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Notation: One dimensional sections of a third-order tensor X ∈ Rd1×d2×d3

are defined as Column Fiber, Row Fiber and Tube Fiber (see Figure 2.1

of Kolda and Bader (2009)) and they are denoted by x:jk, xi:k and xij:

respectively. Similarly, the two-dimensional sections of X, namely, Hori-

zontal Slice, Lateral Slice and Frontal Slice (see Figure 2.2 of Kolda and

Bader (2009)) are denoted by Xi::, X:j: and X::k respectively. As illus-

trated in Figure 2 of the main paper, the lateral slices, horizontal slices

and tube fibers can be visualized as columns, rows and elements of a ma-

trix. For any matrix A ∈ Rd1×d2 , whose (i, j)th element is denoted by aij,

the Frobenius Norm is defined as ∥A∥F =
√∑d1

i=1

∑d2
j=1 a

2
ij. ℓ∞ norm of

matrix A is defined by ∥A∥∞ = max
i,j

| aij |. ℓ2,1 norm of A is defined as

∥A∥2,1 =
∑d2

j=1(
∑d1

i=1 a
2
ij)

1
2 . Similarly, ℓ2,∞ norm of A is given by, ∥A∥2,∞ =
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max
1≤j≤d2

(
∑d1

i=1 a
2
ij)

1
2 . Denoting by σ1(A), σ2(A), · · · , σd(A), the singular val-

ues of A, where d = min{d1, d2}, we define the Nuclear Norm of A by

∥A∥∗ =
∑d

j=1 σj(A) and the Spectral Norm of A by ∥A∥sp = max
1≤j≤d

{σj(A)}.

S1 Additional notation required for Section 3

We assume that S∗ is supported on a subset E ⊆ {1, 2, · · · , pmT}, with

|E| = s1. We define a pair of subspaces (M(E),M⊥(E)), such that, M(E) =

{M ∈ RT×pm | kth element of M = 0,∀k /∈ E} and M⊥(E) = (M(E))⊥.

As shown in Agarwal et al. (2012) and Negahban et al. (2012), one can

easily verify that for any M1 ∈ M(E) and M2 ∈ M⊥(E), ∥M1 +M2∥1 =

∥M1∥1+ ∥M2∥1. This ensures that the regularizer ∥·∥1 is decomposable (see

Negahban et al. (2012)) with respect to the subspace pair (M(E),M⊥(E)).

Simplifying the notation from (M(E),M⊥(E)) to (M,M⊥), it is evident

that, S∗ ∈ M, πM(S
∗) = S∗ and πM⊥(S∗) = 0, where πM(·) is the projection

onto the subspace M. Similarly we assume that B∗ is supported on a

subset H ⊆ {1, 2, · · · , p2m2}, with |H| = s2. As before, here also we

define a subspace pair (N(H),N⊥(H)) such that B∗ ∈ N, πN(B∗) = B∗

and πN⊥(B∗) = 0. Finally, we define ∆̂L = L̂ − L∗, ∆̂S = Ŝ − S∗ and

∆̂B = B̂ − B∗ and let ∆̂L ∈ Rp×m×T be the tensor form of the matrix

∆̂L ∈ RT×pm. Also, ∆̂M
S = πM(∆̂S), ∆̂

M⊥
S = πM⊥(∆̂S), ∆̂

N
B = πN(∆̂B) and
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∆̂N⊥
B = πN⊥(∆̂B).

Lemma S1.1. Let R denote the rank of Circ(L∗). Let C(L, S,B) be a

weighted combination of the nuclear norm and the ℓ1 norm regularizers as

follows:

C(L, S,B) = 1
T
∥Circ(L)∥∗ +

λS
λL

∥S∥1 +
λB
λL

∥B∥1

Then, for any R = 1, 2, · · · ,min{pT,mT}, there exists a decomposition

∆̂L = ∆̂A
L + ∆̂B

L with Rank (Circ(∆̂A
L)) ≤ 2R, Circ(L∗)TCirc(∆̂B

L) = 0,

Circ(L∗)Circ(∆̂B
L)

T
= 0, where ∆̂A

L and ∆̂B
L in Rp×m×Tare the tensor form

of the matrices ∆̂A
L and ∆̂B

L in RT×pm respectively. Also the following in-

equality holds

C(L∗, S∗, B∗)− C(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B) ≤ C(∆̂A
L , ∆̂

M
S , ∆̂

N
B)

− C(∆̂B
L , ∆̂

M⊥

S , ∆̂N⊥

B )

(S1.1)

Lemma S1.2. Under the conditions λL ≥ 4 1
T
∥Circ(U)∥sp, λS ≥ 8

∥∥∥ U√
T

∥∥∥
∞

and λB ≥ 8
∥∥Z′U

T

∥∥
∞, the estimation error (∆̂L, ∆̂S, ∆̂B) satisfies the follow-

ing constraint:

C(∆̂B
L , ∆̂

M⊥

S , ∆̂N⊥

B ) ≤ 3C(∆̂A
L , ∆̂

M
S , ∆̂

N
B) (S1.2)

The above lemmas characterize a set in which the error (∆̂L, ∆̂S, ∆̂B)

lies.
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S2 Data generation process for simulation

We first begin with generating V ec(Ft) from i.i.d. N(0,ΣF ), for t =

1, 2, · · · , T . Recall that, the first component of V ec(Ft) is V ec(L
∗
t ). Hence

it is necessary to generate V ec(L∗
t ) for t = 1, 2, · · · , T from i.i.d. N(0,ΣL),

such that the tensor L∗ ∈ Rp×m×T , for which the tth frontal slice is created

by L∗
t ∈ Rp×m, will have tubal rank r. The following lemma facilitates the

above requirement.

Lemma S2.1. Let G ∈ Rd1×d2×d3 be a third-order tensor, whose first r lat-

eral slices, denoted by G:1:, G:2:, · · · , G:r: ∈ Rd1×1×d3, are filled with entries

from i.i.d. N(0, σ2
l ) and the remaining d2 − r lateral slices are obtained by

the following t-linear combination:

G:i: = G:1:∗α1i+G:2:∗α2i+· · ·+G:r:∗αri, for i = r+1, r+2, · · · , d2 (S2.1)

and αji’s in R1×1×d3 are the tube fibers of the form (βji, 0, 0, · · · , 0)T , where

βji ∈ R, for j = 1, 2, · · · , r and i = r + 1, r + 2, · · · , d2. Then,

1. The tensor G will have tubal rank r and

2. V ec(Gk) ∼ i.i.d. N(0,ΣG), for k = 1, 2, · · · , d3, where Gk is the kth

frontal slice of G and ΣG will have the following form
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ΣG =

 Mrd1×rd1 Nrd1×(d2−r)d1

N ′
(d2−r)d1×rd1 P(d2−r)d1×(d2−r)d1


where,

M =



σ2
l I 0 · · · 0

0 σ2
l I · · · 0

...
...

. . .
...

0 0 · · · σ2
l I



N =



β2
1 r+1

σ2
l I β2

1 r+2
σ2
l I · · · β2

1 d2
σ2
l I

β2
2 r+1

σ2
l I β2

2 r+2
σ2
l I · · · β2

2 d2
σ2
l I

...
...

. . .
...

β2
r r+1

σ2
l I β2

r r+2
σ2
l I · · · β2

r d2
σ2
l I


and

P =



∑r
j=1 β

2
j r+1

σ2
l I

∑r
j=1 βj r+1βj r+2 σ2

l I · · ·
∑r

j=1 βj r+1βj d2 σ2
l I∑r

j=1 βj r+2βj r+1 σ2
l I

∑r
j=1 β

2
j r+2

σ2
l I · · ·

∑r
j=1 βj r+2βj d2 σ2

l I

...
...

. . .
...∑r

j=1 βj d2βj r+1 σ2
l I

∑r
j=1 βj d2βj r+2 σ2

l I · · ·
∑r

j=1 β
2
j d2

σ2
l I


where I and 0 are the Identity matrix and Null matrix of order d1 × d1

respectively.

Thus, in order to generate V ec(L∗
t ), we first obtain r lateral slices

L:1:, L:2:, · · · , L:r: ∈ Rp×1×T filled with entries from i.i.d. N(0, σ2
l ) and then
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generate the remaining m − r lateral slices by the t-linear combination

of L:1:, L:2:, · · · , L:r: as governed by equation (S2.1). Thus, as proved in

Lemma S2.1, the resulting tensor L∗ will have tubal-rank r and V ec(L∗
t ) ∼

i.i.d. N(0,ΣL), for t = 1, 2, · · · , T , where L∗
t is the tth frontal slice of L∗

and ΣL will have the same form as of ΣG.

