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S1 General lift-one algorithm (without constraints): The lift-one algorithm for general

parametric models without constraints;

S2 Commonly used GLM models: A table that lists commonly used GLM models, the

corresponding link functions, and ν functions;

S3 Two examples of finding ri1 and ri2 in Algorithm 1: Two examples with details in

finding ri1 and ri2;

S4 Another example of robustness under GLM models: An example assuming different

parameter values from Example 6’s for robustness with respect to model misspecification;

S5 Another example of trauma clinical study: An example that the D-optimal allocations

attain one of the constraints;

S6 Proofs: Proofs for lemmas and theorems in this paper.

S1 General lift-one algorithm (without constraints)

For readers’ reference, in this section, we provide the lift-one algorithm for

general parametric models. The lift-one algorithms for specific models can
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be found in Yang et al. (2016) for GLMs with binary responses, Yang and

Mandal (2015) for general GLMs, Yang et al. (2017) for cumulative link

models, and Bu et al. (2020) for multinomial logistic models.

Algorithm 3. Original lift-one algorithm under a general setup

1◦ Start with an arbitrary allocation wa = (w1, . . . , wm)
T ∈ S0 satisfying

f(wa) > 0 and 0 ≤ wi < 1, i = 1, . . . ,m.

2◦ Set up a random order of i going through {1, 2, . . . ,m}. For each i, do

steps 3◦ ∼ 5◦.

3◦ Denote

wi(z) =

(
1− z

1− wi

w1, . . . ,
1− z

1− wi

wi−1, z,
1− z

1− wi

wi+1, . . . ,
1− z

1− wi

wm

)T

and fi(z) = f(wi(z)), z ∈ [0, 1].

4◦ Use an analytic solution or the quasi-Newton algorithm to find z∗

maximizing fi(z) with z ∈ [0, 1]. Define w
(i)
∗ = wi(z∗). Note that

f(w
(i)
∗ ) = fi(z∗).

5◦ If f(w
(i)
∗ ) > f(wa), replace wa with w

(i)
∗ , and f (wa) with f(w

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until convergence, that is, f(w
(i)
∗ ) ≤ f(wa) for each i.

7◦ Report wa as the D-optimal allocation.
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In practice, we may set up the stopping rule as
max1≤i≤m f(w

(i)
∗ )

min1≤i≤m f(w
(i)
∗ )

≤ 1+ϵ for

Step 6◦, where ϵ is a small positive number such as 10−8. Then Algorithm 3

guarantees a strict increase, which is at least f(wa) · ϵ in each round of

iterations from Step 2◦ to Step 5◦. Since S0 is compact, the maximum of

f(w) on S0 is finite. Algorithm 3 will stop in less than
maxw∈S0

f(w)−f(wa)

f(wa)ϵ

rounds of iterations. The same strategy can be used for Algorithm 1 as

well.

S2 Commonly used GLM models

In Table 5, we list commonly used GLM models, the corresponding link

functions, and ν functions.

Table 5: Examples of ν(ηi)

Distribution of Yij Link function g(µi) ν(ηi)

Normal(µi, σ
2) identity: µi σ−2 with known σ2 > 0

Bernoulli(µi) logit: log
(

µi
1−µi

)
eηi

(1+eηi )2

Bernoulli(µi) probit: Φ−1(µi)
ϕ2(ηi)

Φ(ηi)[1−Φ(ηi)]

Bernoulli(µi) c-log-log: log(− log(1− µi))
exp{2ηi}

exp{eηi}−1

Bernoulli(µi) log-log: log(− log(µi))
exp{2ηi}

exp{eηi}−1

Bernoulli(µi) cauchit: tan
(
π
(
µi − 1

2

)) (1+η2
i )

−2

π2/4−arctan2(ηi)

Poisson(µi) log: log(µi) exp{ηi}

Gamma(k, µi/k) reciprocal: µ−1
i kη−2

i with known k > 0

Inverse Gaussian(µi, λ) inverse squared: µ−2
i λη

−3/2
i /4 with known λ > 0
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S3 Two examples of finding ri1 and ri2 in Algorithm 1

Following the general procedure described in Subsection 3.2 for finding ri1

and ri2 in Step 3◦ of Algorithm 1, we provide the following two examples.

