
A Technical Details

Throughout the proofs, we use C, c to denote positive constants, and they are not necessarily
the same at each occurrence. Given a matrix A, we use R(A) to denote the column space
(range) of A and A+ to denote the Moore-Penrose inverse of A. Denote by PA = A(ATA)+AT

the orthogonal projection on R(A).

A.1 Basics

The conventional definition of Orlicz ψ-norms goes as follows: Given a strictly increasing
convex function ψ on R+ := [0,+∞) with ψ(0) = 0, then the Orlicz ψ-norm of a random
variable Y is defined as ∥Y ∥ψ = inf{t > 0 : Eψ(|Y |/t) ≤ 1}.

Some well-known examples of Orlicz ψ-norms are the Lq-norms: ∥Y ∥q = (E|Y |q)1/q
associated with ψ(x) = xq (q ≥ 1) (e.g., the Pareto distribution), and the ψq-norms (q ≥ 1)
with

ψq(x) = exp(xq)− 1. (A.1)

(A.1) encompasses both sub-Gaussian and sub-Exponential type random variables for q =
2, 1, without the requirement for the random variables to be centered.

Our upcoming theorems often relax the strict requirements of strict monotonicity and
convexity for ψ. This flexibility allows us to handle random variables with much heavier tails.
For instance, we consider the extension of (A.1), known as sub-Weibull random variables,
which have finite ψq-norms for q > 0 (cf. Kuchibhotla and Chakrabortty (2022)). As
0 < q < 1, ψq is nonconvex, and these random variables, including Weibull, exhibit heavier
tails compared to sub-Exponential ones (Götze et al., 2021).

Throughout the paper, when we refer to the Orlicz norm of a random variable, denoted
as ∥ · ∥ψ or sometimes ∥ · ∥φ, it is always understood that ψ(·) (or φ(·)) is an nondecreasing
function defined on R+ with ψ(0) = 0. Theorem 1 also requires ψ to satisfy the regularity
condition lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞ for some constant c > 0 (van der Vaart and
Wellner, 2013). It is easy to verify that all these conditions are met by Lq with q > 0 and
ψq with 0 < q ≤ 2. Orlicz norms provide a useful framework for analyzing skewed random
variables, including those without zero mean.

In this paper, we define that a random vector ϵ ∈ Rn has its Orlicz ψ-norm ∥ϵ∥ψ bounded
above by ω if

∥⟨ϵ, α⟩∥ψ ≤ ω∥α∥2, ∀α ∈ Rn. (A.2)

Note that (A.2) is defined using the Euclidean norm ∥ · ∥2, and the function ψ may not
necessarily be convex. Furthermore, the components of ϵ are not required to be independent
or centered. However, if ϵ does have centered, independent components, its vector Orlicz ψ-
norm is bounded by the largest Orlicz ψ-norm among its components (up to a multiplicative
constant)..

Lemma A.1. Let ϵ1, . . . , ϵn be centered, independent random variables satisfying ∥ϵi∥ψq ≤ ω
for some q ∈ (0, 2]. Given any α ∈ Rn, we have ∥⟨α, ϵ⟩∥ψq ≤ C∥α∥2ω, where C is a constant
depending on q only.
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To prove the lemma, we first introduce two lemmas. The first is Theorem 1.5 in Götze
et al. (2021).

Lemma A.2. Let ϵ1, . . . , ϵn be independent random variables satisfying ∥ϵi∥ψq ≤ ω for some
q ∈ (0, 2]. Let f(ϵ) : Rn → R be a polynomial of degree D ∈ N and denote by f (d) the
d-tensor of its d-th order partial derivatives for 1 ≤ d ≤ D. Then for all t > 0, we have

P(|f(ϵ)− Ef(ϵ)| ≥ t) ≤ 2 exp
(
− C min

1≤d≤D
(

t

ωd∥Ef (d)(ϵ)∥HS
)
q
d

)
, (A.3)

where C is a constant that depends on D and q and ∥·∥HS denotes the Hilbert-Schmidt norm
(or the Frobenius norm in the case of a matrix).

The second fact is a slight modification of Lemma 2.2.1 in van der Vaart and Wellner
(2013).

Lemma A.3. Let X be a random variable such that for some q > 0,

P (|X| > t) ≤ c exp
(
−
( t
ω

)q)
, ∀t > 0, (A.4)

where ω > 0 and c is constant, then we have ∥X∥ψq ≲ ω.

The proof is straightforward:

E
(
exp(M |X|q)− 1

)
=E

∫ |X|q

0

M exp(Mu) du

=

∫ ∞

0

P(|X| > u
1
q )M exp(Mu) du

=

∫ ∞

0

cM exp(Mu− u

ωq
) du ≤ cM

ω−q −M
.

It suffices to take M−1/q ≥ c′ω to have E(exp(M |X|q)− 1) ≤ 1. Therefore, ∥X∥ψq ≲ ω.
Now, given any α ∈ Rn, let fα(ϵ) = ⟨α, ϵ⟩ =

∑n
i=1 αiϵi. Then (i) fα(ϵ) is an 1-degree

polynomial of ϵ1, . . . , ϵn, (ii) ∥E[∇fα(ϵ)]∥2 = ∥α∥2 and E[
∑n

i=1 αiϵi] = 0, and (iii) ϵ1, . . . , ϵn
are independent and satisfy ∥ϵi∥ψq ≤ ω. Applying Lemma A.2 with D = 1, d = 1 yields

P
(
|

n∑
i=1

αiϵi| > t
)
= P

(
|fα(ϵ)| > t

)
≤ 2 exp

(
− C

( t

ω∥α∥2
)q)

, (A.5)

where C is a constant depending on q only. By Lemma A.3, (A.5) implies ∥⟨α, ϵ⟩∥ψq ≤
C∥α∥2ω, where C is a constant depending on q only. The proof of Lemma A.1 is complete.

The following lemma is useful for stating the assumptions on effective noises.

Lemma A.4. Let ψ, φ be any two nondecreasing nonzero functions defined on R+ with
ψ(0) = φ(0) = 0 (not necessarily convex). Define φ−1(t) := sup{x ∈ R+ : φ(x) ≤ t}.
and ψ−1 similarly. (i) Suppose that ψ(φ−1(t)/c0) is concave in t on R+ for some c0 >
φ−1(1)/ψ−1(1). Then for any random variable X, we have ∥X∥ψ ≤ c0∥X∥φ. (ii) Suppose
that ψ(φ−1(t)/c0) ≤ t for some c0 > 0, then ∥X∥ψ ≤ c0∥X∥φ.
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We remark that the condition for c0 in part (i) can be replaced by c0 ≥ φ−1(1)/ψ−1(1)
when ψ is continuous at 1. For completeness, we provide the proof below.

First, by the definition of φ−1, u ≤ φ−1(φ(u)) for any u ≥ 0. Therefore, X/∥X∥φ ≤
φ−1

{
φ(X/∥X∥φ)

}
, from which it follows that

ψ
( X

c∥X∥φ

)
≤ ψ

[1
c
φ−1

{
φ(

X

∥X∥φ
)
}]
. (A.6)

To prove part (i), let f(u) = ψ
(
φ−1(u)/c

)
with c > 0 to be determined. Then f(u)

is an increasing function on R+. (In fact, for any u ≥ u′ ≥ 0, φ−1(u′) ≤ φ−1(u), and so
ψ{φ−1(u′)/c} ≤ ψ{φ−1(u)/c}.) From (A.6), picking t = φ(X/∥X∥φ) gives

ψ
( X

c∥X∥φ

)
≤ ψ

[1
c
φ−1

{
φ(

X

∥X∥φ
)
}]

= f(t). (A.7)

With c > φ−1(1)/ψ−1(1) (or c ≥ φ−1(1)/ψ−1(1) when ψ is continuous at 1), we can use
Jensen’s inequality to get

E
{
ψ
( X

c∥X∥φ

)}
≤ E

(
ψ
[1
c
φ−1

{
φ(

X

∥X∥φ
)
}])

= E
(
f(t)

)
≤ f

(
E(t)

)
≤ f(1) ≤ 1. (A.8)

To prove part (ii), we still set f(u) = ψ
(
φ−1(u)/c

)
with c > 0 and t = φ(X/∥X∥φ). Based

on (A.6), we get

ψ
( X

c∥X∥φ
)
≤ f(t) ≤ t = φ

( X

∥X∥φ
)
. (A.9)

The proof of Lemma A.4 is complete.

A.2 An Excess Risk Bound

This part establishes an excess risk bound for location estimation using pivot-blend, which is
uniform in scale parameters, shedding light on the impact of asymmetrical scales (skewness)
and the presence of an unknown pivotal point. This result is non-asymptotic and non-
parametric, making it applicable to various scenarios.

Let yi ∈ R and Xi ∈ Rp which satisfy satisfy (Xi, yi)
i.i.d.∼ F ∗, where F ∗ is a distribution

that depends on β∗,m∗, σ∗, ν∗, where we use superscript ∗ to denote the statistical truth.
As discussed in Section 2.3, we consider the practice of estimating the scales beforehand
and then minimizing a criterion over all location parameters βj(1 ≤ j ≤ p),m. For ease of
presentation, given (σ, ν), let lσ,ν(·;Xi, yi), imposed on θ := (β,m), denote a loss motivated
by skewed pivot-blend:

lσ,ν(θ;Xi, yi) := ρ
(ri −m

σ
+m

)
1ri−m≤0 + ρ

(ri −m

ν
+m

)
1ri−m>0

+ χ0 log
[
σΦ(m) + ν{1− Φ(m)}

]
with ri = yi −XT

i β,
(A.10)

where the calibration parameter χ0 > 0 and 0 ≤ Φ(m) ≤ 1. Note that Φ is not necessarily
directly associated with ρ. Define θ̂σ,ν by empirical risk minimization

θ̂σ,ν = argmin
θ

n∑
i=1

lσ,ν(θ;Xi, yi). (A.11)
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Certainly, opting for different values of σ and ν produces diverse asymmetric losses and influ-
ences the overall risk. In our analysis, no restrictions will be placed on σ and ν. The values
of (σ, ν) can be specified based on domain knowledge or determined in a data-dependent
manner. For notational simplicity, we sometimes abbreviate θ̂σ,ν as θ̂ when there is no
ambiguity.

To evaluate the generalization performance of θ̂, let (X0, y0) be a new observation that
follows F ∗ but is independent of the training data (Xi, yi), (1 ≤ i ≤ n), and define the
population risk of θ̂ by

Rσ,ν(θ̂) := E(X0,y0)

[
lσ,ν(θ̂;X0, y0)

]
, (A.12)

where the expectation is taken with respect to the new observation (X0, y0) only. Due to the
finite number of observations in estimation, Rσ,ν(θ̂σ,ν) is always greater than the population
risk of the ideal θ∗σ,ν = argminθ Rσ,ν(θ), or Rσ,ν(θ

∗
σ,ν) = infθ∈ΩRσ,ν(θ). In such a setup, the

notion of excess risk E(θ̂σ,ν ;σ, ν) is helpful (Devroye et al., 1996):

Excess Risk: E(θ̂σ,ν ;σ, ν) := Rσ,ν(θ̂σ,ν)−Rσ,ν(θ
∗
σ,ν). (A.13)

Our main objective is to establish a non-asymptotic bound for E(θ̂σ,ν ;σ, ν) regardless of
the data distribution for a broad range of ρ that satisfy the following assumption.