The second component of V ec(Ft) is V ec(S
∗
t ) and we need to generate

them from i.i.d. N(0,ΣS), such that the matrix S∗ ∈ RT×pm will have s1 ≪

pmT non-zero elements. To that end, we start with drawing Zij
i.i.d.∼ Ber(ps),

for i = 1, 2, · · · , p and j = 1, 2, · · · ,m, such that E[
∑p

i=1

∑m
j=1 Zij] =

s1
T
,

which in other words implies that ps =
s1
pmT

. Now, for a particular pair (i, j)

and given Zij = zij, we draw S∗
t (i, j)

i.i.d.∼ zijN(0, σ2
s) for t = 1, 2, · · · , T ,

where S∗
t (i, j) is the (i, j)th element of the matrix S∗

t . Thus, given Zij =

zij, V ec(S
∗
t )

i.i.d.∼ N(0,ΣS), where ΣS ∈ Rpm×pm is a diagonal matrix with

diagonal elements as z2ijσ
2
s for i = 1, 2, · · · , p and j = 1, 2, · · · ,m. Also,

V ec(S∗
t ) is generated independently of V ec(L∗

t ) for t = 1, 2, · · · , T and thus

addition of these two components results in V ec(Ft), where V ec(Ft)
i.i.d.∼

N(0,ΣF ) for t = 1, 2, · · · , T .

The transition matrix B∗ ∈ Rpm×pm is generated with s2 ≪ p2m2 non-

zero elements, where the non-zero elements are filled with draws from Uni-

form distribution. However, once the non-zero elements are drawn, the
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matrix is scaled down in such a way that the maximum of the absolute

eigenvalues, which is the Spectral Radius, is smaller than a pre-fixed upper

bound.

Finally, the errors V ec(Ut) are drawn from i.i.d. N(0, σ2Ipm) distribu-

tion and the data V ec(Xt) for t = 1, 2, · · · , T , are generated recursively

using the equation (2.3) in the main paper.

S3 Proofs

In this section, we prove the results that have been discussed in Section

3 of the main paper. Before proving the main results, we first prove a

simple proposition, followed by Lemma S1.1, Lemma S1.2 and then a simple

inequality, named as, Basic Inequality. Based on these results we then prove

Lemma 3.1, which provides an upper bound to the estimation error in the

deterministic case. Finally, using Lemma 3.1, we prove Theorem 3.2 and

Theorem S6.1, which give the upper bound in case of Gaussian and Sub-

Exponential distributional assumptions.

Proposition S3.1. r ≤ R ≤ rT

Proof. Note that, a block-circulant matrix of a third-order tensor in Rp×m×T ,
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can be expressed as [B1|B2| · · · |Bm], where the jth block Bj is a matrix

of dimension pT × T , j = 1, 2, · · ·m. In each Bj, the first column is

V ec(jth Lateral Slice of the tensor) and the remaining (T − 1) columns are

just a circulant rearrangement of the first column. Since the tubal rank of

the tensor is r, there will be r blocks among these m blocks such that:

• any column of any of the remaining m− r blocks can be written as a

linear combination of the columns of the aforementioned r blocks and

• any column of jth1 block is linearly independent of any column of jth2

block, where j1 ̸= j2, j1, j2 = 1, 2, · · · , r.

So the rank of the block-circulant matrix will depend on the intra-block

linear dependence of these r blocks. If all the columns within each of the r

blocks are linearly independent, then there will be r×T linearly independent

columns in the full block-circulant matrix. At the other extreme, if there

is only one linearly independent column in each of the r blocks, then there

will be r linearly independent columns in the block-circulant matrix. Hence

the proof.

S3.1 Proof of Lemma S1.1

Proof. Note that Circ(L∗) and Circ(∆̂L) are the two matrices of the same

dimension. Using Lemma 3.4 of Recht et al. (2010), it is possible to decom-
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pose Circ(∆̂L) as Circ(∆̂
A
L) + Circ(∆̂B

L), such that, Rank(Circ(∆̂A
L)) ≤ 2

Rank (Circ(L∗)) = 2R and Circ(L∗)TCirc(∆̂B
L) = 0, Circ(L∗)Circ(∆̂B

L)
T
=

0. The reader may visit Recht et al. (2010) to know the details on how to de-

rive such decomposition. It is worth mentioning that, Agarwal et al. (2012)

uses the same tool while proving their Lemma 1. However, as Lemma 2.3

of Recht et al. (2010) proves, the last two equalities are essentially the suf-

ficient condition of the additivity of nuclear norm. In other words, these

imply

∥∥∥Circ(L∗) + Circ(∆̂B
L)
∥∥∥
∗
= ∥Circ(L∗)∥∗ +

∥∥∥Circ(∆̂B
L)
∥∥∥
∗

(S3.1)

We use the above finding later in this proof. It now remains to show that

inequality (S1.1) holds for such decomposition. Note that,
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C(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B)

=
1

T

∥∥∥Circ(L∗) + Circ(∆̂L)
∥∥∥
∗
+
λS
λL

∥∥∥S∗ + ∆̂S

∥∥∥
1

+
λB
λL

∥∥∥B∗ + ∆̂B

∥∥∥
1

,by the definition of C(L, S,B) and the fact that Circ(·) is additive

=
1

T

∥∥∥Circ(L∗) + Circ(∆̂A
L) + Circ(∆̂B

L)
∥∥∥
∗
+
λS
λL

∥∥∥S∗ + ∆̂M
S + ∆̂M⊥

S

∥∥∥
1
+

λB
λL

∥∥∥B∗ + ∆̂N
B + ∆̂N⊥

B

∥∥∥
1

,by the aforementioned decomposition and the property of projection

≥ 1

T

∥∥∥Circ(L∗) + Circ(∆̂B
L)
∥∥∥
∗
− 1

T

∥∥∥Circ(∆̂A
L)
∥∥∥
∗
+
λS
λL

∥∥∥S∗ + ∆̂M⊥

S

∥∥∥
1

− λS
λL

∥∥∥∆̂M
S

∥∥∥
1
+
λB
λL

∥∥∥B∗ + ∆̂N⊥

B

∥∥∥
1
− λB
λL

∥∥∥∆̂N
B

∥∥∥
1
, by the Triangle Inequality

≥ 1

T
∥Circ(L∗)∥∗ +

1

T

∥∥∥Circ(∆̂B
L)
∥∥∥
∗
− 1

T

∥∥∥Circ(∆̂A
L)
∥∥∥
∗
+
λS
λL

∥S∗∥1

+
λS
λL

∥∥∥∆̂M⊥

S

∥∥∥
1
− λS
λL

∥∥∥∆̂M
S

∥∥∥
1
+
λB
λL

∥B∗∥1 +
λB
λL

∥∥∥∆̂N⊥

B

∥∥∥
1
− λB
λL

∥∥∥∆̂N
B

∥∥∥
1

, by equation (S3.1) and the Decomposability of ∥·∥1

The proof follows from the above inequality and the definition of C(L∗, S∗, B∗).
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S3.2 Proof of Lemma S1.2

Proof. We start with defining the following function:

f(∆L,∆S,∆B) =L(L
∗ +∆L, S

∗ +∆S, B
∗ +∆B)− L(L∗, S∗, B∗)

+ λL{C(L∗ +∆L, S
∗ +∆S, B

∗ +∆B)− C(L∗, S∗, B∗).}

L(L, S,B) is used to denote the loss function given by, 1
2T

∥∥Y − L− S − ZBT
∥∥2

F
.

Since f(0, 0, 0) = 0 and (∆̂L, ∆̂S, ∆̂B) is the optimal error, one must have,

f(∆̂L, ∆̂S, ∆̂B) ≤ f(0, 0, 0) = 0. Recall that, we already have a lower bound

of C(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B) − C(L∗, S∗, B∗) from equation (S1.1).

Now our job is to find a lower bound to L(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B)−

L(L∗, S∗, B∗). These two bounds, along with the fact that f(∆̂L, ∆̂S, ∆̂B) ≤

0, will prove the result.

Since λL
1
T
∥Circ(L∗)∥∗ + λS ∥S∗∥1 + λB ∥B∗∥1 = λLC(L

∗, S∗, B∗), one

can think C as an alternative regularizer and λL as the associated parameter

for our problem. Now as Negahban et al. (2012) derives while proving their

Lemma 1, using the convexity of the loss function and dual-norm inequality,

we get the following:

L(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B)− L(L∗, S∗, B∗) ≥

− C∗(∇L(L∗, S∗, B∗))C(∆̂L, ∆̂S, ∆̂B)

(S3.2)

Where, C∗ is the dual norm associated with the regularizer C. It is easy
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to check that ∇L(L∗, S∗, B∗) = [−U
T
,−U

T
,−Z′U

T
]. Now, from the given

conditions on the regularizer parameters and using the similar argument

as in the proof of Lemma 1 in Agarwal et al. (2012) C∗(∇L(L∗, S∗, B∗))

can be shown to be bounded above by λL
2
. Also, it is easy to check that

C(∆̂L, ∆̂S, ∆̂B) ≤ C(∆̂A
L , ∆̂

M
S , ∆̂

N
B) + C(∆̂B

L , ∆̂
M⊥
S , ∆̂N⊥

B ). Thus (S3.2) re-

duces to

L(L∗ + ∆̂L, S
∗ + ∆̂S, B

∗ + ∆̂B)− L(L∗, S∗, B∗) ≥

− λL
2
(C(∆̂A

L , ∆̂
M
S , ∆̂

N
B) + C(∆̂B

L , ∆̂
M⊥

S , ∆̂N⊥

B ))

(S3.3)

Finally the rest of the proof follows simply from (S1.1),(S3.3) and from the

fact that f(∆̂L, ∆̂S, ∆̂B) ≤ 0.

