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0.1 Lemmas and Proofs

0.1.1 Proof of Stability Result (Section 2)

Following along the lines in Fan and Yao (2003) and Chan and Tong (1985), we first introduce

the following lemmas:

Lemma 1. Let {Xt} be a ϕ−irreducible Markov chain on a normed topological space. If the

transition probability P (x, ·) is strongly continuous, namely, the transition probability P (x,A)

from x to a measurable set A is continuous in x, then a sufficient condition for the geometric

ergodicity is that there exists a compact set K and a positive constant ρ < 1 such that

E(||Xt+1|||Xt = x) <


∞, for x ∈ K

ρ||x||, for x ̸∈ K

Lemma 2. Let {Xt} be an aperiodic Markov chain, and let m be a positive integer. Then, the

geometric ergodicity of the subsequence {Xmt} entails the geometric ergodicity of the original

series {Xt}.

Lemma 3. The Markov chain {Xt} is aperiodic and ϕ−irreducible with ϕ being the Lebesgue

measure if ϵt has an absolutely continuous component with a positive density everywhere and

A(·) and B(·) are bounded over bounded sets.



Hang Yin, Abolfazl Safikhani, George Michailidis

Proof of Theorem 1. The proof follows along similar arguments as in Chen and Tsay (1993)

and Theorem 8.1 in Fan and Yao (2003). Let || · || be the Euclidean norm. Let λmax be the

maximum eigenvalue of G̃. Then ||G̃n||1/n → |λmax| < 1, so there exists a positive integer

δ < 1 and an integer m such that ||G̃m|| < δ.

For the subchain {Xmt, t = 1, 2, · · · },

Xm(t+1) =

m−1∏
i=0

G(Umt+i+1)Xmt +

m∑
i=1

[

m−1∏
j=1

G(Umt+j+1)]Emt+i. (1)

For any vector c = (c1, · · · , cNq)
T , let (d1, · · · , dNq)

T = G(U)c. Then

|di| = |
q∑

j=1

ai,j(U)c1+(j−1)N+

q∑
j=1

N∑
k=1,k ̸=i

bij(U)wikck+(j−1)N | ≤
q∑

j=1

ãi,j |c1+(j−1)N |+
q∑

j=1

N∑
k=1,k ̸=i

b̃ijwik|ck+(j−1)N |,

for i = 1, 2, · · · , N and |di| = |ci| for i = N + 1, · · · , Nq. So

||G(U)c|| ≤ ||G̃|c|||.

Repeatedly applying this to 1, we obtain

||X(m+1)t|| = ||G̃m|Xmt|||+ ||
m∑
i=1

G̃
m−i|Emt+i|||.

The first term is bounded by

||G̃m||||Xmt|| ≤ δ||Xmt||.

Hence

E(||Xm(t+1)|||Xmt = x) ≤ δ||x||+ E||
m∑
i=1

G̃
m−i|Emt+i|||.

The second term is bounded and is independent of x. Let D denote the bound. Then

E(||Xm(t+1)|||Xmt = x) ≤ δ||x||+D.

Let ρ ∈ (δ, 1) and set M = D(ρ− δ)−1. Then for all ||x|| > M ,

E(||Xm(t+1)|||Xmt) ≤ ρ||x||.
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Hence, by Lemma 1, with K = {x : ||x|| ≤ M}, the sequence {Xmt} is geometrically ergodic.

As a result, the original sequence {Xt} is geometrically ergodic by Lemma 2.

0.1.2 Proofs of Asymptotic Properties

For completeness of the exposition, we provide the central limit theorem for martingale differ-

ences (Theorem 5.3.4 in Fuller (2009)) next:

Lemma 4. Let {Ztn : 1 ≤ t ≤ n, n ≥ 1} denote a triangular array of random variables defined

on the probability space (Ω,A, P ), and let {Atn : 0 ≤ t ≤ n, n ≥ 1} be any triangular array of

sub-sigma-fields of A such that for each n and 1 ≤ t ≤ n, Ztn is Atn-measurable and At−1,n is

contained in Atn. For 1 ≤ k ≤ n, 1 ≤ j ≤ n, and n ≥ 1, let

Skn =

k∑
t=1

Ztn,

δ2tn = E(Z2
tn|At−1,n),

V 2
jn =

j∑
t=1

δ2tn,

and

s2nn = E(V 2
nn).

