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S1 Numerical implementation of Algorithm 1

For the RWLS problem in Step 3 of Algorithm 1, inspired by Lemma 1, its

solution can be calculated based on:

β̂ = Σ̂
−1
â(âTΣ̂

−1
â)−1âTΣ̂

−1
b̂− Σ̂

−1
b̂,

where â = ÊSΨ̂XTġ(XTα̂), b̂ = ÊSΨ̂ exp(XTγ̂)vθ̂(X) + ÊSΨ̂XTvθ̂(X)L̂,

and Σ̂ = ÊSΨ̂Ψ̂
T

vθ̂(X). The other steps in Algorithm 1 can be imple-

mented directly following their descriptions.

The two authors have equal contribution.
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S2 Methodological extension

S2.1 Construction with alternative nuisance estimators

As emphasized in Remark 2, there are many potential choices of the esti-

mating equations for the nuisance parameters γ̂ and α̂, e.g., the maximum

likelihood estimation. Under the correct specified OR model, the vari-

ance of γ̂ (determined by its estimating equations) has no influence on the

asymptotic properties of the PAD estimator. For α̂ obtained using alter-

native estimating equations to (2.1), we need to modify the form of V̂µ(β).

Meanwhile, we can show that this modification will not change the double

robustness and variance-reduction properties of our estimator.

Let ÊSS
′(α) = 0 be the estimating equation of the outcome model

g(XTα) with the score function S′(α) different from S(α) = X{Y −

g(XTα)} used in the main text. Suppose α̂ converges to ᾱ, the objec-

tive variance function then needs to be changed to

V̂µ(β) = ÊS{exp(XTγ̂)+Ψ̂
T

β}2vθ̂(X)+2L̂TÊS{exp(XTγ̂)+Ψ̂
T

β}{Y−g(XTα̂)}S′(α̂)

correspondingly with

L̂ = ES

{
∂S′(α)

∂α

∣∣∣∣
α̂

}−1 {
ÊSX ġ(XTα̂) exp(XTγ̂)− ÊT X ġ(XTα̂)

}
,
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and we correspondingly have

Vµ(β) = ES{exp(XTγ̄)+ΨTβ}2vθ̄(X)+2LTES{exp(XTγ̄)+ΨTβ}{Y−g(XTᾱ)}S′(ᾱ)

the limiting function of V̂µ(β) with

L = ES

{
∂S(α)

∂α

∣∣∣∣
ᾱ

}−1

{ESX ġ(XTᾱ) exp(XTγ̄)− ET X ġ(XTᾱ)}

When the PS model is correct, we again have L = 0 so the same construc-

tion of Ψ ensures double robustness. For correct OR model but wrong PS,

the modified Vµ(β) can lead to variance reduction following a very similar

discussion to Section 2.3.

S2.2 Dual construction to augment OR

In analogy to our PAD estimator, to improve the efficiency our the DR

estimator under the correct PS and wrong OR models, we propose the

Outcome regression Augmented Doubly robust (OAD) estimator in the

following algorithm.
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Algorithm 1 Outcome regression Augmented Doubly robust (OAD) estimation

[Step 1] Solve the estimating equations in (2.1) to obtain γ̂ and α̂, and obtain the

conditional variance estimator as θ̂.

[Step 2] Let Φ = ϕ(X) with function ϕ(·), g̃(XTα̂) = g(XTα̂)− ÊT g(X
Tα̂) and

Ψ̂ = Φ− ÊT Φg̃(XTα̂)

ÊT g̃2(X
Tα̂)

g̃(XTα̂).

[Step 3] Solve the restricted weighted least square (RWLS) problem:

β̂OAD = argminβV̂µ,OAD(β), s.t. ÊSXΨ̂
T

β exp(XTγ̂) = 0, (S2.1)

where

V̂µ,OAD(β) =n−1V̂arS [{Y − g(XTα̂)− Ψ̂
T

β̂} exp(XTγ̂)] +N−1V̂arT {g(XTα̂) + Ψ̂
T

β̂}

+ 2L̂∗T

[N−1ĈovT (X, Ψ̂
T

β̂) + n−1ĈovS{X exp(XTγ̂), Ψ̂
T

β̂ exp(XTγ̂)}],
(S2.2)

and L̂∗ = {ÊSX exp(XTγ̂)XT}−1ÊS{Y − g(XTα̂)} exp(XTγ̂)X.

[Step 4] Obtain the OAD estimator:

µ̂OAD = ÊS{Y − g(XTα̂)− Ψ̂
T

β̂OAD} exp(X
Tγ̂) + ÊT {g(XTα̂) + Ψ̂

T

β̂OAD}.