Example 9. If S = {(w1, . . . , wm)
T ∈ S0 | nwi ≤ Ni, i = 1, . . . ,m} as in

Example 1, then wi(z) ∈ S if and only if
0 ≤ z ≤ 1

nz ≤ Ni

n 1−z
1−wi

wj ≤ Nj, j ̸= i

which is equivalent to
0 ≤ z ≤ 1

z ≤ Ni/n

z ≥ 1− Nj

n
· 1−wi

wj
, j ̸= i and wj > 0

Therefore, ri1 and ri2 in Step 3◦ of Algorithm 1 are
ri1 = max ({0} ∪ {1−Nj/n · (1− wi)/wj | j ̸= i, wj > 0})

ri2 = min{1, Ni/n}
(S3.1)

It can be verified that if w ∈ S, then 0 ≤ ri1 ≤ ri2 ≤ 1. □

Example 10. If S = {(w1, . . . , wm)
T ∈ S0 | n

∑4
i=1 wi ≤ 392, n

∑8
i=5wi ≤

410} as in Example 2, then ri1 and ri2 can be obtained as follows:
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Case one: If i ∈ {1, 2, 3, 4}, then wi(z) ∈ S if and only if
0 ≤ z ≤ 1

z +
∑4

j=1,j ̸=i
wj(1−z)

1−wi
≤ 392/n∑8

j=5
wj(1−z)

1−wi
≤ 410/n

which is equivalent to 
0 ≤ z ≤ 1

z ≤ 392(1−wi)−n
∑4

j=1,j ̸=i wj

n(1−
∑4

j=1 wj)

z ≥ 1− 410(1−wi)

n
∑8

j=5 wj

Therefore, 
ri1 = max{0, 1− 410(1−wi)

n
∑8

j=5 wj
}

ri2 = min{1, 392(1−wi)−n
∑4

j=1,j ̸=i wj

n(1−
∑4

j=1 wj)
}

Case two: If i ∈ {5, 6, 7, 8}, then wi(z) ∈ S if and only if
0 ≤ z ≤ 1∑4

j=1
wj(1−z)

1−wi
≤ 392/n

z +
∑8

j=5,j ̸=i
wj(1−z)

1−wi
≤ 410/n

Similarly, we obtain
ri1 = max{0, 1− 392(1−wi)

n
∑4

j=1 wj
}

ri2 = min{1, 410(1−wi)−n
∑8

j=5,j ̸=i wj

n(1−
∑8

j=5 wj)
}

□
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S4 Another example of robustness under GLM mod-

els

Example 11. To further test the robustness to model misspecifications

in Example 6, we assume the true parameters to be β = (β0, β1, β21,

β22)
T = (0, 0.1, 0.5, 2)T , which is different from the one in Example 6. In this

case, we have different D-optimal allocations for logit, probit, log-log, and

complementary log-log links. Actually, using logit link, we obtain wlogit =

(0.189, 0.184, 0.050, 0.189, 0.181, 0.207)T . If the true link is probit with D-

optimal allocation wprobit = (0.193, 0.185, 0.050, 0.193, 0.181, 0.198)T , then

the relative efficiency of wlogit is 99.98%. Since the W matrix is the same

for log-log and complementary log-log links, the corresponding D-optimal

allocations are both wlog = (0.189, 0.198, 0.050, 0.193, 0.198, 0.172)T . The

relative efficiency of wlogit with respect to wlog is 99.68%. In other words,

our D-optimal allocations are very robust with respect to link function mis-

specifications.

We also provide in Table 6 the average (sd) of RMSEs of the esti-

mated coefficients from 100 independent simulations under Model (4.7).

The RMSE results in Table 6 match the efficiency results. The logit link

(the true link in the simulations) leads to the lowest average RMSE, while
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the other links have a little higher average RMSE.