S3.3 Basic Inequality

1

2T

∥∥∥∆̂L + ∆̂S + Z∆̂T
B

∥∥∥2

F
≤ 1

T
⟨U, ∆̂L + ∆̂S + Z∆̂T

B⟩+ λLC(L
∗, S∗, B∗)

− λLC(L
∗ + ∆̂L, S

∗ + ∆̂S, B
∗ + ∆̂B)

(S3.4)

Proof. By the optimality of (L̂, Ŝ, B̂) and the feasibility of (L∗, S∗, B∗) we

have the following inequality:

1

2T

∥∥∥Y − L̂− Ŝ − ZB̂T
∥∥∥2

F
+ λL

1

T

∥∥∥Circ(L̂)
∥∥∥
∗
+ λS

∥∥∥Ŝ∥∥∥
1
+ λB

∥∥∥B̂∥∥∥
1

≤ 1

2T

∥∥Y − L∗ − S∗ − ZB∗T∥∥2

F
+ λL

1

T
∥Circ(L∗)∥∗ + λS ∥S∗∥1 + λB ∥B∗∥1

12
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Now, from Y = L∗ + S∗ + ZB∗T + U , we will have,

∥∥∥Y − L̂− Ŝ − ZB̂T
∥∥∥2

F

=
∥∥∥Y − (L∗ + S∗ + ZB∗T )− (L̂+ Ŝ + ZB̂T ) + (L∗ + S∗ + ZB∗T )

∥∥∥2

F

=
∥∥∥U − (∆̂L + ∆̂S + Z∆̂T

B)
∥∥∥2

F

= ∥U∥2F +
∥∥∥∆̂L + ∆̂S + Z∆̂T

B

∥∥∥2

F
− 2⟨U, ∆̂L + ∆̂S + Z∆̂T

B⟩

Using the above decomposition along with the earlier inequality in the proof,

we arrive at the following inequality:

1

2T
∥U∥2F +

1

2T

∥∥∥∆̂L + ∆̂S + Z∆̂T
B

∥∥∥2

F
− 1

T
⟨U, ∆̂L + ∆̂S + Z∆̂T

B⟩+

λL
1

T

∥∥∥Circ(L̂)
∥∥∥
∗
+ λS

∥∥∥Ŝ∥∥∥
1
+ λB

∥∥∥B̂∥∥∥
1

≤ 1

2T
∥U∥2F + λL

1

T
∥Circ(L∗)∥∗ + λS ∥S∗∥1 + λB ∥B∗∥1

Hence the proof.

S3.4 Proof of Lemma 3.1

Proof. To avoid complex notations, in this proof, we initially ignore the

factor 1/T in the definition of C(L, S,B) and adjust that later towards

the end of the proof. The reader may note that Lemma S1.1, Lemma

13
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S1.2 and Basic Inequality hold good, with the earlier assumption λL ≥

4 1
T
∥Circ(U)∥sp is now replaced by λL ≥ 4 ∥Circ(U)∥sp. We start with

the left hand side of the Basic Inequality (S3.4), which can be written as

follows:

1

2T

∥∥∥∆̂L

∥∥∥2

F
+

1

2T

∥∥∥∆̂S

∥∥∥2

F
+

1

2T

∥∥∥Z∆̂T
B

∥∥∥2

F
+
1

T
⟨∆̂L, ∆̂S⟩+

1

T
⟨∆̂F , Z∆̂

T
B⟩ (S3.5)

where ∆̂F = ∆̂L + ∆̂S. Now one can see that,

1

T
|⟨∆̂L, ∆̂S⟩|

≤
∥∥∥Circ(∆̂L)

∥∥∥
∞

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

, using Dual-Norm inequality

≤{
∥∥∥Circ(L̂)

∥∥∥
∞
+ ∥Circ(L∗)∥∞}

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

≤ 2α1√
pmT

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

, using Assumption 2

On the other hand, from the last component of equation (S3.5) one can get,

1

T
|⟨∆̂F , Z∆̂

T
B⟩|

=
1

T
|⟨∆̂T

FZ, ∆̂B⟩|

≤
∥∥∥∆̂T

FZ
∥∥∥
∞

∥∥∥∆̂B

∥∥∥
1
, using Dual-Norm inequality

≤
∥∥∥∆̂F

∥∥∥
∞
∥Z∥sp

∥∥∥∆̂B

∥∥∥
1

≤{
∥∥∥F̂∥∥∥

∞
+ ∥F∥∞} ∥Z∥sp

∥∥∥∆̂B

∥∥∥
1

≤ 2α2√
pmT

∥∥∥∆̂B

∥∥∥
1
, using Assumption 2

14



S3. PROOFS

Hence using these along with the RSC Assumption, it is easy to derive the

following from equation (S3.5):

1

2T

∥∥∥∆̂L + ∆̂S + Z∆̂T
B

∥∥∥2

F
≥ 1

2

∥∥∥∥∥ ∆̂L√
T

∥∥∥∥∥
2

F

+
1

2

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
2

F

+
γ

2

∥∥∥∆̂B

∥∥∥2

F

− 2α1√
pmT

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

− 2α2√
pmT

∥∥∥∆̂B

∥∥∥
1

≥ γ′

2
(

∥∥∥∥∥ ∆̂L√
T

∥∥∥∥∥
2

F

+

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
2

F

+
∥∥∥∆̂B

∥∥∥2

F
)− λS

2

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

− λB
2

∥∥∥∆̂B

∥∥∥
1

by Assumption 1 and taking γ′ = min {γ, 1}

≥ γ′

2
(

∥∥∥∥∥ ∆̂L√
T

∥∥∥∥∥
2

F

+

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
2

F

+
∥∥∥∆̂B

∥∥∥2

F
)

− λL
2
c(

∆̂L√
T
,
∆̂S√
T
, ∆̂B)

Thus we have a lower bound to the left hand side of the Basic Inequality

(S3.4).
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Now we move on to the right hand side of Basic Inequality. Note that,

the term 1
T
⟨U, ∆̂L + ∆̂S + Z∆̂T

B⟩ can be written as follows:

⟨Circ(U)

T
,
Circ(∆̂L)

T
⟩+ ⟨ U√

T
,
∆̂S√
T
⟩+ ⟨Z

′U

T
, ∆̂B⟩

≤
∥∥∥∥Circ(U)

T

∥∥∥∥
sp

∥∥∥∥∥Circ( ∆̂L√
T
)

∥∥∥∥∥
∗

+

∥∥∥∥ U√
T

∥∥∥∥
∞

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
1

+

∥∥∥∥Z ′U

T

∥∥∥∥
∞

∥∥∥∆̂B

∥∥∥
1

≤λL
4
{c( ∆̂

A
L√
T
,
∆̂M
S√
T
, ∆̂N

B) + c(
∆̂B
L√
T
,
∆̂M⊥
S√
T
, ∆̂N⊥

B )}

,by Assumption 3 and the definition of C(L, S,B).

Using the above inequality, along with Lemma S1.1, it is easy to show

that the right hand side of the Basic Inequality can be upper bounded by

3λL
2
c(

∆̂A
L√
T
,
∆̂M

S√
T
, ∆̂N

B).

With the above upper bound of the right hand side of Basic Inequality

and the lower bound of the left hand side of the Basic Inequality, it is easy

to show that,

γ′

2
(

∥∥∥∥∥ ∆̂L√
T

∥∥∥∥∥
2

F

+

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
2

F

+
∥∥∥∆̂B

∥∥∥2

F
) ≤ 4λLc(

∆̂A
L√
T
,
∆̂M
S√
T
, ∆̂N

B) (S3.6)

Now recall from Lemma S1.1 that, rank of Circ(∆̂A
L) is at most 2R. This

fact, along with the concept of Compatibility Constant defined in Agarwal
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et al. (2012), reveals that

λLc(
∆̂A
L√
T
,
∆̂M
S√
T
, ∆̂N

B)

≤
√
2RλL

∥∥∥∥∥Circ( ∆̂L√
T
)

∥∥∥∥∥
F

+ λS
√
s1

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
F

+ λB
√
s2

∥∥∥∆̂B

∥∥∥
F

Now, we finally adjust the factor 1
T
, that we ignored in the beginning of

the proof and add the same prior to
∥∥∥Circ( ∆̂L√

T
)
∥∥∥
F
in the above expression.

