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Supplementary Material

Here we include several results that were omitted from the main paper due to space

constraints. We first give the exact form of the lower bound considered in the ARDMMSB

model, along with further details on the updates used in Algorithm 1. We then include the

algorithm describing how we combine inferences from multiple passes through minibatches of the

complete network. We give detailed additional simulation results, examining the computational

performance of our procedure, along with further comparisons as we vary properties of the

underlying networks considered. Finally, we examine the role of using multiple passes to our

Citation Network example.
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S1 Variational Updates

The approximate lower bound L∗ is evaluated as
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The variational distributions q(πi) and q(ηk) belong to the exponential family. Thus we

can derive updates by applying nonconjugate variational message passing. The updates for γi

and ϕk are
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are the inverse Fisher information matrices of Dirichlet(γi) and Dirichlet(ϕk)



S1. VARIATIONAL UPDATES

respectively. The gradients are given by
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The entries of the blockmatrix Bmn are updated through a gradient descent given by
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Notice if we give the blockmatrix B the noninformative prior Beta(1, 1), then we will have

the closed from update
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The update for the ancillary parameters p
(mn)
ik is based on tightening inequality 3.3. The

tightest lower bound is given by

p
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S1.1 Variational Inference Procedure for Multiple Passes

Here we include the exact algorithm to combine the results obtained from fitting ARDMMSB to

multiple minibatches of the ARD network.

Algorithm S1 Variational inference procedure for Multiple Passes

Initialize variational parameters γ, ϕ, B.

1. Create minibatches by randomly partitioning nodes and using subsets of subpopulations.

(Each subpopulation is expected to be present in multiple minibatches.)

2. Apply each minibatch through steps 3 to 8 of Algorithm 1 in parallel.

3. Collect outputs from each minibatch fit. Store the node parameters γi. Average the

subpopulation parameters ϕk and blockmatrix B across minibatches.

4. Go back to step 1 until parameter estimates stabilize.

S2 Additional Simulation Results

Here we include additional experiments comparing the proposed ARDMMSB model with existing

methods for simulated data. While we have considered the performance of our proposed procedure

in the main text, here we aim to more thoroughly explore this, considering in turn several

properties of both the data and the proposed inference scheme. We also provide additional

details on the simulation setting considered in both the main paper and the simulation results

provided here.
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Computational Comparison As the focus of our proposed ARDMMSB method is to

provide a scalable inference scheme for large networks, we wish to examine the computational

performance relative to the existing method for MMSM data of Gopalan and Blei (2013). One

challenge here is that the convergence metrics differ for the two models. For the ARDMMSB

model we can measure convergence through L∗, the approximate evidence lower bound. Gopalan

and Blei (2013) use an alternative approach to measure convergence, computing perplexity on

a held out set of node pairs. As these are different convergence measures, we instead look at

the performance of the two procedures when they have both run for a number of iterations

corresponding to observing an equivalent number of nodes. Namely, for the subgraphs used for

each model, we iterate each model, updating the parameters until the total number of nodes

(and the corresponding ARD or edge data) “seen” by the respective algorithms is the same. We

consider the same simulation setting as the main text, and we further expand on the details of

that setting here. Namely, we simulate 10 networks, each generated according to a MMSB model

with K = 6 communities and N = 10000 nodes. The community probability matrix B contains

2 values in the diagonal, with half of its entries corresponding to 0.04 and half of the entries

corresponding to 0.1. In the simulations in the main text we set all off diagonal entries to be 0,

however, in all simulations which follow we instead consider that all off diagonal entries in B

have the same small value (0.005), making this setting somewhat more challenging. To generate

ARD data we require known underlying subpopulations and we generate κ = 50 subpopulation

centers. We then generate the underlying membership vectors as Dirichlet draws from the

corresponding subpopulation center, before generating the corresponding edges conditional on

these membership vectors. We run both ARD and SVI on subgraphs of size n = 500 from these

networks, running each algorithm until they have each observed data corresponding to 10000

nodes. This is sufficient for model convergence for each of the respective metrics. The average
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computational time for the two procedures is shown in Figure S1. The SVI procedure takes

approximately 50% longer than ARD. Running the algorithms for this period gives a similar

performance comparison (in terms of community and parameter recovery) as shown in the main

text, with ARD able to obtain better performance in significantly less computation time.

Figure S1: Boxplots of computation time for ARDMMSB and SVI, each observing the

same number of events.