Assume

• E(Ztn|At−1,n) = 0 a.s. for 1 ≤ t ≤ n,

• V 2
nns

−2
nn →p 1,

• lim
n→∞

s−2
nn

n∑
j=1

E(Z2
jnI(|Zjn| ≥ ϵsnn)) = 0 for all ϵ > 0,

where I(A) denotes the indicator function of a set A. Then, as n → ∞,

s−1
nnSnn →d N(0, 1).
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Proof of Theorem 2

Note that

√
T (β̂i − βi) = (

1

T

T∑
t=1

ZT
i(t−1)Zi(t−1))

−1 1√
T

T∑
t=1

ZT
i(t−1)(Zi(t−1)βi + ϵit)−

√
Tβi

= (
1

T

T∑
t=1

ZT
i(t−1)Zi(t−1))

−1 1√
T

T∑
t=1

ZT
i(t−1)ϵit.

Hence, it suffices to show the following:

(a) 1
T

T∑
t=1

ZT
i(t−1)Zi(t−1) →p Pi, which follows from ergodicity.

Specifically, following the proof of Proposition 11.1 in Hamilton (1994), ρ(G̃) < 1 ensures

that the MA(∞) representation:

Xt =

∞∑
j=0

Gj(Ut−j)Et−j (2)

is absolutely summable. Hence, Xt is ergodic for the first moments from Proposition 10.2(b),

10.5(a) of Hamilton (1994), and is also ergodic for the second moments from Proposition 10.2(d)

of Hamilton (1994).

Hence, Xt is a geometrically ergodic process which implies that 1
T

T∑
t=1

XtX
T
t →p E(XtX

T
t ).

We also get similar results for Ut because of strict stationarity and (2). Note that by assumption

3, the row sum of W is equal to 1, so wT
i Xt−j can be seen as the weighted average of Xt−j ,

and elements in Zi(t−1) include Zi1(Xi(t−j), Uit), Zi2(w
T
i Xt−j , Uit), where Zi1(·) and Zi2(·) are

continuous functions. Thus, 1
T

T∑
t=1

ZT
i(t−1)Zi(t−1) →p Pi.

(b) 1√
T

T∑
t=1

ZT
i(t−1)ϵit →d σ2Pi.

For simplicity, denote Yij,l to be the l-th element of Zi(t−j). So

Zi(t−j) :=

[
Zi1(Xi(t−j), Uit) Zi2(w

T
i Xt−j , Uit)

]
=

[
Yij,1 · · · Yij,M+K Yij,M+K+1 · · · Yij,2M+2K

]
.

By assumption 5 and Lemma 3 of Yin et al. (2023), E(|Xit|4) < ∞, E(|Uit|4(M−1)) < ∞,

and by assumption 3, it is obvious E(|wT
i Xt|4) < ∞, so E(|Yij,k|4) < ∞.
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Let η2q(M+K)×1 be a column vector of arbitrary real numbers such that ηT η ̸= 0. Let

1√
T
ηT

T∑
t=1

ZT
i(t−1)ϵit =

T∑
t=1

ZtT = STT ,

where ZtT = 1√
T
ηTZT

i(t−1)ϵit. Since E(ϵt|At−1) = 0 where At−1 is the sigma-field gen-

erated by {ϵj : j ≤ t − 1}, we have E(ZtT |At−1) = 0, so condition 1 of Lemma 4 (in the

supplement) is satisfied.

Define δ2tT := E(Z2
tT |At−1) = E( 1

T
ηTZT

i(t−1)Zi(t−1)ηϵ
2
it|At−1) =

1
T
ηTZT

i(t−1)Zi(t−1)ησ
2 and

V 2
TT := 1

T

T∑
t=1

ηTZT
i(t−1)Zi(t−1)ησ

2.

Hence, we have V 2
TT →p ηTPiη by ergodicity of Xt. Further,

s2TT := E(V 2
TT ) =

T∑
t=1

1

T
ηTPiησ

2 = ηTPiησ
2,

thus V 2
TT s

−2
TT →p 1. Therefore, condition 2 of Lemma 4 is satisfied.

Condition 3 of Lemma 4 gives

s−2
TT

T∑
t=1

E(Z2
tT I(|ZtT | ≥ ϵsTT ))

≤ s−2
TT

T∑
t=1

E((ϵsTT )
−2Z4

tT I(|ZtT | ≥ ϵsTT ))

≤ s−4
TT ϵ

−2
T∑

t=1

E((
1√
T
ηTZT

i(t−1)ϵit)
4)

= s−4
TT ϵ

−2
T∑

t=1

E((
1√
T
ηTZT

i(t−1)ϵit)
4).

