A Technical Details

Throughout the proofs, we use C, ¢ to denote positive constants, and they are not necessarily
the same at each occurrence. Given a matrix A, we use R(A) to denote the column space
(range) of A and A™ to denote the Moore-Penrose inverse of A. Denote by Py = A(AT A)* AT
the orthogonal projection on R(A).

A.1 Basics

The conventional definition of Orlicz ¢)-norms goes as follows: Given a strictly increasing
convex function ¢ on Ry := [0, +00) with ¢(0) = 0, then the Orlicz ¥-norm of a random
variable Y is defined as ||Y||, = inf{t > 0 : E¢(|Y|/t) < 1}.

Some well-known examples of Orlicz ¢-norms are the L,norms: |Y|, = (E|Y]9)Y4
associated with ¢ (z) = 27 (¢ > 1) (e.g., the Pareto distribution), and the t,-norms (¢ > 1)
with

() = exp(a?) — 1. (A1)

(A.1) encompasses both sub-Gaussian and sub-Exponential type random variables for ¢ =
2,1, without the requirement for the random variables to be centered.

Our upcoming theorems often relax the strict requirements of strict monotonicity and
convezity for ¢. This flexibility allows us to handle random variables with much heavier tails.
For instance, we consider the extension of (A.1), known as sub- Weibull random variables,
which have finite ,-norms for ¢ > 0 (cf. Kuchibhotla and Chakrabortty (2022)). As
0 < ¢ < 1, 9, is nonconvex, and these random variables, including Weibull, exhibit heavier
tails compared to sub-Exponential ones (Gotze et al., 2021).

Throughout the paper, when we refer to the Orlicz norm of a random variable, denoted
as || - ||y or sometimes || - ||, it is always understood that ¢(-) (or ¢(-)) is an nondecreasing
function defined on R, with ¥(0) = 0. Theorem 1 also requires ¥ to satisfy the regularity
condition limsup, , ., ¥ ()¢ (y)/¢(cry) < oo for some constant ¢ > 0 (van der Vaart and
Wellner, 2013). It is easy to verify that all these conditions are met by L, with ¢ > 0 and
1, with 0 < ¢ < 2. Orlicz norms provide a useful framework for analyzing skewed random
variables, including those without zero mean.

In this paper, we define that a random vector e € R has its Orlicz ¢-norm |||, bounded
above by w if

I{e; )y < wllelz, Va e R™ (A.2)

Note that (A.2) is defined using the Euclidean norm || - ||z, and the function i) may not
necessarily be convex. Furthermore, the components of € are not required to be independent
or centered. However, if € does have centered, independent components, its vector Orlicz -
norm is bounded by the largest Orlicz ¢)-norm among its components (up to a multiplicative
constant)..

Lemma A.1. Let ey, ..., €, be centered, independent random variables satisfying ||€; ||y, < w
for some q € (0,2]. Given any o € R", we have |[(a, €) ||y, < Cllallsw, where C' is a constant
depending on q only.



To prove the lemma, we first introduce two lemmas. The first is Theorem 1.5 in Gotze
et al. (2021).

Lemma A.2. Let €y,. .., €, be independent random variables satisfying ||€;||y, < w for some
q € (0,2]. Let f(e) : R® — R be a polynomial of degree D € N and denote by f'¥ the
d-tensor of its d-th order partial derivatives for 1 < d < D. Then for allt > 0, we have

[SYES)

P(If(e) ~Ef(e)| 2 1) < 2exp (-~ Clgifn(wﬂlEf(z)(e)HHs

)d), (A.3)

where C'is a constant that depends on D and q and || ||gs denotes the Hilbert-Schmidt norm
(or the Frobenius norm in the case of a matriz).

The second fact is a slight modification of Lemma 2.2.1 in van der Vaart and Wellner
(2013).

Lemma A.3. Let X be a random variable such that for some q > 0,

P(X| > 1) < cexp (- (£)Q), Vi > 0, (A4)

~

where w > 0 and c is constant, then we have || X|y, S w.

The proof is straightforward:
X4
E(exp(M|X|?) —1) =E M exp(Mu) du
0

= / P(|X| > u%)MeXp(Mu) du
0

> u cM
It suffices to take M~1/4 > /w to have E(exp(M|X|?) — 1) < 1. Therefore, || X|y, < w.
Now, given any a € R, let f,(¢) = (o, €) = D" a;¢;. Then (i) fo(e) is an 1-degree
polynomial of €y,...,€,, (ii) [[E[Vfa(e)]ll2 = ||alle and E[> " | aue;] = 0, and (iii) €, ..., €,
are independent and satisfy |||y, < w. Applying Lemma A.2 with D = 1,d = 1 yields

P il > 1) =P(fal0)] > 1) < 2exp ( - ()", (A.5)

wlels

where C' is a constant depending on ¢ only. By Lemma A.3, (A.5) implies ||{(c, €)|y, <
C|allaw, where C' is a constant depending on ¢ only. The proof of Lemma A.1 is complete.
The following lemma is useful for stating the assumptions on effective noises.

Lemma A.4. Let ¥, ¢ be any two nondecreasing nonzero functions defined on R, with
¥(0) = ¢(0) = 0 (not necessarily convex). Define ¢~ 1(t) = sup{z € R, : p(z) < t}.
and ' similarly. (i) Suppose that ¥(p~1(t)/co) is concave in t on R, for some ¢y >
01 (1)/¥~Y(1). Then for any random variable X, we have || X |y < col| X||p. (%) Suppose
that (o~ 1(t)/co) < t for some ¢y > 0, then || X ||y < col| X|,-
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We remark that the condition for ¢y in part (i) can be replaced by ¢y > ¢~ 1(1)/47 (1)
when ) is continuous at 1. For completeness, we provide the proof below.

First, by the definition of o™, u < ¢~ (p(u)) for any u > 0. Therefore, X/|| X, <
e He(X/|X|ly)}, from which it follows that

¢(amm) < vl et (4.6)

To prove part (i), let f(u) = ¢ (¢ ' (u)/c) with ¢ > 0 to be determined. Then f(u)
is an increasing function on R,. (In fact, for any u > «' > 0, ¢ ' (v/) < ¢~ !(u), and so
e (W) /et < P{e7H(u)/c}.) From (A.6), picking t = (X/[|X|,) gives

X 1 X
0 <= Hp = f(t). AT
() = vl et n] =1 A0

With ¢ > ¢ 1(1)/¥71(1) (or ¢ > ¢~ (1)/¢" (1) when 4 is continuous at 1), we can use
Jensen’s inequality to get

E{w(ﬁ)} <E(y Es&‘l{@(ﬁ)}}) =E(f(t) < f(EM) < f1) <1 (AS)

To prove part (i), we still set f(u) = ¢ (¢ '(u)/c) with ¢ > 0 and t = ¢(X/||X]|,). Based
on (A.6), we get

X X
¢(m) <ft)<t= @(m)‘ (A.9)

The proof of Lemma A.4 is complete.

A.2 An Excess Risk Bound

This part establishes an excess risk bound for location estimation using pivot-blend, which is
uniform in scale parameters, shedding light on the impact of asymmetrical scales (skewness)
and the presence of an unknown pivotal point. This result is non-asymptotic and non-
parametric, making it applicable to various scenarios.

Let y; € R and X; € RP which satisfy satisfy (X, y;) ESaa *, where F™* is a distribution
that depends on B*, m*, o*, v*, where we use superscript * to denote the statistical truth.
As discussed in Section 2.3, we consider the practice of estimating the scales beforehand
and then minimizing a criterion over all location parameters §;(1 < j < p), m. For ease of
presentation, given (o,v), let l,,(-; X;,v;), imposed on 6 := (5, m), denote a loss motivated
by skewed pivot-blend:

r; —

low(0; X5, y5) i= P( + m) Lri—m<o + ,0( > o + m) Lri—m>0
+ xolog [0®(m) + v{1 — ®(m)}| with r; =y, — X5,

where the calibration parameter xo > 0 and 0 < ®(m) < 1. Note that & is not necessarily
directly associated with p. Define 6,, by empirical risk minimization

ry —m

(A.10)

A~

0,, = arg min lo.(0; X5, 95). A1l
v = arg] ; 0 X5, u:) (A.11)
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Certainly, opting for different values of o and v produces diverse asymmetric losses and influ-
ences the overall risk. In our analysis, no restrictions will be placed on ¢ and v. The values
of (o,v) can be specified based on domain knowledge or determined in a data-dependent
manner. For notational simplicity, we sometimes abbreviate 601, as 6 when there is no
ambiguity.