Then using the facts that
∥∥∥Circ( ∆̂L√

T
)
∥∥∥
F

=
√
T
∥∥∥ ∆̂L√

T

∥∥∥
F

and R ≤ rT , the

above inequality reduces to

λLc(
∆̂A
L√
T
,
∆̂M
S√
T
, ∆̂N

B)

≤
√
2rλL

∥∥∥∥∥ ∆̂L√
T

∥∥∥∥∥
F

+ λS
√
s1

∥∥∥∥∥ ∆̂S√
T

∥∥∥∥∥
F

+ λB
√
s2

∥∥∥∆̂B

∥∥∥
F

The reader may note that the above inequality is exactly the same as the

one obtained in Agarwal et al. (2012), towards the very end of the proof of

their Theorem 1. Hence, as done in Agarwal et al. (2012), we substitute the

above inequality into inequality (S3.6) and then following the exact same

steps as in Agarwal et al. (2012), we complete the proof.
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S3.5 Proof of Theorem 3.2

Proof. We start with finding a suitable choice for λB. As mentioned before

the statement of Theorem 3.2, we recall that the processes {p1t} and {p2t}

are centered, stationary, Gaussian processes with Cov(p1t, p2t) = 0∀t and

the maximum eigenvalue of the cross spectral density corresponding to the

joint process [p1t
′, p2t

′]′ is bounded a.e. on [−π, π]. Hence the joint process

[p1t
′, p2t

′]′ satisfy the assumption of Proposition 2.4(b) in Basu et al. (2015).

Thus by applying their Proposition to our data matrices Z and U , we can

say that there exists a constant c > 0 such that for any u, v ∈ Rpm such

that ∥u∥ ≤ 1 and ∥v∥ ≤ 1, we will have

Pr{|u′(Z
′U

T
)v| > 2π Q(B∗, σ2,ΣF )η} ≤ 6 exp[−cT min{η2, η}] (S3.7)

where Q(B∗, σ2,ΣF ) = M(fp1) +M(fp2) +M(fp1,p2). Now, as in the proof

of Proposition 4.3 in Basu et al. (2015), we take u = ei, v = ej and then

applying union bound over p2m2 elements of Z ′U and finally taking η =√
2 log(pm)

T
, we get,

Pr{∥Z
′U∥∞
T

> 2π Q(B∗, σ2,ΣF )

√
2 log(pm)

T
} ≤ 6 exp[−c1 (2 log(pm))]

(S3.8)

Hence, we choose λB = c∗1 Q(B∗, σ2,ΣF )
√

2 log(pm)
T

+ 4α2√
pmT

for some suitably

chosen constant c∗1.
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Next, we move on to finding a suitable choice for λL. Note that Circ(U)

is a Gaussian Ensemble with zero mean and covariance matrix, say, ΣCirc.

Hence from Lemma H.1 of Negahban and Wainwright (2011)we get,

Pr{∥Circ(U)∥sp ≥ 12 ρ(ΣCirc)(
√
pT +

√
mT ) + a} ≤ exp(− a2

2 ρ2(ΣCirc)
)

(S3.9)

where ρ2(ΣCirc) = sup
∥u∥2=1,∥v∥2=1

V ar(u′X̃v), for any random matrix X̃ sam-

pled from ΣCirc-Gaussian Ensemble. In our case, with some simple algebraic

steps, it is easy to show that ρ2(ΣCirc) ≤ σ2c, for some constant c and hence

by choosing a = 2σ
√
c(
√
pT +

√
mT ) we get,

Pr{ 1
T
∥Circ(U)∥sp ≥

c2σ(
√
p+

√
m)

√
T

} ≤ exp(−2T (p+m)) (S3.10)

Hence we choose λL =
c∗2σ√
T
(
√
p +

√
m), for some suitably chosen constant

c∗2.

Finally we need to make a suitable choice of λS. Using the Gaussian Tail

bound and then union bound over pmT elements we get,

Pr{∥U∥∞ ≥ a} ≤ 2 exp(− a2

2σ2
) + log(pmT ) (S3.11)

Now choosing a = 4σ
√
log(pmT ), we get

Pr{
∥∥∥∥ U√

T

∥∥∥∥
∞

≥
4σ

√
log(pmT )√
T

} ≤ 2 exp(−7 log(pmT )) (S3.12)
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Hence we choose λS =
c∗3σ

√
log(pmT )
√
T

+ 4α1√
pmT

, for some suitably chosen con-

stant c∗3.

Hence we have shown that the regularizer parameters satisfy conditions

in Assumption 3 with high probability. Also, using Proposition 2.3 of Basu

et al. (2015) and employing similar steps as in the proof of Proposition 4.2 of

Basu et al. (2015), it is easy to check that the Restricted Strong Convexity

holds with high probability. Hence using Lemma 3.1 and following the

similar steps as in Agarwal et al. (2012), we see that with probability greater

than 1− 6 exp{−c∗1(2 log(pm))} we will have the following upper bound of

e2(L̂, Ŝ, B̂)

c1 σ
2 r(p+m)

T
+ c2 [σ2 s1 log(pmT )

T
+
α2
1s1

pmT
] + c3 [Q2(B∗, σ2,ΣF )

s2 2 log(pm)

T

+
α2
2s2

pmT
]

(S3.13)

Hence the proof is complete.

Before presenting the proof of Theorem S6.1, we first state and prove the

following lemmas, which will be useful for the proof. To that end, we first

20



S3. PROOFS

define the linear process of the following form:

Xt =
∞∑
l=0

Blwt−l (S3.14)

In the case where the process is Gaussian, the wt’s correspond to Gaussian

white noise process. However, we assume that wt is a white noise process

whose coordinates gave the following α-sub-exponential tail decay, that is,

there exist two constants a, b such that the following holds:

Pr{|wtj| ≥ ξ} ≤ a exp(−ξ
α

b
), ∀ξ > 0 (S3.15)

The following lemma generalizes a Hanson-Wright type concentration in-

equality to the samples from a linear process Xt as defined in equation

(S3.14).

Lemma S3.1. Consider some generic p-dimensional linear processes given

in the form of Xt =
∑∞

l=0Φlut−l, where ut’s are i.i.d. and their coordinates

follow α-sub-exponential tail decay, as characterized by equation (S3.15).

Denote its realization by X ∈ Rn×p with n consecutive observations stacked

in its rows. Then, for a deterministic np× np matrix A, there exists some

constant C such that the following holds:

Pr{|V ec(X ′)
′
AV ec(X ′)− Exp[V ec(X ′)

′
AV ec(X ′)]| > 2πηM(fX)} ≤ τ(η, α, a), (S3.16)
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where, M(fX) is as defined in the main paper and

τ(η, α,A) = 2exp[−Cmin{ η2

rank(A) ∥A∥2op
, (

η

∥A∥op
)
α
2 }] (S3.17)

Proof. Let V ec(X ′)
d
= Ω

1
2Z, where Ω is the covariance matrix of the np-

dimensional random vector V ec(X ′) and Z satisfies Exp(Z) = 0 and Exp(ZZ ′)

is Inp. Now applying Proposition 1.1 in Götze et al. (2019) gives

Pr{|V ec(X ′)
′
AV ec(X ′)− Exp[V ec(X ′)

′
AV ec(X ′)]| > 2πηM(fX)}

=Pr{|Z ′Ω
1
2AΩ

1
2Z − Exp[Z ′Ω

1
2AΩ

1
2Z]| > 2πηM(fX)}

≤2exp(−c0 · ν(Ω
1
2AΩ

1
2 , α, 2πηM(fX)))

where

ν(A,α, t) = min{ t2

M4 ∥A∥2F
, (

t

M2 ∥A∥op
)

α
2

} (S3.18)

Here both c0 and M are constants that depend on a and b. Next, we

consider the bounds for various norms on Ω
1
2AΩ

1
2 as follows:

•
∥∥∥Ω 1

2AΩ
1
2

∥∥∥
op

≤ ∥Ω∥op ∥A∥op ≤ 2πM(fX) ∥A∥op, where the last inequal-

ity follows from Proposition 2.3 in Basu et al. (2015), which applies to

general linear process.

•
∥∥∥Ω 1

2AΩ
1
2

∥∥∥
F
≤

√
rank(Ω

1
2AΩ

1
2 )
∥∥∥Ω 1

2AΩ
1
2

∥∥∥
op

≤ 2π
√
rank(A) ∥A∥opM(fX)

The proof follows by putting these bounds in ν(Ω
1
2AΩ

1
2 , α, 2πηM(fX)).
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Our next lemma is a generalization of Proposition 2.4 in Basu et al.

(2015), to the case where the underlying process is characterized by the

equations (S3.14) and (S3.15).

Lemma S3.2. Consider a generic p-dimensional linear process in the form

of Xt =
∑∞

l=0Φlut−l, where the coordinates of ut have α-sub-exponential

tail decay as characterizd by equation (S3.15). Let ΣX(0) = Cov(Xt, Xt).

