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Supplementary Material

S1 Technical conditions

THe following conditions are some regularity conditions needed for the the-

oretical results in the main paper.

(C1) These exists a constant ∆ > 0 so that for all a ̸= b ∈ N+, ||sa − sb|| ≥

∆.

(C2) For all fixed h ∈ R+, k = 1, · · · , K, ρk(h,αk) is pk + 1 times con-

tinuously differentiable w.r.t. αk. For all i1, · · · , ipk ∈ N satisfying
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i1 + · · · + ipk ≤ pk + 1, there exists a positive constant A < +∞, so

that for all h ∈ R+ and αk ∈ Ψαk
,

| ∂i1

∂αi1
k,1

· · · ∂ipk

∂α
ipk
k,pk

ρk(h,αk)| ≤
A

1 + |h|3
.

The Fourier transforms ρ̃k(ω,αk) of ρk(h,αk) are jointly continuous

and strictly positive in ω ∈ R and αk ∈ Ψαk
.

(C3) infnλmin(Σ0) > 0, supnλmax(Σ0) < ∞, where λmax(·) and λmin(·) repre-

sent the maximum and minimum eigenvalues of a matrix, respectively.

(C4) The first-order and second-order derivatives of the link function µ(·)

are finite in the parameter space, the variance function V (·) is positive,

and the first-order derivative of V (·) is finite.

(C5) ρk,l(m) = o(m−2) for k+l ≤ 4, where the ρ−product mixing coefficients

are defined by

ρk,l(m) = sup

[∣∣∣∣∣Cov
 ∏
si∈Λ1

Y (si),
∏
sj∈Λ2

Y (sj)


∣∣∣∣∣ : E(|Y (s)|2+δ) < ∞,

|Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ m

]
,

Λ denotes a subset of locations, and |Λ| denotes the number of elements

in Λ, d(Λ1,Λ2) = inf{||s1 − s2|| : s1 ∈ Λ1, s2 ∈ Λ2}, and δ,m ∈ R+,

k, l ∈ N+.
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(C6) The true correlation matrix of Y is
∑K

k=1 π
0
kR

(k)(α0
k), and E{ℓn(ψ,β0; γ2)}

attains its minimum over Ψ at ψ0 = (α0
k
T
, π0

k)
K
k=1.

S2 Technical proofs

Lemma 1. Under Conditions (C1)-(C4) and the identifiability condition 1

in the main paper, suppose there exists an estimator of regression parameter,

satisfying β̂−β0 = Op(n
−1/2), then for the estimator of nuisance parameter

through minimizing ℓn(ψ, β̂), denoted as ψ̂, we have for every ζ > 0, as

n → ∞,

P
{
d(ψ̂,Ψ0) ≥ ζ

}
→ 0.

Proof: First, we will prove sup
ψ∈Ψ

|ℓn(ψ, β̂) − ℓ̄(ψ,β0)| = op(1). Let I1n(ψ) = ℓn(ψ, β̂) −

ℓn(ψ,β0), I2n(ψ) = ℓn(ψ,β0)− E{ℓn(ψ,β0)}, and I3n(ψ) = E{ℓn(ψ,β0)} − ℓ̄(ψ,β0). Notice

that

ℓn(ψ, β̂)− ℓ̄(ψ,β0) = I1n(ψ) + I2n(ψ) + I3n(ψ), (S2.1)

thus we only need to prove that I1n(ψ), I2n(ψ) and I3n(ψ) converge uniformly to zero over Ψ.
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For I1n(ψ), we have

I1n(ψ) = ℓn(ψ, β̂)− ℓn(ψ,β0)

=
1

n
{Y − µ(β̂)}TA(β̂)−1/2R(ψ)−1A(β̂)−1/2{Y − µ(β̂)}

− 1

n
{Y − µ(β0)}TA(β0)

−1/2R(ψ)−1A(β0)
−1/2{Y − µ(β0)}

=
1

n
[Y − µ(β0) +∇{µ(β∗)}(β̂ − β0)]