ASSUMPTION A: Assume that the loss ρ satisfies (i) ρ is bounded: ρ ∈ [0, B] for some
B > 0, and (ii) ρ is regular in the sense that ρ is piecewise polynomial on K ≥ 1 intervals
ρ(t) = Pi(t), ∀t ∈ [ui−1, ui), i = 1, . . . , K, where u0 = −∞, uK = ∞, and each polynomial
function Pi has degree at most D ≥ 0.

Assumption A encompasses a wide range of practically used loss functions in robust
regression and classification, specifically designed to handle extreme outliers. For example,

some loss functions like ρ(t) =
∫ |t|
0
ψ(s) ds, with a redescending ψ, such as Tukey’s bisquare

ψ(t) = t{1 − (t/c)2}2 if |t| ≤ c, and 0 otherwise (Hampel et al., 2011), fit in the category.
Some other ρ functions can be effectively approximated by piecewise polynomial functions.

Theorem A.1. As long as the loss ρ satisfies Assumption A, the estimator θ̂σ,ν defined in
(A.11) satisfies the following probabilistic bound for all σ, ν > 0,

P

{
sup
σ,ν>0

E(θ̂σ,ν ;σ, ν)− C

[
B
√

p log
{
(K + 1)(D + 1)

}
√
n

+
(B ∨ χ0)

{
log σ∨ν

σ∧ν + | log(σ ∧ ν)|
}

√
n

×

{√
log

(
log

σ ∨ ν

σ ∧ ν
∨ | log(σ ∧ ν)| ∨ 1

)
+

√
log

1

ϵ

} ]
≤ 0

}
≥ 1− ϵ.

The theorem provides a bound for the excess risk E(θ̂σ,ν ;σ, ν) that holds uniformly in σ
and ν with probability at least 1− ϵ, as characterized by the following rate

B
√
p log

{
(K + 1)(D + 1)

}
√
n

+
B ∨ χ0

{
log σ∨ν

σ∧ν + | log(σ ∧ ν)|
}

√
n

×
{√

log
1

ϵ
+√

log
(
log

σ ∨ ν
σ ∧ ν

∨ | log(σ ∧ ν)| ∨ 1
)}

. (A.14)
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The first term in (A.14) illustrates the influence of loss complexity and problem dimensions
on the excess risk. The second term, which incorporates both σ and ν, arises due to the
pivot estimation. Clearly, when there is no skewness, σ = ν ⇒ log σ∨ν

σ∧ν = 0 and the rate
becomes

B
√
p log

{
(K + 1)(D + 1)

}
√
n

+
(B + χ0)| log(σ ∧ ν)|√

n
×
{√

log(1 + | log(σ ∧ ν)|) +
√

log
1

ϵ

}
.

In the more practical scenario of unequal scales, the risk for location estimation can signif-
icantly increase, and the provided bound quantitatively characterizes how skewness inflates
the risk non-asymptotically.

To prove the theorem, we first introduce a basic excess-risk bound for fixed σ, ν > 0.

Lemma A.5. Suppose that the loss ρ satisfies Assumption A. Fixing the values of σ, ν > 0
in (A.10), the corresponding estimator θ̂σ,ν from (A.11) satisfies

E(θ̂σ,ν ;σ, ν) ≲ B

√
p log

{
(K + 1)(D + 1)

}
n

+
B ∨ χ0

(
| log σ ∧ ν|+ log ν∨σ

σ∧ν

)
√
n

√
log

1

ϵ
,

(A.15)

with probability at least 1− ϵ.

Proof. Let {X, y} denote the training data, i.e., {X, y} :=
{
(Xi, yi), 1 ≤ i ≤ n

}
with

(Xi, yi)
i.i.d.∼ F ∗. Given σ, ν > 0, define a function class consisting of all lσ,ν(θ; ·) θ ∈ Ω =

Rp × R
Lσ,ν(Ω) :=

{
lσ,ν(θ; ·) : θ ∈ Ω

}
. (A.16)

For simplicity, we often use the shorthand notations R(·), R(n)(·), and l(θ; ·) to denote Rσ,ν(·),
(1/n)

∑n
i=1 lσ,ν(·;Xi, yi), and lσ,ν(θ; ·), respectively, when there is no ambiguity.

First, the standard bound for excess risk through uniform laws yields

R(θ̂σ,ν)−R(θ∗σ,ν) ≤R(θ̂σ,ν)−R(n)(θ̂σ,ν) +R(n)(θ̂σ,ν)−R(n)(θ∗σ,ν) +R(n)(θ∗σ,ν)−R(θ∗σ,ν)

≤ 2 sup
θ∈Ω

∣∣R(θ)−R(n)(θ)
∣∣ = 2 sup

l∈Lσ,ν(Ω)

∣∣Pnl − Pl
∣∣ = 2

∥∥Pn − P
∥∥
Lσ,ν(Ω)

, (A.17)

where P is the distribution F ∗ and Pn is the empirical measure that places probability mass
1/n on each (Xi, yi), 1 ≤ i ≤ n.

Let
gσ,ν(m) := χ0 log

[
σΦ(m) + ν{1− Φ(m)}

]
. (A.18)

Without loss of generality, we assume that σ ≤ ν, that is, σ ∧ ν = σ, σ ∨ ν = ν, then

gσ,ν(m) = χ0 log σ + χ0 log
[
1 + (

ν

σ
− 1){1− Φ(m)}

]
. (A.19)

Because log(1 + ( ν
σ
− 1)t) is an increasing function for t ≥ 0, we know

χ0 log σ ≤ gσ,ν(m) ≤ χ0 log σ + χ0 log
ν

σ
, (A.20)
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from which it follows that

|gσ,ν(m)| ≤
∣∣χ0 log σ + χ0 log

ν

σ

∣∣ ∨ |χ0 log σ| ≤ |χ0 log σ|+ χ0 log
ν

σ
. (A.21)

By Assumption A and (A.21),

|lσ,ν | ≤ |ρ|+ |gσ,ν | ≤ B + χ0

(
| log σ|+ log

ν

σ

)
. (A.22)

Due to (A.22) and (Xi, yi)
i.i.d.∼ F ∗, applying McDiarmid’s inequality and symmetrization

in empirical process theory yields a data-dependent bound with probability at least 1− ϵ,

∥∥Pn − P
∥∥
Lσ,ν(Ω)

≤ 2RX,y(Lσ,ν(Ω)) + 6
{
B + χ0

(
| log σ|+ log

ν

σ

)}√ log(3/ϵ)

2n
, (A.23)

where RX,y(Lσ,ν(Ω)) is the empirical Rademacher complexity of Lσ,ν(Ω) with respect to the
training data {X, y}:

RX,y(Lσ,ν(Ω)) :=
1

n
Eϵ sup

l∈Lσ,ν(Ω)

n∑
i=1

ϵil(θ;Xi, yi), (A.24)

and ϵi’s are i.i.d. Rademacher random variables; see, e.g., Theorem 3.4.5 in Giné and Nickl
(2015). Note that the expectation in (A.24) is taken with respect to ϵ only, and (A.24)
depends on σ, ν through the function class Lσ,ν(Ω).

It remains to bound the empirical Rademacher complexity. Toward this, denote by Aσ, Aν
two augmented design matrices

Aσ = − 1

σ
[X, (1− σ)1n], Aν = −1

ν
[X, (1− ν)1n], (A.25)

where 1n is a column vector of n ones. Let

ασ =
1

σ
y, αν =

1

ν
y. (A.26)

Suppose that rank(Aσ) ≤ r and rank(Aν) ≤ r. By the singular value decomposition,

Aσ = UσDσV
T
σ , Aν = UνDνV

T
ν , (A.27)

where Uσ, Uν are orthogonal matrices with r columns: UT
σ Uσ = Ir×r, U

T
ν Uν = Ir×r. Define

Ūσ = [Uσ, ασ], Ūν = [Uν , αν ]. (A.28)

Now, by the sub-additivity of sup and (A.28),

RX,y(Lσ,ν(Ω))

≤ 1

n
Eϵ sup

θ∈Ω
⟨ϵ, ρ(Aσθ + ασ)⟩+

1

n
Eϵ sup

θ∈Ω
⟨ϵ, ρ(Aνθ + αν)⟩+

1

n
Eϵ sup

m∈R
⟨ϵ, gσ,ν(1m)⟩

≤ 1

n
Eϵ sup

ξ∈Rr+1

⟨ϵ, ρ(Ūσξ)⟩+
1

n
Eϵ sup

ξ∈Rr+1

⟨ϵ, ρ(Ūνξ)⟩+
1

n
Eϵ sup

m∈R
⟨ϵ, gσ,ν(1m)⟩. (A.29)
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To bound the first term in (A.29), let

Z(X, y, σ) = Ūσ = [Z1, · · · , Zn]T , (A.30)

and given ρ, define a class of functions

F :=
{
ρ(⟨ξ, ·⟩) : ξ ∈ Rr+1

}
, (A.31)

which does not depend on the two scale parameters. Given Z(X, y, σ), letQn be the empirical
measure determined by Zi, 1 ≤ i ≤ n, and

∥f − f̃∥2Qn
:=

1

n

n∑
i=1

{
f(Zi)− f̃(Zi)

}2
, ∀f, f̃ ∈ F . (A.32)

Then

1

n
Eϵ sup

ξ∈Rr+1

⟨ϵ, ρ(Ūσξ)⟩ =
1√
n
Eϵ sup

f∈F

1√
n

n∑
i=1

ϵif(Zi) ≤
C√
n

∫ B

0

√
logN (ε,F , ∥ · ∥Qn) dε,

(A.33)

where the last inequality is due to Dudley’s integral bound. Because |f | ≤ B, ∀f ∈ F , by
Theorem 2.6.7 in van der Vaart and Wellner (2013) we know

N (ε,F , ∥ · ∥Qn) ≤ CV(F)
(cB
ε

)2V(F)
, (A.34)

where V(F) denotes the VC-dimension of F defined through the notion of subgraph (cf.
Definition 3.6.8 in Giné and Nickl (2015)). In more details, V(F) is the VC-dimension of
the following {0, 1}-valued function class defined on Rr+1 × R:

H :=
{
hξ(z, t) = 1ρ(⟨ξ,z⟩)>t = sign(ρ(⟨ξ, z⟩)− t) : ξ ∈ Rr+1

}
. (A.35)

Here, the sign function is defined by sign(a) = 1 if a > 0, and 0 otherwise, and recall that
1ρ(⟨ξ,z⟩)>t is the indicator function of the set

{
(z, t) : ρ(⟨ξ, z⟩) > t, z ∈ Rr+1, t ∈ R

}
or the

subgraph of ρ(⟨ξ, ·⟩) for each given ξ.
To bound V(H), we introduce a more general function class H̃

H̃ :=
{
h̃ξ,ω1,ω2(z, t) = sign

(
ω1ρ(⟨ξ, z⟩) + ω2t

)
: ξ ∈ Rr+1, ω1, ω2 ∈ R

}
, (A.36)

where h̃ξ,ω1,ω2(z, t) is defined on (z, t) ∈ Rr+1 ×R and has two additional parameters ω1 and
ω2 than hξ(z, t) in the definition of H. Since H ⊂ H̃ (by fixing ω1 = 1, ω2 = −1),

V(F) = V(H) ≤ V(H̃). (A.37)

H̃ corresponds to the set of functions computed by a neural network N shown in Figure A.1.
It has two computation units, one in the hidden layer with activation function ρ, and the
other in the output layer applying a sign operation on the combined inputs ω1ρ(⟨ξ, z⟩)+ω2t.
Lemma A.6 is Theorem 10 in Bartlett et al. (2019) and can be proved based on Theorem
2.2 of Goldberg and Jerrum (1995).
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Figure A.1: Architecture of the network N that computes h̃ξ,ω1,ω2(z, t) ∈ H̃.