Table 6: Average (sd) of RMSE of Estimated Parameters Based on Allocations Assuming

Different Links over 100 Simulations from Model (4.7)

Link

Function

Average (sd) of RMSE

β0 all except β0 β1 β21 β22

Logit 0.231(0.166) 1.123(0.609) 0.269(0.198) 0.268(0.177) 0.423(0.370)

Probit 0.222(0.154) 1.142(0.620) 0.258(0.212) 0.276(0.228) 0.452(0.340)

cloglog/loglog 0.214(0.181) 1.306(1.438) 0.231(0.189) 0.261(0.190) 0.779(2.249)

S5 Another example of trauma clinical study

In this section, we provide an example where at least one constraint is

attained at the D-optimal allocations.

Example 12. For the trauma clinical study described in Example 2, for

illustration purposes, we consider the sampling problem with modified con-

straints as follows

n(w1 + w2 + w3 + w4) ≤ 592, n(w5 + w6 + w7 + w8) ≤ 210

with n = 600. In other words, we reduce the number of available severe

cases to 210. We derive allocations for different samplers as for Example 8,

which are listed in Table 7. Note that the constraint n(w5+w6+w7+w8) ≤
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210 is attained in both locally D-optimal and EW D-optimal allocations. It

should also be noted that among the B = 1, 000 bootstrapped samples only

807 fitted parameter vectors by SAS, in this case, are feasible. The quantiles

of relative efficiencies of sampler allocations with respect to 807 locally D-

optimal allocations are listed in Table 8, which shows again that the EW

D-optimal sampler is highly efficient with respect to the locally D-optimal

allocations and much more efficient than the proportionally stratified and

uniformly stratified samplers. □

Table 7: Allocations (Proportions) for Stratified Samplers in Example 12

Severity Mild Severe

Dose 1 2 3 4 1 2 3 4

Proportional

116

(0.193)

105

(0.175)

115

(0.192)

108

(0.180)

41

(0.068)

37

(0.062)

40

(0.067)

38

(0.063)

Uniform

98

(0.163)

98

(0.163)

97

(0.162)

97

(0.162)

55

(0.092)

50

(0.083)

54

(0.090)

51

(0.085)

Locally D-opt (θ̂)

234

(0.390)

4

(0.007)

3

(0.005)

149

(0.249)

126

(0.210)

0

(0)

3

(0.005)

81

(0.134)

EW D-opt

253

(0.421)

0

(0)

0

(0)

137

(0.229)

77

(0.128)

8

(0.013)

0

(0)

125

(0.209)
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Table 8: Quantiles of Relative Efficiencies in Example 12

Sampler Minimum 1st Quartile Median 3rd Quartile Maximum

SRSWOR 51.80% 75.04% 75.80% 76.47% 78.98%

Proportional 52.36% 75.25% 75.62% 76.05% 77.42%

Uniform 57.19% 82.35% 82.71% 83.09% 84.29%

EW D-opt 69.05% 100% 100% 100% 100%

S6 Proofs

Proof of Lemma 1: If wi = 1 for some i, then wj = 0 for all j ̸= i and

f(w) =
∣∣∣∑m

j=1 wjFj

∣∣∣ = |Fi| = 0, which leads to a contradiction. □

Proof of Theorem 1: Let Fi = (aist)s,t=1,...,p, i = 1, . . . ,m. Then∑m
i=1wiFi = (

∑m
i=1 aistwi)s,t=1,...,p. According to the definition of matrix

determinant (see, for example, Section 4.4.1 in Seber (2008)),

f(w) =

∣∣∣∣∣
m∑
i=1

wiFi

∣∣∣∣∣ =∑
π

sgn(π) ·
p∏

s=1

(
m∑
i=1

ais π(s)wi

)

is a homogeneous polynomial of w1, . . . , wm, where π goes through all per-

mutations of {1, . . . , p}, and sgn(π) = −1 or 1 depending on whether π is

odd or even. Since f(w) > 0 for some w ∈ S, then f(w) is of order-p, not

a zero function.