To evaluate the generalization performance of é, let (Xo,yo0) be a new observation that
follows F* but is independent of the training data (X;,vy;),(1 < i < n), and define the
population risk of 0 by

Ro'yV(é) = E(X(),yo) I:lo',l/(é; XO) Z/O)} 9 <A12)

where the expectation is taken with respect to the new observation (Xy, yo) only. Due to the
finite number of observations in estimation, RU,V(QA(W) is always greater than the population
risk of the ideal 0 , = argming R, ,(0), or R,,(0;,) = infpeq R, (0). In such a setup, the
notion of excess risk 5(02,% o,v) is helpful (Devroye et al., 1996):

~

Excess Risk:  E(0,,;0,0) = Ry (0y,) — Ry (0 ,). (A.13)

Our main objective is to establish a non-asymptotic bound for £ (éw; o,v) regardless of
the data distribution for a broad range of p that satisfy the following assumption.

ASSUMPTION A: Assume that the loss p satisfies (i) p is bounded: p € [0, B] for some
B > 0, and (ii) p is regular in the sense that p is piecewise polynomial on K > 1 intervals
p(t) = Pi(t), Vt € [u;_1,u;), 1 =1,..., K, where ug = —00,ux = 0o, and each polynomial
function P; has degree at most D > 0.

Assumption A encompasses a wide range of practically used loss functions in robust
regression and classiﬁcation specifically designed to handle extreme outliers. For example,
some loss functions like p(t f 1t lw ) ds, with a redescending 1, such as Tukey’s bisquare
P(t) = t{1 — (t/c)?}? if |t| § ¢, and 0 otherwise (Hampel et al., 2011), fit in the category.
Some other p functions can be effectively approximated by piecewise polynomial functions.

Theorem A.1. As long as the loss p satisfies Assumption A, the estimator QAUVV defined in
(A.11) satisfies the following probabilistic bound for all o,v > 0,

B\/plog{(K+ 1)(D+1)} N (BV x0){log Z% + |log(o A v)
o,v>0 \/ﬁ \/ﬁ

V 1
{\/bg(logg/\z\/\log(a/\u)|\/1)—I—\/loge}] §O} >1—e

The theorem provides a bound for the excess risk & (ég’y; o,v) that holds uniformly in o
and v with probability at least 1 — ¢, as characterized by the following rate

b

IP’{ sup 8(90,,,;0, v)—C

oAV

Vn Vn

oVv
10g<10g0/\y

By/plog { (K +1)(D+1) oVr
\/ {( }+B\/Xo{10g +|10g(a/\y)|}x{ logl

V [log(a A v)| V. 1)} (A.14)



The first term in (A.14) illustrates the influence of loss complexity and problem dimensions
on the excess risk. The second term, which incorporates both ¢ and v, arises due to the
pivot estimation. Clearly, when there is no skewness, 0 = v = logg—xz = 0 and the rate
becomes

B\/plog{(K+ (D + 1)} (B + x0)|log(c A V) 1
NG + T ><{\/Iog(1+|log(a/\l/)|)+\/logg}.

In the more practical scenario of unequal scales, the risk for location estimation can signif-
icantly increase, and the provided bound quantitatively characterizes how skewness inflates
the risk non-asymptotically.

To prove the theorem, we first introduce a basic excess-risk bound for fixed o, v > 0.

Lemma A.5. Suppose that the loss p satisfies Assumption A. Fizing the values of o,v >0
in (A.10), the corresponding estimator 0., from (A.11) satisfies

plog{(K+ 1)(D+ 1)} N B\/XO(\loga/\y| + log ”V—")

aAv

R 1
5901/;7 S B 1 o
(Orair,v) 5 \/ - N o -

(A.15)

with probability at least 1 — €.

Proof. Let {X,y} denote the training data, ie., {X,y} = {(Xi,4:),1 < i < n} with
(Xi, vi) " F*. Given o,v > 0, define a function class consisting of all loy(0;-) 0 € Q =
RP x R
Ly,(Q) = {ls,(0;-) : 0 € Q}. (A.16)
For simplicity, we often use the shorthand notations R(-), R™(-), and [(6; -) to denote R, ,(-),
(1/n) > low(+ Xiyui), and 1, (0; -), respectively, when there is no ambiguity.
First, the standard bound for excess risk through uniform laws yields

R(05) = R(05,) < R(05,) = R™(05) + R™ (05,,) — R™(0,,) + R™(0;,) — R(63,)
<2sup [R(0) = R™(0)| =2 sup [Pul —Plf =2[[P0 —P|, . (A7)
QGQ o,V

o,v

where P is the distribution F™* and P, is the empirical measure that places probability mass
1/n on each (X;,y;),1 <i<n.
Let
Jou(m) := xolog [c®(m) + v{1 — ®(m)}]. (A.18)

Without loss of generality, we assume that o < v, that is, c Av =0, 0 Vv = v, then

v
Jow(m) = xologo + xolog [1+ (; — 1){1—®(m)}]. (A.19)
Because log(1 4 (% — 1)t) is an increasing function for ¢t > 0, we know

14
X01080 < g (m) < xolog + xolog =, (A:20)
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from which it follows that
v v
90 (m)] < [xolog o+ xolog ~| V [xolog o] < |xolog o] + xolog —. (A.21)
By Assumption A and (A.21),

1%
o] < |pl + 9o < B+ x0(]log o] + log ;)- (A.22)

Due to (A.22) and (X, y,) & , applying McDiarmid’s inequality and symmetrization
in empirical process theory yields a data—dependent bound with probability at least 1 — ¢,

log(3
[P =PIl o) < 2Ry (L0n() + 6{3 +xo(|log o] + log g)} %n/e) (A.23)
where Rxﬁy(ﬁw((l)) is the empirical Rademacher complexity of £, ,(€2) with respect to the
training data {X,y}:

1
Rxy(Loy(Q)) = —E. o )Zez 1(0; X, ), (A.24)

and ¢;’s are i.i.d. Rademacher random variables; see, e.g., Theorem 3.4.5 in Giné and Nickl
(2015). Note that the expectation in (A.24) is taken with respect to e only, and (A.24)
depends on o, v through the function class £, , ().

It remains to bound the empirical Rademacher complexity. Toward this, denote by A,, A,
two augmented design matrices

A, = —g[x, (1= o)), A, = —2[X,(1—0)L,], (A.25)

where 1,, is a column vector of n ones. Let

1 1
Oy = —Y, Q,=—Y. (A.26)
o v

Suppose that rank(A,) < r and rank(A4,) < r. By the singular value decomposition,
A, =U,D, VY ~A,=U,D,V}I, (A.27)
where U,, U, are orthogonal matrices with r columns: UXU, = I,«,, UI'U, = I,«,. Define

Uy =[Us,00), U, =[U, ). (A.28)
Now, by the sub-additivity of sup and (A.28),

RX,y(ﬁmu(Q))
1 1 1
< —Ecsup(e, p(4,0 + a5)) + —Ecsup(e, p(A0 + ) + —Ec sup(e, g, (1m))
n 0eN n 0eN n meR
1 _ 1 — 1
<-E. sup (e, p(Us§)) + ~Ec sup (e, p(U,E)) + e sup (€, go., (1M)). (A.29)
N gerrtt gERTHL meR



To bound the first term in (A.29), let

Z<X7y7g):Ug: [Zl,"' ,Zn]T7 <A30>

and given p, define a class of functions

Fe={plle.)) € € R, (A.31)

which does not depend on the two scale parameters. Given Z(X,y, o), let Q,, be the empirical
measure determined by Z;, 1 <1¢ < n, and

IF = FI3, =~ S {52~ F@)Y, vhfeF (A32)

Then

1 _ 1 1 < C /B
—E. sup (e, p(Us€)) = —=E.sup— Y &f(Z) < — log N(g, F, || - lg,) de,
" §€R£1< p(Us8)) NG fe?—‘\/ﬁ; f(Z:) N V9Iog N (e, F, || - [lo.)