TA(β̂)−1/2R(ψ)−1

A(β̂)−1/2[Y − µ(β0) +∇{µ(β∗)}(β̂ − β0)]

− 1

n
{Y − µ(β0)}TA(β0)

−1/2R(ψ)−1A(β0)
−1/2{Y − µ(β0)}

=
2

n
[∇{µ(β∗)}(β̂ − β0)]

TA(β̂)−1/2R(ψ)−1A(β̂)−1/2{Y − µ(β0)}

+
1

n
[∇{µ(β∗)}(β̂ − β0)]

TA(β̂)−1/2R(ψ)−1A(β̂)−1/2[∇{µ(β∗)}(β̂ − β0)]

+
1

n
{Y − µ(β0)}T

{
A(β̂)−1/2 −A(β0)

−1/2
}
R(ψ)−1A(β̂)−1/2{Y − µ(β0)}

+
1

n
{Y − µ(β0)}T

{
A(β̂)−1/2 −A(β0)

−1/2
}
R(ψ)−1A(β0)

−1/2{Y − µ(β0)},

(S2.2)

where ∇ represents the first-order partial derivative w.r.t. β, and β∗

satisfies ||β∗ −β0|| ≤ ||β̂−β0||. Under Conditions (C1)-(C2), by Theorem

5 in Bachoc and Furrer (2016), we have infn
ψ∈Ψ

λmin{R(ψ)} > 0, and by

Lemma 6 in Furrer et al. (2016), we have supn
ψ∈Ψ

λmax{R(ψ)} < ∞. Together
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with assumption (C4) and β̂ − β0 = Op(n
−1/2), we can obtain that

sup
ψ∈Ψ

∣∣∣ 1
n
[∇{µ(β∗)}(β̂ − β0)]

TA(β̂)−1/2R(ψ)−1A(β̂)−1/2[∇{µ(β∗)}(β̂ − β0)]
∣∣∣ = op(1),

sup
ψ∈Ψ

∣∣∣ 1
n
[∇{µ(β∗)}(β̂ − β0)]

TA(β̂)−1/2R(ψ)−1A(β̂)−1/2{Y − µ(β0)}
∣∣∣ = op(1),

sup
ψ∈Ψ

∣∣∣ 1
n
{Y − µ(β0)}T

{
A(β̂)−1/2 −A(β0)

−1/2
}
R(ψ)−1A(β̂)−1/2{Y − µ(β0)}

∣∣∣ = op(1),

sup
ψ∈Ψ

∣∣∣ 1
n
{Y − µ(β0)}T

{
A(β̂)−1/2 −A(β0)

−1/2
}
R(ψ)−1A(β0)

−1/2{Y − µ(β0)}
∣∣∣ = op(1).

(S2.3)

Thus, together with (S2.2), we have sup
ψ∈Ψ

|I1n(ψ)| = op(1).

Under Conditions (C1)-(C3), similar with the proof of Theorem 3.3 in

Bachoc et al. (2018), we can obtain sup
ψ∈Ψ

|I2n(ψ)| = op(1). Directly from the

definition of ℓ̄(ψ,β0), we have sup
ψ∈Ψ

|I3n(ψ)| = op(1). Through the above

discussion, we have

sup
ψ∈Ψ

|ℓn(ψ, β̂)− ℓ̄(ψ,β0)| = op(1). (S2.4)

Combing (S2.4) with the identifiability condition 1 in the main paper,

by Theorem 5.7 in Van der Vaart (2000), we have for every ζ > 0, as

n → ∞, P
{
d(ψ̂,Ψ0) ≥ ζ

}
→ 0. □

Lemma 2. Under the conditions of Lemma 1, assumption (C5) and the

identifiability condition 2 in the main paper, suppose there exists an es-

timator of nuisance parameter, satisfying d(ψ̂,Ψ0) = op(1), then for the
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estimator of regression parameter through solving equation (2.4) with ψ

replaced by ψ̂, denoted as β̂, we have

√
n(β̂ − β0)

D→ N {0,Ξ(β0,ψ0)} .

