0.630 2.592 0.000 0.777 2.767 0.000

100

(0.0,0.0,0.0) 0.995 0.000 0.005 0.996 0.000 0.004 0.993 0.000 0.007
(0.4,0.0,0.0) 0.108 0.108 0.002 0.123 0.123 0.002 0.211 0.212 0.004
(0.8,0.0,0.0) 0.556 0.556 0.002 0.660 0.660 0.002 0.825 0.826 0.004
(1.0,0.0,0.0) 0.755 0.755 0.002 0.853 0.854 0.002 0.948 0.951 0.003
(0.6,0.4,0.0) 0.014 0.413 0.000 0.019 0.484 0.000 0.092 0.807 0.001
(0.8,0.6,0.0) 0.125 0.887 0.000 0.208 1.060 0.000 0.475 1.432 0.001
(1.0,0.8,0.0) 0.394 1.335 0.000 0.559 1.538 0.000 0.808 1.805 0.001
(1.0,1.0,0.0) 0.565 1.542 0.000 0.735 1.726 0.000 0.902 1.902 0.000
(1.0,0.8,0.6) 0.079 1.633 0.000 0.159 1.898 0.000 0.417 2.347 0.000
(1.0,0.8,0.8) 0.177 1.867 0.000 0.334 2.182 0.000 0.635 2.617 0.000
(1.0,1.0,1.0) 0.419 2.315 0.000 0.627 2.586 0.000 0.851 2.848 0.000

200

(0.0,0.0,0.0) 0.999 0.000 0.001 0.999 0.000 0.001 0.999 0.000 0.001
(0.4,0.0,0.0) 0.040 0.040 0.001 0.051 0.051 0.001 0.164 0.165 0.001
(0.8,0.0,0.0) 0.525 0.526 0.001 0.686 0.687 0.001 0.921 0.922 0.001
(1.0,0.0,0.0) 0.790 0.791 0.001 0.925 0.926 0.001 0.985 0.986 0.001
(0.6,0.4,0.0) 0.000 0.213 0.001 0.002 0.329 0.001 0.063 0.781 0.001
(0.8,0.6,0.0) 0.045 0.707 0.001 0.136 0.960 0.001 0.557 1.544 0.001
(1.0,0.8,0.0) 0.357 1.308 0.001 0.614 1.607 0.001 0.892 1.892 0.001
(1.0,1.0,0.0) 0.610 1.595 0.001 0.840 1.839 0.001 0.969 1.969 0.001
(1.0,0.8,0.6) 0.035 1.530 0.000 0.137 1.925 0.000 0.579 2.564 0.000
(1.0,0.8,0.8) 0.144 1.862 0.000 0.391 2.329 0.000 0.825 2.822 0.000
(1.0,1.0,1.0) 0.477 2.419 0.000 0.771 2.768 0.000 0.957 2.957 0.000
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Table S2.24: Performance of J0
p evaluated with the correct rate (C), true positive

average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2, q3, q4) C TA FA C TA FA C TA FA

60

(0.0,0.0,0.0,0.0) 0.946 0.000 0.054 0.949 0.000 0.051 0.952 0.000 0.048
(0.4,0.0,0.0,0.0) 0.216 0.221 0.041 0.265 0.271 0.039 0.329 0.333 0.035
(0.8,0.0,0.0,0.0) 0.624 0.640 0.041 0.735 0.757 0.039 0.808 0.834 0.035
(1.0,0.0,0.0,0.0) 0.777 0.801 0.041 0.857 0.887 0.039 0.913 0.944 0.035
(0.6,0.4,0.0,0.0) 0.040 0.636 0.024 0.074 0.786 0.023 0.135 0.947 0.022
(0.8,0.6,0.0,0.0) 0.192 1.043 0.024 0.337 1.270 0.023 0.466 1.439 0.022
(0.8,0.8,0.0,0.0) 0.343 1.261 0.024 0.550 1.522 0.023 0.681 1.688 0.022
(1.0,1.0,0.0,0.0) 0.600 1.586 0.024 0.771 1.779 0.023 0.881 1.900 0.020
(1.0,1.0,0.8,0.0) 0.355 2.234 0.007 0.588 2.555 0.007 0.763 2.760 0.008
(1.0,1.0,0.8,0.8) 0.188 2.846 0.000 0.427 3.300 0.000 0.647 3.606 0.000
(1.0,1.0,1.0,1.0) 0.352 3.183 0.000 0.623 3.578 0.000 0.814 3.807 0.000