Lemma A.6. Suppose that a neural network N0 satisfies (i) N0 has a directed acyclic graph,
that is, the connections from input or computation units to computation units do not form
any loops, (ii) the unique output unit is the only computation unit in the output layer (layer
J), where J ≥ 2 denotes the length of the longest path in the graph of N0, and the activation
function of the output unit is a sign function that takes inputs from units in any layer j < J ,
including the input layer (layer 0), and (iii) within each computation unit except the output
unit, Ψ is the activation function and is piecewise polynomial on I ≥ 1 intervals Ψ(t) =
Pi(t), ∀t ∈ [ui−1, ui), i = 1, . . . , I, where u0 = −∞, uI = ∞, and each polynomial function Pi
has degree at most M ≥ 0. Let W ≥ 2 be the number of parameters (weights and biases) and
U ≥ 2 be the number of computation units. Let G denote the set of {0, 1}-valued functions
computed by the network N0, then V(G) ≤ 2W log2

[
16e{MU−1 +

∑U−1
i=0 M

i}(1 + I)U
]
.

Our networkN as shown in Figure A.1 is a feed-forward neural network and has a directed
acyclic graph structure. The output unit of N in the output layer takes the input ρ(⟨ξ, z⟩)
from the computation unit in the hidden layer and the input unit t ∈ R in the input layer.
Under Assumption A, our network N satisfies the assumptions in Lemma A.6 and has r+3
parameters (no bias parameters) and two computation units. Using Lemma A.6, we get

V(H̃) ≤ C(r + 3) log
{
e(2D + 1)(1 +K)2

}
≲ r log

{
(K + 1)(D + 1)

}
. (A.38)

Now, based on (A.37) and (A.38),

V(F) ≤ Cr log
{
(K + 1)(D + 1)

}
, (A.39)

and combining (A.33), (A.34), and (A.39) results in

1

n
Eϵ sup

ξ∈Rr+1

⟨ϵ, ρ(Ūσξ)⟩ ≤
C√
n

∫ B

0

√
V(F) log

B

ε
dε ≲ B

√
r log

{
(K + 1)(D + 1)

}
n

. (A.40)

Similarly, the second term in (A.29) satisfies

1

n
Eϵ sup

ξ∈Rr+1

⟨ϵ, ρ(Ūνξ)⟩ ≲ B

√
r log

{
(K + 1)(D + 1)

}
n

. (A.41)
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Note that (A.40) and (A.41) hold for all σ, ν > 0.
Finally, we bound the third term on the right-hand side of (A.29). Let

qσ,ν(m) := χ0 log
[
1 + (

ν

σ
− 1){1− Φ(m)}

]
, (A.42)

and so 0 ≤ qσ,ν(m) ≤ χ0 log
ν
σ
. Again, by the sub-additivity of sup and Dudley’s integral

bound,

1

n
Eϵ sup

m∈R
⟨ϵ, gσ,ν(1m)⟩ ≤ 1

n
χ0 log σEϵ sup

m∈R
⟨ϵ, 1⟩+ 1

n
Eϵ sup

m∈R
⟨ϵ, qσ,ν(1m)⟩

≤ C

n

∫ 1
2
χ0 log

ν
σ

√
n

0

√
logN

(
ε,
{
[qσ,ν(1m)] : m ∈ R

}
, ∥ · ∥2

)
dε

≤ C

n

∫ 1
2
χ0 log

ν
σ

√
n

0

√
logN

( ε√
n
,
[
0, χ0 log

ν

σ

]
, | · |

)
dε

≲
χ0 log

ν
σ√

n
. (A.43)

Plugging (A.40), (A.41), and (A.43) into (A.29) yields

RX,y(Lσ,ν(Ω)) ≲ B

√
r log

{
(K + 1)(D + 1)

}
n

+
χ0 log

ν
σ√

n
. (A.44)

Summarizing (A.17), (A.23), and (A.44), we have the following bound with probability at
least 1− ϵ for any 0 < ϵ < 1,

E(θ̂σ,ν ;σ, ν)

≤C

[
B

√
r log

{
(K + 1)(D + 1)

}
n

+
χ0 log

ν
σ√

n
+
B + χ0

(
log ν

σ
+ | log σ|

)
√
n

√
log

1

ϵ

]

≲B

√
p log

{
(K + 1)(D + 1)

}
n

+
B ∨ χ0

(
log ν

σ
+ | log σ|

)
√
n

√
log

1

ϵ
, (A.45)

where the last inequality is due to r ≤ p+ 1 ≲ p. The proof of Lemma A.5 is complete.

Lemma A.5 shows the effect of skewness for fixed values of σ, ν. For example, when
σ = σ∗, ν = ν∗, the excess risk E(θ̂σ∗,ν∗ ;σ

∗, ν∗) satisfies

E(θ̂σ∗,ν∗ ;σ
∗, ν∗) ≲

B
√
p log

{
(K + 1)(D + 1)

}
√
n

+
B ∨ χ0

{
log σ∗∨ν∗

σ∗∧ν∗ + | log(σ∗ ∧ ν∗)|
}

√
n

√
log

1

ϵ

(A.46)

with probability at least 1 − ϵ. Our objective is to establish a uniform law that applies to
all scale parameters σ, ν > 0. Toward this, let

τ = | log(σ ∧ ν)|+ log
σ ∨ ν
σ ∧ ν

, (A.47)
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which is nonnegative. By Lemma A.5, there exists a universal constant C such that the
event A(τ, t)

A(τ, t) :=

E(θ̂σ,ν ;σ, ν)− C

[
B

√
p log

{
(K + 1)(D + 1)

}
n

+
(
B + χ0τ

)
t

]
≥ 0

 (A.48)

occurs with probability

P
[
A(τ, t)

]
≤ exp(−2nt2), (A.49)

for any t > 0.

Let [0,+∞) =
∞⋃
l=0

[τl, τl+1] with 0 = τ0 < τ1 < . . . < +∞ to be determined. Let Q(τ) ≥ 0

(∀τ ≥ 0) be an increasing function. Then, for all l ≥ 0 and l ∈ Z, τ ∈ [τl, τl+1] implies τ ≥ τl,
Q(τ) ≥ Q(τl), and τQ(τ) ≥ τQ(τl) ≥ τlQ(τl). Based on (A.49) and the union bound,

P

 sup
σ,ν>0

E(θ̂σ,ν ;σ, ν)− C

[
B

√
p log

{
(K + 1)(D + 1)

}
n

+
(
B + χ0τ

){
t+Q(τ)

}]
≥ 0


≤

∞∑
l=0

P
[
A
(
τl, t+Q(τl)

)]
. (A.50)

Take Q(τ) =
√
log(1 + τ)/n and τl = l for all l ≥ 0 and l ∈ Z, then (A.50) is bounded

by

∞∑
l=0

P

[
A

(
l, t+

√
log(1 + l)

n

)]
≤

∞∑
l=0

1

(l + 1)2
exp(−2nt2) ≤C exp(−2nt2). (A.51)

Plugging (A.47) into (A.51) gives the following uniform law for all σ, ν > 0 with probability
1− ϵ

E(θ̂σ,ν ;σ, ν) ≤C

[
B
√
p log

{
(K + 1)(D + 1)

}
√
n

+
B ∨ χ0

{
log σ∨ν

σ∧ν + | log(σ ∧ ν)|
}

√
n

×
{√

log
1

ϵ
+

√
log

(
log

σ ∨ ν
σ ∧ ν

∨ | log(σ ∧ ν)| ∨ 1) + log 2

}]

≲
B
√
p log

{
(K + 1)(D + 1)

}
√
n

+
B ∨ χ0

{
log σ∨ν

σ∧ν + | log(σ ∧ ν)|
}

√
n

×
{√

log
1

ϵ
+

√
log

(
log

σ ∨ ν
σ ∧ ν

∨ | log(σ ∧ ν)| ∨ 1)

}
, ∀σ, ν > 0, (A.52)

The proof of Theorem A.1 is complete.
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A.3 Proof of Theorem 1

By the optimality of µ̂: l(µ̂) + τ
2
∥γ̂∥22 + λϱ∥ ˆ̄β∥2,1 ≤ l(µ∗) + τ

2
∥γ∗∥22 + λϱ∥β̄∗∥2,1, we obtain a

basic inequality as follows

∆l(µ̂, µ
∗) +

τ

2
∥γ̂ − γ∗∥22

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄⟩+ ⟨ϵς , ς̂ − ς⟩+ ⟨−τγ∗, γ̂ − γ∗⟩

+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄⟩+ ⟨ϵς , ς̂ − ς⟩+ b

2
∥γ̂ − γ∗∥22 +

τ 2

2b
∥γ∗∥22

+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1 (A.53)

for any b > 0.

First, we bound
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉. Let X̄k denote the kth column of X̄ and Ξk :=
[X̄k, X̄p+k]

T and recall β̄k = [βk, bk]
T , k = 1, . . . , p. By Hölder’s inequality,

⟨ϵη̄, X̄ ˆ̄β − X̄β̄∗⟩ =
p∑

k=1

⟨Ξkϵη̄, ˆ̄βk − β̄∗
k⟩ ≤

p∑
k=1

∥Ξkϵη̄∥2∥ ˆ̄βk − β̄∗
k∥2 ≤

√
2
∥∥X̄T ϵη̄

∥∥
∞∥ ˆ̄β − β̄∗∥2,1.