Define ai := 1√
T

q∑
j=1

2M+2K∑
k=1

η(iNq−Nq+j−1)(2M+2K)+kYij,k, then for E((ηT 1√
T
ZT
i(t−1)ϵit)

4), we

have:

E((ηT 1√
T
ZT
i(t−1)ϵit)

4) = E((
1√
T
aiϵit)

4)

= E(E(
1

T 2
a4
i ϵ

4
it|At−1))

(a)

≤ c1E((
1

T 2
a4
i ))

where (a) follows from E(|ϵ4it|At−1) ≤ c1 < ∞.
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Since E(|Yij,k|4) ≤ c2 < ∞, E( 1
T2 a

4
i ) = O( 1

T2 ). Therefore, s−2
TT

T∑
t=1

E(Z2
tT I(|ZtT | ≥

ϵsTT )) = O( 1
T
) → 0. Thus, we obtain

1√
T

T∑
t=1

ZT
i(t−1)ϵit →d N(0, σ2Pi).

Combining parts (a) and (b) implies that
√
T (β̂i − βi) →d N(0, σ2P−1

i ).

Proof of Theorem 3

Proof of Theorem 3. By the definition of the ridge estimator in Equation 3.8, we get

β̂ridge
i = argmin

1

T

T∑
t=1

(Xit − Zi(t−1)βi)
2 + ||λΨβi||2

= (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1

T∑
t=1

ZT
i(t−1)Xit

= (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1

T∑
t=1

ZT
i(t−1)Xit

= (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1

T∑
t=1

(ZT
i(t−1)Zi(t−1)βi + ZT

i(t−1)ϵit)

= (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1(

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTM)βi + (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1

T∑
t=1

ZT
i(t−1)ϵit

− (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1TΨβi

= βi + (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1

T∑
t=1

ZT
i(t−1)ϵit − (

T∑
t=1

ZT
i(t−1)Zi(t−1) + TM)−1λTΨβi

Since,

1

T
(

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ) →p Pi + λΨ,

we thus obtain:

√
T (β̂ridge

i − βi) =
√
T (

T∑
t=1

ZT
i(t−1)Zi(t−1) + λTΨ)−1(

T∑
t=1

ZT
i(t−1)ϵit − λTΨβi).

If λ = o( 1√
T
), using the above and part (b) in the proof of Theorem 2,

√
T (β̂ridge

i − βi) →d N(0, σ2P−1
i ).
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Proof of Theorem 4

Proof of Theorem 4. Since βi(u) = (I2q ⊗ Φi(u))βi, and

√
T (β̂i − βi) →d N(0, σ2P−1

i ).

So by the delta method,

√
T (β̂i(u)− βi(u)) →d N(0, σ2(I2q ⊗ Φi(u))P

−1
i (I2q ⊗ Φi(u))

T ).

Proof of Theorem 5

Proof of Theorem 5. Note that we assume Σϵ = σ2I, βi of each node is estimated separately.

The proof of 5 is parallel to that of Theorems 2, 3, and 4.

Uniform Convergence of FNAR Model Parameters

Corollary 1. Suppose assumptions 1-5 hold. Further, assume u satisfies P (u ̸∈ [−L,L]) → 0

as L → ∞ where L ∈ R.

• If L2M

T
= o(1),

supu|βi(u)− βi(u)| →p 0 for i = 1, 2, · · · , N.

• If L2MN
T

= o(1),

supu||βi(u)− βi(u)||2 →p 0.

Proof. For Uit = u,

√
T (β̂i(u)− βi(u)) →d N(0, σ2(I2q ⊗ Φi(u))P

−1
i (I2q ⊗ Φi(u))

T ).
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Denote βij(u) to be the j-th element of βi(u), and denote the corresponding asymptotic

variance as σ2
ij(u), which is the j-th diagonal element of

σ2(I2q ⊗ Φi(u))P
−1
i (I2q ⊗ Φi(u))

T .

Thus, σ2
ij(u) := O(u2M ).

P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ)

= P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ, u ∈ [−L,L]) + P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ, u ̸∈ [−L,L]).

(3)

For u ∈ [−L,L],

P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ, u ∈ [−L,L])

= P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ | u ∈ [−L,L]) · P (u ∈ [−L,L])

= P (|β̂ij(u0)− βij(u0)| ≥ ϵ | u0 ∈ [−L,L]) · P (u ∈ [−L,L])

= O(
L2M

Tϵ2
) · P (u ∈ [−L,L])

→ 0 as T → ∞,

(4)

if L2M

T
= o(1), since βij(u) is a continuous function of u.