Since f(w) = |
∑m

i=1wiFi| is a polynomial function of w1, . . . , wm, then

it must be continuous on S. According to the Weierstrass theorem (see,
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for example, Theorem 3.1 in Sundaram et al. (1996)), there must exist a

w∗ ∈ S such that f(w) attains its maximum at w∗. □

Lemma 6. If M1,M2 ∈ Rp×p are both positive semi-definite, then for any

α ∈ (0, 1),

log |αM1 + (1− α)M2| ≥ α log |M1|+ (1− α) log |M2|

where the equality holds only if M1 = M2 or |M1| = |M2| = 0.

Proof of Lemma 6: When M1 and M2 are both positive definite, accord-

ing to Theorem 1.1.14 in Fedorov (1972), the inequality is always valid, and

the equality holds only if M1 = M2. If one of M1 and M2 is degenerate,

then the right side of the equation α log |M1| + (1 − α) log |M2| = −∞.

Since log |αM1 + (1 − α)M2| ≥ −∞ is always true, the inequality is still

valid when M1 and M2 are positive semi-definite matrices. If only one of

M1 and M2 is degenerate, then αM1 + (1 − α)M2 is still positive definite

and only inequality holds. □

Lemma 6 is an extended version of, for example, Theorem 1.1.14 in

Fedorov (1972). It is needed in the proof of Lemma 2, which provides

necessary results relevant to Step 7◦ of Algorithm 1.

Proof of Lemma 2: According to the constrained lift-one algorithm,

wa = (w1, . . . , wm)
T ∈ S, f(wa) > 0, and wi(z) ∈ S for z ∈ [ri1, ri2].
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To avoid trivial cases, we assume ri1 < ri2. For any [z1, z2] ⊆ [ri1, ri2]

and α ∈ (0, 1), it can be verified that wi (αz1 + (1− α)z2) = αwi(z1)+(1−

α)wi(z2). Denote wi(z1) = (w11, . . . , w1m)
T ∈ S and wi(z2) = (w21, . . . ,

w2m)
T ∈ S. According to Lemma 6,

log fi (αz1 + (1− α)z2) = log f (wi (αz1 + (1− α)z2))

= log f (αwi(z1) + (1− α)wi(z2))

= log

∣∣∣∣∣
m∑
j=1

[αw1j + (1− α)w2j]Fj

∣∣∣∣∣
= log

∣∣∣∣∣α ·
m∑
j=1

w1jFj + (1− α) ·
m∑
j=1

w2jFj

∣∣∣∣∣
≥ α · log

∣∣∣∣∣
m∑
j=1

w1jFj

∣∣∣∣∣+ (1− α) · log

∣∣∣∣∣
m∑
j=1

w2jFj

∣∣∣∣∣
= α log f (wi(z1)) + (1− α) log f (wi(z2))

= α log fi(z1) + (1− α) log fi(z2)

That is, log fi(z) is a concave function on [ri1, ri2].

If z∗ maximizes fi(z) with z ∈ [ri1, ri2], then fi(z∗) ≥ fi(wi) = f(wa) >

0. As a direct conclusion of Theorem 1, fi(z) is polynomial of z and thus

differentiable. Since log fi(z) is concave, then ∂ log fi(z)/∂z = f ′
i(z)/fi(z)

is decreasing. The rest of the theorem is straightforward since fi(z) > 0 for

all z between wi and z∗. □

Proof of Theorem 2: First of all, f(w∗) ≥ f(w) > 0. Suppose w∗ is not



Yifei Huang AND Liping Tong AND Jie Yang

D-optimal in S. Then there exists a wo = (wo
1, . . . , w

o
m)

T ∈ S, such that,

f(wo) > f(w∗) > 0.

