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This document of Supplementary Materials include (A) the technical proof of the selection con-

sistency of the MIO estimators; (B) software implementation details; (C) additional simulation

results and (D) additional data analysis results.

S1 Proof of Selection Consistency of the MIO esti-

mators

For the brevity of the proof, without the loss of generality, we only consider

the case when P = 1 and Q = 1, thus we have max(P,Q) = 1. The same

statistical properties can be proved to hold for the case with P > 1 or

Q > 1. We begin with notations and conditions necessitating a rigorous
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presentation of the selection consistency for the MIO estimator introduced

in Section 3. We write y = (y(2), . . . , y(T ))⊤, Z = (1, (y(1), . . . , y(T ))⊤)

and the (T − 1) ×m design matrix G = (Gw(1), . . . ,Gw(T − 1))⊤, where

Gw(t) = (w1G1(t), . . . , wmGm(t)). In the case when P = 1 and Q = 1, we

write θ = (θ1,1, . . . , θ1,m)
⊤, β = β1∑m

j=1 αjwj
, and γ = (γ0, γ1)

⊤. Let a0 denote

the true value of a (e.g. θ0 denotes the true parameter of θ). Denote the

error ε = (ε(2), . . . , ε(T ))⊤.

The proof of Theorem 1 under the condition of sub-Gaussian white

noise is given as follows. Let α be any subset solution produced by the

MIO Algorithm 1. Define Pα as the projection matrix of (Gwα,Z). In the

case of α ̸= α0, we have

P

(
min
θ=βα

γ

∥y − (Gw,Z)(θ
⊤,γ⊤)⊤∥22 < ∥y − (Gw,Z)(θ

(ol)⊤,γ(ol)⊤)⊤∥22

)

=P
(
2ε⊤(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤ +
∥∥(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤∥∥2
2
−

ε⊤(Pα −Pα0)ε < 0
)
. (S1.1)

For any 0 < δ < 1, Equation (S1.1) may be bounded above by

≤P
(
2ε⊤(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤ + δ
∥∥(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤∥∥2
2
< 0
)
+

P
(
(1− δ)

∥∥(I−Pα)(Gw,Z)(θ
⊤
0 ,γ

⊤
0 )

⊤∥∥2
2
− ε⊤(Pα −Pα0)ε < 0

)
.

For any t1 > 0, t2 > 0, using the Markov’s inequality, we have an upper
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bound for equation (S1.1):

≤E
[
exp

{
−2t1ε

⊤(I−Pα)(Gw,Z)(θ
⊤
0 ,γ

⊤
0 )

⊤

σ2

}]
exp

{
−
t1δ
∥∥(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
+

(S1.2)

E
[
exp

{
t2ε

⊤(Pα −Pα0)ε

σ2

}]
exp

{
−
t2(1− δ)

∥∥(I−Pα)(Gw,Z)(θ
⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
.

(S1.3)

By the moment generating function of the sub-Gaussian white noise, the

term in equation (S1.2) becomes

= exp

{
2t21
∥∥(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
exp

{
−
t1δ
∥∥(I−Pα)(Gw,Z)(θ

⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
,

≤ exp

{
2t21 − t1δ

σ2
(T − 1)d(α,α0)cmin

}
.

Applying the geometry interpretation of projection matrix, the term in

equation (S1.3) is bounded above by

≤E
[
exp

{
t2ε

⊤PGwθ ε

σ2

}]
exp

{
−
t2(1− δ)

∥∥(I−Pα)(Gw,Z)(θ
⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
,

=(1− 2t2)
−1/2 exp

{
−
t2(1− δ)

∥∥(I−PG(β))(Gw,Z)(θ
⊤
0 ,γ

⊤
0 )

⊤
∥∥2
2

σ2

}
,

where PGwθ denotes the projection matrix of vector Gwθ. Given the fact

that 2t2 ≥ − log(1 − 2t2)/2 for any 0 < t2 < 0.398, under a restriction

of t2 ≤ 0.398, the term in equation (S1.3) may be further bounded from
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above:

≤ exp (2t2) exp

{
−
t2(1− δ)

∥∥(I−PG(β))(X,Z)θ0

∥∥2
2

σ2

}

≤ exp

{
2t2 −

t2(1− δ)

σ2
(T − 1)d(α,α0)cmin

}
.