(A.54)

Let λ = A
∥∥X̄T ϵη̄

∥∥
∞/ϱ for A > 1. Then we have∥∥X̄T ϵη̄

∥∥
∞

∥∥ ˆ̄β − β̄∗∥∥
2,1

+ λϱ
∥∥β̄∗∥∥

2,1
− λϱ

∥∥ ˆ̄β∥∥
2,1

≤
(
λϱ+

∥∥X̄T ϵη̄
∥∥
∞

)∥∥β̄∗∥∥
2,1

+
(∥∥X̄T ϵη̄

∥∥
∞ − λϱ

)∥∥ ˆ̄β∥∥
2,1

=(1 + A)
∥∥X̄T ϵη̄

∥∥
∞

∥∥β̄∗∥∥
2,1

+ (1− A)
∥∥X̄T ϵη̄

∥∥
∞

∥∥ ˆ̄β∥∥
2,1

≤ (1 + A)
∥∥X̄T ϵη̄

∥∥
∞

∥∥β̄∗∥∥
2,1
. (A.55)

By the assumption on ϵη̄, the ψ-norm of |X̄T
k ϵη̄| is bounded by∥∥X̄T

k ϵη̄
∥∥
ψ
= ∥⟨ϵη̄, X̄k⟩∥ψ ≤ ∥ϵη̄∥ψ∥X̄k∥2 ≤ ωη̄ϱ. (A.56)

The following inequality is essentially Massart’s finite class lemma, adapted for our purpose∥∥ max
1≤k≤2p

|X̄T
k ϵη̄|

∥∥
ψ
≤ 2(1 ∨ c1 ∨ 2ψ(c2))

2c0ψ
−1(p)ωη̄ϱ. (A.57)

It can be obtained by modifying the proof of Lemma 2.2.2 in van der Vaart and Wellner
(2013) (details omitted). By Lemma A.4,

E
[
∥X̄T ϵη̄∥∞

]
≤

∥∥∥X̄T ϵη̄∥∞
∥∥
L2

≤ ψ−1(1)
∥∥∥∥∥X̄T ϵη̄

∥∥
∞

∥∥∥
ψ
≤ Ccψψ

−1(p)ωη̄ϱ, (A.58)
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where cψ = (1 ∨ c1 ∨ 2ψ(c2))
2c0ψ

−1(1). Therefore,

E
{〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ λϱ
∥∥β̄∗∥∥

2,1
− λϱ

∥∥ ˆ̄β∥∥
2,1

}
≤ (1 + A)E

[∥∥X̄T ϵη̄
∥∥
∞

]∥∥β̄∗∥∥
2,1

≤C(1 + A)cψψ
−1(p)ωη̄ϱ

∥∥β̄∗∥∥
2,1
. (A.59)

Next, we bound the stochastic term ⟨ϵm̄, ˆ̄m− m̄∗⟩. For any a > 0,

⟨ϵm̄, ˆ̄m− m̄∗⟩ = ⟨P1nϵm̄, ˆ̄m− m̄∗⟩ ≤ |uT ϵm̄| · ∥ ˆ̄m− m̄∗∥2 ≤ a(uT ϵm̄)
2 +

1

2a
D2( ˆ̄m, m̄

∗),

(A.60)

where P1n is the orthogonal projection matrix onto the column space of 1n, or equivalently,
uuT with u = (1/

√
n)1n. By Lemma A.4,

E
[
(uT ϵm̄)

2
]
≤ {ψ−1(1)}2∥uT ϵm̄∥2φ ≤ {ψ−1(1)}2ω2

m̄. (A.61)

Likewise, for the stochastic term ⟨ϵς , ς̂ − ς∗⟩ with ϵς = [ϵT1
σ
1n
, ϵT1

ν
1n
]T and ς̂ − ς∗ = [(1/σ̂ −

1/σ∗)1Tn , (1/ν̂ − 1/ν∗)1Tn ]
T , we have〈
ϵ 1
σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
ϵ 1
ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
=
〈
P1nϵ 1

σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
P1nϵ 1

ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
≤ a(uT ϵ 1

σ
1n
)2 + a(uT ϵ 1

ν
1n
)2 +

1

2a
D2(ς̂ , ς

∗),

and
E
[
(uT ϵ 1

σ
1n
)2
]
≤ {φ−1(1)}2∥uT ϵ 1

σ
1n
∥2φ ≤ {φ−1(1)}2ω2

ς ,

and E[(uT ϵ 1
ν
1n
)2] ≤ {φ−1(1)}2ω2

ς . To sum up, for any a > 0,

E
{
⟨ϵm̄, ˆ̄m− m̄∗⟩+ ⟨ϵς , ς̂ − ς∗⟩

}
≤ a{ψ−1(1)}2ω2

m̄ + 2a{φ−1(1)}2ω2
ς +

1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}. (A.62)

Plugging (A.59) and (A.62) into (A.53) to obtain

E
{
∆l(µ̂, µ

∗) + (τ − b)D2(γ̂, γ
∗)
}
− 1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}

≤C(1 + A)cψψ
−1(p)ωη̄ϱ

∥∥β̄∗∥∥
2,1

+ a{ψ−1(1)}2ω2
m̄ + 2a{φ−1(1)}2ω2

ς +
τ 2

2b
∥γ∗∥22. (A.63)

Choosing b = τ/4, a = 2/τ , we get

E
{
∆l(µ̂, µ

∗) +
τ

2
D2(γ̂, γ

∗)
}

≤C(1 + A)cψψ
−1(p)ωη̄ϱ

∥∥β̄∗∥∥
2,1

+
2

τ

[
{ψ−1(1)}2ω2

m̄ + 2{φ−1}2ω2
ς

]
+ 2τ∥γ∗∥22

≲ cψψ
−1(p)ωη̄ϱ

∥∥β̄∗∥∥
2,1

+
1

τ
(ω2

m̄ + ω2
ς ) + τ∥γ∗∥22. (A.64)

The proof is complete.
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A.4 Proof of Theorem 2

We prove a more general result, which includes Theorem 2 as a special case.

Theorem A.2. Assume that the effective noises ϵη̄, ϵm̄, and ϵς satisfy ∥ϵη̄∥ψ ≤ ωη̄, ∥ϵm̄∥ψ ≤
ωm̄, and ∥ϵς∥φ ≤ ως . Let ζ̂ denote the optimal solution for (19) with ϱ ≥ κ2,∞. Suppose that
there exist some ϑ > 0 and some large K > 0 such that the following condition holds for any
β̄, γ (recall ζT = [β̄T , γT ], µT = [η̄T , γT ] defined based on (17))

(1 + ϑ)λϱ
∥∥(β̄ − β̄∗)J ∗

∥∥
2,1

≤ ∆l(µ, µ
∗) + λϱ

∥∥(β̄ − β̄∗)J ∗C
∥∥
2,1

+Kλ2J∗, (A.65)

where

λ =
(
1 ∨ 1

ϑ

)
ωη̄ψ

−1
[
pψ

{
Aψ−1(p)

}]
(A.66)

for some large enough A > 0. Then for any L,L′ > 0,

∆l(µ̂, µ
∗) +

τ

2
D2(γ, γ

∗) ≲ (
1

ϑ
∨ 1

ϑ3
)Kω2

η̄

(
ψ−1

[
pψ

{
Aψ−1(p)

}])2

J∗

+ (1 ∨ 1

ϑ
)
1

τ

(
L2ω2

m̄ + L
′2ω2

ς

)
+ (1 ∨ 1

ϑ
)τ∥γ∗∥22

(A.67)

holds with probability at least 1 − C/ψ{Aψ−1(p)} − 1/ψ(cL) − C/φ(cL′), where C, c are
positive constants.

Theorem A.2 implies Theorem 2. In fact, (A.65), assuming ϑ is a constant, is just

(27), and letting ψ = ψq for some q > 0, (A.66) yields λ = Aωη̄(log p)
1
q . Then, choosing

L = Cψ−1(pA
q
), L′ = Cφ−1(pA

q
), we can obtain the result in Theorem 2:

∆l(µ̂, µ
∗) +

τ

2
D2(γ̂, γ

∗)

≲KA2ω2
η̄J

∗(log p)
2
q +

1

τ
{ψ−1

q (pA
q

)}2ω2
m̄ +

1

τ
{φ−1(pA

q

)}2ω2
ς + τ∥γ∗∥22

with probability at least 1− Cp−cA
q
.

Proof. From l(µ̂) + τ∥γ̂∥22 + λϱ∥ ˆ̄β∥2,1 ≤ l(µ∗) + τ∥γ∗∥22 + λϱ∥β̄∗∥2,1, we obtain

∆l(µ̂, µ
∗) +

τ

2
∥γ̂ − γ∗∥22

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄⟩+ ⟨ϵς , ς̂ − ς⟩+ ⟨−τγ∗, γ̂ − γ∗⟩

+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄⟩+ ⟨ϵς , ς̂ − ς⟩+ b

2
∥γ̂ − γ∗∥22 +

τ 2

2b
∥γ∗∥22

+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1 (A.68)

for any b > 0.
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To bound
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉, we use the same notations in Appendix A.3 and recall

⟨ϵη̄, X̄ ˆ̄β − X̄β̄∗⟩ ≤ c0 max
1≤k≤2p

|X̄T
k ϵη̄|∥ ˆ̄β − β̄∗∥2,1, (A.69)

where the constant c0 ≥
√
2, and ∥∥X̄T

k ϵη̄
∥∥
ψ
≤ ωη̄ϱ, ∀k. (A.70)

Let
λ0 = ωη̄ψ

−1
[
pψ

{
Aψ−1(p)

}]
(A.71)

for some large enough A > 0. By the union bound and Markov’s inequality, the event
max

1≤k≤2p
|X̄T

k ϵη̄| ≥ λ0ϱ occurs with probability

P( max
1≤k≤2p

|X̄T
k ϵη̄| ≥ λ0ϱ) ≤

2p

ψ
(
ωη̄ϱψ−1

[
pψ{Aψ−1(p)}

]
ωη̄ϱ

) ≤ 2p

pψ{Aψ−1(p)}
] ≤ 2

ψ{Aψ−1(p)}
.

(A.72)

Let λ = λ0/b
′ with b′ > 0. By the subadditivity of the ℓ1-penalty, we get

c0λ0ϱ
∥∥ ˆ̄β − β̄∗∥∥

2,1
+ λϱ

∥∥β̄∗∥∥
2,1

− λϱ
∥∥ ˆ̄β∥∥

2,1

≤ c0λ0ϱ
∥∥( ˆ̄β − β̄∗)J ∗

∥∥
2,1

+ c0λ0ϱ
∥∥( ˆ̄β − β̄∗)

J∗C

∥∥
2,1

+ λϱ
∥∥β̄∗

J ∗

∥∥
2,1

− λϱ
∥∥ ˆ̄βJ∗

∥∥
2,1

− λϱ
∥∥( ˆ̄β − β̄∗)

J∗C

∥∥
2,1

≤
(
c0λ0 + λ

)
ϱ
∥∥( ˆ̄β − β̄∗)J ∗

∥∥
2,1

−
(
λ− c0λ0

)
ϱ
∥∥( ˆ̄β − β̄∗)

J∗C

∥∥
2,1

=
(
1 + c0b

′)λϱ∥∥( ˆ̄β − β̄∗)J ∗
∥∥
2,1

−
(
1− c0b

′)λϱ∥∥( ˆ̄β − β̄∗)
J∗C

∥∥
2,1
, (A.73)

where J ∗C is the complement of J ∗.
For the stochastic term ⟨ϵm̄, ˆ̄m− m̄∗⟩, for any a > 0,

⟨ϵm̄, ˆ̄m− m̄∗⟩ = ⟨P1nϵm̄, ˆ̄m− m̄∗⟩ ≤ |uT ϵm̄| · ∥ ˆ̄m− m̄∗∥2 ≤ a(uT ϵm̄)
2 +

1

2a
D2( ˆ̄m, m̄

∗),

(A.74)

where P1n = uuT with u = (1/
√
n)1n. By the assumption on ϵm̄, ∥uT ϵm̄∥ψ ≤ ωm̄. By

Markov’s inequality,

P
(
(uT ϵm̄)

2 ≥ cL2ω2
m̄

)
≤ 1

ψ( cLωm̄

ωm̄
)
=

1

ψ(cL)
, (A.75)

from which it follow that

⟨ϵm̄, ˆ̄m− m̄∗⟩ ≤ acL2ω2
m̄ +

1

2a
D2( ˆ̄m, m̄

∗) (A.76)
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occurs with probability at least 1 − 1/ψ(cL). For the stochastic term ⟨ϵς , ς̂ − ς⟩ with ϵς =
[ϵT1

σ
1n
, ϵT1

ν
1n
]T and ς̂ − ς∗ = [(1/σ̂ − 1/σ∗)1Tn , (1/ν̂ − 1/ν∗)1Tn ]

T , similarly,

〈
ϵ 1
σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
ϵ 1
ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
=
〈
P1nϵ 1

σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
P1nϵ 1

ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
≤ a(uT ϵ 1

σ
1n
)2 + a(uT ϵ 1

ν
1n
)2 +

1

2a
D2(ς̂ , ς

∗).