Denote F(w) =
∑m

i=1 wiFi for w = (w1, . . . , wm)
T . Then F(w) is a

linear functional of w, which implies F(xwo + (1 − x)w∗) = xF(wo) +

(1 − x)F(w∗). Note that f(w) = |F(w)|. Since f(wo) > f(w∗) > 0,

then F(wo) ̸= F(w∗) and |F(wo)| > |F(w∗)| > 0. According to Lemma 6,

log |F(xwo + (1− x)w∗)| = log |xF(wo) + (1− x)F(w∗)| > x log |F(wo)| +

(1− x) log |F(w∗)| for any x ∈ (0, 1).

We further denote Fx = F(xwo + (1 − x)w∗) for x ∈ [0, 1]. We claim

that Fx1 ̸= Fx2 as long as x1 ̸= x2. Actually, if x1 ̸= x2, then Fx1 = Fx2

implies F(wo) = F(w∗), which is not true in this case.

Now we define f∗(x) = f(xwo + (1− x)w∗) = |F(xwo + (1− x)w∗)| =

|Fx|, x ∈ [0, 1]. Then log f∗(x) = log |F(xwo+(1−x)w∗)| > x log |F(wo)|+

(1 − x) log |F(w∗)| > −∞ for each x ∈ (0, 1). Thus f∗(x) > 0 for each

x ∈ [0, 1], which implies that the corresponding Fisher information matrix

Fx is positive definite.

We claim that log f∗(x) is a strictly concave function on x ∈ [0, 1].

Actually, for any 0 ≤ x1 < x2 ≤ 1 and any α ∈ (0, 1), according to
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Lemma 6,

log f∗(αx1 + (1− α)x2)

= log f (α[x1wo + (1− x1)w∗] + (1− α)[x2wo + (1− x2)w∗])

= log |F (α[x1wo + (1− x1)w∗] + (1− α)[x2wo + (1− x2)w∗]) |

= log |αF (x1wo + (1− x1)w∗) + (1− α)F (x2wo + (1− x2)w∗) |

= log |αFx1 + (1− α)Fx2|

> α log |Fx1|+ (1− α) log |Fx2|

= α log f∗(x1) + (1− α)f∗(x2)

As a direct conclusion, the first derivative of log f∗(x) is strictly decreasing

as x ∈ [0, 1] increases. According to the mean value theorem (see, for

example, Theorem 5.10 in Rudin (1976)), there exists a c ∈ (0, 1) such that

∂ log f∗(x)

∂x

∣∣∣∣
x=0

≥ ∂ log f∗(x)

∂x

∣∣∣∣
x=c

=
log f∗(1)− log f∗(0)

1− 0

= log f(wo)− log f(w∗) > 0

Let φ(w) = log f(w). Then the gradient of φ(w) is∇φ(w) = f(w)−1∇f(w).

According to the definition of f∗(x), the directional derivative of f(w) at

w∗ along wo −w∗ is

∇f(w∗)
T (wo−w∗) = f(w∗)·∇φ(w∗)

T (wo−w∗) = f(w∗)·
log f∗(x)

∂x

∣∣∣∣
x=0

> 0

(S6.2)
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For i = 1, . . . ,m, let w̄i = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rm whose ith

coordinate is 1. In the constrained lift-one algorithm at w∗, we have

wi(z) = (1 − α)w∗ + αw̄i = w∗ + α(w̄i − w∗) with α =
z−w∗

i

1−w∗
i
. Note that

w∗
i < 1 and wi(w

∗
i ) = w∗. It can be verified that the directional derivative

of f(w) at w∗ along w̄i −w∗ is

∇f(w∗)
T (w̄i −w∗) = (1− w∗

i )f
′
i(w

∗
i ) (S6.3)

Actually,

∇f(w∗)
T (w̄i −w∗) = f(w∗) · ∇φ(w∗)

T (w̄i −w∗)

= f(w∗) · lim
α→0

φ (w∗ + α(w̄i −w∗))− φ(w∗)

α(
replace α with

z−w∗
i

1−w∗
i

)
= f(w∗)(1− w∗

i ) · lim
z→w∗

i

φ (wi(z))− φ(wi(w
∗
i ))

z − w∗
i

= f(w∗)(1− w∗
i ) · lim

z→w∗
i

log f (wi(z))− log f(wi(w
∗
i ))

z − w∗
i

= f(w∗)(1− w∗
i ) · lim

z→w∗
i

log fi(z)− log fi(w
∗
i )

z − w∗
i

= f(w∗)(1− w∗
i ) ·

∂ log fi(z)