Varying the Number of Communities To further examine the computational perfor-

mance we consider the same setting described above, but we now vary the number of communities

present in the data. We consider K = 2, 6, 10, 20, in each case fitting ARD and SVI with sub-

graphs of size n = 500 along with SVI with the entire network of n = 10000 nodes. Community

recovery and parameter recovery is shown in Figure S2 When the number of communities is small

both ARD and SVI can estimate the diagonal entries of B well. As K increases the performance

of all procedures drops, with ARD showing clear improvement over SVI with n = 500 and also

good performance against SVI with n = 10000. In terms of community recovery, ARD with

subgraphs of size 500 and SVI using the entire network show excellent community recovery,
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while SVI with a subgraph of size 500 cannot recover the community structure, regardless of the

number of communities present.

Figure S2: Performance as we vary the number of communities, K. The left plot shows

community recovery, in terms on NMI, while the right plots examines recovery of the

diagonal entries of B. In each case we consider ARD and SVI with subgraphs of n = 500,

along with SVI with the complete network.

Varying the Number of Subpopulations In the simulation settings in the main text

we consider the number of subpopulations present in the network, κ, to be fixed. Here we

wish to examine how changing this number influences the overall results and the performance

of our proposed ARD approach. We consider κ = 10, 20, 50, 100 and simulate data from the

corresponding ARDMMSB model each time as above, with K = 6 and all other parameters

fixed as before. In each case we again fit ARD and SVI with subgraphs of size 500, along with

applying SVI to the complete adjacency matrix. Community and parameter recovery is shown

in Figure S3. ARD with a subgraph of n = 500 nodes performs as well as SVI with all nodes
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in terms of community recovery. As we increase κ, the uncertainty of the estimates for the

diagonal entries of B decreases substantially. In these settings the Poisson approximation in the

ARDMMSB model is more appropriate, indicating that the choice of many subpopulations, if

possible, can lead to more stable results.

Figure S3: Performance as the number of subpopulations in the network changes. The

estimates of B become more stable as the number of subpopulations increases.

Varying the Network Sparsity We also examine the role of network sparsity in the

performance of our proposed inference procedure. We consider three specific settings here. We

consider the B matrix described above, with small constant off-diagonal value. The diagonal

entries consist of two values B1, B2, with K = 6 total communities and half of these communities

having connection probability B1 and half having connection probability B2. We examine the

role of sparsity in these diagonal values, which drive the community structure in the network.

Utilising the constants b1 = 0.04 and b2 = 0.1, the sparsity settings we consider are:

• Dense within community edge probability, matching the main simulations in the text,
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Figure S4: Performance as the sparsity of the underlying network changes. Performance

decreases as the networks become sparser in all settings.

with B1 = b1 and B2 = b2.

• Relatively sparse within community edge probability, where B1 = log(N)
N

b1 and B2 =

log(N)
N

b2.

• Sparse within community edge probability, where B1 = b1
N

and B2 = b2
N
.

Here N is the number of nodes in the network, which is set to N = 10000. We again examine

community and parameter recovery under each of these settings in Figure S4. Unsurprisingly,

when we consider sparse or relatively sparse connection probabilities, both ARD and SVI struggle.

We do note that ARD with a subgraph of n = 500 does seem to somewhat outperform SVI (with

subgraphs or the complete network), although all procedures struggle.

S3 Multiple Passes for Citation Network Application.

Our proposed algorithm fits the ARDMMSB model to minibatches in parallel. However, when

fitting to a large network, each minibatch will contain a small fraction of nodes in the network.

After initialization, the nodes in each minibatch will be run through the algorithm with weakly
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Figure S5: KL-Divergence between different passes of the community membership profile

vectors of the papers in the Citation Network.

informative subpopulation blockmatrix parameters. Thus, the fit of each node ignores link

information from all other minibatches. The subpopulation and blockmatrix parameters, on the

other hand, will contain richer information since they are averaged over all the minibatches. We

do another pass as summarized in Algorithm S1 to allow this information to propagate back to

the rest of the nodes.

Figure S5 illustrates the effect of running multiple passes on the membership profile vectors

of the papers. Each plot is a histogram of the KL-divergences of the community membership

profile vectors between passes of the algorithm. The top left plot shows that many of the papers
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did not move very far after the first pass. However, the top left plot shows that after the second

pass, the paper membership profiles moved significantly. This illustrates that propagating the

information that journals contain after the first pass is essential to update the paper profiles.

After this propagation, another pass will not add much information and so the paper profiles

will not change very much. This is clear in the bottom right plot.
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