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S1 Basic statistics of the proposed model

In our paper, we employ copulas to capture serial dependence based on the

assumed Markov property, which is in the same spirit as considered in Chen

and Fan (2006), Chen et al. (2009), and Tang et al. (2019). Given this and

our assumed regression setup, the autocorrelation function (ACF) depends

on the covariates; even the unconditional (not dependent on Xt) value is

an open problem in the literature. However, we can note some potentially

useful insights.

Firstly, the mean of the series {Yt} is the same as that of the marginal
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distribution. For instance, for the simulation design considered in Section

3, E(Yt|Xt) = exp{β1 + β2Xt}. Secondly, for certain copulas, one can

apply Hermite expansion-type arguments to calculate the variance and ACF

of {Yt}, as demonstrated in Jia et al. (2021). For example, consider the

Gaussian copula model in our setup

Φ2

(
φ−1(G(yt|x)), φ−1(G(yt−1)|x)

)
.

The observations conditioned on the covariates can be thought of as a trans-

formed Gaussian process {Zt}:

Zt = Φ−1(G(yt|x)) := L(Zt).

The calculations in Jia et al. (2021) can now be extended to the bivariate

case as in Section 5.7 of Pipiras and Taqqu (2017).

Finally, although it is possible to employ the Hermite expansion for

approximating the variance and ACF, this calculation demands more in-

depth study, and this will be an interesting topic for future research. On

the other hand, note that {Zt} is a monotone increasing transformation of

{Yt|x} and the former is a Gaussian process. It is known that rank correla-

tion such as Kendal’s τ correlation is invariant to monotone transformation.

Therefore, the Kendal’s τ autocorrelation for {Yt|x} is identical to that for

{Zt}. Thus in practice, we can use Kendal’s τ ACF estimation based on
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Ẑt = Φ−1(Ĝ(yt|x)) to perform model diagnosis.

We conducted a small-scale simulation to validate the previously men-

tioned conclusions. The data was generated following the same design as in

Case 1, with α = 0.454, corresponding to Kendall’s τ = 0.3. For each value

of X, we generated a series {Yt, t = 1, . . . , n = 500}. In Figure S.1 below,

we present: (a) the curves for sample mean and population mean against

X; (b) the curves for sample variance and marginal variance against X; (c)

the sample Kendall’s τ for lag 1 correlation obtained for each X (depicted

as circles) and the true Kendall’s τ (which remains a constant invariant of

X in our assumed model setup and is represented by the solid horizontal

line); (d) the sample Kendall’s τ autocorrelation function (ACF) for one

example series {Yt, t = 1, . . . , n = 500}.

The results show that the sample conditional mean closely aligns with

the population mean. The sample conditional Kendall’s τ values fluctuate

around the true value of 0.3, which remains constant invariant of X under

our model framework. As expected, the sample variance is dependent on

X in a manner similar to how the mean varies with X. Figure S.1 (d)

demonstrates that Kendall’s τ ACF exhibits a similar pattern to what we

would expect from the ACF of a continuous AR(1) process, supporting our

earlier recommendation to use Kendall’s τ as a diagnostic tool for model
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assessment.

S2 Likelihood when p ≥ 1

For general p-th order Markov processes, the PMF involves 2p+1 terms of

copula functions. Similar to the case when p = 1, if the (p+ 1)-dimensional

copula Cp+1 is selected to be copula families without closed expressions,

such as elliptical copulas, including Gaussian copula or t copula, then the

joint distribution of Yt can be obtained as

P (Yt = yt, . . . , Yt−p = yt−p|X)

=

∫ Φ−1
1 (F 1

t−p)

Φ−1
1 (F 2

t−p)
· · ·
∫ Φ−1

1 (F 1
t )

Φ−1
1 (F 2

t )
φp+1 (ψ1, . . . , ψp+1|X;α) dψ1 · · · dψp+1. (S2.1)

Here, φp+1(·;X,α) denotes the probability density function (PDF) of a

(p + 1)-dimensional elliptical distribution with location 0 and correlation

given by the parameters α, Φ1 denotes the CDF of the univariate mar-

gin of the same elliptical distribution, F 1
t := P (Yt ≤ yt|X;β) and F 2

t :=

P (Yt ≤ yt − 1|X;β). Otherwise, if the (p + 1)-dimensional copula has a

closed expression for the CDF, we can then use the finite difference form to

calculate the conditional joint distribution, that is,

P (Yt = yt, . . . , Yt−p = yt−p|X)
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Figure S.1: Simulation for Case 1: (a) the sample and population conditional mean

against X; (b) the sample and marginal conditional variance against X; (c) the sample

conditional Kendall’s τ for lag 1 correlation against X (circles) and the true Kendall’s τ