To demonstrate how Algorithm 1 works, we define that

µ̃OAD =ÊS{Y − g(XTᾱ)−ΨTβ̄OAD} exp(XTγ̄) + ÊT {g(XTᾱ) +ΨTβ̄OAD}

+ ES{Y − g(XTᾱ)} exp(XTγ̄)XT{ESX exp(XTγ̄)XT}−1{ÊT X − ÊSX exp(XTγ̄)}.

Then similar to our previous analysis, when the PS model is correct, µ̂OAD
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is asymptotically equivalent to µ̃OAD, and

Vµ,OAD(β) =n−1VarS [{Y − g(XTᾱ)−ΨTβ̄OAD} exp(XTγ̄)] +N−1VarT {g(XTᾱ) +ΨTβ̄OAD}

+ 2L∗T[N−1CovT (X,ΨTβ̄OAD) + n−1CovS{X exp(XTγ̄),ΨTβ̄OAD exp(X
Tγ̄)}],

is the limiting function of V̂µ,OAD(β) specified in Algorithm 1, where

L∗ = {ESX exp(XTγ̄)XT}−1ES{Y − g(XTᾱ)} exp(XTγ̄)X.

Similar to the PAD method, when β = 0, Vµ,OAD(β) reduces to the asymp-

totic variance of the standard DR estimator (with a constant difference

invariant with β). Thus, µ̂OAD has a smaller variance than the standard

DR estimator when the PS model is correct and the OR model is wrong,

under which we typically have β̄ ̸= 0. On the other hand, when the OR is

correctly specified, we have ᾱ = α0, L
∗ = 0, and thus

∂Vµ,OAD(β)

∂β

∣∣∣
β=0

= CovT (g(X
Tᾱ),Ψ).

By definition of Ψ, we have CovT (g(X
Tᾱ),Ψ) = 0, implying that β̄OAD =

0 is the (unique) population-level solution of (S2.1). Hence, similar to

the analysis in Section 2.2, µ̂OAD preserved the same DR property as µ̂DR,

i.e., being root-n consistent whenever the PS or the OR model is correctly

specified.

S2.3 Ensemble strategy
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One might be interested in deriving an estimator more efficient than the

standard DR estimator whenever the PS or OR model is misspecified (and

the other one is correct). This can be achieved through a natural extension

that convexly combines the PAD and OAD estimators with the optimal

weights minimizing the asymptotic variance. In specific, we define the en-

semble estimator

µ̂ENS(c) = cµ̂PAD + (1− c)µ̂OAD,

where c ∈ [0, 1] is some ensemble weight to be specified. Since both µ̂PAD and

µ̂OAD preserve the DR property, µ̂ENS(c) is also an DR estimator of µ0 with

any c. Based on this, we propose to choose the c from [0, 1] that minimizes

âVar
{√

n(µ̂ENS(c)− µ0)
}
= âVar

{√
n(cµ̂PAD + (1− c)µ̂OAD − µ0)

}
. (S2.3)

âVar {
√
n(µ̂ENS(c)− µ0)} is a quadratic function of c and can be extracted

using the asymptotic covariance matrix of (µ̂PAD, µ̂OAD) that can be directly

estimated from the asymptotic expansions of µ̂PAD and µ̂OAD. Let ĉ be the

minimizer of (S2.3), and the ensemble estimator µ̂ENS = µ̂ENS(ĉ). It is not

hard to see that the asymptotic variance of µ̂ENS is always smaller or equal

to those of µ̂ENS(0) = µ̂OAD and µ̂ENS(1) = µ̂PAD as ĉ minimizes (S2.3). Thus,

µ̂ENS can realize bias-reduction compared to the standard DR estimator µ̂DR,

whichever nuisance model is correct and the other one is wrong. This

ensemble strategy can also be used to combine our estimator with existing
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intrinsic efficient estimators like Shu and Tan (2018).

S2.4 Extension to ATE estimation

Problem setup

In this section, we extend our method to provide an PAD estimator for

the average treatment effects (ATE) that attains similar DR and vari-

ance reduction properties as that for ATT. Suppose there are independent

samples of (∆i, Yi, Xi) for i = 1, 2, . . . , n, where ∆i is the binary treat-

ment variable. Let Y (δ) denote the counterfactual outcome under the

treatment status ∆ = δ ∈ {0, 1}. We are interested in estimating the

ATE parameter µATE = E{Y (1)} − E{Y (0)}, under the standard assump-

tions (Hernán and Robins, 2010, e.g.) including (i) exchangeability that

{Y (0), Y (1)} ⊥⊥ ∆ | X; (ii) positivity that π(X) = Pr(∆ = 1 | X) stays

away from 0 and 1 for all X; and (iii) consistency that Y = Y (δ) for all

subjects with ∆ = δ.