∂z

∣∣∣∣
z=w∗

i

= f(w∗)(1− w∗
i ) ·

f ′
i(w

∗
i )

fi(w∗
i )

= (1− w∗
i )f

′
i(w

∗
i )

Since
∑m

i=1w
o
i = 1, thenwo−w∗ =

∑m
i=1 w

o
i (w̄i−w∗). Since f

′
i(w

∗
i ) ≤ 0

for each i, then

∇f(w∗)
T (wo−w∗) =

m∑
i=1

wo
i∇f(w∗)

T (w̄i−w∗) =
m∑
i=1

wo
i (1−w∗

i )f
′
i(w

∗
i ) ≤ 0
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which leads to a contradiction with (S6.2). □

Proof of Corollary 1: First of all, f(w∗) > 0. Denote w∗ = (w∗
1, . . . ,

w∗
m)

T ∈ S0. Then 0 ≤ w∗
i < 1 for each i according to Lemma 1. Since

w∗
i < ri2 for each i, we have f ′

i(w
∗
i ) ≤ 0 according to Lemma 2. Then w∗

must be D-optimal in S as a direct conclusion of Theorem 2. □

Proof of Theorem 3: There are two cases for w∗ reaching Step 10◦.

Case one: w∗ is a converged allocation in Step 6◦ and satisfies the con-

ditions in Step 7◦, that is, f ′
i(w

∗
i ) ≤ 0 for each i. According to Corollary 1,

w∗ must be D-optimal in S.

Case two: w∗ is a converged allocation in Step 6◦, which satisfies the

condition in Step 8◦ but violates some condition in Step 7◦. That is,

f ′
i(w

∗
i ) > 0 for some i but maxw∈S g(w) ≤ 0, where g(w) =

∑m
i=1wi(1 −

w∗
i )f

′
i(w

∗
i ). Since rank(Fi) < p for each i and f(w∗) > 0, according to

Lemma 1, w∗
i < 1 for each i. Suppose w∗ is not D-optimal in S. Then

there exists a wo = (wo
1, . . . , w

o
m)

T ∈ S, such that, f(wo) > f(w∗) > 0.

According to the proof of Theorem 2,

0 < ∇f(w∗)
T (wo −w∗) =

m∑
i=1

wo
i (1− w∗

i )f
′
i(w

∗
i ) = g(wo)

which contradicts the condition maxw∈S g(w) ≤ 0 in Step 8◦. Therefore,

w∗ must be D-optimal in S. □
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Proof of Theorem 5: (i) If
∑m

i=1 ci = 1, then S = {(c1, . . . , cm)T} which

implies that wo = (c1, . . . , cm)
T is the only solution.

(ii) Suppose
∑m

i=1 ci > 1. Without any loss of generality, we assume

that a1 ≥ a2 ≥ · · · ≥ am. There exists a unique k ∈ {1, . . . ,m − 1} such

that
∑k

l=1 cl ≤ 1 <
∑k+1

l=1 cl. It can be verified that wo = (c1, . . . , ck, 1 −∑k
l=1 cl, 0, . . . , 0)

T maximizes g(w) =
∑m

i=1 aiwi. The rest part is straight-

forward. □

Proof of Lemma 3: According to the proof of Theorem 1,

h(α) = f((1−α)w∗+αwo) =
∑
π

sgn(π)·
p∏

s=1

(
m∑
i=1

ais π(s)(w
∗
i + α(wo

i − w∗
i ))