Denote the realization of Xt by X ∈ Rn×p and the sample covariance by

S = 1
n
X ′X. Then

(i) For unit vectors v1 and v2 satisfying ∥v1∥ ≤ 1, ∥v2∥ ≤ 1, the following

bound holds:

Pr{|v′1(S − ΣX(0))v1| > 2πηM(fX)} ≤ τ ′(η, α, n)

and Pr{|v′1(S − ΣX(0))v2| > 6πηM(fX)} ≤ 2τ ′(η, α, n)

(ii) Consider a q-dimensional linear process Zt =
∑∞

l=0Ψlwt−l, where the

coordinates of wt have α-sub-exponential tail decay, as characterized

by equation (S3.15). Also Cov(Xt, Zt) = 0∀t and the data matrix

Z ∈ Rn×q is similarly defined. Then the following bound holds:

Pr{|v′1(X ′Z)v2| > 2πη(M(fX) +M(fZ) +M(fX,Z))} ≤ 3τ ′(η, α, n),

where M(fX,Z) is defined the same way as in the main paper .
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Here τ ′ is defined as τ ′(η, α, n) = c1exp[−c2min{nη2, (nη)
α
2 }], for some

constants c1 and c2.

Proof. First we note that with A = In and the definition of τ(η, α,A) the

following holds for some constant C > 0

τ(nη, α,A) = 2exp[−Cmin{nη2, (nη)
α
2 }] (S3.19)

Let yt = v′1Xt and Y = Xv1 ∈ Rn be n consecutive observations of the

scalar process {yt}. Then, we will have v′1Sv1
d
= 1

n
Y ′Y and v′1ΣX(0)v1 =

Exp[Y
′Y
n
]. Applying Lemma S3.1 to the process {yt} with A = In (since

moment properties are preserved under linear transformation), we obtain

the following:

Pr{|v′1(S − ΣX(0))v1| > 2πηM(fY )} = Pr{|Y ′Y − Exp(Y ′Y )| > 2πnηM(fY )}

≤ τ ′(η, α, n)

(S3.20)

Further by Lemma C.6 of Sun et al. (2018), it follows that M(fY ) ≤

∥v1∥2M(fX) = M(fX). Hence the following bound holds:

Pr{|v′1(S − ΣX(0))v1| > 2πηM(fX)} ≤ τ ′(η, α, n) (S3.21)

This proves the first part in (i). The rest of the proof follows along the

similar lines to the derivation of Proposition 2.4 in Basu et al. (2015) and

an outline is as follows:
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For |v′1(S − ΣX(0))v2|, one considers the following decomposition:

2|v′1(S − ΣX(0))v2| ≤ |v′1(S − ΣX(0))v1|+ |v′2(S − ΣX(0))v2|+ |(v1 + v2)
′

(S − ΣX(0))(v1 + v2)|

(S3.22)

with ∥(v1 + v2)∥ ≤ 2. Now repeating the steps as in (i) for each of the three

components above yields the desired result.

For |v′1(X ′Z)v2|, let ỹt = v′2Zt and thus v′1(X
′Z)v2 =

1
n

∑n
t=1 ytỹt and it

satisfies the following decomposition:

2

n

n∑
t=1

ytỹt = [
1

n

n∑
t=1

(yt + ỹt)
2 − V ar(yt + ỹt)]− [

1

n

n∑
t=1

yt
2 − V ar(yt)]

− [
1

n

n∑
t=1

ỹt
2 − V ar(ỹt)]

=
1

n
[G′G− Exp(G′G)]− 1

n
[Y ′Y − Exp(Y ′Y )]

− 1

n
[Ỹ

′
Ỹ − Exp(Ỹ

′
Ỹ )],

where gt = yt + ỹt is the summation process and G and Ỹ are defined

analogously to the definition of Y . Now the proof of (ii) follows by repeating

the same steps as in the proof of the second part of (i) and noting the fact

that M(fG) ≤ M(fZ) +M(fX) +M(fX,Z).

Our next lemma can be considered as a generalization of the deviation

bound derived in Basu et al. (2015).
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Lemma S3.3. There exist positive constants C, c1 and c2 such that the

following deviation bound holds:

∥X ′E∥∞ ≤ CQ
(log p+ log q)

1
α

√
n

(S3.23)

with probability at least 1 − c1exp{−c2(log(pq))
2
α}, for any random real-

izations X ∈ Rn×p and E ∈ Rn×q, drawn from the p-dimensional lin-

ear processes {Xt} and q-dimensional linear processes {εt} respectively,

where the coordinates of Xt and εt have α-sub-exponential tail decay and

Q = M(fX) +M(fε) +M(fX,ε)

Proof. The proof follows by applying part (ii) of Lemma S3.2 with v1 = ei

and v2 = ej, then taking union bound over all pq elements and finally

choosing η = c0Q (log p+log q)
1
α√

n
for some suitably chosen constant c0.

The following lemma verifies the Restricted Strong Convexity condition

and thus can be considered as a generalization of Proposition 4.2 of Basu

et al. (2015).

Lemma S3.4. Consider a random realization X ∈ Rn×p drawn from the

p-dimensional linear process Xt =
∑∞

l=0Φlut−l, where each coordinates of

ut has α-sub-exponential tail decay. Then RSC holds for X with parameter

αRSC = πm(fX) and tolerance τ = c0αRSC
log p

n
α
2

with probability at least

1− c1exp(−c2n
α
2 ), where the definition of RSC and m(fX) are the same as
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defined in Basu et al. (2015).

Proof. Let S = 1
n
X ′X. First suppose that we have the following:

1

2
v′Sv =

1

2
v′(
X ′X

n
)v ≥ αRSC

2
∥v∥22 − τ ∥v∥21 ,∀v ∈ Rp (S3.24)

Then, for all ∆ ∈ Rp×p and letting ∆j denote the jth column, the RSC

condition automatically holds since

1

2T
∥X∆∥2F =

1

2

p∑
j=1

∆′
j(
X ′X

n
)∆j

≥ αRSC
2

p∑
j=1

∥∆j∥22 − τ

p∑
j=1

∥∆j∥21

≥ αRSC
2

∥∆∥2F − τ ∥∆∥21

Therefore it suffices to verify that (S3.24) holds. Now applying the dis-

cretization argument as in Lemma F.2 and Lemma F.3 in Basu et al. (2015),

define K(2s) = {v ∈ Rp, ∥v∥ ≤ 1, ∥v∥0 ≤ 2s} and taking the union bound

in this 2s-sparse cone gives the following inequality:

Pr{ sup
v∈K(2s)

|v′(S − ΣX(0))v| > 2πM(fX)η}

≤2 ·min{ps, (21e · p
s
)
s

}τ ′(η, α, n)

=2c1exp[−c2 min{nη2, (nη)
α
2 }+ s min{log p, log(21ep

s
)}]

Let η = m(fX)
54M(fX)

. Then applying the results from Lemma 12 in Loh et al.
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(2012) with Γ = S − ΣX(0) and δ = πm(fX)
27

the following holds:

1

2
v′Sv ≥ αRSC

2
∥v∥2 − αRSC

2s
∥v∥21 ,where αRSC = πm(fX) (S3.25)

with probability at least 1− 2min{ps, (21e · p
s
)s}τ ′(η, α, n). By letting s =

c0
n

α
2

log p
for some small constant c0, τ can be expressed as τ = c0αRSC

log p

n
α
2

and

thus the bound holds with the probability as given in the statement.

The following lemma can be considered as a generalization of Lemma

H.1 in Negahban and Wainwright (2011) from the Gaussian case to α−sub-

exponential decay family.

Lemma S3.5. Let M ∈ Rm1×m2 be a random matrix where the entries fol-

low α−sub-exponential tail decay, as defined in the main paper. For every

λ ∈ (0, b) and for every u ∈ Rm1, v ∈ Rm2 with ∥u∥2 = 1 and ∥v∥2 =

1, we assume that, logExp[eλ{u
′Mv}] ≤ sup

(u,v)

ψu,v(λ). Define ψ∗−1
(y) =

inf
λ∈(0,b)

y+ sup
(u,v)

ψu,v(λ)

λ
. Then we have,

Exp[∥M∥op] ≤ 2ψ∗−1

(m1 +m2) (S3.26)

and

Pr{∥M∥op ≥ Exp[∥M∥op] + t} ≤ exp(−t
α

ρ
) (S3.27)

where ρ = sup
(u,v)

c2(u, v) and c2(u, v) is the “c2-parameter” corresponding to

the variable u′Mv, as in the definition of the sub-exponential tail decay.
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Proof. The proof follows mostly along the same lines as of the proof of

Lemma H.1 in Negahban and Wainwright (2011). The key technical dif-

ference is that, instead of applying standard bounds on Gaussian maxima,

here we employ the bound provided by Theorem 2.5 of Boucheron et al.

(2013) and arrive at the following inequality:

Exp[∥M∥op] ≤ 2ψ∗−1

(log(M1M2)) = 2ψ∗−1

(log(M1) + log(M2)) (S3.28)

where, M1 and M2 are such that {u1, u2, · · · , uM1} and {v1, v2, · · · , vM2}

are 1
4
coverings of Sm1−1 and Sm2−1 respectively. The definitions of Sm1−1

and Sm2−1 are same as in Negahban and Wainwright (2011). Finally, as in

the proof of Lemma H.1 in Negahban and Wainwright (2011), there exist

1
4
coverings of Sm1−1 and Sm2−1 with log(M1) ≤ m1 log 8 and log(M2) ≤

m2 log 8. Also ψ∗(·) is non-decreasing by Lemma 2.4 of Boucheron et al.