For u ̸∈ L,

P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ, u ̸∈ [−L,L])

= P (sup
u

|β̂ij(u)− βij(u)| ≥ ϵ | u ̸∈ [−L,L]) · P (u ̸∈ [−L,L])

→ 0,

(5)

if P (u ̸∈ [−L,L]) → 0 as L → ∞.

Thus, the condition P (u ̸∈ [−L,L]) → 0 as L → ∞ and L2M

T
= o(1) needs to be satisfied.



0.2. ADDITIONAL SIMULATION RESULTS

Similarly,

P (sup
u

||β̂i(u)− βi(u)||2 ≥ ϵ)

= P (sup
u

√√√√ N∑
i=1

2q∑
j=1

(β̂ij(u)− βij(u))2 ≥ ϵ)

= P (sup
u

√√√√ N∑
i=1

2q∑
j=1

(β̂ij(u)− βij(u))2 ≥ ϵ, u ∈ [−L,L])

+ P (sup
u

√√√√ N∑
i=1

2q∑
j=1

(β̂ij(u)− βij(u))2 ≥ ϵ, u ̸∈ [−L,L])

→ 0

(6)

if L2MN
T

= o(1), and P (u ̸∈ [−L,L]) → 0 as L → ∞.

0.2 Additional Simulation Results

The following simulation scenarios are considered:

A.2: The sample size is set to T = 400 and 2400, and the spline order varies between M =

2, 4, 6. Further, the error and threshold processes and W are set as in scenario A.1.

A.3: The order of the spline basis is set to M = 4, while the number of knots varies according

to K = 5, 10, 15. The sample size, the error and threshold processes and the network

matrix W are as in scenario A.2.

A.4: The order of the spline basis is set to M = 4 with K = 10 knots. The sample size and

the error and threshold processes are set as in scenario A.2. The network matrix W is

banded and the bandwidth is set to 2, 10, 50.

Figures 1 and 2 in the supplementary material suggest that for exponential autoregressive

and network effect functions, splines of low order (M = 2) provide good estimates compared to
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higher order splines for T = 400. This may be related to the limited sample size. As T increases

to 2400, the performance of splines with M = 4 and 6 improve.

Figures 3 and 4 in the supplementary material show that the number of knots K needs to

be selected in accordance with the sample size T . Specifically, K = 10 gives the best result, while

for smaller K, there might be bias for the estimated functions, and for larger K the estimated

functions become unstable near the boundary. Finally, Figures 5 and 6 in the supplementary

material confirm the robustness of the autoregressive function estimates over network matrices

W with different bandwidths (number of neighboring nodes included), while the network effect

estimates become less accurate for more connected W matrices.
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(a) M=2, T=400 (b) M=4, T=400 (c) M=6, T=400

(d) M=2, T=2400 (e) M=4, T=2400 (f) M=6, T=2400

Figure 1: ai(·) of A.2

(a) M=2, T=400 (b) M=4, T=400 (c) M=6, T=400

(d) M=2, T=2400 (e) M=4, T=2400 (f) M=6, T=2400

Figure 2: bi(·) of A.2
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(a) K=5, T=400 (b) K=10, T=400 (c) K=15, T=400

(d) K=5, T=2400 (e) K=10, T=2400 (f) K=15, T=2400

Figure 3: ai(·) of A.3

(a) K=5, T=400 (b) K=10, T=400 (c) K=15, T=400

(d) K=5, T=2400 (e) K=10, T=2400 (f) K=15, T=2400

Figure 4: bi(·) of A.3
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(a) BW=2, T=400 (b) BW=10, T=400 (c) BW=50, T=400

(d) BW=2, T=2400 (e) BW=10, T=2400 (f) BW=50, T=2400

Figure 5: ai(·) of A.4

(a) BW=2, T=400 (b) BW=10, T=400 (c) BW=50, T=400

(d) BW=2, T=2400 (e) BW=10, T=2400 (f) BW=50, T=2400

Figure 6: bi(·) of A.4
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0.2.1 Impact of the network matrix W on the Spectral Radius

and Assumption 3(a) of the FCNAR model

Theorem 1 shows that a sufficient condition for the stability of the FNCAR process is that

ρ(G̃) < 1. Further, Assumption 3(a) is used to establish the asymptotic properties of the

estimators of the FCNAR model parameters. The network matrix W impacts both the spectral

radius and the maximum and minimum eigenvalues of E(YitY
T
it |Uit = u; however, analytical

results on its impact are difficult to obtain. In the sequel, we provide numerical evidence of how

these important quantities behave as a function of the bandwidth of W .