By the assumption on ϵς , ∥uT ϵ 1
σ
1n
∥φ ≤ ως , ∥uT ϵ 1

ν
1n
∥φ ≤ ως . It follows from

P
(
(uT ϵ 1

σ
1n
)2 ≥ cL

′2ω2
ς

)
≤ 1

ψ( cLως

ως
)
=

1

ψ(cL′)
(A.77)

and P
(
(uT ϵ 1

ν
1n
)2 ≥ cL

′2ω2
ς

)
≤ 1/ψ(cL′) that

⟨ϵς , ς̂ − ς⟩ ≤ 2acL
′2ω2

ς +
1

2a
D2(ς̂ , ς

∗), (A.78)

with probability at least 1− 2/φ(cL′).
Plugging (A.72), (A.73), (A.76), and (A.78) into (A.68) results in

∆l(µ̂, µ
∗) + (τ − b)D2(γ̂, γ

∗)− 1

2a
D2( ˆ̄m, m̄

∗)− 1

2a
D2(ς̂ , ς

∗)

≤
(
1 + c0b

′)λϱ∥∥( ˆ̄β − β̄∗)J ∗
∥∥
2,1

−
(
1− c0b

′)λϱ∥∥( ˆ̄β − β̄∗)
J∗C

∥∥
2,1

+
τ 2

2b
∥γ∗∥22

+ acL2ω2
m̄ + 2acL

′2ω2
ς . (A.79)

with probability at least 1− C/ψ{Aψ−1(p)} − 1/ψ(cL)− C/φ(cL′), where C, c are positive
constants.

The regularity condition (A.65) implies

(1 +
ϑ

2 + ϑ
)λϱ

∥∥( ˆ̄β − β̄∗)J ∗
∥∥
2,1

≤ 2

2 + ϑ
∆l(µ̂, µ

∗) + (1− ϑ

2 + ϑ
)λϱ

∥∥( ˆ̄β − β̄∗)J ∗C
∥∥
2,1

+
2

2 + ϑ
Kλ2J∗. (A.80)

Set b′ = ϑ/{(2 + ϑ)c0} and add (A.79) and (A.80) to get

ϑ

2 + ϑ
∆l(µ̂, µ

∗) + (τ − b)D2(γ̂, γ
∗)− 1

2a
D2( ˆ̄m, m̄

∗)− 1

2a
D2(ς̂ , ς

∗)

≤ 2

2 + ϑ
Kλ2J∗ + acL2ω2

m̄ + 2acL
′2ω2

ς +
τ 2

2b
∥γ∗∥22. (A.81)

Taking b = τ/4 and a = 2/τ leads to

ϑ

2 + ϑ
∆l(µ̂, µ

∗) +
τ

2
D2(γ̂, γ

∗) ≤ 2

2 + ϑ
Kλ2J∗ +

2

τ
cL2ω2

m̄ +
4

τ
cL

′2ω2
ς + 2τ∥γ∗∥22, (A.82)
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or equivalently

∆l(µ̂, µ
∗) +

(2 + ϑ)τ

2ϑ
D2(γ̂, γ

∗) ≤ 2

ϑ
Kλ2J∗ +

2 + ϑ

ϑ

2

τ

(
cL2ω2

m̄ + 2cL
′2ω2

ς

)
+

2 + ϑ

ϑ
2τ∥γ∗∥22.

(A.83)

Note that {τ(2 + ϑ)}/(2ϑ) ≥ τ/2. With λ = λ0/b
′ = {(2 + ϑ)/ϑ}c0λ0, we can derive from

(A.83) that

∆l(µ̂, µ
∗) +

τ

2
D2(γ̂, γ

∗)

≤Kc20
2(2 + ϑ)2

ϑ3
λ20J

∗ +
2 + ϑ

ϑ

2

τ

(
cL2ω2

m̄ + 2cL
′2ω2

ς

)
+

2 + ϑ

ϑ
2τ∥γ∗∥22

≲ (
1

ϑ
∨ 1

ϑ3
)Kω2

η̄

(
ψ−1

[
pψ

{
Aψ−1(p)

}])2

J∗ + (1 ∨ 1

ϑ
)
1

τ

(
L2ω2

m̄ + L
′2ω2

ς

)
+ (1 ∨ 1

ϑ
)τ∥γ∗∥22, (A.84)

with probability at least 1− C/ψ{Aψ−1(p)} − 1/ψ(cL)− C/φ(cL′), where C, c are positive
constants. The proof is complete.

A.5 An Elementwise Estimation Error Bound

Theorem A.3. Assume that the effective noises ϵη̄, ϵm̄, and ϵς satisfy ∥ϵη̄∥ψq ≤ ωη̄, ∥ϵm̄∥ψq ≤
ωm̄, and ∥ϵς∥φ ≤ ως for some q > 0. Consider ζ̂ as the optimal solution to (19) with τ = 0,
ϱ ≥ κ2,∞, and

λ = Aωη̄(log p)
1
q (A.85)

for some large enough A > 0. Suppose that there exist some ϑ, α > 0 and some large K > 0
such that for any ζT = [β̄T , γT ]

αnJ∗∥β̄ − β̄∗∥22,∞ + αD2(γ, γ
∗) + (1 + ϑ)λϱ

∥∥(β̄ − β̄∗)J ∗
∥∥
2,1

≤∆l(µ, µ
∗) + (1− ϑ)λϱ

∥∥(β̄ − β̄∗)J ∗C
∥∥
2,1

+Kλ2J∗. (A.86)

Then

∥ ˆ̄β − β̄∗∥2,∞ ≤ C

√
Kα ∨ ϑ
α
√
n

A
{
ωη̄ +

1√
J∗

(ωm̄ + ως)
}
(log p)

1
q (A.87)

with probability at least 1−Cp−c(Aϑ)
q −C/φ(cAϑ(log p)

1
q ), where C, c are positive constants.

The element-wise error bound (A.87) together with a signal strength condition guarantees
faithful variable selection with high probability; see Remark 4.

Proof. By the optimality of µ̂: l(µ̂) + λϱ∥ ˆ̄β∥2,1 ≤ l(µ∗) + λϱ∥β̄∗∥2,1, we obtain the basic
inequality

∆l(µ̂, µ
∗) ≤

〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄⟩+ ⟨ϵς , ς̂ − ς⟩+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1. (A.88)
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We follow the same lines as in Section A.4 to bound the stochastic terms on the right-hand
side of (A.88). Let

λ0 = Aωη̄(log p)
1
q (A.89)

for some large enough A > 0 and λ = λ0/b
′ for some b′ > 0. Similar to the previous analysis,

we have with probability at least 1− Cp−A
q
,〈

ϵη̄, X̄
ˆ̄β − X̄β̄∗〉+ λϱ∥β̄∗∥2,1 − λϱ∥ ˆ̄β∥2,1

≤
(
1 + c0b

′)λϱ∥∥( ˆ̄β − β̄∗)J ∗
∥∥
2,1

−
(
1− c0b

′)λϱ∥∥( ˆ̄β − β̄∗)
J∗C

∥∥
2,1
, (A.90)

where the constant c0 ≥
√
2. Moreover, for any a > 0, we get

⟨ϵm̄, ˆ̄m− m̄∗⟩+ ⟨ϵς , ς̂ − ς⟩ ≤ acL2ω2
m̄ + 2acL

′2ω2
ς +

1

2a

{
D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)
}
, (A.91)

with probability at least 1− 1/ψq(cL)− C/φ(cL′), where L,L′ > 0 can be customized.
Plugging the bounds of (A.90) and (A.91) into (A.88), we get

∆l(µ̂, µ
∗)− 1

2a

{
D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)
}

≤
(
1 + c0b

′)λϱ∥∥( ˆ̄β − β̄∗)J ∗
∥∥
2,1

−
(
1− c0b

′)λϱ∥∥( ˆ̄β − β̄∗)
J∗C

∥∥
2,1

+ acL2ω2
m̄ + 2acL

′2ω2
ς ,

with probability at least 1−Cp−Aq −1/ψq(cL)−C/φ(cL′), where C, c are positive constants.
With the regularity condition and and b′ = ϑ/c0, we obtain

α
(
nJ∗∥β̄ − β̄∗∥22,∞ +D2(γ, γ

∗)
)
− 1

2a

{
D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)
}

≤Kλ2J∗ + acL2ω2
m̄ + 2acL

′2ω2
ς . (A.92)

Setting a = 1/α and using λ = λ0/b
′ = (c0/ϑ)λ0, we obtain

∥β̄ − β̄∗∥22,∞ ≤ Kc20
nαϑ2

A2ω2
η̄(log p)

2
q +

cL2ω2
m̄

nα2J∗ +
2cL

′2ω2
ς

nα2J∗ (A.93)

with probability at least 1− Cp−A
q − 1/ψq(cL)− C/φ(cL′). With L = L′ = A(log p)

1
q ,

∥β̄ − β̄∗∥22,∞ ≤ Kc20
nαϑ2

A2ω2
η̄(log p)

2
q +

c

nα2J∗A
2(log p)

2
q (ω2

m̄ + ω2
ς )

≤C
A2

nα2ϑ2
(log p)

2
q
{
Kαω2

η̄ +
ϑ2

J∗ (ω
2
m̄ + ω2

ς )
}
, (A.94)

which implies

∥β̄ − β̄∗∥2,∞ ≤ C

√
Kα ∨ ϑ√
nαϑ

A(log p)
1
q
{
ωη̄ +

1√
J∗

(ωm̄ + ως)
}
, (A.95)

with probability at least 1 − Cp−cA
q − C/φ(cA(log p)1/q). Hence by taking A′ = A/ϑ and

λ = A′ωη̄(log p)
1
q , we have

∥β̄ − β̄∗∥2,∞ ≤ C

√
Kα ∨ ϑ√
nα

A′(log p)
1
q
{
ωη̄ +

1√
J∗

(ωm̄ + ως)
}
, (A.96)

with probability at least 1− Cp−c(A
′ϑ)q − C/φ(cA′ϑ(log p)

1
q ). The proof is complete.
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A.6 Analysis of a General Penalty

Consider the following problem associated with a general sparsity-inducing penalty P

l(µ) + ∥ϱβ̄∥2,P +
τ

2
∥µ∥22, (A.97)

where ∥ · ∥2,P is short for ∥ · ∥2,P (·;λ) and ∥β̄∥2,P (·;λ) :=
∑p

k=1 P (∥β̄k∥2;λ).
Since a sparsity-inducing penalty necessarily possesses thresholding power, we assume,

without loss of generality, that P (·;λ) ≥ PH(·;λ) throughout the subsection, where the “hard
penalty” PH(t;λ) := (−t2/2 + λ|t|)1|t|<λ + (λ2/2)1|t|≥λ is induced by the hard-thresholding,
and P2,H(β̄;λ) :=

∑p
k=1 PH(∥β̄k∥2;λ) (see She (2016) for more details). Furthermore, a

penalty is referred to as subadditive if it satisfies P (t+s;λ) ≤ P (t;λ)+P (s;λ). In fact, when
P (t) is concave on R+ and P (0) = 0, P (|t|) is necessarily subadditive. Well-known examples
include the widely used ℓ1-penalty, ℓ0-penalty, SCAD, MCP, and bridge ℓr (0 < r < 1) in
the literature.