100

(0.0,0.0,0.0,0.0) 0.949 0.000 0.051 0.948 0.000 0.052 0.957 0.000 0.043
(0.4,0.0,0.0,0.0) 0.337 0.349 0.037 0.432 0.445 0.038 0.513 0.522 0.031
(0.8,0.0,0.0,0.0) 0.846 0.873 0.037 0.917 0.949 0.038 0.952 0.981 0.031
(1.0,0.0,0.0,0.0) 0.924 0.954 0.037 0.958 0.996 0.038 0.969 1.000 0.031
(0.6,0.4,0.0,0.0) 0.185 1.033 0.025 0.303 1.247 0.023 0.405 1.380 0.020
(0.8,0.6,0.0,0.0) 0.569 1.569 0.025 0.738 1.751 0.023 0.839 1.853 0.020
(0.8,0.8,0.0,0.0) 0.742 1.755 0.025 0.884 1.902 0.023 0.943 1.961 0.020
(1.0,1.0,0.0,0.0) 0.904 1.925 0.025 0.963 1.986 0.023 0.976 1.996 0.020
(1.0,1.0,0.8,0.0) 0.784 2.783 0.014 0.920 2.926 0.012 0.962 2.969 0.010
(1.0,1.0,0.8,0.8) 0.665 3.654 0.000 0.878 3.876 0.000 0.948 3.948 0.000
(1.0,1.0,1.0,1.0) 0.842 3.841 0.000 0.968 3.968 0.000 0.989 3.989 0.000

200

(0.0,0.0,0.0,0.0) 0.941 0.000 0.059 0.945 0.000 0.055 0.947 0.000 0.053
(0.4,0.0,0.0,0.0) 0.664 0.689 0.047 0.763 0.794 0.046 0.823 0.858 0.045
(0.8,0.0,0.0,0.0) 0.949 0.992 0.047 0.954 1.000 0.046 0.955 1.000 0.045
(1.0,0.0,0.0,0.0) 0.953 1.000 0.047 0.954 1.000 0.046 0.955 1.000 0.045
(0.6,0.4,0.0,0.0) 0.630 1.640 0.030 0.761 1.777 0.032 0.832 1.854 0.033
(0.8,0.6,0.0,0.0) 0.920 1.940 0.030 0.953 1.982 0.032 0.958 1.991 0.033
(0.8,0.8,0.0,0.0) 0.956 1.986 0.030 0.965 1.997 0.032 0.967 2.000 0.033
(1.0,1.0,0.0,0.0) 0.970 2.000 0.030 0.968 2.000 0.032 0.967 2.000 0.033
(1.0,1.0,0.8,0.0) 0.983 2.996 0.014 0.982 2.999 0.017 0.982 3.000 0.018
(1.0,1.0,0.8,0.8) 0.992 3.992 0.000 0.998 3.998 0.000 1.000 4.000 0.000
(1.0,1.0,1.0,1.0) 1.000 4.000 0.000 1.000 4.000 0.000 1.000 4.000 0.000
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Table S2.25: Performance of J∗p evaluated with the correct rate (C), true positive
average (TA), and false positive average (FA).