(I) Impact of W on the Spectral Radius

Consider FCNAR(1,1) with N = 100, ai(u) := 0.3I(u ≤ 0) − 0.4I(u > 0) and bi(u) :=

−0.5I(u ≤ 0) + 0.4I(u > 0), i = 1, 2, · · · , N . Further, both the autorgressive ai(·) and network

effect bi(·) functions are bounded by universal constants ãi = 0.4 and b̃i = 0.5 for all i =

1, 2, · · · , N . We consider equally weighted network matrices W of bandwidths 1 to 100.

Figure 7 depicts the spectral radius of G̃ as the bandwidth of W increases.

Figure 7: Spectral Radius ρ(G̃) as a function of an increasing bandwidth of W

It can be seen that the spectral radius ρ(·) is a decreasing function of the bandwidth of

W . Specifically, as the bandwidth (number of neighbors) increases from 1 to ∼ 5, the spectral
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radius decreases rapidly to a value around 0.55. A further increase in the bandwidth of W (from

10 to the maximum value of 100, wherein every node in the network impacts every other node),

gradually decreases the spectral radius to a value of 0.4.

Hence, after fixing all the other parameters that determine the FCNAR process, the impact

of an increasing bandwidth of the network matrix W on the spectral radius,beyond a certain

number of neighbors, is gradual and small.

We also plotted ρ(G(u)) as a function of u. Consider FCNAR(1,1) with N = 100, ai(u) :=

0.1−0.03u+0.05u2−0.16(u+0.5)2++0.12(u−0.5)2+ for u ∈ [−2, 2] and constant otherwise, and

bi(u) := −0.12 + 0.08u− 0.05u2 + 0.18(u+ 0.5)2+ − 0.12(u− 0.5)2+ for u ∈ [−2, 2] and constant

otherwise, i = 1, 2, · · · , N . Fiture 8 depicts the spectral radius as a function of u.

Figure 8: Spectral Radius ρ(G(u)) as a function of u

For FCNAR(1,1) with N = 100, ai(u) := 0.138 + (0.316 + 0.982u)e−3.89u2

and bi(u) :=

−0.437 − (0.659 + 1.260u)e−3.89u2

, i = 1, 2, · · · , N . Fiture 9 depicts the spectral radius as a

function of u.
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Figure 9: Spectral Radius ρ(G(u)) as a function of u

(II) Impact of W on Assumption 3(a)

Consider again the same setting for FCNAR(1,1) with N = 100, ai(u) := 0.3I(u ≤ 0) −

0.4I(u > 0) and bi(u) := −0.5I(u ≤ 0) + 0.4I(u > 0), i = 1, 2, · · · , N . The network matrix W

is constructed in an analogous fashion as in (I) above.

Figure 10 depicts the maximum and minimum eigenvalue of E(YitY
T
it |Uit = −0.1), as the

bandwidth of W increases.

Figure 10: Maximum and minimum eigenvalue of E(YitY
T
it |Uit = −0.1) as a function of

the bandwidth of W

It can be seen that for a bandwidth larger than 15, the maximum eigenvalue stabilizes

around 1.2. The same happens to the minimum eigenvalue, which more importantly remains
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clearly bounded away from 0.

Hence, after fixing all the other parameters that determine the FCNAR process, the impact

of an increasing bandwidth of the network matrix W on Assumption 3(a), beyond a certain

number of neighbors, is marginal.

0.3 Results from a Data Set on Wind Speeds

We also tested the posited FCNAR model based on a wind speed data set available in the GNAR

R package. The data set contains wind speed measurements for 102 weather stations in England

and Wales, whose location coordinates are available. The length of the wind speed series is

721 observations. W correspond to a row-normalized adjacent matrix obtained as follows: let

Dij be the Euclidean distance between two stations, then the ij-th element of W is defined as:

ϕij = wij :=
D−1

ij∑
j

D−1
ij

if i ̸= j and Dij ≤ 100 and 0 otherwise.

The F-test (for details see Section 3.3) for the following two null hypotheses

H0 : ai2 = ai3 = · · · = ai(M+K) = 0,

H0 : bi2 = bi3 = · · · = bi(M+K) = 0.

is used to test, if each node exhibits a non-linear autoregressive or network effect. However,

since only a small number (around 21 for ai(·) and 10 for bi(·)) of the stations have non-linear

autoregressive and network coefficients according to the hypothesis testing, the model can be

simplified to the linear models. We plot the adjusted p-values in ascending order in Figure 11:
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(a) ai(·) (b) bi(·)

Figure 11: Adjusted p-values sorted in ascending order
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