Theorem A.4. Assume that the effective noises ϵη̄, ϵm̄, and ϵς satisfy ∥ϵη̄∥ψ2 ≤ ωη̄, ∥ϵm̄∥ψ2 ≤
ωm̄, and ∥ϵς∥φ ≤ ως where {φ−1(·)}2 concave or {φ−1(t)}2 ≲ t on R+ (for example, φ can

be an Lq-norm with q ≥ 2 or a ψq-norm with q > 0). Let ζ̂ denote the optimal solution of
(A.97) with ϱ ≥ κ2 := ∥X̄∥2.

(a) Let λ = Aωη̄
√

log(ep)/
√
τ ∧ 1 with A a sufficiently large constant. Then the following

bound always holds

E
{
∆l(µ̂, µ

∗) +
τ

2
D2(µ̂, µ

∗)

}
≲
∥∥ϱβ̄∗∥∥

2,P (·;λ) +
1

τ ∧ 1
ω2
η̄ +

1

τ

(
ω2
m̄ + ω2

ς

)
+ τ∥µ∗∥22. (A.98)

(b) Let P be a sub-additive penalty. Assume that there exist some α ≥ 0, ϑ > 0, and
some large K > 0 such that

αD2(µ, µ
∗) + (1 + ϑ)∥ϱ(β̄ − β̄∗)J ∗∥2,P ≤ ∆l(µ, µ

∗) + (1− ϑ)∥ϱ(β̄ − β̄∗)J ∗C∥2,P +Kλ2J∗,

(A.99)

for all ζT = [β̄T , m̄T , ςT ], where λ = Aωη̄
√
log(ep)/

√
{(τ + α) ∧ ϑ}ϑ with A a sufficiently

large constant. Then

ED2(µ̂, µ
∗) ≲

ω2
η̄

(τ + α){(τ + α) ∧ ϑ}ϑ
{
KA2J∗ log(ep) + ϑ

}
+
ω2
m̄ + {φ−1(1)}2ω2

ς

(τ + α)2
+
(
1 ∧ τ

α

)2∥µ∗∥22. (A.100)

According to the proof below, (A.99) can be relaxed to ϑP2,H

(
ϱ(β̄−β̄∗)J ∗ ;λ

)
+αD2(µ, µ

∗)+
∥ϱ(β̄ − β̄∗)J ∗∥2,P ≤ ∆l(µ, µ

∗) + ∥ϱ(β̄ − β̄∗)J ∗C∥2,P − ϑP2,H

(
ϱ(β̄ − β̄∗)J ∗C ;λ

)
+ Kλ2J∗, or

ϑP2,H

(
ϱ(β̄ − β̄∗);λ

)
+ αD2(µ, µ

∗) + ∥ϱβ̄∗∥2,P ≤ ∆l(µ, µ
∗) + ∥ϱβ̄∥2,P + Kλ2J∗ if P is not

subadditive.
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Proof. By definition, l(ζ̂) + τ
2
∥µ̂∥22 +

∥∥ϱ ˆ̄β∥∥
2,P

≤ l(ζ∗) + τ
2
∥µ∗∥22 +

∥∥ϱβ̄∗
∥∥
2,P

, which means

∆l(µ̂, µ
∗) +

τ

2
∥µ̂− µ∗∥22

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄∗⟩+ ⟨ϵς , ς̂ − ς∗⟩+ ⟨−τµ∗, µ̂− µ∗⟩

+
∥∥ϱβ̄∗∥∥

2,P
−

∥∥ϱ ˆ̄β∥∥
2,P

≤
〈
ϵη̄, X̄

ˆ̄β − X̄β̄∗〉+ ⟨ϵm̄, ˆ̄m− m̄∗⟩+ ⟨ϵς , ς̂ − ς∗⟩+ b

2
∥µ̂− µ∗∥22 +

τ 2

2b
∥µ∗∥22

+
∥∥ϱβ̄∗∥∥

2,P
−

∥∥ϱ ˆ̄β∥∥
2,P
, (A.101)

where b can be any positive number.

To bound the stochastic term ⟨ϵη̄, X̄( ˆ̄β − β̄∗)⟩, define λ0 = ωη̄
√

log(ep) and

R = sup
β̄∈R2p

{
⟨ϵη̄, X̄(β̄ − β̄∗)⟩ − 1

2a′
∥∥X̄(β̄ − β̄∗)

∥∥2

2
− 1

2b′
P2,H

(
ϱ(β̄ − β̄∗);

√
a′b′Aλ0

)}
.

(A.102)

By Lemma A.7, for any a′ ≥ 2b′ > 0 and a sufficiently large constant A, P(R ≥ a′ω2
η̄t) ≤

C exp(−ct)p−cA2
. Therefore, E[R] ≲ a′ω2

η̄.
Next, we bound ⟨ϵm̄, ˆ̄m− m̄∗⟩ by

⟨ϵm̄, ˆ̄m− m̄∗⟩ = ⟨P1nϵm̄, ˆ̄m− m̄∗⟩ ≤ |uT ϵm̄| · ∥ ˆ̄m− m̄∗∥2 ≤ a(uT ϵm̄)
2 +

1

2a
D2( ˆ̄m, m̄

∗)

(A.103)

for any a > 0, where P1n = uuT with u = (1/
√
n)1n. By the assumption on ϵm̄, ∥(uT ϵm̄)2∥ψ1 ≲

∥uT ϵm̄∥2ψ2
≤ ω2

m̄, from which it follows that E[(uT ϵm̄)2] ≤ Cω2
m̄. Similarly, for the stochastic

term ⟨ϵς , ς̂ − ς∗⟩ with ϵς = [ϵT1
σ
1n
, ϵT1

ν
1n
]T and ς̂ − ς∗ = [(1/σ̂ − 1/σ∗)1Tn , (1/ν̂ − 1/ν∗)1Tn ]

T , we

have 〈
ϵ 1
σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
ϵ 1
ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
=
〈
P1nϵ 1

σ
1n
, (
1

σ̂
− 1

σ∗ )1n
〉
+
〈
P1nϵ 1

ν
1n
, (
1

ν̂
− 1

ν∗
)1n

〉
≤ a(uT ϵ 1

σ
1n
)2 + a(uT ϵ 1

ν
1n
)2 +

1

2a
D2(ς̂ , ς

∗).

From Lemma A.4, we get a bound in L2-norm:

E
[
(uT ϵ 1

σ
1n
)2
]
≤ {φ−1(1)}2∥uT ϵ 1

σ
1n
∥2φ ≤ {φ−1(1)}2ω2

ς ,

and E[(uT ϵ 1
ν
1n
)2] ≤ {φ−1(1)}2ω2

ς . To sum up, for any a > 0,

E
{
⟨ϵm̄, ˆ̄m− m̄∗⟩+ ⟨ϵς , ς̂ − ς∗⟩

}
≤ aCω2

m̄ + 2a{φ−1(1)}2ω2
ς +

1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}.

(A.104)
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Now, plugging the bounds (A.102) and (A.104) into (A.101) yields

E
{
∆l(µ̂, µ

∗) +
τ − b

2
∥µ̂− µ∗∥22

}
− 1

a′
D2(ˆ̄η, η̄

∗)− 1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}

≤ 1

2b′
P2,H

(
ϱ( ˆ̄β − β̄∗);

√
a′b′Aλ0

)
+
∥∥ϱβ̄∗∥∥

2,P (·;λ) −
∥∥ϱ ˆ̄β∥∥

2,P (·;λ)

+ aCω2
m̄ + 2a{φ−1(1)}2ω2

ς +
τ 2

2b
∥µ∗∥22 + Ca′ω2

η̄. (A.105)

To prove part (a), we use the subadditivity of PH :

E
{
∆l(µ̂, µ

∗) +
τ − b

2
∥µ̂− µ∗∥22

}
− 1

a′
D2(ˆ̄η, η̄

∗)− 1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}

≤ 1

2b′
P2,H

(
ϱ ˆ̄β;

√
a′b′Aλ0

)
+

1

2b′
P2,H

(
β̄∗;

√
a′b′Aλ0

)
+
∥∥ϱβ̄∗∥∥

2,P (·;λ) −
∥∥ϱ ˆ̄β∥∥

2,P (·;λ)

+ aCω2
m̄ + 2a{φ−1(1)}2ω2

ς +
τ 2

2b
∥µ∗∥22 + Ca′ω2

η̄. (A.106)

Because P (·;λ) ≥ PH(·;λ), taking b = τ/4, b′ = 1/2, a = 2/τ, a′ = 4/(τ ∧ 1) gives

E
{
∆l(µ̂, µ

∗) +
τ

2
D2(µ̂, µ

∗)
}

≤ 2
∥∥ϱβ̄∗∥∥

2,P (·;λ) + 2τ∥µ∗∥22 +
2C

τ
ω2
m̄ +

4

τ
{φ−1(1)}2ω2

ς +
4C

τ ∧ 1
ω2
η̄

≲
∥∥ϱβ̄∗∥∥

2,P (·;λ) + τ∥µ∗∥22 +
1

τ
(ω2

m̄ + ω2
ς ) +

1

τ ∧ 1
ω2
η̄. (A.107)

To prove part (b), we use
∥∥ϱβ̄∗

J ∗C

∥∥
2,P (·;λ) = ∥ϱ(β̄ − β̄∗)J ∗C

∥∥
2,P (·;λ) and

∥∥ϱβ̄∗
J ∗

∥∥
2,P (·;λ) −∥∥ϱβ̄J ∗

∥∥
2,P (·;λ) ≤ ∥ϱ(β̄ − β̄∗)J ∗

∥∥
2,P (·;λ) and rewrite (A.105) as

E
{
∆l(µ̂, µ

∗) +
τ − b

2
∥µ̂− µ∗∥22

}
− 1

a′
D2(ˆ̄η, η̄

∗)− 1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}

≤ 1

2b′
P2,H

(
ϱ( ˆ̄β − β̄∗)J ∗ ;

√
a′b′Aλ0

)
+

1

2b′
P2,H

(
ϱ( ˆ̄β − β̄∗)J ∗C ;

√
a′b′Aλ0

)
+ ∥ϱ(β̄ − β̄∗)J ∗

∥∥
2,P (·;λ) − ∥ϱ(β̄ − β̄∗)J ∗C

∥∥
2,P (·;λ) + aCω2

m̄ + 2a{φ−1(1)}2ω2
ς

+
τ 2

2b
∥µ∗∥22 + Ca′ω2

η̄. (A.108)

The condition (A.99) implies

αD2(µ, µ
∗) + ϑP2,H

(
ϱ(β̄ − β̄∗)J ∗ ;λ

)
+ ∥ϱ(β̄ − β̄∗)J ∗∥2,P (·;λ)

≤∆l(µ, µ
∗) + ∥ϱ(β̄ − β̄∗)J ∗C∥2,P (·;λ) − ϑP2,H

(
ϱ(β̄ − β̄∗)J ∗C ;λ

)
+Kλ2J∗. (A.109)

With b′ = 1/(2ϑ), we add (A.108) and (A.109) to get

E
{
(τ + α− b)D2(µ̂, µ

∗)
}
− 1

a′
D2(ˆ̄η, η̄

∗)− 1

2a
{D2( ˆ̄m, m̄

∗) +D2(ς̂ , ς
∗)}

≤Kλ2J∗ + aCω2
m̄ + 2a{φ−1(1)}2ω2

ς +
τ 2

2b
∥µ∗∥22 + Ca′ω2

η̄, (A.110)
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where λ =
√
a′b′Aλ0 and A ≥ A0 with A0 given in the Lemma A.7. Now, setting b =

(τ + α)/4, a′ = 4/{(τ + α) ∧ ϑ}, a = 2/(τ + α) gives

E
{τ + α

2
D2(µ̂, µ

∗)
}

≤ 2KA2

{(τ + α) ∧ ϑ}ϑ
ωη̄

2J∗ log(ep) +
2Cω2

m̄

(τ + α)
+

4{φ−1(1)}2ω2
ς

(τ + α)
+

2τ 2∥µ∗∥22
τ + α

+
4Cω2

η̄

(τ + α) ∧ ϑ
.