)

is an order-p polynomial of α. The rest of the lemma is straightforward. □

Proof of Theorem 6: First of all, we claim that F(wo) ̸= F(w∗), where

F(w) =
∑m

i=1 wiFi is the Fisher information matrix corresponding to the

allocation w = (w1, . . . , wm)
T . Actually, if F(wo) = F(w∗), then h(α) =

f((1−α)w∗+αwo) = |F((1−α)w∗+αwo)| = |(1−α)F(w∗)+αF(wo)| ≡

|F(w∗)|. It implies h′(0) = 0. On the other hand, we denote φ(w) =
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log f(w), then ∇φ(w) = f(w)−1∇f(w) and

g(wo) = ∇f(w∗)
T (wo −w∗)

= f(w∗) · ∇φ(w∗)
T (wo −w∗)

= f(w∗) · lim
α→0

φ(w∗ + α(wo −w∗))− φ(w∗)

α

= f(w∗) · lim
α→0

φ((1− α)w∗ + αwo)− φ(w∗)

α

= f(w∗) · lim
α→0

log h(α)− log h(0)

α

= f(w∗) ·
h′(0)

h(0)

= h′(0)

Note that h(0) = f(w∗) > 0. Then g(wo) > 0 implies h′(0) > 0, which

leads to a contradiction. We must have F(wo) ̸= F(w∗).

(i) Note that h(α) = f ((1− α)w∗ + αwo) is the same as the func-

tion f∗(x) defined in the proof of Theorem 2. Since F(wo) ̸= F(w∗) and

|F(w∗)| > 0, we still have h(α) = f∗(α) > 0 for any α ∈ (0, 1). Combin-

ing h(0) = f(w∗) > 0, we have h(α) > 0 for any α ∈ [0, 1). Note that

h(1) = f(wo) could be zero.

(ii) h′(0) > 0 since h′(0) = g(wo) > 0.

Since F(wo) ̸= F(w∗), we still have Fx1 ̸= Fx2 given x1 ̸= x2 as in the

proof of Theorem 2. Then log h(α) is strictly concave for α ∈ [0, 1) and

h′(α)
h(α)

is strictly decreasing as α increases in [0, 1).
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(iii) If h(1) > 0 and h′(1) ≥ 0, then h′(α)
h(α)

is strictly decreasing as α

increases in [0, 1]. Since h′(1)
h(1)

≥ 0, then h′(α)
h(α)

> h′(1)
h(1)

≥ 0 implies h′(α) > 0

for all α ∈ (0, 1). Therefore, h(α) attains its maximum at α∗ = 1 only.

(iv) If h(1) > 0 and h′(1) < 0, then h′(1)
h(1)

< 0. Since h′(α)
h(α)

is strictly

decreasing on α ∈ [0, 1], then there is one and only one α∗ ∈ (0, 1) such

that h′(α∗)
h(α∗)

= 0. That is, h′(α) > 0 if 0 ≤ α < α∗; = 0 if α = α∗; and < 0 if

α∗ < α ≤ 1. Therefore, h(α) attains its maximum at α∗ ∈ (0, 1) only.

If h(1) = f(wo) = 0, we must have some α− ∈ (0, 1), such that h′(α−) <

0 since h(0) > h(1). Since h′(α)
h(α)

is strictly decreasing on α ∈ [0, 1), then

there is one and only one α∗ ∈ (0, α−) such that h′(α∗)
h(α∗)

= 0. That is,

h′(α) > 0 if 0 ≤ α < α∗; = 0 if α = α∗; and < 0 if α∗ < α < 1. Therefore,

h(α) attains its maximum at α∗ ∈ (0, 1) only.

Since in general h(1) = f(wo) ≥ 0, cases (iii) and (iv) actually cover all

scenarios. Therefore, α∗ exists and is unique all the time. □

Proof of Lemma 5: First of all, w∗ exists and is unique. Actually, w∗

exists since S = {w ∈ S0 | 0 ≤ wi ≤ ci, i = 1, . . . ,m} is bounded and

closed.