Following the common setup in Bang and Robins (2005), we specify

the PS model π(X) = expit(XTγ) with expit(a) = ea/(1 + ea), and the

OR models E(Y | X,∆ = δ) = g(XTαδ) for δ = 0, 1. Similar to (2.1), we
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derive their estimators γ̂ and α̂δ by solving

Ê0X exp(XTγ) = Ê1X, Ŝδ(αδ) = ÊδX{Y − g(XTαδ)} = 0, δ = 0, 1,

(S2.4)

where Ê0 and Ê1 represent the empirical mean operator on treatment (∆ =

1) and control (∆ = 0) samples respectively. Then by Bang and Robins

(2005), the standard DR estimator of ATE is constructed as

µ̂ATE =Ê [∆{1 + exp(XTγ̂)}{Y − g(XTα̂1)}+ g(XTα̂1)]

− Ê [(1−∆){1 + exp(−XTγ̂)}{Y − g(XTα̂0)}+ g(XTα̂0)] ,

where Ê is the empirical mean operator on samples i = 1, 2, . . . , n.

PAD estimation of ATE

We propose the PAD estimation of ATE in Algorithm 2 and provide some

heuristical justification on it.
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Algorithm 2 The PAD estimation of ATE

[Step 1] Solve the estimating equations in (S2.4) to obtain γ̂, α̂0 and α̂1, and derive

the conditional variance estimators for Y on treatment and control samples as θ̂1 and

θ̂0.

[Step 2] For δ = 0, 1, specify Φδ = ϕδ(X) of larger dimensionality than X using any

basis function ϕδ(·), and take Ψ̂δ = Φδ − Ê[Φδvθ̂δ
(X)]/Êvθ̂δ

(X).

[Step 3] Solve the restricted weighted least square (RWLS) problem:

β̂δ = argminβδ
V̂µδ

(βδ), s.t. ÊδX
Tġ(XTα̂δ)Ψ̂δβ = 0, (S2.5)

where the objective function is defined as

V̂µδ
(βδ) = ÊI(∆ = δ)[exp{(2δ − 1)XTγ̂}+ 1 + Ψ̂

T

δβδ]
2vθ̂δ

(X)

+ 2L̂T

δÊI(∆ = δ)X[exp{(2δ − 1)XTγ̂}+ 1 + Ψ̂
T

δβδ]vθ̂δ
(X),

and

L̂δ =

{
Êδ

∂Ŝδ(α)

∂αT

∣∣∣∣
α=α̂δ

}−1 [
ÊI(∆ = δ)X ġ(XTα̂δ)[1 + exp{(2δ − 1)XTγ̂}]− ÊX ġ(XTα̂δ)

]
[Step 4] Obtain the PAD estimator for µδ = E{Y (δ)} as

µ̂δ = Ê
[
I(∆ = δ)[1 + exp{(2δ − 1)XTγ̂}+ Ψ̂

T

δβ̂δ]{Y − g(XTα̂δ)}+ g(XTα̂δ)
]

[Step 5] Obtain the ATE estimator through

µ̂PAD-ATE = µ̂1 − µ̂0

Suppose that all estimators converge to their limiting values (holding

under some reasonable regularity conditions). For δ = 0, 1, let Ψδ = Φ −
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EΦvθδ
(X)/Evθδ

(X), β̄δ, and ᾱδ and γ̄ represent the limit of β̂δ, α̂δ, and

γ̂ respectively,

Lδ =

{
Eδ

∂Sδ(α)

∂αT

∣∣∣
ᾱδ

}−1

{EI(∆ = δ)X ġ(XTᾱδ)[1 + exp{(2δ − 1)XTγ̄}]− EX ġ(XTᾱδ)} ,

and

Vµδ
(βδ) = EI(∆ = δ)[ exp{(2δ − 1)XTγ̄}+ 1 +ΨT

δβδ]
2vθ̄δ

(X)+

2LT

δEI(∆ = δ)X[exp{(2δ − 1)XTγ̄}+ 1 +ΨT

δβδ]vθ̄δ
(X)

as the limiting function of V̂µδ
(βδ). Next, we shall discuss the properties

of µ̂PAD-ATE in two scenarios including (i) correct PS model; and (ii) correct

OR and wrong PS models. Similar to the ATT setting, one can show that

µ̂PAD-ATE can simultaneously attain the DR property and variance-reduction

compared to the standard DR under wrong PS and correct OR.

