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Supplementary Material

We collect in the following all technical details that cannot be accommodated in the main article,

including the regularity conditions and proofs of the theoretical results from Section 2. Also,

we present additional numerical results and discuss a possible extension of our method.

S1 Assumptions

In this section we list seven regularity conditions that are needed in the

proof of Theorems 1–2, followed by some explanations. We first intro-

duce some notation. For a matrix M let λmax(M) and λmin(M) denote its

maximum and minimum singular value. Further set ‖M‖ = λmax(M) and

‖M‖2,∞ = sup‖v‖=1 ‖Mv‖∞, where the notation ‖M‖∞ means the sup-norm

of the matrix M , i.e. the maximum absolute value of its entries.
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Assumption 1. Let ψk(·) be a subdifferential of `k(·) and Nk be the set of

not differentiable points of ψk(·). Then the equation E{ψk(ε1 − x)} = 0 in

terms of x has a unique solution tk ∈ R and the distribution of ε1 satisfies

pr(ε1 − tk ∈ Nk) = 0 (k = 1, . . . , K∗).

Assumption 2. The function ψk(·) is such that E{ψk(ε1−tk+x)} = ηkx+

o(|x|) as |x| → 0 for some constant ηk > 0, and that E{|ψk(ε1 − tk)|m} ≤

cm!Tm−2 for any m ≥ 2 and some constant T > 0 (k = 1, . . . , K∗). For

sufficiently small |x|, the expectation E[{ψk(ε1 − tk + x) − ψk(ε1 − tk)}2]

exists and is continuous at x = 0 for k = 1, . . . , K∗.

Assumption 3. For some constants κ, ν0 ∈ (0, 1), the full model size

p = pn and the number q = qn of non-zero parameters satisfy log p =

O(nκ) and q = O(nν0).

Assumption 4. LetXQ = (X1Q, . . . , XnQ)T andXQc = (X1Qc , . . . , XnQc)T,

where XiQ = (1, Xi1, . . . , Xiq)
T and XiQc = (Xi(q+1), . . . , Xip)

T for i =

1, . . . , n. Then, for k = 1, . . . , K∗,

supθ∈Bn,k
‖XT
QGk(θ)XQc‖2,∞ = O(n1−ν1) for some constant ν1 and

infθ∈Bn,k
λmin{XT

QGk(θ)XQ} ≥M1n for some positive constant M1,

where Bn,k is a (q+1)-dimensional ball centered at ϑ
(k)
Q = (ϑ0+tk, ϑ1, . . . , ϑq)

T

with a radius ρn such that ρn � n(ν0−1)/2, and Gk(θ) is a n×n diagonal ma-
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trix for any θ ∈ Rq+1, whose (i, i)th entry is ∂E{ψk(Yi−XT
iQθ+x)}/∂x|x=0.

Assumption 5. The design matrix X is such that

c1 n ≤ λmin(XT
QXQ) ≤ λmax(X

T
QXQ) ≤ c2 n for some constants 0 < c1 ≤ c2,

‖X‖∞ = O(n1/2−(ν0−2ν1)+/2−ν2) and max1≤j≤p
∑n

i=1X
2
ij = O(n)

for some constant ν2 ∈ [0, 1/2) that satisfies κ < (ν0 − 2ν1)+ + 2ν2 ≤ 1,

where {κ, ν0, ν1} are the constants specified in Assumptions 3–4.

Assumption 6. The tuning parameter λn,k satisfies

λn,k � n(ν0−2ν1)+/2+ν2−1/2 (k = 1, . . . , K∗).

Assumption 7. The weight dkj of the weighted L1 penalty in (2.6) is such

that

Dn,k = maxj∈Qdkj = o(nν1−ν0/2), λn,kDn,k = O(n−(1+ν0)/2) and

lim infn→∞(minj∈Qc dkj) > 0 for k = 1, . . . , K∗.

Assumptions 1–2 regulate the error distribution and the loss functions

{`1(·), . . . , `K∗(·)} used by the estimator in (2.6). The constant tk intro-

duced in Assumption 2 serves as an “offset” for the intercept term (ϑ0 + tk)

of the kth regression model based on the loss function `k(·). This en-

sures that g(θ) = ψk(Y1 −XT
1 θ) is an unbiased estimating function for the

parameter vector (ϑ0 + tk, ϑ1, . . . , ϑp)
T. It is easy to check that all the
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smoothness and moment conditions in Assumptions 1–2 are satisfied by the

quantile loss functions used in the numerical study of Section 4 whenever

for k = 1, . . . , K∗, the distribution function of ε1 is differentiable with a

positive derivative value at point tk, that is, at its k/(K + 1) quantile.