Combining the two terms above, and setting t1 = 1
5
, t2 = 3

8
, δ = 4

5
, we

obtain an upper bound for equation (S1.1):

≤ exp

{
2t21 − t1δ

σ2
(T − 1)d(α,α0)cmin

}
+ exp

{
2t2 −

t2(1− δ)

σ2
(T − 1)d(α,α0)cmin

}
,

=2 exp

{
− 3

40

(T − 1)d(α,α0)cmin

σ2
+

3

4

}
.

Finally, we bound the probability that the MIO estimator fails to identify

the true subset as follows:

P(θ̂ ̸= θ̂ol) (S1.4)

≤
∑

α∈{0,1}p,α̸=α0

P
(

min
θ=β1α

γ

∥Y − (Gw,Z)(θ
⊤,γ⊤)⊤∥22 < ∥Y − (Gw,Z)(θ̂

(ol)⊤, γ̂(ol)⊤)⊤∥22
)
,

≤
m∑
i=1

(
m

i

)
2 exp

(
−3(T − 1)icmin

40σ2
+

3

4

)
,

≤
m∑
i=1

mi 2 exp

(
−3(T − 1)icmin

40σ2
+

3

4

)
,

≤
m∑
i=1

2 exp

(
−3(T − 1)icmin

40σ2
+ i log(m) +

3

4

)
.
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When cmin > 40σ2

3(T−1)
log(m), equation (S1.4) may be further bounded by:

≤ 2e3/4
exp

{
−3(T−1)

40σ2

(
cmin − 40σ2

3(T−1)
log(m)

)}
1− exp

{
− 3n

40σ2

(
cmin − 40σ2

3(T−1)
log(m)

)} .

Since P(θ̂ ̸= θ̂ol) ≤ 1 and 2e3/4 x
1−x

≤ 6.5x when 0 ≤ 2e3/4 x
1−x

≤ 1 and

0 < x < 1, we obtain the upper bound for equation (S1.4) as follows:

≤ 6.5 exp

{
−3(T − 1)

40σ2

(
cmin −

40σ2

3(T − 1)
log(m)

)}
.

S2 Software Implementation Details

We apply the GUROBI Optimizer (Gurobi Optimization, LLC, 2021) to

solve the MIO defined by equations (2.2) - (2.5) in the main paper. Al-

gorithm 1 lists the key steps required in the pseudo code that outputs the

MIO solution to the constrained optimization problem. In both simulation

studies and data analyses, we use GUROBI version 9.5.2 in all numerical

calculations.

S3 Additional Simulation Results

S3.1 Normalized Mutual Information

NMI is used to evaluate the performance of binary label variable estimation.

Let Ltrue and Lpred denote the true and predicted subgroup of the sampling
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Algorithm 1: Pseudocode of the MIO via GUROBI Solver

Input: y,G,w,m

1 begin

2 M = gurobipy.Model(“Questionnaire”) // Create a new model

3 M.addVars(α, vtype = GRB.BINARY) // Create Gurobi variables of α

4 M.addVars(θ,γ, γ0,β, vtype = GRB.CONTINUOUS) // Create Gurobi

variables of θ,γ, γ0,β

5 M.setObjective(L(α,θ,γ, γ0,β)) // Set objective function

6 for j ← 1 to m do

7 for p← 1 to P do

8 M.addSOS(GRB.SOS TYPE1, [1− αj , θp,j ]) // Add Type 1 SOS model

constraints (2.4)

9 M.addSOS(GRB.SOS TYPE1, [αj , θp,j − βp]) // Add Type 1 SOS model

constraints (2.5)

10 M.optimize() // Solve the model

Output: α̂, θ̂, γ̂, γ̂0, β̂

11
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nodes into two disjoint subsets. The normalized mutual information is

defined as

NMI(Ltrue, Lpred) =
2× I(Ltrue, Lpred)

H(Ltrue) +H(Lpred)
,

where H(.) is the entropy of estimated labels and I(Ltrue, Lpred) is the mu-

tual information between Ltrue and Lpred. Clearly NMI varies between 0

and 1, and the larger NMI the higher accuracy of cluster label estimation.

S3.2 Sensitivity and specificity of selection.

Table 1 and 2 present a performance comparison of the MIO algorithm

against established methods, namely LASSO and ABESS, with respect to

sensitivity and specificity within the simulation model (5.8). Evidently, the

MIO method demonstrates superior performance in both metrics across all

scenarios, establishing itself as the optimal choice among the considered

methods.