(A.33)

where the last inequality is due to Dudley’s integral bound. Because |f| < B, Vf € F, by
Theorem 2.6.7 in van der Vaart and Wellner (2013) we know

By (A.34)

N F - lla,) < OVIF) (2

where V(F) denotes the VC-dimension of F defined through the notion of subgraph (cf.
Definition 3.6.8 in Giné and Nickl (2015)). In more details, V(F) is the VC-dimension of
the following {0, 1}-valued function class defined on R"* x R:

H = {he(2,t) = Lye, > = sign(p((€,2)) — 1) 1 e R™ ] (A.35)

Here, the sign function is defined by sign(a) = 1 if @ > 0, and 0 otherwise, and recall that
Ly((e,2y)>¢ is the indicator function of the set {(z,t) : p((¢,2)) > t,z € R"",t € R} or the
subgraph of p((¢,-)) for each given &.

To bound V(H), we introduce a more general function class

H = {ﬁg,w17w2(z, t) = sign (wlp((f, z)) + Wgt) EeR™M W, wy € ]R}, (A.36)

where R, w, (2, 1) is defined on (2,t) € R x R and has two additional parameters w; and
wy than he(z,t) in the definition of H. Since H C H (by fixing w; = 1,ws = —1),

V(F) = V(H) < V(H). (A.37)

H corresponds to the set of functions computed by a neural network N shown in Figure A.1.
It has two computation units, one in the hidden layer with activation function p, and the
other in the output layer applying a sign operation on the combined inputs wip((£, 2)) + wat.
Lemma A.6 is Theorem 10 in Bartlett et al. (2019) and can be proved based on Theorem
2.2 of Goldberg and Jerrum (1995).



teR
4 w1 :
zeR™! p((§ z)) sign(w1p((§, 2)) + w,t)
Input layer Hidden layer Output layer

Figure A.1: Architecture of the network N that computes h¢ iy, w,(2,t) € H.

Lemma A.6. Suppose that a neural network Ny satisfies (i) No has a directed acyclic graph,
that is, the connections from input or computation units to computation units do not form
any loops, (it) the unique output unit is the only computation unit in the output layer (layer
J ), where J > 2 denotes the length of the longest path in the graph of Ny, and the activation
function of the output unit is a sign function that takes inputs from units in any layer j < J,
including the input layer (layer 0), and (iii) within each computation unit except the output
unit, W is the activation function and is piecewise polynomial on I > 1 intervals V(t) =
Pi(t), Vt € [uj—1,u;),i =1,...,1, where uy = —o0,u; = 00, and each polynomial function P;
has degree at most M > 0. Let W > 2 be the number of parameters (weights and biases) and
U > 2 be the number of computation units. Let G denote the set of {0,1}-valued functions
computed by the network No, then V(G) < 2W log, [16e{MY~" + ST M (1 + nvj.

Our network N as shown in Figure A.1 is a feed-forward neural network and has a directed
acyclic graph structure. The output unit of N in the output layer takes the input p((&, z))
from the computation unit in the hidden layer and the input unit ¢ € R in the input layer.
Under Assumption A, our network N satisfies the assumptions in Lemma A.6 and has r + 3
parameters (no bias parameters) and two computation units. Using Lemma A.6, we get

V(H) < C(r+3)log {e(2D + 1)(1 + K)*} Srlog {(K + 1)(D + 1)}. (A.38)

Now, based on (A.37) and (A.38),

V(F) < Crlog{(K +1)(D+1)}, (A.39)

and combining (A.33), (A.34), and (A.39) results in

1 (K+1)(D+1
lEE sup (e, p(U,€)) / \/V log—dg<B\/T og {(K+1)(D+ )} (A.40)
n geRr+1

Similarly, the second term in (A.29) satisfies

e, sup (e p(0,6) < B\/ rlog {(K+ DD+ 1} (A41)

n é‘e]R'r+1 n

8



Note that (A.40) and (A.41) hold for all o, > 0

Finally, we bound the third term on the right-hand side of (A.29). Let

Gr(m) == xolog [1+ (= = 1){1 = @(m)}],

and so 0 < g,,(m) < xolog %

(A.42)
Again, by the sub-additivity of sup and Dudley’s integral
bound,
1
—E. sup(e, gy, (Im)) < — Xologcr]E sup(e, 1) + —E. sup(e, ¢,., (1m))
N meR meR N meR

3X0log £/n
</ VIos N (e, {laos(1m)] : m € B}, |- )

Xo log Z+/n
= 2 \/logf\/(%, [O,XOlogg},l-l) de
1

Xolog &
< g, (A.43)
\/_
Plugging (A.40), (A.41), and (A.43) into (A.29) yields
rlog{ (K+1)(D+ 1)} Xo log £
Rx,(Lsn() < B . A.44
X,y<,<>>w\/ . X (A44)
Summarizing (A.17), (A.23), and (A.44), we have the following bound with probability at
least 1 — € for any 0 < € < 1,
E0,,;0,v)
1 K+1)(D+1 log2 B log £ 4 |1
<c B\/T og {(K+1)(D+1)} L Xologg + xo(log £ + |log o]) 10g1]
n NZD Vn €
1 K+1)(D+1 BV xo(log% +]1 1
5B\/p o8 {(K+ DD +1)} | BYxologs + llogol) [T As)
n Vn €
where the last inequality is due to r < p+1 < p. The proof of Lemma A
Lemma A.5

A

is complete. [
shows the effect of skewness for fixed values of o,v. For example, when
o= 0" v =v" the excess risk £(0,+ ,+; 0", v*) satisfies

5(0 ) B\/plOg{ K"’ D+1 } B\/XO{logG*XZ*“‘llOg(O /\l/ |}
* O' , UV lo
" NG NG

g_

(A.46)
with probability at least 1 — e. Our objective is to establish a uniform law that applies to
all scale parameters o, > 0. Toward this, let

V
T:|log(0/\1/)|—|—loga Y

e (A.47)



which is nonnegative. By Lemma A.5, there exists a universal constant C' such that the
event A(T,t)

plog {(K +1)(D+1)}

+ (B + xo7)t| >0 (A.48)

A(r,t) :={ E0,,;0,v) = C [B\/

occurs with probability
P[A(T,t)] < exp(—2nt?), (A.49)

for any ¢t > 0.

Let [0,400) = [, 7ia1] with 0 =79 < 71 < ... < 400 to be determined. Let Q(7) > 0
1=0
(V7 > 0) be an increasing function. Then, foralll > 0and ! € Z, 7 € [, 7141 implies 7 > 7,
Q(1) > Q(n), and 7Q(1) > 7Q(1) > 1Q(7). Based on (A.49) and the union bound,

B\/p1og{(K+1)(D+1)}+(B+XOT){t+Q(T)}] >0>

o,v>0 n

P (sup 5(9}71,;0, v)—C

i { Tlat+QTz))} (A.50)

Take Q(7) = y/log(1 + 7)/n and 7, = [ for all [ > 0 and [ € Z, then (A.50) is bounded

> log(1 + 1)
E:PAAOJ+4/Og i )
=0

Plugging (A.47) into (A.51) gives the following uniform law for all o, > 0 with probability
1—e€

5 exp(—2nt?) <Cexp(—2nt?). (A.51)

S

=0

~

By/plog {(K +1)(D + 1 oV
E(0spiov) <C \/ { }+B\/Xo{10g + |log(o A v)|}

oAV
{\/Iog +\/log log

vn
B\/plog{ K+1)(D+1)} N BV xof{ log Z% + |log(o A v)|}

NZD
1 \%
X {\/Iog—+\/log(loga v
€ A%

V| log(o Av)|V 1)}, Vo,v >0, (A.52)
The proof of Theorem A.1 is complete.

v |log(c Av)|V 1)+ logQ}]
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A.3 Proof of Theorem 1
By the optimality of f: 1(f1) + Z||¥||5 + )\QHEHM < Up*) + 2113 + Aol| 8|21, we obtain a
basic inequality as follows
A 1) + 515 =13
< (e X3 = XB) + {emuin— ) + (.6 — &) + (—79",4 = 7")
+ A0l 121 = Al B2
< (eq KB = KB + e =) + (e =) + DA =7 B+ 2111
+ A0l ll21 — Al B2 (A.53)

for any b > 0.