The proof is complete.

Lemma A.7. Let ϵ = [ϵi] be an n-dimensional random vector (not necessarily mean centered
or having independent components) satisfying ∥ϵ∥ψ2 ≤ ω. Suppose that X̄ ∈ Rn×2p satisfies

∥X̄∥2 ≤ ϱ. Let λ0 = ω
√

log(ep). Then there exist universal constants A0, C, c > 0 such that
for any a ≥ 2b > 0, A1 ≥ A0, the following event

sup
β̄∈R2p

2⟨ϵ, X̄β̄⟩ − 1

a
∥X̄β̄∥22 −

1

b
P2,H(ϱβ̄;

√
abA1λ0) ≥ aω2t (A.111)

occurs with probability at most C exp(−ct)p−cA2
1.

Proof. Let P0 = (λ2/2)1t̸=0. Define lH(β̄) = 2⟨ϵ, X̄β̄⟩− 1
a
∥X̄β̄∥22− 1

b
P2,H(β̄;

√
abA0λ0), l0(β̄) =

2⟨ϵ, X̄β̄⟩− 1
a
∥X̄β̄∥22− 1

b
P2,0(β̄;

√
abA0λ0). Introduce two events εH = {supβ̄∈Γ lH(β̄) ≥ atω2},

and ε0 = {supβ̄∈Γ l0(β̄) ≥ atω2}
First, we use an optimization technique to prove that εH = ε0. Since P0 ≥ PH , P2,0 ≥ P2,H

and thus ε0 ⊂ εH . The occurrence of εH implies that lH(β̄
o) ≥ atω2 for any β̄o defined by

β̄o ∈ argmin
β̄∈R2p

1

a
∥X̄β̄∥22 − 2⟨ϵ, X̄β̄⟩+ 1

b
P2,H(β̄;

√
abA0λ0). (A.112)

From Lemma 5 in She (2016), under ∥X̄∥2 ≤ 1, there exists a globally optimal solution β̄0

to the problem

min
β̄∈R2p

1

2
∥y − X̄β̄∥22 + P2,H(β̄;λ), (A.113)

such that for any j = 1, . . . , p, either β̄0
j = 0 or ∥β̄0

j ∥2 ≥ λ. Therefore, with a ≥ 2b > 0, there

exists at least one global minimizer β̄oo satisfying P2,H(β̄
oo;

√
abA1λ0) = P2,0(β̄

oo;
√
abA1λ0)

and thus lH(β̄
oo) = l0(β̄

oo). This means supβ̄∈R2p l0(β̄) ≥ l0(β̄
oo) = lH(β̄

oo) ≥ atω2, and so

εH ⊂ ε0. It suffices to prove P(ε0) ≤ C exp(−ct)p−cA2
1 .

Next, we use Lemma A.8 to bound the tail probability of R defined by

R = sup
1≤J≤p

sup
β̄∈ΓJ

{
⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 −

1

2b
P2,0(β̄;

√
abA1λ0)

}
, (A.114)

where P2,0(β̄;λ0) = P0(J ;λ0) = (1/2)Jλ20 for β̄ ∈ ΓJ and ΓJ = {β̄ ∈ R2p : J(β̄) = J} (in the
trivial case of J = 0, the quantity inside the braces is 0).

By a scaling argument, for any a > 0,

⟨ϵ, X̄β̄/∥X̄β̄∥2⟩∥X̄β̄∥2 ≤
a

2
sup
α∈ΓJ

(⟨ϵ, α⟩)2 + 1

2a
∥X̄β̄∥22. (A.115)

21



Applying Lemma A.8 with G = 2, q = 2 results in

P
(
sup
β̄∈ΓJ

⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 −

a

2
LJ log(ep)ω2 ≥ a

2
ω2t

)
≤ C exp(−ct), (A.116)

or

P
(
sup
β̄∈ΓJ

⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 − aLP2,0(β̄;λ0) ≥ aω2t

)
≤ C exp(−ct). (A.117)

Set A1 ≥
√
2L. Noticing that (i) (A2

1/2)P0(J ;λ0) ≥ LP0(J ;λ0) + cA2
1P0(J ;λ0) for some

c > 0, and (ii) J log(ep) ≥ log p+ J for any J ≥ 1, we get

P
(
R ≥ aω2t

)
≤

p∑
J=1

P
(
sup
β̄∈ΓJ

⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 −

1

2b
P2,0(β̄;

√
abA1λ0) ≥ aω2t

)
=

p∑
J=1

P
(
sup
β̄∈ΓJ

⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 −

1

4
aA2

1J log(ep)ω2
η̄ ≥ aω2t

)
≤

p∑
J=1

P
(
sup
β̄∈ΓJ

⟨ϵ, X̄β̄⟩ − 1

2a
∥X̄β̄∥22 −

a

2
LJ log(ep)ω2 ≥ aω2t+ caA2

1J log(ep)ω2
)

≤
p∑

J=1

C exp(−ct)
p∑

J=1

exp{−cA2
1(J + log p)}

≤C exp(−ct)p−cA2
1 , (A.118)

where the last inequality is due to the sum of geometric sequence.

Lemma A.8. Given a matrix X ∈ Rn×pG with a block form of X = [X1, . . . , Xp] with
Xj ∈ Rn×G, 1 ≤ j ≤ p, let XJ denote the submatrix formed by the column blocks of X
indexed by J . Define ΓJ = {α ∈ RpG : ∥α∥2 ≤ 1, α ∈ R(XJ )} and ΓJ =

⋃
|J |=J ΓJ , where

1 ≤ J ≤ p. Let ϵ = [ϵi] be an n-dimensional random vector. (i) Assume ϵ satisfies ∥ϵ∥ψq ≤ ω
for some q ≥ 1. Then for any t > 0,

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L(JG)
2
qω2 ≥ ω2t

)
≤ C exp

(
− ct

q
2

)
,

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − L
[
JG+ (JG)

2
q + (2J)

2
q {log(ep)}

2
q
]
ω2 ≥ ω2t

)
≤ C exp

(
− ct

q
2

)
,

(A.119)

(A.120)

where C is a universal constant and c, L are constants depending on q only. (ii) Assume
that ϵ1, . . . , ϵn are independent, centered, and ∥ϵi∥ψq ≤ ω for some q ∈ (0, 2]. Then (A.119)
and (A.120) are replaced by

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 ≥ ω2t
)
≤ C exp

(
− ct

q
2

)
,

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − L
[
JG+ (2J)

2
q {log(ep)}

2
q
]
ω2 ≥ ω2t

)
≤ C exp

(
− ct

q
2

)
.

(A.121)

(A.122)
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Proof. First, we show (A.119) under the assumption that ∥ϵ∥ψq ≤ ω for some q ≥ 1. Define
a centered random vector ϵc = ϵ−M with M = E[ϵ], then

sup
α∈ΓJ

⟨ϵ, α⟩ ≤ sup
α∈ΓJ

⟨ϵc, α⟩+ sup
α∈ΓJ

⟨PXJM,α⟩ ≤ sup
α∈ΓJ

⟨ϵc, α⟩+ ∥UTM∥2, (A.123)

where PXJ = UUT is the orthogonal projection matrix onto R(XJ ) with {U1, . . . , UJG} as

an orthonormal basis and ∥PXJ ∥2 = 1. We claim that ∥UTM∥22 =
∑JG

i=1(E[UT
i ϵ])

2 ≤ CJGω2.
In fact, because ∥UT

i ϵ∥ψq ≤ ω,

P
(
|UT

i ϵ| > tω
)
≤

∫ +∞

0

1

ψq(
tω
ω
)
dt =

∫ +∞

0

exp(−tq) dt <∞, (A.124)

and so E|UT
i ϵ| ≤ Cω, 1 ≤ i ≤ J .

By definition, {⟨ϵc, α⟩ : α ∈ ΓJ } is a (centered) ψq-process. The induced metric on
ΓJ is: d(α, α′) = ω∥α − α′∥2. To bound the metric entropy log(N (ε,ΓJ , d))), where the
N (ε,ΓJ , d)) is the smallest cardinality of an ε-net that covers ΓJ under the metric d, we
apply a standard volume argument to get

log(N (ε,ΓJ , d))) ≤ log(
Cω

ε
)JG = JG log(Cω/ε). (A.125)

By Theorem 5.36 in Wainwright (2019), we get

P
(

sup
α,α′∈ΓJ

|⟨ϵc, α− α′⟩| − L

∫ D

0

ψ−1
q (N (ε,ΓJ , d)) dε ≥ Lt

)
≤ 2 exp

(
− tq

Dq

)
, (A.126)

for any t > 0, where D = supα,α′∈ΓJ
d(α, α′) = 2ω. Equivalently,

P
(

sup
α,α′∈ΓJ

|⟨ϵc, α− α′⟩| − L

∫ 2ω

0

ψ−1
q (N (ε,ΓJ , d)) dε ≥ ωt

)
≤ C exp

(
− ctq

)
, (A.127)

which implies

P
(
sup
α∈ΓJ

⟨ϵc, α⟩ − L

∫ 2ω

0

ψ−1
q (N (ε,ΓJ , d)) dε ≥ ωt

)
≤ C exp

(
− ctq

)
. (A.128)

Based on (A.124) and (A.128), we obtain

P
(
sup
α∈ΓJ

⟨ϵ, α⟩ − L
√
JGω − L

∫ 2ω

0

ψ−1
q (N (ε,ΓJ , d)) dε ≥ ωt

)
≤ C exp

(
− ctq

)
, (A.129)

or

P
(
sup
α∈ΓJ

⟨ϵ, α⟩ − L
√
JGω − L(JG)

1
qω ≥ ωt

)
≤ C exp

(
− ctq

)
. (A.130)

Therefore,

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L(JG)
2
qω2 ≥ ω2t2

)
≤ C exp

(
− ctq

)
, (A.131)
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and letting s = t2 gives (A.119). With a union bound, we also obtain

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L(JG)
2
qω2 ≥ ω2t

)
≤
(
p

J

)
C exp

(
− ct

q
2

)
≤C exp

{
− ct

q
2 + J log(ep)

}
, (A.132)

from which it follows

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L(JG)
2
qω2 − L2

2
q
−1{J log(ep)}

2
qω2 ≥ ω2t

)
≤ C exp

(
− ct

q
2

)
.