Assumption 3 is a mild condition on the growth rate of the model size in

a linear model with a diverging number of parameters. The full model size

p = pn is allowed to increase exponentially with n, while only the number

q = qn of non-zero parameters is dominated by n. This is significantly

weaker than its counterparts in many articles on high dimensional variable

selection, e.g. q = o(n1/2) in Wang et al. (2012) and Fan et al. (2014), and

q = o(n1/5) in Gao and Carroll (2017).

Assumptions 4–5 guarantee the good behavior of the design matrix. In

particular, we allow the entries of the design matrix X to diverge, rather

than requiring them to be bounded.

Assumptions 6–7 are imposed on the weighted L1 penalty to ensure

important predictors can be detected and irrelevant ones will be excluded.

Some practical choices of dkj and λn,k have been provided and discussed in

Section 3 for the implementation of our method.

All these assumptions are fairly mild and standard in the context of

penalized regression for high dimensional linear models. Conditions simi-
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lar to Assumptions 1-7 were required in Bradic et al. (2011) for penalized

regression with a weighted linear combination of different loss functions.

Let us point out again that we do not impose any conditions on the last

(K −K∗) of the K estimators {ϑ̂1, . . . , ϑ̂K} from (2.3): Only Assumptions

1, 2, 4, 6 and 7 involve the index k, but restrict k to the set {1, . . . , K∗},

i.e. they concern only the first K∗ estimators.

S2 Proofs

Proof of Proposition 1: Under the condition of Proposition 1, we have

pr{∩j∈Q{
∑K

k=1I(j ∈ Q̂k) ≥ K∗}} → 1 and

pr{∩j∈Qc{
∑K

k=1I(j ∈ Q̂k) ≤ K −K∗}} → 1.

This, combined with the fact that K∗ = max{α,K − α + 1}, implies

pr{∩j∈Q{
∑K

k=1I(j ∈ Q̂k) ≥ α}} → 1 and

pr{∩j∈Qc{
∑K

k=1I(j ∈ Q̂k) < α}} → 1,

which give pr{Q̂(α) = Q} → 1 according to the definition (2.4) of Q̂(α).

Proof of Theorem 1: We will show the first conclusion of the theorem

by proving the two conditions in Lemma 1 of Bradic et al. (2011) hold on

an event with probability close to one.
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Recall thatXiQ = (1, Xi1, . . . , Xiq)
T for i = 1, . . . , n and ϑ

(k)
Q = (tk, ϑ1, . . . , ϑq)

T

for k = 1, . . . , K∗, as defined in Assumption 4. Let

Ψk(θ) = {ψk(Y1 −XT
1Qθ), . . . , ψk(Yn −XT

nQθ)}T for any θ ∈ Rq+1,

γk = (γk1, . . . , γkp)
T = XTΨk(ϑ

(k)
Q ) and

Γn,k = {maxj∈Qc|γkj| ≤ n1/2zn}. (S2.1)

Let X̃j = (Xij, . . . , Xnj)
T ∈ Rn for j = 1, . . . , p. Then we have

pr(|γkj| > n1/2zn) = pr{|
∑n

i=1Xijψk(εi − tk)| > n1/2zn}

≤ 2 exp{−(2‖X̃j‖2 + 2c n1/2zn‖X̃j‖∞)−1nz2n}

= 2 exp[−{2n−1‖X̃j‖2 + 2c n(ν0−2ν1)+/2+ν2−1/2‖X̃j‖∞}−1z2n]

≤ 2 exp(−c z2n) (j ∈ Qc). (S2.2)

Here the second step uses Lemma 2.2.11 of van der Vaart and Wellner

(1996) as well as the fact from Assumption 2 that E{ψk(ε1 − tk)} = 0 and

E{|Xijψk(εi− tk)|m} ≤ cm!X2
ij(‖X̃j‖∞T )m−2 for any m ≥ 2, while the last

inequality uses Assumption 5. It follows that

pr(Γn,k) ≥ 1−
∑

j∈Qcpr(|γkj| > n1/2zn)

≥ 1− 2(p− q) exp(−c z2n). (S2.3)