~ First, we bound <eg—,XB — XB*> Let X, denote the kth column of X and Zj :=
[ Xk, Xpik])? and recall B = Bk, bx]", k = 1,...,p. By Holder’s inequality,

N o p ~ _ p ~ _ _ S _
(en, XB = XB") = > (Enen, Bk — Bi) < D I=xeqllall B = Biills < V2[| X €| IIB = B l21-
k=1 k=1
(A.54)
Let A = AHXTEﬁHOO/Q for A > 1. Then we have
HXTGﬁHOO”B - B* 2,1 + /\Q’ 6* 21 /\‘QHBHM
< o+ [ X el| )NIB [y + (1X ell o = A) 18]l
= (1+ A)[[ X e[| [18]],,, + (1= DX eq| 18],
<1+ )X 6] 5], (A.55)
By the assumption on €, the ¢-norm of | X7 ¢;| is bounded by
[ X¢eall, = Ier Xidlly < llealls[| Xellz < wyo. (A.56)

The following inequality is essentially Massart’s finite class lemma, adapted for our purpose

| max 1XTelll, <200V e v 2p(e) o Blune. (A7)

It can be obtained by modifying the proof of Lemma 2.2.2 in van der Vaart and Wellner
(2013) (details omitted). By Lemma A .4,

E[IX7erllo] < [1X eqllcll, < 07 O | X7 enll | < Costshne,  (A58)

Oqup

11



where ¢y, = (1V ¢1 V 2¢(ca))?cop (1), Therefore,

E{ (5, X5 A9||5||21} (1+AE [HXTenll }
Next, we bound the stochastic term (e, m — m*). For any a > 0,

N - N 1 -
(em,m —m*) = (P, em,m —m*) < [uleq] - |m—m*|y < alules)? + %Dg(fn, m*),

(A.60)

where P;, is the orthogonal projection matrix onto the column space of 1,, or equivalently,
wu® with u = (1/4/n)1,. By Lemma A 4,

E[(u"en)?] < {7 ()Pl enlly < {v7(1)Fw (A.61)
Likewise, for the stochastic term (e, ¢ — ¢*) with e = [l €1, ]T and ¢ —¢* = [(1/6 —
1/o")1L (1/0 — 1/v*)1L]T, we have
1 1 1 1
(€11, (5 = =) + (€11, (5 = =)
1 1 1 1
= <P1n€§1n7 (5 - ;)1n> + <P1n€%1n> <5 - E)ln>
1
<a(ulesy,)* +a(uler, )’ + 2_D2(§A> ),
o v a

and
E[(7es,,)%) < o7 (P InTes, I < (7 (D)2,
and E[(u"e1,, )?] < {¢71(1)}2w?. To sum up, for any a > 0,
E{(em, m—m*) + (e, ¢ — §*>}
1 A
<oy (DPwh + 20{p7 (1w + 5ADs (m,m") + Dy (S, 67)}- (A.62)

Plugging (A.59) and (A.62) into (A.53) to obtain

E{Al(ﬂ, )+ (1 — b)DQ(%V*)} - 2—2{D2(ﬁ% m*) + Dy (¢, 6*)}

LT ()P en 4 2a{p (1 )}2w2+ ||7 13- (A.63)

Choosing b = 7/4, a = 2/7, we get

E{Al(ﬂv 1)+ %Dz(’?ﬁ*)}

<C(1+ A)eyy " (p)

<C(1+ A)eyp™ (p)wn

2 (0P + 200 Pul] + 2rly IR

1
Septp™ (p)wgo|| 57|, + = (Wi +w?) + 7]y (A.64)

The proof is complete.
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A.4 Proof of Theorem 2

We prove a more general result, which includes Theorem 2 as a special case.

Theorem A.2. Assume that the effective noises €5, €, and €. satisfy ||€;|ly < wg, ||€mly <
Wi, and ||ec]l, < w.. Let { denote the optimal solution for (19) with ¢ > kyeo. Suppose that
there exist some ¥ > 0 and some large K > 0 such that the following condition holds for any
B,v (recall (T =[BT, ~4T], uT = [T, ~T] defined based on (17))

L+ DA0||(B = 87+ |ly, < Duls ™) + Nl |(B = B7) gec ||, + ENT*, (A.65)
where
A= (1V D [ { A6~ ()}] (4.66)
for some large enough A > 0. Then for any L, L > 0,
A, 1) + %Dz(%’v*) S (% v %)Kwi (w*l [W{Awl(p)}])QJ* e
Y ) (L + L%2) + (v )l IR e

holds with probability at least 1 — C/Y{Av~(p)} — 1/w(cL) — C/p(cL’), where C,c are

positive constants.

Theorem A.2 implies Theorem 2. In fact, (A.65), assuming ¥ is a constant, is just

(27), and letting ¢ = 1, for some ¢ > 0, (A.66) yields A = Awﬁ(logp)%. Then, choosing
L=Cy~1(p"), L' = Cp~t(pA"), we can obtain the result in Theorem 2:

~ * T N *
A, p17) + 5Da(3,77)
% 2 1 _ q 1 _ q *
S KA (logp)t + —{u, (0")Ywp + —{e7 (™) Pl + 71yl
with probability at least 1 — Cp~¢4”.

Proof. From (i) + 7|4[13 + Aell Bllax < () + 7l7* 113+ Agll3*llo.1, we obtain

A 1) + 515 =13
< (e, XB = XB) + (em it — 1) + (€, — ) + (=795 = 7")
+ A0l B 21 — AellBll2.
< (60, KB = RE) + (et =) + {6 =) + ol =713+ T
+ 20]18* (121 = Aol Bll2a (A.68)

for any b > 0.
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To bound <eﬁ, X B - X B*>, we use the same notations in Appendix A.3 and recall

(g, XB — XB7) < co max [XpeglllB — B2, (A.69)

1<k<2p

where the constant ¢y > /2, and

| Xi €l < wgo. VE. (A.70)

Let

Xo = wpt™! [pe{Av (p)}] (A7)
for some large enough A > 0. By the union bound and Markov’s inequality, the event
max | X} e;| > A\oo occurs with probability

1<k<2p

2p 2p 2

P XFes| > Aoo) < < < .
(12}%}%' €l 2 Aod) _w(wﬁ@wl [pw{A¢1(p)}]> = pp{Avi(p)}] T {AvH(p)}
(A.72)
Let A = \g/0’ with &/ > 0. By the subadditivity of the ¢;-penalty, we get
CO)‘OQHE - o1 T )‘Q} h 21 )‘QHB }2,1
< COAOQH(B — B+ o1t COAOQH(B - B*)J*c Hz,l + /\Q| B 2.1
o )\QHBJ* 2,1 ’\Q’ (B o 6*).7*0 H2,1
S (COAO + )\)QH(B - B*)]* 2,1 - (>\ - COAO)QH(B - 6*)J*c H271
— (4 )0 (= B far — (= ot — Bl (AT
where J*¢ is the complement of J*.
For the stochastic term (eq,, m — m*), for any a > 0,
ey —m*) = (P, eqm,m —m*) < [uleqn| - |m—m*|ls < a(uleq)? + %Dg(ﬁl,m*),
(A.74)

where Py, = wu” with v = (1/y/n)1,. By the assumption on €z, ||u”€enlly < wm. By
Markov’s inequality,

1 1
IP( uleq)? > cL2w,2ﬂ> < — = , A.75
i S ~ (eD) (5.79)
from which it follow that
A 1 A
(em, m —m*) < acL*w? + %Dg(m, m") (A.76)



occurs with probability at least 1 — 1/¢(cL). For the stochastic term (e, ¢ — ¢) with e, =
(€1, el |7 and ¢ — ¢ = [(1/5 — 1/o")1E, (1/0 — 1/v*)11]7, similarly

1
sa#@hf+aw%h»%%—Dx¢¢)
By the assumption on e, |[u”e1y |, < we, |uler; ||, < w.. Tt follows from

, 1 1
IP’((UT%ln)z > oL %3) < ez R (A.77)

S

and ]P((u €1y, )2 > cL/2w3> < 1/¢(cL’) that
1
(ec,¢ — <) < 2acLw? + 2—D2(§ ), (A.78)
with probability at least 1 —2/p(cL’).