S3.3 Estimation of the auto-regression coefficient

Table 3 compares the performance of the MIO algorithm with existing meth-

ods (i.e. LASSO and ABESS) on the estimation of the auto-regression co-

efficient γ1 in the simulation model (5.8). Clearly, the MIO method shows

the smallest estimation bias among these methods in all scenarios. The
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Table 1: Average sensitivity of selecting important manholes over 1000 replicates ranged

between 0 and 1, where m is the network size, s is the number of important manholes,

and β is the signal strength.

m = 20

s = 4 s = 10 s = 16

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 1.000 0.999 1.000 0.999 1.000 0.999

LASSO 0.785 0.873 0.533 0.778 0.064 0.546

ABESS 0.981 0.976 0.948 0.931 0.925 0.912

m = 50

s = 10 s = 25 s = 40

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 1.000 0.996 0.999 0.989 1.000 0.9695

LASSO 0.730 0.779 0.519 0.697 0.035 0.524

ABESS 0.994 0.921 0.951 0.637 0.946 0.617

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 1.000 0.996 1.000 0.978 1.000 0.996

LASSO 0.461 0.592 0.023 0.459 0.000 0.024

ABESS 0.988 0.722 0.583 0.316 0.442 0.317

ABESS estimation is the second best, but inferior over the MIO estimation

in terms of estimation bias, especially when the network size and/or the

number of important monitoring sites is large.
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Table 2: Average specificity of selecting important manholes over 1000 replicates ranged

between 0 and 1, where m is the network size, s is the number of important manholes,

and β is the signal strength.

m = 20

s = 4 s = 10 s = 16

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.995 0.994 0.995 0.994 0.995 0.995

LASSO 0.593 0.484 0.630 0.449 0.951 0.589

ABESS 0.992 0.991 0.993 0.991 0.992 0.990

m = 50

s = 10 s = 25 s = 40

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 1.000 0.995 0.999 0.986 1.000 0.995

LASSO 0.600 0.506 0.623 0.487 0.986 0.932

ABESS 0.999 0.994 0.992 0.955 0.971 0.573

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 0.999 0.995 0.999 0.975 0.998 0.994

LASSO 0.723 0.625 0.978 0.638 1.000 0.977

ABESS 0.993 0.967 0.898 0.926 0.857 0.893

S3.4 Simulations with a Fixed Network

To evaluate the reproducibility of the model performance, we consider a new

simulation experiment with a fixed network, where the number of significant
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Table 3: Average absolute bias AAB(γ̂1) and empirical standard error ESE(γ̂1) over 1000

replicates, where LASSO and ABESS estimate group label by nonzero estimate. Here

m is the network size, s is the number of important nodes, and β is the effect of the

network-level summary biomarker on the daily number of COVID-19 confirmed cases.

m = 20

s = 4 s = 10 s = 16

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.007 (0.009) 0.015 (0.018) 0.006 (0.007) 0.011 (0.014) 0.003 (0.004) 0.007 (0.009)

LASSO 0.403 (0.031) 0.382 (0.033) 0.340 (0.025) 0.259 (0.029) 0.642 (0.025) 0.250 (0.029)

ABESS 0.026 (0.010) 0.033 (0.018) 0.038 (0.008) 0.046 (0.014) 0.055 (0.008) 0.058 (0.014)

m = 50

s = 10 s = 25 s = 40

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.011 (0.014) 0.020 (0.025) 0.009 (0.011) 0.017 (0.020) 0.005 (0.006) 0.010 (0.013)

LASSO 0.341 (0.036) 0.311 (0.038) 0.301 (0.030) 0.208 (0.035) 0.668 (0.030) 0.222 (0.035)

ABESS 0.014 (0.014) 0.037 (0.025) 0.021 (0.011) 0.158 (0.021) 0.018 (0.011) 0.175 (0.021)

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 0.008 (0.010) 0.017 (0.019) 0.006 (0.007) 0.014 (0.014) 0.003 (0.004) 0.007 (0.008)

LASSO 0.357 (0.038) 0.295 (0.041) 0.676 (0.008) 0.266 (0.035) 0.698 (0.008) 0.677 (0.035)

ABESS 0.029 (0.012) 0.143 (0.021) 0.225 (0.015) 0.343 (0.015) 0.284 (0.015) 0.347 (0.015)

nodes and their positions in the network are fixed. In other words, we repeat

our experiments on 1000 simulated gene datasets on one simulated network

where the first s nodes among them nodes are fixed as important sites. The
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Table 4: Average Normalized Mutual Information (NMI) value over 1000 replicates on a

fixed network ranged between 0 and 1 for the accuracy of selecting important manholes,

where m is the network size, s is the number of important manholes, and β is the signal

strength.