Then, for ϑ̂ok defined in (2.7), with ϑ̂okQ = (ϑ̂ok0, ϑ̂
o
k1, . . . , ϑ̂

o
kq)

T and dkQ =
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(0, dk1, . . . , dkq)
T, we have

‖ϑ̂okQ − ϑ
(k)
Q ‖ = Op{(q/n)1/2 + λn,k‖dkQ‖}

= Op{(q/n)1/2 + λn,kq
1/2Dn,k}

= Op{(q/n)1/2 + n−1/2}

= Op{(q/n)1/2} = Op(n
(ν0−1)/2), (S2.4)

where the first step follows from Lemma 2 of Bradic et al. (2011), the third

step uses Assumption 7 and the last step uses Assumption 3. The definition

of ϑ̂ok in (2.7) implies that

XT
QΨk(ϑ̂

o
k) + nλn,kdkQ ◦ Sign(ϑ̂okQ) = 0, (S2.5)

where symbol ◦ represents the Hadamard product, bold number 0 refers to

the (q + 1)-dimensional zero vector, and Sign(·) is taken componentwise.

Here Sign(x) = x/|x| for a scalar x 6= 0 and Sign(0) ∈ [−1, 1]. With

d̃kQc = (d−1k(q+1), . . . , d
−1
kp )T, we have that on the event Γn,k defined in (S2.1),

‖d̃kQc ◦XT
QcΨk(ϑ̂

o
kQ)‖∞

≤ ‖d̃kQc ◦XT
QcΨk(ϑ

(k)
Q )‖∞ + ‖d̃kQc ◦XT

Qc{Ψk(ϑ̂
o
kQ)−Ψk(ϑ

(k)
Q )}‖∞

≤ c {n1/2zn + ‖XT
QcGk(ϑkQ)XQ(ϑ̂okQ − ϑ

(k)
Q )‖∞}

≤ c {n1/2zn + ‖XT
QcGk(ϑkQ)XQ‖2,∞‖ϑ̂okQ − ϑ

(k)
Q ‖}

≤ c (n1/2zn + n1−ν1‖ϑ̂okQ − ϑ
(k)
Q ‖)
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= O(n(ν0−2ν1)+/2+ν2+1/2) +Op(n
1−ν1)Op(n

(ν0−1)/2)

= O(n(ν0−2ν1)+/2+ν2+1/2) +Op(n
ν0/2−ν1+1/2) = op(nλn,k). (S2.6)

In the above, the second inequality uses (S2.1), Assumption 7 and Taylor’s

expansion with ϑkQ = ϑ
(k)
Q + µ(ϑ̂okQ − ϑ

(k)
Q ) for some µ ∈ (0, 1). The fourth

step holds by Assumption 4 and the fact that ‖ϑkQ−ϑ(k)
Q ‖ ≤ ‖ϑ̂okQ−ϑ

(k)
Q ‖ =

O(n(ν0−1)/2) from (S2.4). The fifth step uses (S2.4) and the last step follows

from Assumption 6.

Equations (S2.5) and (S2.6) guarantee that the conditions (27) and (28)

of Lemma 1 in Bradic et al. (2011) are satisfied, which implies that ϑ̂ok is

the unique global minimizer of the objective function in (2.6) on Γn,k. This

combined with (S2.3), the definition of ϑ̂k in (2.6) and Assumption 5 implies

pr(ϑ̂k = ϑ̂ok) ≥ pr(Γn,k) = 1− 2(p− q) exp(−c z2n)→ 1, (S2.7)

which gives the first conclusion of the theorem. Equation (S2.7) and the

definition of ϑ̂ok in (2.7) further yield

pr(∩j∈Qc{ϑ̂kj = ϑj = 0})→ 1. (S2.8)

Moreover, for ϑ̂kQ = (ϑ̂k0, ϑ̂k1, . . . , ϑ̂kq)
T we know that, with probability

tending to one,

‖ϑ̂kQ − ϑ(k)
Q ‖ = ‖ϑ̂okQ − ϑ

(k)
Q ‖ = Op{(q/n)1/2}. (S2.9)
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In the above, the first step uses (S2.7) while the last step follows from

(S2.4). Then we have

pr(∩j∈Q{|ϑ̂kj| > 0}) ≥ pr(∩j∈Q{|ϑ̂kj| > |ϑj| −minj∈Q|ϑj|})

≥ pr(∩j∈Q{|ϑ̂kj − ϑj| < minj∈Q|ϑj|})

≥ pr(‖ϑ̂kQ − ϑ(k)
Q ‖ < minj∈Q|ϑj|)→ 1, (S2.10)

where the convergence follows from (S2.9) and the condition that minj∈Q|ϑj| �

(q/n)1/2.