Plugging (A.72), (A.73), (A.76), and (A.78) into (A.68) results in
Al([j’) ,LL*) + (T - b)DQ(/%’Y ) - _D2(ma m*) - _D2(¢7 §*)

a =, ,7_2 .
§(1+Cob,))\QH(6—B )J* 2.1 ‘271+%H7 ||%
+ acL?w?, + 2acL*w?, (A.79)

with probability at least 1 — C/¢{Ay " (p)} — 1/ (cL) — C/p(cL’), where C, ¢ are positive
constants.
The regularity condition (A.65) implies

1+ =L el (5 - 87,

2+
< 2 A + (1= ST gl| (5 = By + s KN (A.50)
S g gt 2+ T2 oy '
Set v/ = 9/{(2+ ¥)co} and add (A.79) and (A.80) to get
S A )+ (7 = DD, 7) — 5 Dali ) — 5 Dale )
210 K T 207,77 2a 2{m, m oq 2
2
< ﬂK)\QJ* + acL?w? + 2acL 2w2 + ||’y 3. (A.81)
Taking b = 7/4 and a = 2/7 leads to

0, T 2 2 4
—— A, 1) + =Dy (3.4 < —— KN T + ZcL?w? + —cL 2% + 27|72 A.82
o z(/w)+2 2(7,7)_2“9 +_cLiwy + —clfwe + 7175, (A.82)
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or equivalently

2+ )T
29

2492

Al(ﬂ,u*) + 19 T

9 919
Dy (3,77) £ SKX" + 2 (cLw?, + 20Lw 2)+%2 12

(A.83)

Note that {7(2 + 9)}/(20) > 7/2. With A = \o/V = {(2 + ¥)/P}coNo, we can derive from
(A.83) that

~ * T o *
Ay(fi, 1) + Do (7,7")

2
9 2+192 / 2479
SKQLj;lA%* 2202 (er2uf, + 2e1%?) + 2 Dol
1 1 2 1.1
(ﬂv@)Kw ( ) [pw{Aw—l(p)}D J*+(1v5);(L2wfﬁ+L2wg)
1 .
(v I (454

with probability at least 1 — C/¢{Ay "1 (p)} — 1/ (cL) — C/p(cL’), where C, ¢ are positive
constants. The proof is complete.
[

A.5 An Elementwise Estimation Error Bound

Theorem A.3. Assume that the effective noises ez, €, and e, satisfy ||ezllp, < wq, ||€mllp, <

Wi, and ||e||, < we for some g > 0. Consider C as the optimal solution to (19) with T = 0,
0> Faoe, and

A= Awﬁ(logp)% (A.85)

for some large enough A > 0. Suppose that there exist some ¥, > 0 and some large K > 0
such that for any (T = [T, 7]

anJ*||B — B3 o + aDa(7, *><HWAMB—FM*

2,1
<A, 1) + (L= 0)Nol|(B = B7) gec ||, + ENT". (A.86)
Then
vVEKaVviy 1 1
1B = 3 |lae0 < Y221 o A{wy + \/J_(wm—l—wg)}(logp)q (A.87)

with probability at least 1 — Cp=¢A)" — C/p(cAd(logp)a ), where C, ¢ are positive constants.

The element-wise error bound (A.87) together with a signal strength condition guarantees
faithful variable selection with high probability; see Remark 4.

Proof. By the optimality of f: I(i) + )\QHE’HM < I(u*) + Mo||B*]|21, we obtain the basic
inequality

Ay, %) < (eq, XB = XB*) + (e, — ) + (e, ¢ — ) + Aol [l — AellBlla1.  (A.88)
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We follow the same lines as in Section A.4 to bound the stochastic terms on the right-hand

side of (A.88). Let
Ao = Awﬁ(logp)% (A.89)

for some large enough A > 0 and A = Ao/’ for some b’ > 0. Similar to the previous analysis,
we have with probability at least 1 — Cp=4",

<€'F]7 XE — XB*> + )\QHB*HM — )\QHEHM
S (]_ + Cob/)/\QH(B — B*)J* 2.1 - (1 - Cob,) /\QH(B - B*)J*C

where the constant ¢y > V2. Moreover, for any a > 0, we get

|1 (A.90)
N / 1 A
(em,m —m*) + (e, — ) < acL’w?, + 2acL*w? + %{Dg(fn, m*) +Da(S,¢")}, (A91)

with probability at least 1 — 1/v,(cL) — C/p(cL’), where L, L' > 0 can be customized.
Plugging the bounds of (A.90) and (A.91) into (A.88), we get

1 R
Ay(fi, ") — %{Dz(m,m*) +Dy(¢,¢%)}
< (14 cob'))\gn(ﬁi — %) g ||271 - (1- cob'))\QH(ﬂ2 — B*)J*c H2,1 + acL?w? + 2acL/2w?,

with probability at least 1 —Cp~4" —1/4,(cL) — C/¢(cL’), where C, c are positive constants.
With the regularity condition and and o’ = ¥/¢q, we obtain

a(nJ*HB — B*Hgoo + Dz(%V*» - %{Dﬂfna m*) + Da(<, C*)}

< KN J* + acl?W? + 2acLl2w§2. (A.92)
Setting a = 1/a and using A = \o/b' = (¢o/V) g, we obtain
- K o LWl 2eL?W?
— B*12 < =20 A2.,2(1 g m S A.93
||/B ﬂ ||2,oo — 7’LO£192 wn( ng) + na2J* naQJ* ( )

with probability at least 1 — Cp~4" — 1/¢,(cL) — C/p(cL'). With L = L' = A(logp)%,

13 - B 1B < 0 422108 )} + —o— A8 )} (W + )
2% = na? K no?J* m ¢
<CA_21 K ow? 19_2 2 2 A4
- na2192<ogp)q{ awﬁ+J*(wm+wg)}7 ( . )
which implies
= = Ka Vv 1 1
— Bl200 £ O—=——A(logp) s {wy + —=(wm , A.95
15 = 5l < O 20 Alog )i + i + ) (A.95)

with probability at least 1 — Cp~¢4" — C/p(cA(logp)*/?). Hence by taking A’ = A/¥ and
1
A = A'wy(log p)e, we have

_ VEKa Vi 1 1
— B llaee < CYEEY A l0g )i {wr 4 —— (Wi , A.96
1= 5l < O ) i+ o+ )} (A.96)
with probability at least 1 — Cp~4)* — C/p(cA"(log p)%) The proof is complete. O
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A.6 Analysis of a General Penalty

Consider the following problem associated with a general sparsity-inducing penalty P

= T
) + l0Bllz.p + S lI1ll3, (A.97)

where | - ,p is short for | - ,p(p and [Blla.rc) = S0, P18z A).

Since a sparsity-inducing penalty necessarily possesses thresholding power, we assume,
without loss of generality, that P(-; \) > Pg(+; \) throughout the subsection, where the “hard
penalty” Py (t; A) := (—t%/2 + At])Ljyj<r + (A%/2)1j>» is induced by the hard-thresholding,
and Py (B;A) = > F_, Pu(||Bell2; A) (see She (2016) for more details). Furthermore, a
penalty is referred to as subadditive if it satisfies P(t+s; \) < P(t; \)+P(s; A). In fact, when
P(t) is concave on R and P(0) = 0, P(|t]) is necessarily subadditive. Well-known examples
include the widely used ¢;-penalty, {o-penalty, SCAD, MCP, and bridge ¢, (0 < r < 1) in
the literature.

Theorem A.4. Assume that the effective noises €, €, and €. satisfy ||€q]|p, < wi, ||€mllv, <
wm, and ||&ll, < we where {p~()}? concave or {1 (t)}* <t on Ry (for example, ¢ can
be an Lg-norm with ¢ > 2 or a tg-norm with q > 0). Let é denote the optimal solution of
(A.97) with 0 > Ky := || X]||2.