Proof: We first prove the consistency of β̂−β0 = op(1), then first-order

Taylor expansion can be used to prove the asymptotic normality of β̂.

The proof of consistency is quite similar to the proof for Theorem 3 in

Lin (2008). We only need to verify that the conditions for Theorem 3 of

Lin (2008) are stilled satisfied under Conditions (C1)-(C5). The verifying

process is quite straightforward, thus omitted here.

After obtaining the consistency of β̂, the proof for Theorem A.6 in

the supplementary file of Oman et al. (2007) gives details for proving the

asymptotic normality of the spatial GEE-type estimator β̂ using first-order

Taylor expansion. As showed by Oman et al. (2007), the crucial step to

bound the reminder terms in the Taylor expansion is to prove that, the

inverse of estimated working correlation matrix converges in probability

to the inverse of working correlation matrix with the unknown nuisance

parameter replaced by the convergence value of the nuisance estimator. In

our paper, it means to prove that

||R(ψ̂)−1 −R(ψ0)
−1||2 = op(1), (S2.5)
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where for a n × n matrix A, the L2-norm ||A||2 = sup{||Aa||, ||a|| = 1},

and the L2-norm of A is equal to the largest singular value of A.

Under the identifiability condition 2 in the main paper, Ψ0 either

contains a unique element, or the boundary, i.e., πk = 0 for some k ∈

{1, · · · , K}. For simplicity, we consider Ψ0 = {(αT
k , πk)

K
k=1 : π1 = 1,α1 =

α∗
1, and πk = 0,αk ∈ Ψαk

for k ≥ 2}, the proofs for (S2.5) under other

structures of Ψ0 are almost the same.

To prove (S2.5), noticing for n × n invertible matrices A and B, we

have B−1 −A−1 = B−1(A−B)A−1, thus

||R(ψ̂)−1 −R(ψ0)
−1||2 = ||R(ψ̂)−1

{
R(ψ0)−R(ψ̂)

}
R(ψ0)

−1||2

≤ ||R(ψ̂)−1||2||R(ψ0)−R(ψ̂)||2||R(ψ0)
−1||2

≤ ||R(ψ̂)−1||2
{
|π̂1 − 1| ||R(1)(α̂1)||2 + ||R(1)(α̂1)−R(1)(α∗

1)||2

+
K∑
k=2

|π̂k| ||R(k)(α̂k)||2
}
||R(ψ0)

−1||2,

(S2.6)

Under Conditions (C1)-(C2), by Theorem 5 in Bachoc and Furrer (2016)

and Lemma 6 in Furrer et al. (2016), we have infn
αk∈Ψαk

λmin{R(k)(αk)} > 0,

supn
αk∈Ψαk

λmax{R(k)(αk)} < ∞. According to d(ψ̂,Ψ0) = op(1), we have

π̂1 − 1 = op(1), α̂1 −α∗
1 = op(1), π̂k = op(1) for k ≥ 2. Thus, we can obtain

||R(ψ̂)−1||2 = O(1), ||R(ψ0)
−1||2 = O(1), |π̂1 − 1| ||R(1)(α̂1)||2 = op(1),



Huichen Zhu AND Fangzheng Lin AND Huixia Judy Wang AND Zhongyi Zhu∑K
k=2 |π̂k| ||R(k)(α̂k)||2 = op(1). Then, by first-order Taylor expansion, as-

sumption (C2) and Lemma 6 in Furrer et al. (2016), we have ||R(1)(α̂1)−

R(1)(α∗
1)||2 = op(1). Combing above results, (S2.5) is proven. Then, fol-

lowing the same steps as the proof for Theorem A.6 in the supplementary

file of Oman et al. (2007), we can obtain
√
n(β̂ − β) D→ N {0,Ξ(β0,ψ0)}.

□

Proof of Theorem 1: For ease of illustration, let pk = 1, k =

1, · · · , K, and the proof for pk > 1 is similar.

Taking the initial values π
(0)
k > 0 and α

(0)
k > 0, k = 1, · · · , K. Then,

the logarithmic function in (2.6) of the main paper will force each update

ψ(t) to remain within the interior of the feasible region.