m = 20

s = 4 s = 10 s = 16

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 1.000 0.999 1.000 0.997 1.000 0.998

LASSO 0.077 0.104 0.031 0.082 0.055 0.084

ABESS 0.997 0.986 0.999 0.987 0.999 0.991

m = 50

s = 10 s = 25 s = 40

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.999 0.971 0.994 0.940 0.996 0.959

LASSO 0.032 0.030 0.010 0.015 0.026 0.012

ABESS 0.963 0.739 0.770 0.362 0.694 0.208

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 0.999 0.987 0.999 0.956 0.998 0.987

LASSO 0.009 0.020 0.017 0.008 0.000 0.017

ABESS 0.964 0.539 0.249 0.098 0.070 0.050

results in Table 4 and 5 once again confirm that the MIO has the highest

selection accuracy and parameter estimation accuracy.
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Table 5: Average absolute bias AAB(β̂) and empirical standard error ESE(β̂) by the

MIO estimation over 1000 replicates on a fixed network, where LASSO and ABESS

estimate group label by nonzero estimate.

m = 20

s = 4 s = 10 s = 16

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.001 (0.001) 0.001 (0.001) 0.002 (0.002) 0.002 (0.002) 0.002 (0.002) 0.002 (0.002)

LASSO 0.130 (0.007) 0.058 (0.004) 0.103 (0.004) 0.038 (0.007) 0.377 (0.003) 0.077 (0.006)

ABESS 0.007 (0.002) 0.004 (0.001) 0.011 (0.002) 0.007 (0.002) 0.032 (0.003) 0.017 (0.002)

m = 50

s = 10 s = 25 s = 40

β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.4 β = 0.2

MIO 0.002 (0.002) 0.002 (0.002) 0.002 (0.003) 0.003 (0.003) 0.003 (0.004) 0.003 (0.004)

LASSO 0.050 (0.005) 0.023 (0.003) 0.092 (0.008) 0.031 (0.005) 0.388 (0.003) 0.080 (0.007)

ABESS 0.002 (0.002) 0.003 (0.002) 0.006 (0.003) 0.024 (0.003) 0.011 (0.004) 0.053 (0.004)

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 0.002 (0.003) 0.002 (0.003) 0.003 (0.004) 0.004 (0.004) 0.004 (0.005) 0.004 (0.005)

LASSO 0.109 (0.010) 0.044 (0.006) 0.392 (0.003) 0.082 (0.010) 0.800 (0.000) 0.392 (0.002)

ABESS 0.008 (0.003) 0.021 (0.003) 0.131 (0.009) 0.100 (0.004) 0.330 (0.015) 0.201 (0.007)

S3.5 Simulations Confirming the Stability of GUROBI Software

GUROBI or most of available optimization solvers might not have a guar-

anteed solution of the global optimality. This practical challenge deserves
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some further attention and effort in the field of operations research, which

is beyond the scope of the current paper. However, to inspect and confirm if

a solution provided by GUROBI is globally or locally optimal, numerically

we may assign many random initial values in the search and observe stabil-

ity of outputs from GUROBI. In the simulation experiment conducted in

the paper, we tested the capacity of GUROBI in the most challenging sce-

nario of a sewage network containing 100 manholes. Over 1000 replicates,

each being fed with 100 distinct initial values of α, we collect the GUROBI

solutions. We summarize the results into the following table (Table 1) in

terms of the average Normalized Mutual Information (NMI) across the 100

GUROBI solutions throughout the 1000 replicates. The results clearly con-

firmed the stability of GUROBI solutions, and thus such an optimization

solver is highly reliable.

S4 Additional Data Analysis Results

We use Shapiro Wilk normality test and quantile-quantile plot (Figure 1)

to check the normality of model (6.9). The p-value of the Shapiro-Wilk test

is 0.19 > 0.05, which indicates that the residuals are normally distributed.
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Figure 1: The Q-Q plot of the residuals in model (6.9).

Table 6: Average NMI calculated over the 100 GUROBI solutions with 100 different

initial values throughout the 1000 replicates.

m = 100

s = 20 s = 50 s = 80

β = 0.2 β = 0.1 β = 0.4 β = 0.2 β = 0.8 β = 0.4

MIO 0.996 0.959 0.998 0.869 0.998 0.962
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