(a) Let X\ = Aw;yy/log(ep) /T A1 with A a sufficiently large constant. Then the following
bound always holds

—1 2 1 2 2 * (|2
2,P(+5A) T A 1”?7 + ;(wm +w<) + 7tz (A98)

~ * T ~ * %
E{Az(u,u )+ 5Da(ji )} <o

(b) Let P be a sub-additive penalty. Assume that there exist some o > 0, ¥ > 0, and
some large K > 0 such that

aDy(p, p*) + (1 +9)l|e(B = B7) -

|2,p + K/\QJ*,
(A.99)
for all ¢T =[BT, m",cT], where A = Awyy/log(ep)//{(T + ) A9} with A a sufficiently

large constant. Then

o0 < Ay(p, 1) + (1= 9)]o(B = B*) gec

w2

ED2(/1>M*) S (7_ + Oé){(T j_ Oé) /\19}19 {KAQJ* log(ep) +Q9}
R L Q) SCH

(T + «)?

+ (LA ). (A.100)

According to the proof below, (A.99) can be relaxed to 9Py, g (0(8—05%) 7+; A) +aDa(p, p1*)+
lo(B = B*)g+llap < Au(p, 1*) + [|0(B = B*) geclla,p — VPom(0(B — 5%)g-c; ) + KN*J*, or
OPom(0(B — B%); A) + aDa(p, 1*) + [|08*|l2.p < Ay(p, i) + |0Bll2,p + KA2J* if P is not
subadditive.
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Proof. By definition, I(C) + Z||f]|3 + HQBHzP <UC) + Sl 3+ || 0B ,.p» Which means

A, 1) + Sl = 13
<{en, X3 = XB*) + (e, — ") + (60, ¢ — ") + (—7p", i — 1*)
+ 08, = l0B]l, 5

S5 o Dk ~ _ % N * b N % 7—2 %
<em XB = XB) + (emm — ) + (6,¢ = ) + Sl = w'll3 + 5 11713

2P HQBHZP’ (A.101)

+ |8

where b can be any positive number. )
To bound the stochastic term {e;, X (3 — 3*)), define Ay = wy+1/log(ep) and

2 1

R: sup {<€ﬁ,X(B_B*)> - _/HX(B_B*) 2 20

BeRr2p

Pont(0(B — B VabAx) }.

(A.102)

By Lemma A.7, for any o’ > 2’ > 0 and a sufficiently large constant A, P(R > a’w%t) <
Cexp(—ct)p~4’. Therefore, E[R] < a'w?.
Next, we bound (e, m — m*) by

- 1

(em,m —m*) = (P em,m —m*) < |uleq| - |m—m*s < a(u’en)? + %D2<ﬁl,m*)

(A.103)
for any a > 0, where P, = vu’ withu = (1/y/n)1,,. By the assumption on €4, ||(u”€z)? |y, S
[u”em |3, < wz,, from which it follows that E[(u”ez)?] < Cwy,. Similarly, for the stochastic
term (e.,< — ¢*) with e, = [egln,egln]T and ¢ —¢* = [(1/6 — 1/o")1T, (1/0 — 1/v)1T]T | we
have

1 1 1 1
(€11, (5 = =) + (€21, (5 = —)ln)
1 1 1 1
=(Pre11,, (5 - ;)1n> +(Pe,, (5 - ;)1n>
1
<a(u'ei, ) +a(uer, )’ + %DQ(éa ).

From Lemma A .4, we get a bound in Ly-norm:
E[(wle1, ] < {07 (P eps, I < {07 (D)2,

and E[(u"e1;, )?] < {¢ 1 (1)}2w?. To sum up, for any a > 0,

- 1 -
E{{em, m —m") + (6,¢ =<7} < aCly, + 20{p7 (1)} + 5-{Ds (1, m") + Dy (<, 6")}-

(A.104)
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Now, plugging the bounds (A.102) and (A.104) into (A.101) yields

A% T—b ~ * 1 g 1 ER—_— A%
E{ A i) + T2 = 1B} = - Dai,7%) = oDl %) + Daf6, <)}

1 Z Sk 2
= @PQH( (6 - /B )a v a/b,A)‘O) y HQBHQ,P(-;)\)
2
+ aCw?, + 2a{p~ (1) Pw? + %Hu*”% + Cd'w?. (A.105)

To prove part (a), we use the subadditivity of Py:

A

1 2 % 1 - — % A *
—Dy(n,7") — %{Dz(m,m ) +Do(¢6M)}

. T—>b, . .
B{ A, 1) + =i = I} = =D

1 1
SﬁP2H(QB Va't' AX) + %P2H(B Va't' AXg)

+ aCw?, + 2a{p (1) w2 + %Hu*”; + Cad'w?. (A.106)

N HQEHZP(-;)\)

Because P(-;\) > Py (- A), taking b =7/4,0 =1/2,a =2/7,d' =4/(7 A 1) gives

E{Az(ﬂ,u*) + %D2(ﬂ7 u*)}

2 . 2C 4 _ 4C
< 2|08 (|, . py + 2717113 + i + {7 (WP + — =0
L, 1 1
v T I + —(wf +wg) + —=wi (A.107)
To prove part (b), we use Hgﬁj*c 2.P(4) = |lo(B — B*) Ve c||2P and HQB} 2.P(N)
HQBJ* 2.P(A) < llo(B — B*) s PN and rewrite (A.105) as
]EAA* T_bA * (|2 1Di—* 1Di—* DA*
{ A1) + == w7113} = —Da(i 1) = 5 (D2, ) + Dafé, ")}
1 I 1 s
= 2_Z)’P2 H( (ﬁ 5*)J*; % @/b'A)\o) + Z_b’PQH( (ﬁ - 5*)J*CS \% G'b'A)\o)
+ HQ( B J ||2p - HQ(ﬁ - 6 )J*C 2,P(-;A) + GCW% + 2a{9071(1)}2w?
2
+ Sl + G, (A.108)
The condition (A.99) implies
aDa(p, 1) + 0P (0(B = B%) 74 A) + [l0(B = B%) 7+ll2,p(s)
<Ay 1)+ llo(B = B geclla.pin) = OPon (0(B = B7)gees A) + KX, (A.109)
With b = 1/(29), we add (A.108) and (A.109) to get
~ * 1 2 —x 1 S A%
E{(T +a —b)Da(j, )} = =Da(1,77) = 5 ADa(m,m") + Da(<,<7)}
2
< KN J* 4 aCw, + 2a{p~ (1) Pw? + %H/ﬂ”%—i— Cd'w?, (A.110)
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where A = Va'blAlg and A > Ay with Ay given in the Lemma A.7. Now, setting b =
(T+a)/4,d =4/{(T+a) NI}, a=2/(T + «) gives

T+« o
E{——Dx(jt, 1)}
2K A? 20w, A (D)2 272 |2 4Cw?
< w;”J* log(ep) + Cm g LT (L)}, + = Il -
{(t+a)ANV}V (T + «) (T+ ) T+« (T+a)AY
The proof is complete. O

Lemma A.7. Let € = [¢;] be an n-dimensional random vector (not necessarily mean centered
or having independent components) satisfying ||€|ly, < w. Suppose that X € R™%* satisfies
| X|l2 < 0. Let \g = wy/log(ep). Then there exist universal constants Ay, C,c > 0 such that
for any a > 2b >0, Ay > Ay, the following event

sup 2(e, X3 — —||X,B|]2 1P2H( oB: VabA o) > aw’t (A.111)

BER2P

occurs with probability at most C' exp(—ct)p‘CA%.