Secondly, w∗ is unique and f(w∗) > 0. Actually, we denote S+ =

{w ∈ S | f(w) > 0}, which is not empty since
∑m

i=1 ci ≥ 1. Given w(i) =

(w
(i)
1 , . . . , w

(i)
m )T ∈ S+, i = 1, 2, by letting Mi = diag{w(i)

1 , . . . , w
(i)
m } in
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Lemma 6, it can be verified that log f(αw(1)+(1−α)w(2)) > α log f(w(1))+

(1−α) log f(w(2)) for all α ∈ (0, 1) if w(1) ̸= w(2). In other words, log f(w)

is strictly concave on S+, which leads to the uniqueness of w∗.

Case (i): If without the constraints wi ≤ ci, w∗ = (1/m, . . . , 1/m)T

maximizes f(w) due to the relationship between geometric average and

arithmetic average. If min1≤i≤m ci ≥ 1/m, then such a w∗ belongs to S and

thus is also the solution with constraints.

Case (ii): Without any loss of generality, we assume c1 ≤ · · · ≤ cm.

Then ci = c(i), i = 1, . . . ,m. Similarly, we let cm+1 = 1. Note that

c1 = min1≤i≤m ci < 1/m and cm = max1≤i≤m ci ≤ 1.

First we show that there exist k ∈ {1, . . . ,m−1} and u ∈ [ck, ck+1) that

w∗ := (c1, . . . , ck, u, . . . , u)
T ∈ S, that is,

∑k
i=1 ci+(m−k)u = 1. Actually,

if we define

h(x) =


mx if 0 ≤ x < c1∑l

i=1 ci + (m− l)x if cl ≤ x < cl+1, l = 1, . . . ,m− 1∑m
i=1 ci if x ≥ cm

then h(x) is continuous on [0, 1] and is strictly increasing on [0, cm]. Since

h(0) = 0 and h(cm) =
∑m

i=1 ci > 1, then there exists a unique u ∈ (0, cm) =

(0,max1≤i≤m ci) and a corresponding 1 ≤ k ≤ m − 1 such that h(u) =∑k
i=1 ci + (m− k)u = 1.
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Secondly, we show that w∗ = (c1, . . . , ck, u, · · · , u)T is a converged al-

location in Step 6◦ of Algorithm 1. Actually, for 1 ≤ i ≤ k, wi = ci,

ri1 = ri2 = ci for Step 3◦ of Algorithm 1, which leads to z∗ = ci. Note that

in this case, f ′
i(z) = c−1

i

∏k
l=1 clu

m−k(1− ci)
1−m(1−z)m−2(1−mz) and thus

f ′
1(z∗) = f ′

1(c1) > 0. For k + 1 ≤ i ≤ m, wi = u < ci, ri1 = u and ri2 = ci,

f ′
i(z) =

∏k
i=1 ciu

m−k−1(1− u)1−m(1− z)m−2(1−mz) < 0 for all z ∈ [u, ci],

which leads to z∗ = u in this case.

Thirdly, we show that maxw∈S g(w) = 0 as defined in Step 8◦ in Algo-

rithm 1. It can be verified that in this case, for w = (w1, . . . , wm)
T ∈ S

g(w) =
k∏

l=1

cl · um−k

(
k∑

i=1

c−1
i wi + u−1

m∑
i=k+1

wi −m

)
Since c−1

1 ≥ c−1
2 ≥ · · · ≥ c−1

k ≥ u−1 > 0, it can be verified that w∗ also

maximizes g(w) and g(w∗) = 0.

By applying Theorem 3 to GLMs with m = p, it can be verified that

w∗ maximizes f(w) with w ∈ S.

Case (iii): If
∑m

i=1 ci = 1, then S = {(c1, . . . , cm)T} andw∗ = (c1, . . . , cm)
T

is the only feasible solution. □

Proof of Theorem 7: For GLM (4.4), if m = p, then f(w) = |XTWX| =

|X|2
∏m

i=1 νi ·
∏m

i=1wi. According to Lemma 5, the constrained uniform

allocation w∗ maximizes
∏m

i=1wi, w ∈ S. That is, w∗ is D-optimal on S.

Similarly, since fEW(w) = |XTE(W)X| = |X|2
∏m

i=1 E(νi) ·
∏m

i=1 wi, w∗
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is EW D-optimal on S as well. □
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