Correct PS. When the PS model is correct, we have Lδ = 0 for both

δ = 0, 1 and, thus,

∂Vµδ
(βδ)

∂βδ

∣∣∣
βδ=0

= 2EI(∆ = δ)Ψδ[exp{(2δ−1)XTγ̄}+1]vθ̄δ
(X) = 2EΨδvθ̄δ

(X) = 0

by the definition of Ψδ for δ = 0, 1. This, combined with the strong convex-

ity of Vµδ
(βδ), implies β̄δ = 0 when the PS model is correct. Thus, µ̂PAD-ATE

attains the same doubly robust property as the standard µ̂ATE.
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Wrong PS and Correct OR. When the OR model is correctly specified and

the PS is misspecified, we have that µ̂PAD-ATE is asymptotically equivalent to

µ̃PAD-ATE = µ̃1 − µ̃0, where

µ̃δ =ÊI(∆ = δ)[1 + exp{(2δ − 1)XTγ̄}+ΨT

δβ̄δ]{Y − g(XTᾱδ)}

+ Êg(XTᾱδ) + LT

δÊI(∆ = δ)X{Y − g(XTᾱδ)}

for δ = 0, 1. Based on this, have

aVar{n1/2(µ̂PAD-ATE − µ0)} = Vµ1(β1) + Vµ0(β0) + C,

which, after dropping the invariant C, is the sum of Vµ1(β1) and Vµ0(β0).

When the PS model is wrong, ∂Vµδ
(βδ)/∂βδ is typically not 0 at βδ = 0 so

its minimizer β̄δ ̸= 0. Thus, similar to the reason in Section 2.3, we have

aVar{n1/2(µ̂PAD-ATE − µ0)} ≤ aVar{n1/2(µ̂ATE − µ0)}, and the strict “<” will

hold in general when PS is misspecified.

S3 Asymptotic justification

S3.1 Proof of Theorem 1

Proof. Proof of Theorem 1 (i).

When the OR is correctly specified, ᾱ = α0. Consider µ̃OR where

µ̃OR = ÊS{Y − g(XTᾱ)}{exp(XTγ̄) +ΨTβ̄}+ ÊT g(X
Tᾱ)
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+ {ESX
Tġ(XTᾱ) exp(XTγ̄)− ET X

Tġ(XTᾱ)}ES

{
∂S(α)

∂αT

∣∣∣∣
ᾱ

}−1

ÊSX{Y − g(XTᾱ)}.

It is obvious that Eµ̃OR = ET g(X
Tᾱ) = µ0. Hence, by using central limit

theorem, we have that µ̃OR−µ0 = Op(n
−1/2), n1/2(µ̃OR−µ0) weakly converges

to gaussian distribution with mean 0. On the other hand, we have that

µ̂PAD − µ̃OR = ÊS{Y − g(XTα0)}{exp(XTγ̄)XT(γ̂ − γ̄) +ΨT(β̂ − β̄) + (Ψ̂−Ψ)Tβ̄}

− [ÊSX
Tġ(XTα0){exp(XTγ̄) +ΨTβ̄} − ÊT X

Tġ(XTα0)](α̂− ᾱ) + op(n
−1/2)

− {ESX
Tġ(XTα0) exp(X

Tγ̄)− ET X
Tġ(XTα0)}ES

{
∂S(α)

∂αT

∣∣∣∣
α0

}−1

ÊSX{Y − g(XTα0)},

by using central limit theorem, along with Lemma (1)-(4), we have that

ÊS{Y − g(XTα0)}{exp(XTγ̄)XT(γ̂ − γ̄) +ΨT(β̂ − β̄) + (Ψ̂−Ψ)Tβ̄}

= [ÊS{Y − g(XTα0)} exp(XTγ̄)XT](γ̂ − γ̄) + [ÊS{Y − g(XTα0)}ΨT](β̂ − β̄)

+ [ÊS{Y − g(XTα0)}β̄
T
](Ψ̂−Ψ) = Op(n

−1/2)op(1) +Op(n
−1/2)op(1) +Op(n

−1/2)op(1)

= op(n
−1/2).

On the other hand,

− [ÊSX
Tġ(XTα0){exp(XTγ̄) +ΨTβ̄} − ÊT X

Tġ(XTα0)](α̂− ᾱ)

= [ÊSX
Tġ(XTα0){exp(XTγ̄) +ΨTβ̄} − ÊT X

Tġ(XTα0)]ÊS

{
∂S(α)

∂αT

∣∣∣∣
ᾱ

}−1

ÊSX{Y − g(XTᾱ)}

= {ESX
Tġ(XTα0) exp(X

Tγ̄)− ET X
Tġ(XTα0) +Op(n

−1/2)}

∗
[
ES

{
∂S(α)

∂αT

∣∣∣∣
α0

}−1

+Op(n
−1/2)

]
ÊSX{Y − g(XTα0)}.