(2013) and thus ψ∗−1
(·) is also non-decreasing by its definition. Hence we

get Exp[∥M∥op] ≤ 2ψ∗−1
(m1 +m2) and the proof is complete.

As mentioned earlier, the above lemma can be considered as a gener-

alization of the Lemma H.1 in Negahban and Wainwright (2011). In their

case, they consider Gaussian random variables and thus ψu,v(λ) takes the

form λ2

2
V ar(u′Mv). Hence following their notation, sup

(u,v)

ψu,v(λ) boils down

to λ2ρ2(Σ)
2

and finally from the definition of ψ∗−1
, it is easy to derive that
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Exp[∥M∥sp] ≤ cρ(Σ)(
√
m1 +

√
m2).

S3.6 Proof of Theorem S6.1

Proof. We first start with finding a suitable choice for λS. By the definition

of α−sub-exponential tail decay, we get

Pr{|Uij| > a} ≤ c1 · exp(−
aα

c2
) (S3.29)

for some suitably chosen constant c1 and c2. Now by taking union bound

over all the pmT entries and choosing a = const.{c2 log(pmT )}
1
α we get the

following:

Pr{∥U∥∞√
T

>
const.{c2 log(pmT )}

1
α

√
T

} ≤ c1 · exp(−const. log(pmT ))

(S3.30)

Hence we choose λS =
c∗1{c2 log(pmT )}

1
α

√
T

+ 4α1√
pmT

.

Next we find a suitable choice for λL. Applying Lemma S3.5 on matrix

Circ(U) we get,

Exp[∥Circ(U)∥sp] ≤ 2ψ∗−1

(mT + pT ) (S3.31)

and

Pr{∥Circ(U)∥sp ≥ 2ψ∗−1

(mT + pT ) + a} ≤ exp(−a
α

ρ
) (S3.32)
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Finally choosing a = ρ
1
αψ∗−1

(mT + pT ), we arrive at the following

Pr{
∥Circ(U)∥sp

T
≥ c∗ψ∗−1

(mT + pT )

T
} ≤ exp(−{ψ∗−1

(mT + pT )}α)

(S3.33)

for some suitably chosen constant c∗. Hence we choose λL = c∗ψ∗−1
(mT+pT )
T

.

Now we obtain a suitable choice for λB. Note that, {V ec(Xt)} can be

considered as a linear process of the form V ec(Xt) =
∑∞

l=0Bl · wt−l, where

each coordinate of wt has the form as characterized by equation (S3.15) and

Bl’s are suitably adjusted matrices. Hence by applying Lemma S3.3 on the

processes {V ec(Xt)} and {V ec(Ut)} we get,

Pr{∥Z
′U∥∞
T

≥ Q
{2 log(pm)} 1

α

√
T

} ≤ c1 · exp(−c2{2 log(pm)}
2
α ) (S3.34)

where Q = M(fX)+M(fU)+M(fX,U). So we choose λB = c∗2 Q{2 log(pm)}
1
α√

T
+

4α2√
pmT

. Finally, using Lemma S3.4, the assumption of Restricted Strong Con-

vexity holds with high probability. Hence the proof follows using Lemma

3.1.

S3.7 Proof of Lemma S2.1

Proof. The first part of the proof follows from the construction of the tensor

G and from the fact that tubal rank is same as the number of t-linearly

independent lateral slices, as shown in Kilmer and Martin (2011) and Kilmer
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et al. (2013). The second part of the proof also follows from the construction

of G.

S4 Matrix-type view of third-order tensor

We first start with understanding the matrix-type view of a third-order

tensor. Three basic elements of interest are the lateral slices, horizontal

slices and the tube fibers, defined rigorously under the section Notations.

Recalling the definitions, lateral slices of X ∈ Rd1×d2×d3 are d2 laterally

oriented matrices of dimension d1 × d3. As mentioned in Kilmer et al.

(2013), by staring at these laterally oriented matrices straight from the

front, one will actually see them as column vectors of length d1. Hence, the

reader can envisage a three-dimensional tensor as a display of such lateral

slices, placed side by side, playing the role of columns in a matrix. Similarly,

the horizontal slices can be visualized as the row vectors of length d2 and

one can imagine that these slices play the roles of the rows of a matrix. An

immediate question the reader may have is what exactly plays the role of

an element? One can find the answer to this question in a similar fashion.

By viewing the tube fibers of the tensor from the front, one would visualize

them as the elements of a matrix. Figure 2 of the main paper aims to

provide the reader a pictorial representation of this discussion. Note that,
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lateral and horizontal slices, although being matrices, can be considered

as third-order tensors in Rd1×1×d3 and R1×d2×d3 respectively. Similarly, a

tube fiber, although a vector, can be considered as a third-order tensor in

R1×1×d3 . Kilmer et al. (2013) refer such elements in R1×1×d3 as Tubal Scalar.

Given that the matrix-type view of a third-order tensor is now well

understood, in order to proceed further, we first present the notion of Block

Circulant Matrices and some related facts from Kilmer et al. (2013) and

Kilmer and Martin (2011).

Notation S4.1. For any vector a = [a0, a1, a2, a3]
T , the Circulant Matrix

associated with a, denoted by Circ(a), is defined as follows

Circ(a) =



a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0



Fact S4.1. As discussed in Golub and Loan (1996), Circulant matrices

can be diagonalized with the normalized Discrete Fourier Transform (DFT)

matrix. In terms of commonly used notations, for any vector a of length n,

let Fn denote the n×n DFT matrix and F ∗
n denote its conjugate transpose.
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Then, Fn Circ(a) F ∗
n is a diagonal matrix.

Fact S4.2. diag(Fn Circ(a) F ∗
n) = fft(a), Here fft(a) is the result of ap-

plying the Fast Fourier Transform to a.

The way circulant matrix is defined, in the same spirit, one can con-

struct the Block Circulant Matrix using the frontal slices of a third-order

tensor. In order to avoid complications, here we slightly modify our previ-

ous notation of frontal slices. The earlier notation X::k for the kth frontal

slice is now simply replaced by Xk.

Notation S4.2. For any third-order tensor A ∈ Rd1×d2×d3, let A1, A2,

. . . , Ad3 be the frontal slices. Then the Block Circulant matrix associated

with A, denoted by Circ(A), is the following matrix of order d1d3 × d2d3

Circ(A) =



A1 Ad3 Ad3−1 · · · A2

A2 A1 Ad3 · · · A3

...
. . . . . . . . .

...

Ad3 Ad3−1
. . . A2 A1



Fact S4.3. Similar to Fact S4.1, a block circulant matrix can be block di-

agonalized. As before, suppose we have a DFT matrix Fd3 of order d3 × d3
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and its conjugate transpose F ∗
d3
. Then the block-diagonalization is achieved

as follows:

(Fd3 ⊗ Id1) · Circ(A) · (Fd3 ⊗ Id2) =



D1

D2

. . .

Dd3



Here ⊗ represents the Kronecker product.

Fact S4.4. There is an alternative way to arrive at the above block diago-

nals. If one applies Fast Fourier Transformation along each tube of A and

obtains a tensor D, then the above block diagonals are actually the frontal

slices of this newly obtained tensor D.

Notation S4.3. MatVec operator arranges the frontal slices one below other

and creates a matrix of order d1d3 × d2 as follows

MatV ec(A) =



A1

A2

...

Ad3


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Notation S4.4. fold operator converts MatVec(A) back into the tensor A.

Hence fold(MatVec(A)) = A.

Equipped with these notations, we are now in a position to describe

the notion of t-product between two tensors. The idea of t-product was

introduced in Kilmer et al. (2008) and some of its important theoretical

properties were developed in Kilmer and Martin (2011)

Definition S4.1. Given A ∈ Rd1×d2×d3 and B ∈ Rd2×l×d3 the t-product A

∗ B is defined to be a tensor C ∈ Rd1×l×d3 , where,

C = fold (Circ (A) · MatVec (B))

where Circ(·) and MatV ec(·) are defined by Notation S4.2 and Notation

S4.3 in Appendix S4.

Example S4.1. Suppose d3 = 2. Then the above definition expands as

C = fold


A1 A2

A2 A1

 ·

B1

B2




Fact S4.5. When a third-order tensor in Rd1×d2×d3 is viewed as a d1 × d2

matrix of tubes, then t-product between two tensors can be considered as
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matrix-matrix multiplication, with the exception that the operation between

the scalars is now replaced by circular convolution between the tubes. Here,

for any two vectors p and q, circular convolution between them is defined

as Circ(p) · q

Fact S4.6. t-product can be computed efficiently in three steps. First, apply

FFT on A and B along each tube and denote the resulting tensors as Ã and

B̃ respectively. Then multiply each frontal slice of Ã by the corresponding

frontal slice of B̃. Finally, apply inverse FFT along the tubes of the result.

Next we discuss the notion of Identity tensor, inverse and transpose of a

tensor and orthogonal tensor.

Definition S4.2. The n×n× l Identity Tensor, denoted by Innl, is defined

to be a tensor, whose first frontal slice is a n×n identity matrix and all the

other frontal slices are zeros.