(solid horizontal line); and (d) the sample Kendall’s τ ACF for one example series.
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=
2∑

j0=1

· · ·
2∑

jp=1

(−1)j0+···+jpCp+1

(
F j0
t , . . . , F

jp
t−p|X;α

)
. (S2.2)

Then the conditional PMF of Yt given Yt−1, . . . , Yt−p is given by

P (Yt = yt|Yt−1 = yt−1, . . . , Yt−p = yt−p,X)

=
P (Yt = yt, . . . , Yt−p = yt−p|X)

P (Yt−1 = yt−1, . . . , Yt−p = yt−p|X)

=



∫ Φ−1
1 (F1

t−p)
Φ−1

1 (F2
t−p)

···
∫ Φ−1

1 (F1
t )

Φ−1
1 (F2

t )
φp+1(ψ1,...,ψp+1|X;α)dψ1···dψp+1

∫ Φ−1
1 (F1

t−p)
Φ−1

1 (F2
t−p)

···
∫ Φ−1

1 (F1
t−1)

Φ−1
1 (F2

t−1)
φp(ψ1,...,ψp|X;α)dψ1···dψp

Cp+1: without closed expression∑2
j0=1···

∑2
jp=1(−1)j0+···+jpCp+1

(
F

j0
t ,...,F

jp
t−p|X;α

)
∑2

j1=1···
∑2

jp=1(−1)j1+···+jpCp

(
F

j1
t−1,...,F

jp
t−p|X;α

)
Cp+1: with closed expression

.

(S2.3)

where Cp is the p-dimensional marginal distribution of Cp+1.

Thus, the likelihood function of β and α can be derived as:

L(β,α)

=P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X;β,α)

=P (Y1 = y1|X)P (Y2 = y2|Y1 = y1,X) . . . P (Yn = yn|Yn−1 = yn−1, . . . , Yn−p = yn−p|X)
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=



∏n
t=p+1

∫ Φ−1
1 (F1

t−p)
Φ−1

1 (F2
t−p)

···
∫ Φ−1

1 (F1
t )

Φ−1
1 (F2

t )
φp+1(ψ1,...,ψp+1|X;α)dψ1···dψp+1

∏n−1
t=p+1

∫ Φ−1
1 (F1

t−p)
Φ−1

1 (F2
t−p)

···
∫ Φ−1

1 (F1
t−1)

Φ−1
1 (F2

t−1)
φp(ψ1,...,ψp|X;α)dψ1···dψp

Cp: without closed expression∏n
t=p+1

{∑2
j0=1···

∑2
jp=1(−1)j0+···+jpCp+1

(
F

j0
t ,...,F

jp
t−p|X;α

)}
∏n−1

t=p+1

{∑2
j1=1···

∑2
jp=1(−1)j1+···+jpCp

(
F

j1
t−1,...,F

jp
t−p|X;α

)}
Cp: with closed expression

.

(S2.4)

S3 Proof of Proposition 1

Proof. Without loss of generality, we consider p = 1 and d = 1 with X being

a continuous random variable. We need to show that C(·) in Assumption

A1(c) is uniquely determined. To avoid confusion, we denote the marginal

CDFs of Yt|x and Yt−1|x as F (·|x) and G(·|x). Let CH(·) be the set of

copulas for which

H(yt, yt−1|x) = C{F (yt|x), G(yt−1|x)}, y1, y2 ∈ R (S3.5)

holds. Thus, for ∀ C(·), D(·) ∈ CH, and ∀ u, v ∈ (0, 1)× (0, 1), we have

|C(u, v)−D(u, v)|

≤|C(u, v)− C{F (i|x), G(j|x)}|+ |D(u, v)−D{F (i|x), G(j|x)}|.
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Note that for a given X = x, the conditional CDFs F (y|x) and G(y|x)

cannot take any value in (0, 1). However, since X is a continuous random

variable, F (y|x) and G(y|x) can take any value in (0, 1) across x (as we

vary the values of x). Therefore, for ∀ u, v ∈ (0, 1), ∃ x, i, j, where i and j

depend on x, such that F (i|x) = u and G(j|x) = v, and consequently

|C(u, v)−D(u, v)|

≤|C(u, v)− C{F (i|x), G(j|x)}|+ |D(u, v)−D{F (i|x), G(j|x)}|

=0.