Proof. Let Py = (A2/2)1120. Define ly(B) = 2(e, X B) = 1| X B|2— L Py 1 (B; VabAoAo), 1o (B) =
2(e, XB) — 1| X B3 — L Poo(B; VabAgAy). Introduce two events ey = {supger lu(B) > atw?},
and €9 = {supger lo(B) > atw?}

First, we use an optimization technique to prove that ey = €y. Since By > Py, Pog > Po i

and thus g C eg. The occurrence of g implies that [ H(BO) > atw? for any 3° defined by

50€argmm—||X5||2—2<e XB) + PQH( B; vV abAg o). (A.112)

IBERQP a b

From Lemma 5 in She (2016), under || X||; < 1, there exists a globally optimal solution 3°
to the problem

min < {ly — X3+ Pos(B: ) (A113)
Ber2r 2
such that for any j = 1,...,p, either 3 = 0 or ||3?]|2 > A. Therefore, with a > 2b > 0, there
exists at least one global minimizer 3° satisfying Ps, ;7(3%; VabAi ) = Py (5% VabA; o)
and thus Iy (8°) = lo(6°°). This means supzcgazs lo(5) > lo(6°) = lu(6°) > atw?, and so
e C go. It suffices to prove P(gy) < Cexp(—ct)p~c

Next, we use Lemma A.8 to bound the tail probability of R defined by

R= sup sup {(e, XJ3) — —HXBH2 PQO(B \/_Al)\o)} (A.114)

1<J<p Bel'

where Pyo(3;Xo) = Po(J; M) = (1/2)JX\2 for €Ty and 'y = {3 € R¥: J(B) = J} (in the
trivial case of J = 0, the quantity inside the braces is 0).
By a scaling argument, for any a > 0,

(e, XB/IXBIa) KBl < & sup ((e.))? + - | KB (A.115)

O[EFJ
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Applying Lemma A.8 with G = 2, g = 2 results in

P( sup (e, XB) — —HX@’H2 LJlog(ep) g w’t) < Cexp(—ct), (A.116)
Bery
or
P( sup (¢, X3) — _HX5H2 —aLPyo(f; Xo) > aw t) < Cexp(—ct). (A117)
Ber,

Set A; > +/2L. Noticing that (i) (A2/2)Py(J; o) > LPy(J; Xo) + cA2Py(J; \g) for some
¢ >0, and (ii) Jlog(ep) > logp + J for any J > 1, we get

P(R > aw’t)

p
< ZIP’(§ ple, XB) — —|| X312 - PQO( B VabA; Ng) > aw?t)
J=1  B€ly
4 1
= P( sup (e, XB) — —HXﬁH2 aAfJlog(ep)w?7 > aw’t)
J—1  Bery
p
< ZIP’( sup (e, X3) — —||X/6’||2 - —LJlog(ep)w > aw’t + caA}J log(ep)w?)
Jj—1  Pery
p p
< Z Cexp(—ct) Z exp{—cA3(J +logp)}
J=1 J=1
< Cexp(—ct)p~4i, (A.118)
where the last inequality is due to the sum of geometric sequence. O]

Lemma A.8. Given a matriz X € R™PY with a block form of X = [Xi,...,X,]| with
X; € R™Y 1 < j < p, let X7 denote the submatriz formed by the column blocks of X
indexed by J. Define Ty = {a € RPY : |lalls < 1,a € R(Xs)} and Ty = U 7=y L7, where
1 < J <p. Lete = [g] be an n-dimensional random vector. (i) Assume € satisfies ||e||y, < w
for some ¢ > 1. Then for any t > 0,

P( sup ({¢,))* — LIGw* — (JG)qw > w?t) < Cexp(— ct%), (A.119)
P( Séle ({e,a))* = L[JG + (JG)g + (2(])3{10g(ep)}§}w2 > w?t) < Cexp(— ct%), (A.120)

where C' is a universal constant and ¢, L are constants depending on q only. (ii) Assume
that €1, ..., €, are independent, centered, and |||y, < w for some q € (0,2]. Then (A.119)
and (A.120) are replaced by

IP’( sup ({e,a))? — LIGw* > wzt) < Cexp (- ct%), (A.121)
IP’( Séllp ((e,a))* = L[JG + (2J)%{10g(ep)}§}w2 > w2t> <Cexp(— ct%). (A.122)
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Proof. First, we show (A.119) under the assumption that ||e[|,, < w for some ¢ > 1. Define
a centered random vector €, = € — M with M = E[e], then

sup (e, ) < sup (e, ) + sup (Px, M, a) < sup (e, a) + [|[UT M|, (A.123)
OLGF] ael“j OJGFJ ael T
where Py, = UU" is the orthogonal projection matrix onto R(Xz) with {U1,...,U g} as
an orthonormal basis and || Px, |2 = 1. We claim that [|[UT M|[3 = /S (E[UT€])? < CTGw?.
In fact, because ||Ul'e||y, < w,

+oo +o0
P([U7e| > tw) < / L - / exp(—t7) dt < oo, (A.124)
0 d’q(j) 0

and so E|Ul'e| < Cw, 1 <i < J.

By definition, {(e;,a) : @ € 'y} is a (centered) t,-process. The induced metric on
7 is: d(a,a) = w||a — d/|l2. To bound the metric entropy log(N(e,T'7,d))), where the
N(e,T'7,d)) is the smallest cardinality of an e-net that covers I'; under the metric d, we
apply a standard volume argument to get

log(N (e, T 7,d))) < IOg(%)JG = JGlog(Cw/e). (A.125)

By Theorem 5.36 in Wainwright (2019), we get

t4

ﬁ), (A.126)

IP’( sup |{e, o —a')| — L / Uy '(N(e, T, ))deZLt>§2eXp(—

a,o’el’ 7
for any ¢ > 0, where D = sup,, yer, d(@, o) = 2w. Equivalently,
2w
IP’( sup |(e,,a—a')| — L wq_l(/\/'(s,f‘g,d))dszwt> < Cexp(—ct?), (A.127)
a,a’ el 7 0
which implies
P( sup (e, @ / ¢ N(,T7,d))de > wt) < Cexp (- ct?). (A.128)
acl’ 7

Based on (A.124) and (A.128), we obtain

2w
P( sup (e, a) — LV JGw — L Vv, (N (e, Tg,d))de > wt) < Cexp (—ct?), (A.129)
0

acl 7
or 1
P( sup (¢, a) — LV JGw — L(JG)1w > wt) < Cexp ( — ct?). (A.130)
acl' 7
Therefore,
]P’( sup ({6, a))* — LIGw* — L(JG)gf,u2 > w2t2) < Cexp (- ct?), (A.131)
a€el’ 7
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and letting s = ¢* gives (A.119). With a union bound, we also obtain

P( sup ((e,a))* — LIGw* — (JG)qw > w?t) < (?)C’exp (- ct%)

a€el'y
<Cexp{— ct? + Jlog(ep)},  (A.132)

from which it follows

IP’( sup ((e,a))? — LIGw® — (JG)qcu — L2i” {Jlog(ep)}%w2 > w2t> < Cexp (- ct%).

(XEFJ
(A.133)
Next, we prove (A.121) assuming €y, ..., €, are independent, centered, and ||¢;ly, < w
for some 0 < ¢ < 2. By Holder’s inequality,
sup (e, ) = sup (P, ¢,a) < ||[U ¢l (A.134)

a€el’ 7 acl’ 7

where Py, = UU" is the orthogonal projection matrix onto R(Xz) with {U1,...,U,} as
an orthonormal basis and ||Py ||z = 1. It remains to get a tail bound for ||[U”¢l|3.

Noticing that (i) Ele] = 0, (ii) [|€ly, < w implies E[ef] < Cw?, (iii) |UUT||, = 1, and
(iv) Tr(UUT) = JG, we apply a generalized Hanson-Wright inequality (Sambale (2020),
Theorem 2.1) to obtain

P(|UTe|2 — LIGw? > w?t) < Cexp ( — ct?), (A.135)
where C' can be 2 and ¢, L are constants depending on ¢ only. This results in
]P’( sup ({e,a))? — LIGW* > th) < Cexp (- ct%). (A.136)
acl 7

Finally, we prove (A.122). Applying the union bound on (A.136) yields

P( sup ((e, ) — LIGw* > w’t) < (?)C’exp (- ct%) < Cexp{— ct? + Jlog(ep)}.

OLEFJ
(A.137)
Let t' =tz — (1/c)Jlog(ep). Then (A.137) can be rewritten as
P( sup ((e,a))* — LIGW® > w*{t' + Jlog(ep)} ) < Cexp(—ct). (A.138)
acl'y
Given 0 < ¢ < 2, by the convexity of ze on R, , we have (a + b)% < 247 (ag + bg) for any

a,b >0, and thus (A.138) becomes

P( sup ((e,))*> — LIGw?* — L2§71{Jlog(ep)}§w2 > 20 1? (t )3) < Cexp(—ct'), (A.139)
acl'y
or equivalently,
P( sup ((e,))*> — LIGw* — L27~ {Jlog(ep)}qw > w?s) < Cexp (- cs%) (A.140)
a€el'y

The proof is now complete. O
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B Further Extensions

We showcase two nonparametric statistical applications of skewed pivot-blend, one based on
data ranks and the other based on kernels.