One can easily verify that A ∗ I = A = I ∗ A

Definition S4.3. A ∈ Rn×n×l is said to have an inverse B, if A ∗ B = I

= B ∗ A

Definition S4.4. Transpose of A ∈ Rd1×d2×d3, denoted by AT , is the d2 ×

d1 × d3 tensor obtained by transposing each of the frontal slices and then

reversing the order of the transposed frontal slices 2 through d3.
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Example S4.2. Suppose d3 = 4. Then from the above definition,

AT = fold





AT
1

AT
4

AT
3

AT
2




Definition S4.5. Q ∈ Rn×n×l is said to be orthogonal tensor if QT ∗ Q =

Q ∗QT = I

Definition S4.6. The collection of lateral slices Q:1:, Q:2:, · · · ,Q:n: of Q

is said to form an orthogonal set if

QT
:i: ∗Q:j: =


αie1, if i = j

0, if i ̸= j

where αi is a nonzero scalar. The set is orthonormal if αi = 1.

Fact S4.7. Q ∈ Rn×n×l is orthogonal tensor iff the collection of the lateral

slices {Q:1:,Q:2:, · · · ,Q:n:} forms an orthonormal set.

Suppose an orthogonal set of elements in Rm×1×l contains m elements.

Comparing this framework to usual matrix algebra, it would be of great use

, if one could reconstruct any element in Rm×1×l from those m elements. As

discussed in Kilmer et al. (2013), one could achieve this by extending the

concept of usual linear combination to t-linear combination, where, lateral

38



S4. MATRIX-TYPE VIEW OF THIRD-ORDER TENSOR

slices act as columns and tubal scalars play the role of scalars.

Definition S4.7. Given d2 lateral slices, X:1:, X:2:,· · · , X:d2: of X ∈

Rd1×d2×d3 and d2 tubal scalars c1, c2, ..., cd2, the t-linear combination of

the lateral slices is defined as X:1: ∗ c1 + X:2: ∗ c2 +...+ X:d2: ∗ cd2,

where, the tubal-scalars are the elements in R1×1×d3 and ∗ denote the t-

product defined above.

Employing the definition of t-linear combination, one can now define the

range of the tensor A ∈ Rd1×d2×d3 , denoted by R(A), as the set of all

possible t-linear combinations of its lateral slices. Similarly, extending the

notion of the usual linear dependence of two columns, one can say that

the lateral slice A:j2: is t-linearly dependent on the lateral slice A:j1: , if

there exists a tubal scalar c, such that, A:j2: = A:j1: ∗ c. Figure 3 in the

main paper furnishes further clarity of this idea by demonstrating a simple

example. keeping this framework in mind, it would be very useful if one

would know the minimum number of elements in Rd1×1×d3 , that is required

to construct any arbitrary element in R(A). As described in Kilmer et al.

(2013), this number is characterized by Tubal Rank, which is the last topic

of our discussion under this section. Before moving on to that discussion,

we need to describe one more notation.
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Notation S4.5. An f-diagonal tensor, denoted by F, is a third-order ten-

sor, whose each frontal slice is a diagonal matrix. In terms of notation,

Fijk = 0, for i ̸= j,∀k.

Definition S4.8. For any A ∈ Rd1×d2×d3, t-SVD of A is given as follows:

A = U ∗ S ∗ VT

Here U and V are orthogonal tensors in Rd1×d1×d3 and Rd2×d2×d3 respec-

tively. S is a f-diagonal tensor in Rd1×d2×d3.

Definition S4.9. For any third-order tensor, Tubal-rank, denoted by r, is

defined to be the number of non zero tubes in the f-diagonal tensor S in its

t-SVD factorization. Hence, r = # {i: sii: ̸= 0}, where sii: denote the ith

diagonal tube of S.

Like matrix singular value decomposition, in this case too, R(A) can

be written unambiguously by the lateral slices of U. Also, the number of

elements in Rd1×1×d3 , required to construct any element in R(A), is same

as the tubal rank of A. The reader may visit Kilmer et al. (2013) for the

proofs and further details. Hence, as rank of a matrix decides the number

of linearly independent columns of a matrix, tubal rank plays similar role

in case of a third order tensor. Indeed, lower the value of tubal rank, higher
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the number of t-linearly dependent lateral slices. Figure S8.1 displays the

tubal ranks and the lateral slices of three different tensors. In the first

case, only the first slice from the left is t-linearly independent. Both the

remaining slices are t-linear combination of the first one. Hence the tubal

rank in this case is one. Similar justification follows for the other two cases

too.

It is possible to compute t-SVD by performing matrix SVD d3 times in

the Fourier domain. The reader may see Kilmer and Martin (2011) for

more details. However, Lu et al. (2018) recently proposed a more efficient

algorithm for computing t-SVD. This algorithm requires one to perform

matrix SVD only ⌈d3+1
2

⌉ times, instead of d3 times. Lu et al. (2018) defines

the elements of the first frontal slice of the f-diagonal tensor S, that is S::1,

as the Singular values of the tensor A and argues that, the number of non-

zero singular values is equivalent to the tubal-rank defined in S4.9. In terms

of the notations used here, r = # {i: sii: ̸= 0} = # {i: Sii1 ̸= 0}. So, by

penalizing high value of
∑r

i=1 Sii1, one can actually restrict the value of the

tubal-rank to an upper bound. In Lu et al. (2018), the quantity
∑r

i=1 Sii1

is defined as Tensor Nuclear Norm of the tensor A . Just as a side note,

this definition of Tensor Nuclear Norm is slightly different from the one in

Zhang et al. (2014). However using Definition 7 of Lu et al. (2018) and
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equation 12 of Lu et al. (2016), one can derive the following relationship

between Tensor Nuclear Norm and Block Circulant matrix.

r∑
i=1

Sii1 =
1

d3
∥Circ(A)∥∗ (S4.1)

It is evident that, in order to restrict the tubal rank of a tensor, one can

impose penalty on the right hand side of the above equation. We utilize

this fact while we discuss the convex relaxation of our proposed model in

Section 2.1.

S5 Details of Alternating Minimization Algorithm

Step 1: Step 1 updates the value of L given S and B. For a given value of

S and B, letting U = Y −S−ZBT , the problem then reduces to minimizing

g(L) = 1
2
∥U − L∥2F+λL

1
T
∥Circ(L)∥∗ with respect to L, whereL ∈ Rp×m×T

is the tensor form of L ∈ RT×pm. Now we create a tensor U ∈ Rp×m×T ,

whose tth frontal slice is essentially the matrix version of the tth row of U .

Given these notations and noting the fact that ∥Circ(U)− Circ(L)∥2F =

T ×∥U − L∥2F and denoting Circ(L) by W , one can rewrite the aforemen-

tioned problem as minimizing g(W ) = 1
2
∥W − Circ(U)∥2F + λL ∥W∥∗ with

respect to W . As discussed in Cai et al. (2010), the solution to this min-

imization problem involves two simple steps: first obtaining the Singular
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Value Decomposition of Circ(U) and then applying soft-thresholding on

the singular values. This technique of Singular Value Thresholding shows

up in various machine learning problems, including matrix classification,

multi-task learning and matrix completion. Ji and Ye (2009) formalize this

problem in their Theorem 3.1, which we apply directly to obtain the optimal

solution W and thus eventually, the optimal L.

Step 2: In Step 2, we update the value of S given L and B. As in Step

1, for given values of L and B, we let V = Y − L− ZBT and the problem

then boils down to minimizing g(S) = 1
2
∥S − V ∥2F + λS ∥S∥1 with respect

to S. Thus the problem reduces to Soft Thresholding (see Friedman et al.

(2001)), which is solved by shrinking the elements of V towards zero by the

factor λS.

Step 3: Finally, in Step 3, we update the value of B given L and S.

For a given value of L and S, letting G = Y − L − S, the problem then

reduces to minimizing g(B) = 1
2

∥∥G− ZBT
∥∥2

F
+ λB

∥∥BT
∥∥
1
with respect to

B. This is a typical setting of penalized multivariate regression and we

directly employ the algorithm used in Lin et al. (2016) as it has better

computational efficiency and desired convergence properties.
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S6 Theoretical results under Sub-exponential distri-

bution

Here we extend the above result to the case when the signals and the errors

will have α-sub-exponential tail decay. As defined in Götze et al. (2019),

a random variable E is said to have α-sub-exponential tail decay if the

following holds: Pr{|E| > t} ≤ c1 · exp(− tα

c2
), for some constants c1 and c2,

where the parameter α ∈ (0, 1]∪{2}. The above definition covers a variety

of distribution depending on the chosen value of α. Examples include,

sub-Gaussian distribution, sub-Exponential distribution such as Poisson or

Weibull random variables and so on (see Götze et al. (2019)).