(A.133)

Next, we prove (A.121) assuming ϵ1, . . . , ϵn are independent, centered, and ∥ϵi∥ψq ≤ ω
for some 0 < q ≤ 2. By Hölder’s inequality,

sup
α∈ΓJ

⟨ϵ, α⟩ = sup
α∈ΓJ

⟨PXJ ϵ, α⟩ ≤ ∥UT ϵ∥2, (A.134)

where PXJ = UUT is the orthogonal projection matrix onto R(XJ ) with {U1, . . . , UJG} as
an orthonormal basis and ∥PXJ ∥2 = 1. It remains to get a tail bound for ∥UT ϵ∥22.

Noticing that (i) E[ϵ] = 0, (ii) ∥ϵi∥ψq ≤ ω implies E[ϵ2i ] ≤ Cω2, (iii) ∥UUT∥2 = 1, and
(iv) Tr(UUT ) = JG, we apply a generalized Hanson-Wright inequality (Sambale (2020),
Theorem 2.1) to obtain

P
(
∥UT ϵ∥22 − LJGω2 ≥ ω2t

)
≤ C exp

(
− ct

q
2

)
, (A.135)

where C can be 2 and c, L are constants depending on q only. This results in

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 ≥ ω2t
)
≤ C exp

(
− ct

q
2

)
. (A.136)

Finally, we prove (A.122). Applying the union bound on (A.136) yields

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 ≥ ω2t
)
≤

(
p

J

)
C exp

(
− ct

q
2

)
≤ C exp

{
− ct

q
2 + J log(ep)

}
.

(A.137)

Let t′ = t
q
2 − (1/c)J log(ep). Then (A.137) can be rewritten as

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 ≥ ω2{t′ + 1

c
J log(ep)}

2
q
)
≤ C exp(−ct′). (A.138)

Given 0 < q ≤ 2, by the convexity of x
2
q on R+, we have (a + b)

2
q ≤ 2

2
q
−1(a

2
q + b

2
q ) for any

a, b ≥ 0, and thus (A.138) becomes

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L2
2
q
−1{J log(ep)}

2
qω2 ≥ 2

2
q
−1ω2(t′)

2
q
)
≤ C exp(−ct′), (A.139)

or equivalently,

P
(
sup
α∈ΓJ

(⟨ϵ, α⟩)2 − LJGω2 − L2
2
q
−1{J log(ep)}

2
qω2 ≥ ω2s

)
≤ C exp

(
− cs

q
2

)
. (A.140)

The proof is now complete.
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B Further Extensions

We showcase two nonparametric statistical applications of skewed pivot-blend, one based on
data ranks and the other based on kernels.
Skewed rank-based estimation. Recently, there has been a lot of interest in rank-based
nonparametric estimation methods that minimize

√
12

∑n
i=1 ri{R(ri)/(n+ 1)− 1

2
} (Jaeckel,

1972), where R(ri) denotes the rank of ri among r1, . . . , rn, or equivalently, the ℓ1 loss on the
spread of residuals: 1

n(n−1)

∑
i ̸=j |ri − rj| (Hettmansperger and McKean, 1978, 2010; Wang

et al., 2020). Applying the technique of U-statistics (with kernel h(ri, rj) = |ri − rj|) can
show that the criterion results in estimators with desired asymptotic properties.

The adoption of the symmetric (and relatively robust) ℓ1-loss function heavily depends
on the assumption that ri follows an i.i.d. distribution (when assessed against the statistical
truth). In turn, it implies that the distribution of differences ri − rj is symmetrical, as in
the case of a double-exponential.

Nonetheless, the assumption may not hold in real-world applications beyond the i.i.d.
setting. Such deviations can result in extra skewness of |ri− rj| that cannot be captured by
an exponential (or half-normal) distribution. We introduce a skewed criterion that operates
on the absolute differences |ri − rj| and m,σ, ν > 0:∑

i ̸=j

{( |ri − rj| −m

σ
+m

)
1m(1−σ)≤|ri−rj |≤m +

( |ri − rj| −m

ν
+m

)
1|ri−rj |>m

}
+ n(n− 1) log{σ[1− exp(−m)] + ν exp(−m)}. (B.1)

(B.1) results from applying skewed pivot-blend to the exponential density (instead of the
double-exponential density). A regularization term (such as an ℓ1 penalty) can be incorpo-
rated to capture structural parsimony.
Kernel-assisted nonparametric skew estimation. Assume y − Xβ∗ ∼ SP(ϕ∗)(σ∗, ν∗,m∗),
where the functional form of the density ϕ∗ is also unknown. We can employ a backward-
forward scheme for nonparametric estimation, along with explicit capture of skewness that
aligns with the theme of this paper.

To estimate σ∗, ν∗,m∗, kernel may be employed to approximate ϕ∗, but the data follow
SP(ϕ∗). We can address this by using backward pivot-blend. Holding β, σ, ν,m constant
for now, and referring to the definitions of r̃i (1 ≤ i ≤ n), L(m), and R(m) in Remark 2,
introduce a kernel density estimator with appropriate weights to estimate ϕ∗ based on the
transformed residuals r̃i:

ϕK(t;h) =
1

h

n∑
i=1

{ ν

L(m)ν +R(m)σ
Kh

(ri −m

σ
+m− t

)
1ri≤m

+
σ

L(m)ν +R(m)σ
Kh

(ri −m

ν
+m− t

)
1ri>m

}
.

(B.2)

where Kh(t) = K
(
t/h

)
, the kernel function K(t) can be any continuous symmetric func-

tion with
∫∞
−∞K(t), dt = 1, and h > 0 represents the bandwidth parameter. The kernel

approach in conjunction with (forward) skewed pivot-blend gives rise to a nonparametric
skew-estimation problem, which warrants further investigation.
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(a) ϕ: half-normal, m∗: mean (b) ϕ: Maxwell, m∗: median (c) ϕ: double Rayleigh, m∗: right mode

Figure C.1: Plots of ϕ for Ex 3–Ex 5. The choices of m∗ are indicated in red dashed lines.

C More Experiments

In this part, we consider some densities which may not be unimodal or symmetric (as shown
in Figure C.1). The experimental setup is the same as in Section 5.1.

Ex 3. (Half-normal with the mean as the pivotal point): Let ϕ be the half-normal density
(with scale 1). We set n = 700, κ = 0.1, m∗ as the mean, ν∗ = 0.1 and σ∗ = 0.2, 0.3, 0.4.

Ex 4. (Maxwell-Boltzmann with the median as the pivotal point): Here, ϕ is the
Maxwell-Boltzmann density which is widely used in statistical mechanics (Huang, 2008).
We set n = 500, κ = 0.2, m∗ as the median, ν∗ = 0.1 and σ∗ = 0.4, 0.5, 0.6.

Ex 5. (Double Rayleigh withm∗ as the right mode): Let ϕ be the double Rayleigh density
(with scale 1), n = 500, κ = 0.1, m∗ be the right mode, ν∗ = 0.1 and σ∗ = 0.2, 0.3, 0.4.

Table C.1 illustrates significant issues with conventional methods in capturing skewness,
even when asymmetry is centered around the median, mean, or mode. Specifically, QR∗

and BQR∗ failed to accurately recover the true β∗ despite using the true quantile as input.
Moreover, in all three cases, AME or AME provided at least one misleading estimate of the
scales. In contrast, our proposed method demonstrated remarkable performance, with the
associated β-error being at most 1/3 of that of the other methods.

We also conducted experiments on the air pollution data of Leeds from 1994 to 1998
(Heffernan and Tawn, 2004; Southworth et al., 2020). The dataset contain 578 measurements
of the daily maximum levels of ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO),
sulfur dioxide (SO2) and particulate matter (PM10). We forecasted PM10 levels for the
summer months (April to July) using other air pollutants. We considered the Gumbel model
and its skewed pivot-blend enhancement SPEUS, in addition to ZQR, AME, and ESN. The
p-values from the Kolmogorov-Smirnov tests for these models were 8e-2, 0.71, 9e-2, 0.20,
and 8e-8, respectively. The results may appear surprising, considering the popularity of the
skewed Gumbel distribution for modeling such extreme values (Boldi and Davison, 2007).
Figure C.2 presents the residual Q-Q plots, demonstrating that our skew-reinforced method
significantly improves data fit compared to the classical Gumbel model.

In real-world applications, data scientists frequently confront challenges related to skew-
ness. However, fitting a common distribution that inadequately addresses these distortions
can lead to subpar model fits and misleading inferences. The skewed pivot-blend technique
refines skewness management in these distributions, thus enhancing the accuracy and relia-
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Skewed half-normal
σ∗/ν∗ = 2 σ∗/ν∗ = 3 σ∗/ν∗ = 4

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)
QR∗ 0.80 — — 0.80 — — 0.80 — —
BQR∗ 0.80 0.49 0.62 0.80 0.51 0.64 0.80 0.53 0.65
AME 0.64 0.99 1.22 0.56 1.0 2.02 0.48 1.0 2.82
ZQR 0.65 0.97 0.09 0.59 0.95 0.37 0.52 0.95 0.67

SPEUS 0.14 0.11 0.1 0.08 0.08 0.13 0.06 0.09 0.17

Skewed Maxwell-Boltzmann
σ∗/ν∗ = 4 σ∗/ν∗ = 5 σ∗/ν∗ = 6

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)
QR∗ 1.59 — — 1.59 — — 1.59 — —
BQR∗ 1.59 0.41 0.74 1.59 0.43 0.75 1.59 0.44 0.75
AME 1.47 0.22 0.78 1.46 0.19 0.84 1.46 0.17 0.91
ZQR 1.49 0.58 0.30 1.48 0.58 0.32 1.48 0.57 0.34

SPEUS 0.18 0.14 0.20 0.17 0.13 0.21 0.16 0.12 0.30

Skewed double Rayleigh
σ∗/ν∗ = 2 σ∗/ν∗ = 3 σ∗/ν∗ = 4

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)
QR∗ 1.0 — — 1.0 — — 1.0 — —
BQR∗ 1.0 0.68 0.27 1.0 0.70 0.26 1.0 0.71 0.26
AME 0.87 1.78 1.76 0.88 2.02 1.9 0.89 2.15 1.92
ZQR 0.67 0.50 1.67 0.50 0.48 2.69 0.32 0.45 3.78

SPEUS 0.22 0.03 0.18 0.15 0.03 0.24 0.10 0.03 0.26

Table C.1: Performance comparison for skewed half-normal with pivotal point at the mean, skewed Maxwell
with pivotal point at the median, and skewed double Rayleigh with pivotal point at the right mode (Ex 3–Ex
5)
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Figure C.2: Q-Q plots of residuals for Gumbel (left) and SPEUS (right) on air pollution data.

bility of the models.
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