Skewed rank-based estimation. Recently, there has been a lot of interest in rank-based
nonparametric estimation methods that minimize 1237, r{R(r;)/(n + 1) — 1} (Jaeckel,
1972), where R(r;) denotes the rank of r; among ry, ..., r,, or equivalently, the ¢; loss on the
spread of residuals: ﬁ > 4 |r; — r;| (Hettmansperger and McKean, 1978, 2010; Wang
et al., 2020). Applying the technique of U-statistics (with kernel h(r;,r;) = |r; — r;|) can
show that the criterion results in estimators with desired asymptotic properties.

The adoption of the symmetric (and relatively robust) ¢;-loss function heavily depends
on the assumption that r; follows an i.i.d. distribution (when assessed against the statistical
truth). In turn, it implies that the distribution of differences r; — r; is symmetrical, as in
the case of a double-exponential.

Nonetheless, the assumption may not hold in real-world applications beyond the i.i.d.
setting. Such deviations can result in extra skewness of |r; — ;| that cannot be captured by
an exponential (or half-normal) distribution. We introduce a skewed criterion that operates
on the absolute differences |r; — r;| and m,o,v > 0:

ri —rjl —m Lo nimm
Z {(+ + m) 1m(1—0)§|7“i—7"j|§m + (% + m> 1|ri_rj‘>m}
i#]

+n(n — 1)log{o[l — exp(—m)] + vexp(—m)}. (B.1)

(B.1) results from applying skewed pivot-blend to the exponential density (instead of the
double-exponential density). A regularization term (such as an ¢; penalty) can be incorpo-
rated to capture structural parsimony.

Kernel-assisted nonparametric skew estimation. Assume y — X% ~ SP((b*)(O'*, v*,m*),
where the functional form of the density ¢* is also unknown. We can employ a backward-
forward scheme for nonparametric estimation, along with explicit capture of skewness that
aligns with the theme of this paper.

To estimate o*, v*, m*, kernel may be employed to approximate ¢*, but the data follow
SP®"). We can address this by using backward pivot-blend. Holding f, o, v, m constant
for now, and referring to the definitions of 7; (1 < i < n), L(m), and R(m) in Remark 2,
introduce a kernel density estimator with appropriate weights to estimate ¢* based on the
transformed residuals 7;:

1< v r;—m
Sr(tih)= =) Ky (- +m =) 1y<m
h = {L(m)y + R(m)o o (B.2)
o Ty — MM
i L(m)v + R(m)aKh( , e t) 1”>m}'

where K),(t) = K(t/h), the kernel function K (t) can be any continuous symmetric func-
tion with ffooo K(t),dt = 1, and h > 0 represents the bandwidth parameter. The kernel
approach in conjunction with (forward) skewed pivot-blend gives rise to a nonparametric
skew-estimation problem, which warrants further investigation.
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(a) ¢: half-normal, m*: mean (b) ¢: Maxwell, m*: median (C) ¢: double Rayleigh, m*: right mode

Figure C.1: Plots of ¢ for Ex 3—Ex 5. The choices of m* are indicated in red dashed lines.

C More Experiments

In this part, we consider some densities which may not be unimodal or symmetric (as shown
in Figure C.1). The experimental setup is the same as in Section 5.1.

Ex 3. (Half-normal with the mean as the pivotal point): Let ¢ be the half-normal density
(with scale 1). We set n = 700, k = 0.1, m* as the mean, v* = 0.1 and ¢* = 0.2,0.3,0.4.

Ex 4. (Maxwell-Boltzmann with the median as the pivotal point): Here, ¢ is the
Maxwell-Boltzmann density which is widely used in statistical mechanics (Huang, 2008).
We set n = 500, k = 0.2, m* as the median, v* = 0.1 and ¢* = 0.4,0.5, 0.6.

Ex 5. (Double Rayleigh with m* as the right mode): Let ¢ be the double Rayleigh density
(with scale 1), n = 500, K = 0.1, m* be the right mode, v* = 0.1 and ¢* = 0.2,0.3,0.4.

Table C.1 illustrates significant issues with conventional methods in capturing skewness,
even when asymmetry is centered around the median, mean, or mode. Specifically, QR*
and BQR* failed to accurately recover the true 5* despite using the true quantile as input.
Moreover, in all three cases, AME or AME provided at least one misleading estimate of the
scales. In contrast, our proposed method demonstrated remarkable performance, with the
associated (-error being at most 1/3 of that of the other methods.

We also conducted experiments on the air pollution data of Leeds from 1994 to 1998
(Heffernan and Tawn, 2004; Southworth et al., 2020). The dataset contain 578 measurements
of the daily maximum levels of ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO),
sulfur dioxide (SO2) and particulate matter (PM10). We forecasted PM10 levels for the
summer months (April to July) using other air pollutants. We considered the Gumbel model
and its skewed pivot-blend enhancement SPEUS, in addition to ZQR, AME, and ESN. The
p-values from the Kolmogorov-Smirnov tests for these models were 8e-2, 0.71, 9e-2, 0.20,
and 8e-8, respectively. The results may appear surprising, considering the popularity of the
skewed Gumbel distribution for modeling such extreme values (Boldi and Davison, 2007).
Figure C.2 presents the residual Q-Q plots, demonstrating that our skew-reinforced method
significantly improves data fit compared to the classical Gumbel model.

In real-world applications, data scientists frequently confront challenges related to skew-
ness. However, fitting a common distribution that inadequately addresses these distortions
can lead to subpar model fits and misleading inferences. The skewed pivot-blend technique
refines skewness management in these distributions, thus enhancing the accuracy and relia-
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Skewed half-normal

o* /vt =2 oc*/v* =3 o* /vt =4
Err(8) Err(o) Err(v) Err(8) Err(oc) Err(v) Err(8) Err(oc) Err(v)
QR* 0.80 — — 0.80 — — 0.80 — —
BQR* 0.80 0.49 0.62 0.80 0.51 0.64 0.80 0.53 0.65
AME 0.64 0.99 1.22 0.56 1.0 2.02 0.48 1.0 2.82
ZQR 0.65 0.97 0.09 0.59 0.95 0.37 0.52 0.95 0.67
SPEUS 0.14 0.11 0.1 0.08 0.08 0.13 0.06 0.09 0.17
Skewed Maxwell-Boltzmann
o* /vt =4 o*/v* =5 o* /vt =6
Err(8) Err(o) Err(v) Err(8) Err(oc) Err(v) Err(8) Err(oc) Err(v)
QR 1.59 — — 1.59 — — 1.59 — —
BQR* 1.59 0.41 0.74 1.59 0.43 0.75 1.59 0.44 0.75
AME 1.47 0.22 0.78 1.46 0.19 0.84 1.46 0.17 0.91
ZQR 1.49 0.58 0.30 1.48 0.58 0.32 1.48 0.57 0.34
SPEUS 0.18 0.14 0.20 0.17 0.13 0.21 0.16 0.12 0.30
Skewed double Rayleigh
o* /vt =2 o* /v =3 o /vt =4
Err(8) Err(o) Err(v) Err(8) Err(oc) Err(v) Err(8) Err(oc) Err(v)
QR 1.0 — — 1.0 — — 1.0 — —
BQR* 1.0 0.68 0.27 1.0 0.70 0.26 1.0 0.71 0.26
AME 0.87 1.78 1.76 0.88 2.02 1.9 0.89 2.15 1.92
ZQR 0.67 0.50 1.67 0.50 0.48 2.69 0.32 0.45 3.78
SPEUS 0.22 0.03 0.18 0.15 0.03 0.24 0.10 0.03 0.26

Table C.1: Performance comparison for skewed half-normal with pivotal point at the mean, skewed Maxwell
with pivotal point at the median, and skewed double Rayleigh with pivotal point at the right mode (Ex 3-Ex
5)

Gumbel SPEUS-gumbel

Sample Quaniles.
‘Sample Quantiles

Figure C.2: Q-Q plots of residuals for Gumbel (left) and SPEUS (right) on air pollution data.

bility of the models.
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