Combining (S2.8) and (S2.10) yields pr(Q̂k = Q)→ 1 (k = 1, . . . , K∗).

It follows that pr{Q̂(α) = Q} → 1 according to Proposition 1.

Proof of Theorem 2: Similar to (S2.2), we have

pr{|
∑n

i=1Xijψk(εi − tk)| > nM1(1− ξ)|ϑs|/q1/2}

≤ 2 exp[−{2‖X̃j‖2/n+ 2cM1(1− ξ)|ϑs|‖X̃j‖∞/q1/2}−1nM2
1 (1− ξ)2ϑ2

s/q]

≤ 2 exp(−c nϑ2
s/q) (j ∈ Q),

which implies

pr{‖XT
QΨk(ϑ

(k)
Q )‖/n ≤M1(1− ξ)|ϑs|}

≥ pr{‖XT
QΨk(ϑ

(k)
Q )‖∞ ≤ nM1(1− ξ)|ϑs|/q1/2}

= pr[∩j∈Q{|
∑n

i=1Xijψk(εi − tk)| ≤ nM1(1− ξ)|ϑs|/q1/2}]

≥ 1−
∑

j∈Qpr{|
∑n

i=1Xijψk(εi − tk)| > nM1(1− ξ)|ϑs|/q1/2}
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≥ 1− 2q exp(−c nϑ2
s/q). (S2.11)

For any θ = (θ0, . . . , θq)
T ∈ Rq+1, let

Lk(θ) =
∑n

i=1`k(Yi −X
T
iQθ) + nλn,k

∑q
j=1dkj|θj|.

Denote U = {u ∈ Rq+1 : ‖u‖ = 1}. According to the proof of Lemma 2 in

Bradic et al. (2011), we have

infu∈ULk(ϑ
(k)
Q + |ϑs|u)− Lk(ϑ(k)

Q )

≥ n|ϑs|{M1|ϑs| − ‖XT
QΨk(ϑ

(k)
Q )‖/n− λn,k‖dkQ‖}

> n|ϑs|{M1(1− ξ)|ϑs| − ‖XT
QΨk(ϑ

(k)
Q )‖/n}, (S2.12)

where the last step uses the assumption that λn,k‖dkQ‖ < M1 ξ |ϑs|. Since

ϑ̂okQ is the unique minimizer of Lk(θ), we know

{infu∈ULk(ϑ
(k)
Q + |ϑs|u)− Lk(ϑ(k)

Q ) > 0} ⊂ {‖ϑ̂okQ − ϑ
(k)
Q ‖ < |ϑs|},

which indicates

pr{‖ϑ̂okQ − ϑ
(k)
Q ‖ < |ϑs|} ≥ pr{infu∈ULk(ϑ

(k)
Q + |ϑs|u)− Lk(ϑ(k)

Q ) > 0}

≥ pr[n|ϑs|{M1(1− ξ)|ϑs| − ‖XT
QΨk(ϑ

(k)
Q )‖/n} ≥ 0]

= pr{‖XT
QΨk(ϑ

(k)
Q )‖/n ≤M1(1− ξ)|ϑs|}

≥ 1− 2q exp(−c nϑ2
s/q). (S2.13)

In the above the second step uses (S2.12) and the last step is due to (S2.11).
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Therefore, similar to (S2.10), we know that

pr{{ϑ̂k = ϑ̂ok} ∩ (∩sj=1{|ϑ̂kj| > 0})} ≥ pr({ϑ̂k = ϑ̂ok} ∩ {‖ϑ̂kQ − ϑ
(k)
Q ‖ < |ϑs|})

= pr({ϑ̂k = ϑ̂ok} ∩ {‖ϑ̂okQ − ϑ
(k)
Q ‖ < |ϑs|})

≥ 1− 2{(p− q) exp(−c1z2n) + q exp(−c2nϑ2
s/q)},

where the last step uses (S2.7) and (S2.13). Then we have

pr[{|Q̂(α)| ≤ q} ∩ {|Q̂(α) ∩Q| ≥ s}]

≥ pr[∩K∗

k=1{{ϑ̂k = ϑ̂ok} ∩ (∩sj=1{|ϑ̂kj| > 0})}]

≥ 1− 2K∗{(p− q) exp(−c1z2n) + q exp(−c2nϑ2
s/q)}.