(S3.6)
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Hence, we have that

− [ÊSX
Tġ(XTα0){exp(XTγ̄) +ΨTβ̄} − ÊT X

Tġ(XTα0)](α̂− ᾱ)

− {ESX
Tġ(XTα0) exp(X

Tγ̄)− ET X
Tġ(XTα0)}ES

{
∂S(α)

∂αT

∣∣∣∣
α0

}−1

ÊSX{Y − g(XTα0)}

= ÊSX{Y − g(XTα0)}Op(n
−1/2) = op(n

−1/2).

Thus, from previous results, we have that µ̂PAD − µ̃OR = op(n
−1/2). To-

gether with Slutsky theorem, we futher have that µ̂PAD − µ0 = Op(n
−1/2)

and n1/2(µ̂PAD −µ0) weakly converges to gaussian distribution with mean 0.

When the PS is correctly specified, γ̄ = γ0, we consider µ̃PS where

µ̃PS = ÊS{Y − g(XTᾱ)}{exp(XTγ0) +ΨTβ̄}+ ÊT g(X
Tᾱ)

+ ES{Y − g(XTᾱ)} exp(XTγ̄)XT{ESX exp(XTγ0)X
T}−1{ÊT X − ÊSX exp(XTγ0)}.

Together with the results from Lemma (4), we have that Eµ̃PS = ESY exp(XTγ̄) =

ET Y = µ0. By using the central limit theorem, we have that µ̃PS − µ0 =

Op(n
−1/2), n1/2(µ̃PS − µ0) weakly converges to gaussian distribution with

mean 0. On the other hand, we have that

µ̂PAD − µ̃PS = ÊS{Y − g(XTᾱ)}{exp(XTγ̄)XT(γ̂ − γ̄) +ΨT(β̂ − β̄)}

− ES{Y − g(XTᾱ)} exp(XTγ̄)XT{ESX exp(XTγ0)X
T}−1{ÊT X − ÊSX exp(XTγ0)}

+ op(n
−1/2)
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By using the techniques from (S3.6), we would have

ÊS{Y − g(XTᾱ)} exp(XTγ̄)XT(γ̂ − γ̄)

− ES{Y − g(XTᾱ)} exp(XTγ̄)XT{ESX exp(XTγ0)X
T}−1{ÊT X − ÊSX exp(XTγ0)}

= op(n
−1/2)

And from Lemma A4, we have β̂ = Op(n
−1/2). Thus, we have µ̂PAD − µ0 =

Op(n
−1/2). On the other hand, it is worth noticing that β̂ is the continuous

function of θ̂, γ̂ and α̂, so under central limit theorem and Slutsky theorem,

we would have the asymptotic normality of β̂. Hence, we further have that

n1/2(µ̂PS − µ0) weakly converges to gaussian distribution with mean 0.

Proof. Proof of Theorem 1 (ii).

First we denote U as

U = VarT (E(Y |X)) + LTESXXT Var(Y |X)L

When the OR is correctly specified, the asymptotic variance of µ̂PAD, Var{n−1/2(µ̂PAD−

µ0)} is

ES{exp(XTγ̄) +ΨTβ̄}2vθ̄(X) + 2LTESX{exp(XTγ̄) +ΨTβ̄}vθ̄(X) +U,

and β̄ contributes to minimizing this variance. When β̄ = 0, the function

above is written as

ES{exp(XTγ̄)}2vθ̄(X) + 2LTESX{exp(XTγ̄)}vθ̄(X) +U,
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which is the same as the asymptotic variance of µ̂DR, Var{n−1/2(µ̂DR − µ0)}.

Hence, when β̄ ̸= 0, µ̂PAD has the smaller asymptotic variance than standard

doubly robust estimator µ̂DR.

Proof. Proof of Theorem 1 (iii).

When both the PS and OR is correctly specified, consider µ̃B, where

µ̃B = ÊS{Y − g(XTα0)} exp(XTγ0) + ÊT g(X
Tα0).

By using central limit theorem, n1/2(µ̃B −µ0) weakly converges to gaussian

distribution with mean 0. On the other hand, by using Taylor series ex-

pansion, we would have µ̂PAD − µ̃B = op(n
−1/2) and µ̂DR − µ̃B = op(n

−1/2).

Hence, they have the same asymptotic variance.

S3.2 Technical lemma

Lemma 1. Define a := ESΨXTġ(XTᾱ), b := ESΨ exp(XTγ̄)vθ̄(X) +

ESΨXTvθ̄(X)L, and Σ := ESΨΨTvθ̄(X), under Assumption 3, the solu-

tion of the RWLS problem in Algorithm 1 is

β̄ = Σ−1a(aTΣ−1a)−1aTΣ−1b−Σ−1b.