S4 Proof of Theorem 1

We first introduce one lemma. The statement was mentioned in Longla and

Peligrad (2012) but without a formal proof. Below, we provide a proof for

this lemma to ensure completeness.

Lemma 1. The mixing coefficients of a Markov chain generated by a given

copula C and marginal distribution uniform on [0, 1], are larger than or

equal to those of a Markov chain generated by the same copula and another

marginal distribution G that is not necessarily continuous.
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Proof. According to the definition of the β−mixing coefficients, we have the

β−mixing coefficients between two σ−fields A, B is

β(A,B) =
1

2
sup

{Ai},{Bj}

n∑
i=1

m∑
j=1

|Pr (Ai ∩Bj)− Pr (Ai) Pr (Bj)| ,

where the supremum is taken over all positive integers n and m, and all

finite partitions {Ai}, {Bj} with Ai ∈ A and Bj ∈ B.

Let {Un}n∈Z be the Markov chain generated by a given copula C and

marginal distribution uniform on [0, 1], that is, from the model in As-

sumption A1(c) with joint distribution P (Ut ≤ ut, . . . , Ut−p ≤ ut−p) =

C(ut, . . . , ut−p). Let P1 = σ{Uk, k ≤ 0}, and F1n = σ{Uk, k ≥ n}. Let G

be a cumulative distribution function, which is not necessarily continuous.

Define Yn = G−1(un)
.
= inf{y,G(y) ≥ un}, then {Yn}n∈Z is a Markov chain

generated by the same copula C and the marginal distribution G. Further-

more, define P2 = σ{Yk, k ≤ 0} and F2n = σ{Yk, k ≥ n}. Therefore, we

can express the β−mixing coefficients of {Un}n∈Z and {Yn}n∈Z as

β1n = β(P1,F1n) =
1

2
sup

{A1i},{B1j}

n∑
i=1

m∑
j=1

|Pr (A1i ∩B1j)− Pr (A1i) Pr (B1j)| ,

where the supremum is taken over all positive integers n and m, and all

finite partitions {A1i}, {B1j} with A1i ∈ P1 and B1j ∈ F1n, and

β2n = β(P2,F2n) =
1

2
sup

{A2i},{B2j}

n∑
i=1

m∑
j=1

|Pr (A2i ∩B2j)− Pr (A2i) Pr (B2j)| ,
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where the supremum is taken over all positive integers n and m, and all

finite partitions {A2i}, {B2j} with A2i ∈ P2 and B2j ∈ F2n.

Note that P1 ⊃ P2 and F1n ⊃ F2n, so we get β1n ≥ β2n, and Lemma 1

is proven.

Proof of Theorem 1: Theorem 1 can be proven by applying Theorem 6.4

in White (1996) using the standard maximum likelihood theory. To do so,

below we will verify that the required conditions in Theorem 6.4 are met.

Firstly, condition 2.1 in White (1996) is met under the model assump-

tion A1. Assumptions A2(a) and A2(b) ensure that condition 2.3 is satis-

fied. Assumption A3 ensures conditions 3.1(a) and 3.1(b). Assumption A4

can be easily verified by using the previously introduced Lemma 1. By com-

bining A4 with A1(b), A1(c), A2(a), A3, and A8(a), and Corollary 1 from

Pötscher and Prucha (1989), we can demonstrate that the strong uniform

law of large numbers (ULLN) holds for log{ft(Yt;θ0)}nt=1. This, in turn,

verifies condition 3.1(c) in White (1996). In addition, Assumption A2(c)

confirms condition 3.2′, while A5 ensures condition 3.6 in White (1996). As-

sumption A6(a) ensures condition 3.7(a), and A6(b) along with A6(c) fulfill

conditions 3.8(a) and 3.8(b), respectively. Condition 3.8(c) can be validated

in a manner analogous to 3.1(c), utilizing assumption A8(b). Assumption
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A7 validates condition 3.9. Applying Theorem 2.8.1 from Lehmann (2004)

in conjunction with assumptions A1(a), A1(b), and A8(c), we can show that

the central limit theorem applies to the array {n−1/2O log{ft(Yt;θ0)}}nt=1,

with covariance matrix Bn0. Consequently, condition 6.1 in White (1996)

is met.
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