p = 1 p = 2 p =∞
n (q1, q2, q3, q4) C TA FA C TA FA C TA FA

60

(0.0,0.0,0.0,0.0) 0.919 0.000 0.081 0.934 0.000 0.066 0.909 0.000 0.091
(0.4,0.0,0.0,0.0) 0.242 0.252 0.062 0.245 0.256 0.050 0.326 0.345 0.072
(0.8,0.0,0.0,0.0) 0.626 0.656 0.062 0.687 0.714 0.051 0.758 0.807 0.067
(1.0,0.0,0.0,0.0) 0.758 0.799 0.063 0.816 0.851 0.049 0.843 0.901 0.064
(0.6,0.4,0.0,0.0) 0.045 0.685 0.039 0.054 0.723 0.031 0.119 0.908 0.044
(0.8,0.6,0.0,0.0) 0.206 1.084 0.038 0.272 1.194 0.033 0.435 1.403 0.043
(0.8,0.8,0.0,0.0) 0.364 1.302 0.038 0.453 1.418 0.032 0.598 1.610 0.042
(1.0,1.0,0.0,0.0) 0.599 1.599 0.038 0.700 1.710 0.030 0.795 1.826 0.036
(1.0,1.0,0.8,0.0) 0.382 2.271 0.017 0.497 2.439 0.014 0.671 2.649 0.015
(1.0,1.0,0.8,0.8) 0.217 2.919 0.000 0.324 3.131 0.000 0.540 3.448 0.000
(1.0,1.0,1.0,1.0) 0.380 3.229 0.000 0.521 3.431 0.000 0.702 3.670 0.000

100

(0.0,0.0,0.0,0.0) 0.992 0.000 0.008 0.993 0.000 0.007 0.989 0.000 0.011
(0.4,0.0,0.0,0.0) 0.118 0.118 0.007 0.135 0.135 0.006 0.233 0.235 0.010
(0.8,0.0,0.0,0.0) 0.538 0.542 0.007 0.649 0.653 0.006 0.815 0.822 0.009
(1.0,0.0,0.0,0.0) 0.757 0.761 0.007 0.860 0.865 0.006 0.937 0.945 0.008
(0.6,0.4,0.0,0.0) 0.009 0.415 0.004 0.012 0.482 0.004 0.091 0.811 0.005
(0.8,0.6,0.0,0.0) 0.126 0.865 0.004 0.207 1.050 0.004 0.456 1.419 0.006
(0.8,0.8,0.0,0.0) 0.259 1.124 0.004 0.394 1.329 0.004 0.674 1.670 0.007
(1.0,1.0,0.0,0.0) 0.562 1.543 0.004 0.741 1.739 0.004 0.899 1.904 0.006
(1.0,1.0,0.8,0.0) 0.268 2.077 0.004 0.466 2.389 0.003 0.724 2.708 0.003
(1.0,1.0,0.8,0.8) 0.118 2.621 0.000 0.276 3.048 0.000 0.587 3.537 0.000
(1.0,1.0,1.0,1.0) 0.286 3.065 0.000 0.512 3.437 0.000 0.799 3.791 0.000

200

(0.0,0.0,0.0,0.0) 0.999 0.000 0.001 0.999 0.000 0.001 0.999 0.000 0.001
(0.4,0.0,0.0,0.0) 0.022 0.022 0.001 0.030 0.030 0.001 0.164 0.164 0.001
(0.8,0.0,0.0,0.0) 0.551 0.551 0.001 0.702 0.702 0.001 0.920 0.920 0.001
(1.0,0.0,0.0,0.0) 0.810 0.810 0.001 0.929 0.929 0.001 0.989 0.989 0.001
(0.6,0.4,0.0,0.0) 0.001 0.225 0.000 0.001 0.336 0.000 0.065 0.815 0.000
(0.8,0.6,0.0,0.0) 0.049 0.736 0.000 0.136 0.975 0.000 0.573 1.564 0.000
(0.8,0.8,0.0,0.0) 0.217 1.081 0.000 0.438 1.402 0.000 0.847 1.846 0.000
(1.0,1.0,0.0,0.0) 0.648 1.637 0.000 0.849 1.849 0.000 0.972 1.972 0.000
(1.0,1.0,0.8,0.0) 0.308 2.167 0.000 0.574 2.548 0.000 0.905 2.903 0.000
(1.0,1.0,0.8,0.8) 0.113 2.670 0.000 0.326 3.197 0.000 0.812 3.805 0.000
(1.0,1.0,1.0,1.0) 0.366 3.215 0.000 0.715 3.694 0.000 0.947 3.947 0.000
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