Proof. First we introduce Lagrange multiplier λ and write (2.5) as the La-

grange form:

β̄ = argminβ ES{exp(XTγ̄) +ΨTβ}2vθ̄(X)
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+2LTESX{exp(XTγ̄) +ΨTβ}vθ̄(X)− λTESX ġ(XTᾱ)ΨTβ.

Then we have the partial derivative of λ and β:

ESX ġ(XTᾱ)ΨTβ = 0, (S3.7)

and

2ESΨ{exp(XTγ̄)+ΨTβ}vθ̄(X)+2ESΨXTvθ̄(X)L−ESΨXTġ(XTᾱ)λ = 0.

(S3.8)

From (S3.8) we have

β = {2ESΨΨTvθ̄(X)}−1{ESΨXTġ(XTᾱ)λ−2ESΨ exp(XTγ̄)vθ̄(X)−2ESΨXTvθ̄(X)L},

together with (S3.7), we have

ESX ġ(XTᾱ)ΨT{ESΨΨTvθ̄(X)}−1

∗ {ESΨXTġ(XTᾱ)λ− 2ESΨ exp(XTγ̄)vθ̄(X)− 2ESΨXTvθ̄(X)L} = 0.

this function can be simplified as

aTΣ−1(aλ− 2b) = 0,

and we further have

λ = 2(aTΣ−1a)−1aTΣ−1b.

Hence, we have

β̄ = Σ−1a(aTΣ−1a)−1aTΣ−1b−Σ−1b.
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Lemma 2. Under Assumptions 1–4, we have that Ψ̂−Ψ = Op(n
−1/2).

Proof. By definition, we would have that

Ψ̂−Ψ =
ÊT {Φvθ̂(X)}
ÊT vθ̂(X)

− ET {Φvθ̄(X)}
ET vθ̄(X)

.

Under Assumption 4, we have that

ÊT vθ̂(X)−ET vθ̄(X) = ÊT vθ̄(X)+ÊT
∂vθ(X)

∂θ
|θ̃(θ̂−θ̄)−ET vθ̄(X) = Op(n

−1/2)

(S3.9)

for θ̃ between θ̂ and θ̄. By using the same techniques, we have that

ÊT {Φvθ̂(X)} − ET {Φvθ̄(X)} = Op(n
−1/2). And we have

Ψ̂−Ψ =
ÊT {Φvθ̂(X)}ET vθ̄(X)− ET {Φvθ̄(X)}ÊT vθ̂(X)

ÊT vθ̂(X)ET vθ̄(X)

=
Op(n

−1/2)ET vθ̄(X)− ET {Φvθ̄(X)}Op(n
−1/2)

{ET vθ̄(X) +Op(n−1/2)}ET vθ̄(X)
= Op(n

−1/2).

Lemma 3. Under Assumptions 1 and 2, we have that γ̂ − γ̄ = Op(n
−1/2)

and α̂− ᾱ = Op(n
−1/2).

Proof. The estimation of γ has been given as

ÊSX exp(XTγ̂) = ÊT X,
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by applying Taylor series expansion, we have

n−1

n∑
i=1

X i exp(X
T

i γ̄) + n−1

n∑
i=1

X i exp(X
T

i γ̃)X
T

i (γ̂ − γ̄) = N−1

n+N∑
i=n+1

X i,

where γ̃ is some vector between γ̂ and γ̄. According to (Van der Vaart,

2000, Chapter 5), we have γ̂−γ̄ = op(1). Let J represent matrix n−1
∑n

i=1X i exp(X
T

i γ̃)X
T

i ,

and we have that

J = n−1

n∑
i=1

X i exp(X
T

i γ̄)X
T

i+n−1

n∑
i=1

X i exp(X
T

iγ
∗)XT

iX i(γ̃−γ̄) = ESX exp(XTγ̄)XT+op(1)

for γ∗ between γ̃ and γ̄. Hence, by central limit theorem and Slutsky

theorem, we have that,

γ̂ − γ̄ = J−1

{
N−1

n+N∑
i=n+1

X i − n−1

n∑
i=1

X i exp(X
T

i γ̄)

}

=J−1

{
N−1

n+N∑
i=n+1

X i − ET X + ESX exp(XTγ̄)− n−1

n∑
i=1

X i exp(X
T

i γ̄)

}
= Op(n

−1/2).

Furthermore, The estimation equation of α̂ is given by

ÊSS(α̂) = ÊSX{Y − g(XTα̂)} = 0,

by using Taylor series expansion, we have that

ÊSX{Y − g(XTᾱ)}+ ÊS
∂S(α)

∂αT

∣∣∣∣
α̃

(α̂− ᾱ) = 0

for α̃ between α̂ and ᾱ, and we have

α̂− ᾱ = −ÊS

{
∂S(α)

∂αT

∣∣∣∣
α̃

}−1

ÊSX{Y − g(XTᾱ)}.
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By using the same techniques as those for obtaining the asymptotic prop-

erties of γ̂, under Assumptions 1 and 2, we have α̂− ᾱ = Op(n
−1/2).