In our case, we have two white noise processes V ec(Ft) and V ec(Ut)

and given the above discussion, we assume that each coordinate of V ec(Ft)

and V ec(Ut) has α-sub-exponential tail decay, as defined above. In addition

to that, we also assume Cov(V ec(Ut), V ec(Ft′)) = 0∀(t, t′) as in Section 2

of the main paper and in the earlier result under Gaussian assumption. Fi-

nally, for every λ ∈ (0, b) and for every u ∈ RpT , v ∈ RmT with ∥u∥2 = 1

and ∥v∥2 = 1, we assume that, logExp[eλ{u
′Circ(U)v}] ≤ sup

(u,v)

ψu,v(λ). This

assumption has been used to prove Theorem 2.5 of Boucheron et al. (2013),

which we will use while proving our next result. As in Lemma 2.4 of
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Boucheron et al. (2013), we define ψ∗−1
(y) = inf

λ∈(0,b)

y+ sup
(u,v)

ψu,v(λ)

λ
. Given these

distributional assumptions and definitions, we now state our next result.

Theorem S6.1. Suppose the coordinates of the signals and the errors follow

α-sub-exponential tail decay with the assumptions discussed above. Then

with probability greater than 1− c∗1exp{−c∗2(2 log(pm))
2
α} we will have,

e2(L̂, Ŝ, B̂) ≤ĉ1 r {ψ
∗−1

(mT + pT )

T
}2 + ĉ2 [

s1{c2 log(pmT )} 2
α

T
+
α2
1s1

pmT
]+

ĉ3 [Q2 s2 {2 log(pm)} 2
α

T
+
α2
2s2

pmT
]

(S6.1)

where, c∗1, c
∗
2, ĉ1, ĉ2, ĉ3 are the suitable constants, c2 is the “c2 parameter”

in the definition of α-sub exponential tail decay for the coordinates of the

errors and Q has similar definition as of Q(B∗, σ2,ΣF ) in Theorem 3.2 of

the main paper.

It is worth mentioning that, in the Gaussian case, α = 2 and sup
(u,v)

ψu,v(λ) =

λ2 ρ2(ΣCirc)
2

, where ρ2(ΣCirc) = sup
(u,v)

V ar(uTCirc(U)v), as defined in Lemma

H.1 of Negahban and Wainwright (2011). Hence recalling the definition of

ψ∗−1
(y), it is easy to show that ψ∗−1

(mT + pT ) attains the infimum with

respect to λ when λ =

√
2(mT+pT )

ρ(ΣCirc)
. Putting this optimal λ, some easy al-

gebraic steps show that the first term r{ψ
∗−1

(mT+pT )
T

}2 in equation (S6.1)

boils down to σ2 r(p+m)
T

, which is the first term of equation (3.3) of the main
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paper. For α = 2, the remaining two terms of Equation S6.1 are also in

line with those of equation (3.3) of the main paper. Thus the bound in

Theorem S6.1 is justified.

S7 AIC

As mentioned in the simulation studies of the main paper, while working

with real data, the true rank and sparsity levels are unknown. In such situ-

ations, we choose the values of λL, λS and λB in such a way that the AIC,

as defined below, is minimized.

AIC : We define AIC as T log(RSS
T

)+2 Rank (Circ(L̂))+2k1+2k2, where,

RSS is defined as
∥∥∥Y − L̂− Ŝ − ZB̂T

∥∥∥2

F
(see equation (2.5) in the main

paper) and k1 and k2 are the number of non-zero elements in Ŝ and B̂ re-

spectively. This formulation is quite common in literature, which essentially

rewards goodness of fit and at the same time penalizes overfitting.

S8 Addtional Tables and Figures
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Sub-case 1 Sub-case 2 Sub-case 3

Sample Size Criteria NZ = 2 NZ = 4 ED = 0.04 ED = 0.06 r = 2 r = 3

T=60

Tubal-Rank 4 4 4 4 1 4

RE 0.52 0.64 0.52 0.57 0.35 0.52

SN S 0.83 0.81 0.83 0.82 0.85 0.83

SP S 0.80 0.80 0.80 0.80 0.88 0.80

SN A 0.81 0.80 0.81 0.80 0.91 0.81

SP A 0.83 0.82 0.83 0.81 0.85 0.83

T=80

Tubal-Rank 4 4 4 4 2 4

RE 0.30 0.37 0.30 0.44 0.27 0.30

SN S 0.90 0.87 0.90 0.86 0.90 0.90

SP S 0.85 0.80 0.85 0.81 0.91 0.85

SN A 0.91 0.90 0.91 0.90 0.95 0.91

SP A 0.90 0.88 0.90 0.89 0.90 0.90

T=120

Tubal-Rank 3 3 3 3 2 3

RE 0.16 0.18 0.16 0.18 0.10 0.16

SN S 0.91 0.90 0.91 0.91 0.92 0.91

SP S 0.93 0.92 0.93 0.90 0.95 0.93

SN A 0.95 0.94 0.95 0.93 0.98 0.95

SP A 0.91 0.90 0.91 0.90 0.93 0.91

Table S8.1: Scenario 1: p = 10,m = 10
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Sub-case 1 Sub-case 2 Sub-case 3

Sample Size Criteria NZ = 2 NZ = 4 ED = 0.04 ED = 0.06 r = 2 r = 3

T=80

Tubal-Rank 4 4 4 4 1 4

RE 0.55 0.68 0.54 0.58 0.40 0.55

SN S 0.81 0.80 0.82 0.82 0.84 0.84

SP S 0.80 0.81 0.81 0.80 0.87 0.80

SN A 0.81 0.81 0.80 0.81 0.92 0.82

SP A 0.83 0.83 0.83 0.82 0.84 0.83

T=120

Tubal-Rank 4 4 4 4 2 4

RE 0.35 0.40 0.33 0.46 0.31 0.36

SN S 0.89 0.86 0.90 0.86 0.90 0.90

SP S 0.85 0.80 0.86 0.81 0.92 0.87

SN A 0.92 0.91 0.90 0.90 0.96 0.91

SP A 0.91 0.89 0.92 0.89 0.90 0.91

T=140

Tubal-Rank 3 3 3 3 2 3

RE 0.19 0.23 0.20 0.22 0.15 0.18

SN S 0.92 0.91 0.90 0.90 0.92 0.92

SP S 0.93 0.93 0.92 0.90 0.94 0.94

SN A 0.94 0.94 0.95 0.93 0.97 0.95

SP A 0.91 0.91 0.90 0.90 0.92 0.92

Table S8.2: Scenario 2: p = 20,m = 20. In Sub-case 1, r = 3 and edge-density of

B∗ = 0.04, but we vary the number of non-zero elements in S∗ from 2 to 4 per slice. In

Sub-case 2, we fix r = 3 and the number of non-zero elements in each slice of S∗ = 2, but

vary the edge-density of B∗ from 0.04 to 0.06. Finally, in Sub-case 3, we fix the number

of non-zero elements in each slice of S∗ = 2 and the edge density of B∗ = 0.04, but vary

the tubal-rank of L∗ from 2 to 3
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Variable Abbreviation Source Transformation

Interest Rate of Long-Term Government Bond Yields GOV. BOND EUROSTAT ∆

Consumer Price Index: All Items CPI IMF ∆2 ln

Producer Price Index: All Commodities PPI IMF ∆2 ln

Total Share Prices for All Shares Tot Share FRED ∆2 ln

Final Consumption Expenditure Cons Exp IMF ∆ ln

Capacity Utilization Cap Util FRED ∆

All Employees Empl FRED ∆ ln

Civilian Unemployment Rate Un Rate FRED ∆

Compensation of Employees Comp IMF ∆ ln

National Income Nat Income IMF ∆ ln

Effective Exchange Rate (based on Unit-Labor-Cost ) EER IMF ∆

Industrial Production Index IPI IMF ∆

Total Reserves Tot Res IMF ∆2 ln

External Balance of Goods and Services BGS IMF ∆ ln

Broad Money Liabilities M 2 IMF ∆2 ln

Gross Domestic Product deflator GDP IMF ∆2 ln

Table S8.3: Details of the Macroeconomic Variables
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Figure S8.1: Tubal Rank and t-linear dependence
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Figure S8.2: Partial Screenshot of Estimated Low Tubal-Rank Component L̂

. Estimated Tubal-Rank is 7. Slices marked in green are t-linearly independent slices

(total 7) and the remaining ones that are marked in yellow are t-linearly dependent on

the previous set
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Figure S8.3: Heatmaps of the slices (Germany, Spain, Austria and Finland) of estimated

sparse component Ŝ
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Figure S8.4: Heatmaps of the slices (France, Italy, Greece and Portugal) of estimated

sparse component Ŝ

Figure S8.5: Intra-country temporal connectivity for Italy and cross-country temporal

connectivity for France (current) and Germany (past)
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Figure S8.6: Intra-country temporal connectivity for France
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Ireland (current) and Finland (past)
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Figure S8.7: Cross-country temporal connectivity for Ireland (current) and Finland

(past)
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Figure S8.8: Low tubal-rank and sparse components: Lateral Slices correspond to differ-

ent countries in the first example and different product-categories in the second example

Figure S8.9: t-linear dependence between two lateral slices
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Figure S8.10: Matrix-type view of a third-order tensor: Lateral Slices, Horizontal Slices

and Tube Fibers can be visualized as columns, rows and elements respectively
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