Now we prove ℓn(ψ
(t+1),β) < ℓn(ψ

(t),β). By (2.7) of the main paper,

we have

ℓn(ψ
(t+1),β) = S(ψ(t+1)|ψ(t)) + F(ψ(t+1)|ψ(t)).

By the definition of ψ(t+1), we have

S(ψ(t+1)|ψ(t)) ≤ S(ψ(t)|ψ(t)), (S2.7)

thus we only need to prove F(ψ(t+1)|ψ(t)) < F(ψ(t)|ψ(t)). Calculating the

first-order and the second-order derivatives of F(ψ|ψ(t)) w.r.t. (π1, · · · , πK−1, α1, · · · , αK),
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we have

∂F(ψ|ψ(t))

∂πk

= −1−
∑K−1

k=1 π
(t)
k

1−
∑K−1

k=1 πk

+
π
(t)
k

πk

,

∂F(ψ|ψ(t))

∂αk

=
α
(t)
k

αk

− 1,

∂2F(ψ|ψ(t))

∂πk1∂πk2

= −1−
∑K−1

k=1 π
(t)
k

1−
∑K−1

k=1 πk

(if k1 ̸= k2), or

= −1−
∑K−1

k=1 π
(t)
k

1−
∑K−1

k=1 πk

−
π
(t)
k1

π2
k1

(if k1 = k2),

∂2F(ψ|ψ(t))

∂πk1∂αk2

= 0,

∂2F(ψ|ψ(t))

∂αk1∂αk2

= 0(if k1 ̸= k2), or −
α
(t)
k1

α2
k1

(if k1 = k2).

(S2.8)

From (S2.8), it is easy to show the Hessian matrix of F(ψ|ψ(t)) is nega-

tive definite for all values in the feasible region, which means F(ψ|ψ(t))

is strictly concave. Together with the first-order derivatives in (S2.8),

F(ψ|ψ(t)) attains its unique maximum at ψ(t). Through the above dis-

cussions, if ψ(t+1) ̸= ψ(t), we have F(ψ(t+1)|ψ(t)) < F(ψ(t)|ψ(t)). Proof is

thus completed. □

Proof of Theorem 2-3: Notice the initial estimator β̂0 in the iterative

algorithm is
√
n−consistent (Lin, 2008), then by Lemma 1 and Lemma 2,

Theorem 2-3 can be directly obtained by deductive reasoning.

Now we prove that when the true correlation matrix of Y is
∑K

k=1 π
0
kR

(k)(α0
k),

if π0
k > 0 for all k ∈ {1, · · · , K}, we have Ψ0 = {(α0

k
T
, π0

k)
K
k=1}, otherwise
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Ψ0 = {(αk
T , π0

k)
K
k=1 : αk = α0

k for π0
k > 0, and αk ∈ Ψαk

for π0
k = 0}.

First, notice E{ℓn(ψ,β0)} = EN{ℓn(ψ,β0)}, where EN{ℓn(ψ,β0)} repre-

sents that the expectation is taken pretending ϵ(β0) is a standard Gaus-

sian distribution with correlation matrix E{ϵ(β0)ϵ(β0)
T}. Thus, when the

true correlation matrix of Y is
∑K

k=1 π
0
kR

(k)(α0
k), i.e., E{ϵ(β0)ϵ(β0)

T} =∑K
k=1 π

0
kR

(k)(α0
k), according to Lemma 5.35 in Van der Vaart (2000), {(α0

k
T
, π0

k)
K
k=1}

is the minimum point of EN{ℓn(ψ,β0)}, so that it is also the minimum point

of E{ℓn(ψ,β0)}. Because E{ℓn(ψ,β0)} converges uniformly to ℓ̄(ψ,β0)

over Ψ, {(α0
k
T
, π0

k)
K
k=1} is the minimum point of ℓ̄(ψ,β0). Then, by the

identifiability condition 2 and the definition of Ψ0, we have, if π0
k > 0

for all k ∈ {1, · · · , K}, we have Ψ0 = {(α0
k
T
, π0

k)
K
k=1}, otherwise Ψ0 =

{(αk
T , π0

k)
K
k=1 : αk = α0

k for π0
k > 0, and αk ∈ Ψαk

for π0
k = 0}. Proof is

completed. □

Proof of Theorem 4: The proof of Theorem 4 is similar to the proof

of Theorem 2-3. We only need to obtain similar results with Lemma 1 and

Lemma 2, then Theorem 4 is proven. We first present a useful fact for Schur

product:

(F1) If A and B are n× n positive semi-definite matrices, then any eigen-

value λ(A ◦ B) of A ◦ B satisfies min
1≤i≤n

(bii)λmin(A) ≤ λ(A ◦ B) ≤
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max
1≤i≤n

(bii)λmax(A), where bii is the diagonal element of B.

For proving similar results of Lemma 1, we only need to show that

(S2.3) still holds with R(ψ)−1 replaced by {R(ψ) ◦ T (γ2)}−1 ◦ T (γ2), and

other steps for proof of Lemma 1 are similar. To show (S2.3) holds with

{R(ψ) ◦ T (γ2)}−1 ◦ T (γ2), it is sufficient to prove that

infn
ψ∈Ψ

λmin[{R(ψ) ◦ T (γ2)}−1◦T (γ2)] > 0, supn
ψ∈Ψ

λmax[{R(ψ) ◦ T (γ2)}−1◦T (γ2)] < ∞.

(S2.9)

Noticing T (γ2) is positive definite and its diagonal elements equal one,

(S2.9) is immediately obtained by using (F1).

For proving similar results of Lemma 2, we first show (S2.5) holds with

R(ψ)−1 replaced by {R(ψ) ◦ T (γ1n)}−1, and it can be directly obtained by

using Lemma 9 in Furrer et al. (2016), which indicates

supn
ψ∈Ψ

|| {R(ψ) ◦ T (γ1n)}−1 −R(ψ)−1||2 = o(1). (S2.10)

Then, by by similar steps in Lemma 2, we can obtain

√
n Ξ(β0,ψ0; γ1n)

−1(β̂ − β) D→ N {0, I} .

where Ξ(β0,ψ0; γ1n) = Π(β0, ψ0; γ1n)Σ0Π(β0, ψ0; γ1n)
T , and

Π(β,ψ; γ1n) =
√
n
[
D(β)TA(β)−1/2{R(ψ) ◦ T (γ1n)}−1A(β)−1/2D(β)

]−1

D(β)TA(β)−1/2{R(ψ) ◦ T (γ1n)}−1A(β)−1/2.
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Again by (S2.10), similar with (S2.6), we have ||Ξ(β0,ψ0; γ1n)
−1−Ξ(β0,ψ0)

−1||2 =

o(1). Thus, we can obtain

√
n(β̂ − β) D→ N {0,Ξ(β0,ψ0)} . (S2.11)

Now we prove that when the true correlation matrix of Y is
∑K

k=1 π
0
kR

(k)(α0
k),

we have Ψ̃0 = Ψ0. By assumption (C6), when the true correlation matrix

is
∑K

k=1 π
0
kR

(k)(α0
k), E{ℓn(ψ,β0; γ2)} attains its minimum at (α0

k
T
, π0

k)
K
k=1.

Because E{ℓn(ψ,β0; γ2)} converges uniformly to ℓ̄(ψ,β0; γ2) overΨ, (α0
k
T
, π0

k)
K
k=1

is the minimum point of ℓ̄(ψ,β0; γ2). Then, by the identifiability condition

2 and the definition of Ψ̃0, if π0
k > 0 for all k ∈ {1, · · · , K}, we have

Ψ̃0 = {(α0
k
T
, π0

k)
K
k=1}, otherwise Ψ̃0 = {(αk

T , π0
k)

K
k=1 : αk = α0

k for π0
k >

0, and αk ∈ Ψαk
for π0

k = 0}. Proof is completed. □
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