Lemma 4. Under Assumptions 1–4 and by Lemmas 1–3, we can obtain

that β̂− β̄ = Op(n
−1/2). In addition, when the PS is correctly specified, we

further have β̄ = 0 and β̂ = Op(n
−1/2).

Proof. By using the same techniques as (S3.9), under Condition 2-4, we

first have that

â− a =ÊSΨ̂XTġ(XTα̂)− ESΨXTġ(XTᾱ)

=ÊSΨXTġ(XTᾱ)− ESΨXTġ(XTᾱ) +Op(n
−1/2) = Op(n

−1/2).

In addition, we can have that b̂−b = Op(n
−1/2) and Σ̂−Σ = Op(n

−1/2).

Furthermore, we can easily have that

Σ̂
−1

−Σ−1 = Σ−1Σ{Σ+Op(n
−1/2)}−1 −Σ−1

= Σ−1[Σ{Σ+Op(n
−1/2)}−1 − {Σ+Op(n

−1/2)}{Σ+Op(n
−1/2)}−1] = Op(n

−1/2),

based on which we can have (âTΣ̂
−1
â)−1− (aTΣ−1a)−1 = Op(n

−1/2). More-

over, let Ω̂ denote Σ̂
−1
â(âTΣ̂

−1
â)−1âTΣ̂

−1
andΩ denoteΣ−1a(aTΣ−1a)−1aTΣ−1,

and we can have that Ω̂ − Ω = Op(n
−1/2). Hence, we have that β̂ − β̄ =

Ω̂b̂−Ωb = Op(n
−1/2).

On the other hand, when the PS is correctly specified, L = 0 and
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ESΨ exp(XTγ̄)vθ̄(X) = ET Ψvθ̄(X) = 0, which means

β̄ = Ωb = Ω{ESΨ exp(XTγ̄)vθ̄(X) + ESΨXTvθ̄(X)L} = Ω0 = 0.

And at the same time, we have β̂ = Op(n
−1/2).

S4 The mPAD estimator

S4.1 Technical details

To address the range issue of the PS model in aPAD, we propose a multi-

plicative PAD (mPAD) estimator in Algorithm 3, in which the PS model

is taken as exp(XTγ̂ + Ψ̂
′T
β̂

′
) with a multiplicative augmentation term

exp(Ψ̂
′T
β̂

′
) added to the original PS model.
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Algorithm 3 Multiplicative PAD estimation

[Step 1] Solve the estimating equations in (2.1) to obtain γ̂ and α̂, and obtain the

conditional variance estimator as θ̂.

[Step 2] Specify Φ = ϕ(X) of larger dimensionality than X using any basis function

ϕ(·), and take Ψ̂
′
= Φ− ÊT [Φ exp(XTγ̂)vθ̂(X)]/ÊT exp(XTγ̂)vθ̂(X).

[Step 3] Solve the optimization problem:

β̂
′
= argminβV̂

′
µ(β

′), s.t. ÊSX
Tġ(XTα̂) exp(XTγ̂){exp(Ψ̂

′T
β′)− 1} = 0, (S4.10)

where

V̂ ′
µ(β

′) = ÊS exp{2(XTγ̂ + Ψ̂
′T
β′)}vθ̂(X) + 2L̂′TÊSX exp(XTγ̂ + Ψ̂

′T
β′)vθ̂(X),

(S4.11)

and L̂′ = −Ĥ−1
{
ÊSX ġ(XTα̂) exp(XTγ̂ + Ψ̂

′T
β̂
′
)− ÊT X ġ(XTα̂)

}
.

[Step 4] Obtain the mPAD estimator through

µ̂mPAD = ÊS{Y − g(XTα̂)} exp(XTγ̂ + Ψ̂
′T
β̂
′
) + ÊT g(X

Tα̂).

Similar to our discussion in Section 2.3, suppose that all estimators con-

verge to their limiting values. LetΨ′ = Φ−ET Φ exp(XTγ̄)vθ̄(X)/ET exp(XTγ̄)vθ̄(X),

L′ = −H−1
{
ESX ġ(XTᾱ) exp(XTγ̄ +Ψ′Tβ̄

′
)− ET X ġ(XTᾱ)

}
,

β̄
′
be the limits of β̂

′
, and

V ′
µ(β

′) = ES exp{2(XTγ̄+Ψ′Tβ′)}vθ̄(X)+2L′TESX exp(XTγ̄+Ψ′Tβ′)vθ̄(X)

be the limiting function of V̂ ′
µ(β

′) specified in Algorithm 3. Similarly to
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aPAD, we shall comment on two scenarios: (i) correct PS model; and (ii)

correct OR and wrong PS, to demonstrate the properties of the proposed

mPAD estimator. In specific, similar to aPAD, the mPAD estimator can

attain the DR property and a smaller variance than the standard DR under

wrong PS. However, one should note that the optimization problem (S4.10)

in Algorithm 3 is non-convex and not ensured to converge to the global

solution. In addition, as will be discussed in Appendix S4.2, mPAD tends

to have worse and less stable finite-sample performance than aPAD due

to the presence of squared exponential terms like exp{2(XTγ̂ + Ψ̂
′T
β′)} in

mPAD. Therefore, we still recommend aPAD as the default choice when

implementing PAD.

Correct PS model. When the PS model is correct, we have that L′ = 0

using the linear constraint in (S4.10) and

∂V ′
µ(β

′)

∂β′

∣∣∣
β′=0

= 2ESΨ
′ exp{2(XTγ̄)}vθ̄(X) = 2ET Ψ

′ exp(XTγ̄)vθ̄(X) = 0

by the definition of Ψ′. Thus, β′ = 0 is a (local) minimizer of V ′
µ(β

′), which

implies that β̂
′
converges to 0 when PS model is correct. Meanwhile, the

PS augmentation does not affect the OR model. Therefore, µ̂mPAD have the

same double robustness as µ̂DR.
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Wrong PS and correct OR. When the OR model is correctly specified and

PS is misspecified, µ̂mPAD is asymptotically equivalent with

µ̃mPAD = ÊS{Y − g(XTᾱ)} exp(XTγ̄ +Ψ′Tβ̄
′
) + ÊT g(X

Tᾱ) + L′TÊSX{Y − g(XTᾱ)}.

This implies that aVar{n1/2(µ̂mPAD − µ0)} is equal to

ES exp
2(XTγ̄ +Ψ′Tβ′)v(X) + 2L′TESX exp(XTγ̄ +Ψ′Tβ′)v(X) + C,

(S4.12)

which, after dropping the invariant C, is equal to V ′
µ(β

′). When the PS

model is misspecified, ∂Vµ(β
′)/∂β′ is typically not 0 at β′ = 0 so the

minimizer is non-zero. Thus, when the OR model is correct, we have

aVar{n1/2(µ̂mPAD − µ0)} ≤ aVar{n1/2(µ̂DR − µ0)}, and the strict “<” will

hold in general when PS is wrong.

S4.2 Simulation study

We consider the same settings (L1)–(L3) as introduced in Section 4 and

evaluate the performance of mPAD. To solve for the non-convex problem

(S4.10), we adopt an iterative Newton-type optimization procedure with

a quadratic approximation to the objective function V̂ ′
µ(β

′) and a linear

approximation to the constraint in (S4.10) at each iteration. Also, we im-

pose an early stop whenever the objective V̂ ′
µ will not decrease in the next

iteration.
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Table 1: The absolute average bias (Bias), standard error (SE), and coverage probability

(CP) of the 95% confidence intervals of the mPAD estimators, Relative efficiency (RE)

between DR and mPAD, i.e., Var(µ̂DR)/Var(µ̂mPAD) under the settings described in Section

4. All results are based on 1000 repetitions.

n = N = 500 n = N = 1000

Setting Bias SE CP RE bias SE CP RE

(L1) 0.001 0.054 0.95 1.09 0.002 0.039 0.94 1.07

(L2) 0.005 0.054 0.96 1.01 0.001 0.041 0.94 0.96

(L3) 0.002 0.051 0.94 1.23 0.001 0.035 0.94 1.18

In Table 1, we report mPAD’s bias, standard error (SE), and coverage

probability (CP) of the 95% CI, and relative efficiency (RE) to the standard

DR. Similar to the aPAD estimator studied in Section 4, mPAD performs

closely to the standard DR estimator when the PS model is correct, and

attains better estimation efficiency than DR when the OR model is correct

and PS model is misspecified. Also, mPAD shows similar performance to

aPAD when comparing Table 1 with Table 1.

Meanwhile, mainly due to the non-convexity issue and the outlying

exponential terms exp{2(XTγ̂ + Ψ̂
′T
β′)}, mPAD performs poorly in the

Gaussian linear settings (G1)–(G3) supposed to be reasonable for the aPAD

and standard DR methods. For example, under misspecified OR models,
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the mPAD estimator has a bias more than 0.06 in all settings (G1)–(G3)

under N = n = 1000, which is substantially larger than aPAD.
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