It follows that

pr(min[F{Q̂(α)}, G{Q̂(α)}] ≥ s/q) ≥

1− 2K∗{(p− q) exp(−c1z2n) + q exp(−c2nϑ2
s/q)}.

S3 Additional numerical results

S3.1 Simulations

In Table S1 we display the numerical results in the simulation settings

described in Section 4.2 when the full model size p = 800.
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Table S1: We consider the same scenario as Table 1 but now the full model size p = 800.

N(0, 3) T2 DE LMN SMN

FN FP MSE FN FP MSE FN FP MSE FN FP MSE FN FP MSE

VQC(5) 0.70 0.32 0.56 0.38 0.11 0.41 0.19 0.10 0.30 0.74 0.57 0.56 0.20 0.14 0.32

VQV(5) 0.35 1.10 0.53 0.12 1.14 0.45 0.04 1.07 0.36 0.44 1.31 0.58 0.03 1.34 0.38

RVQ(5) 0.32 1.83 — 1.30 1.91 — 0.10 1.94 — 0.35 1.89 — 0.51 2.03 —

RVA(5) 0.43 6.21 — 0.23 5.90 — 0.09 6.37 — 0.46 7.86 — 0.08 6.24 —

VQC(6) 0.93 0.11 0.59 0.70 0.05 0.51 0.27 0.03 0.32 1.01 0.19 0.60 0.31 0.06 0.34

VQV(6) 0.46 0.37 0.59 0.22 0.38 0.40 0.08 0.35 0.30 0.59 0.52 0.62 0.06 0.55 0.32

RVQ(6) 0.42 0.65 — 1.67 0.63 — 0.16 0.74 — 0.53 0.76 — 0.66 0.69 —

RVA(6) 0.56 2.68 — 0.34 2.49 — 0.14 2.74 — 0.66 3.48 — 0.13 2.66 —

LSR 0.08 22.80 0.57 0.60 25.70 1.06 0.01 19.54 0.42 0.08 23.42 0.61 0.13 23.53 0.66

LADR 0.29 8.91 0.76 0.03 10.23 0.54 0.01 8.23 0.32 0.69 8.35 1.02 0.02 9.40 0.45

CQR 0.38 7.27 0.78 0.94 13.49 0.74 0.30 9.18 0.40 0.32 9.20 0.83 0.46 13.84 0.57

S3.2 A real data example

We now perform the same analysis as in Section 4.2, but instead of simulated

predictors we now use real data, namely p = 46 indices of major interna-

tional equities, North American bonds and major commodities. The trans-

formation log(Vt/Vy)×100 is applied to each index, where Vt and Vy denote

today’s and yesterday’s closing values. The R package FusionLearning pro-

vides n = 232 records of three years’ market performances of these indices

with three-day spacing between the values. As shown in Gao and Carroll

(2017), the values are not autocorrelated at a 5% significance level.
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We generate the response vector Y through the model Y = Xϑ + ε,

where ϑ is the parameter vector with seven non-zero components given in

equation (4.3) at the beginning of Section 4.2. We consider the same five

error distributions listed after (4.3). Here we generate Y via the simulated

model instead of using the original responses, because we need to know

the true index set Q of important predictors. We also want to evaluate

the performance of various methods under different error distributions, so

that the analysis is more illustrative and informative. The strategy using

real predictors and simulated responses was also used by Meinshausen and

Bühlmann (2010) for their numerical study of variable selection methods.

Since the observations are real data, the tuning parameters in all methods

are chosen by criterion (3.3). The loss function `k(·) in (3.3) is the same as

the one used for estimation.

The results displayed in Table S2 present a similar picture to those in

Tables 1 and S1. Our method still gives the lowest number of false positives

in most cases, while the false negatives and L2 errors are close to or better

than the other approaches. We again notice that the performance is rather

poor when the absolute or the quadratic loss functions are used and the

errors have the location mixture normal or the T2 distribution. Generally

speaking, our method outperforms the other approaches and recovers the
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Table S2: We consider the same scenario as Table 1, but now the design matrix is from
a real data set of financial indices. The tuning parameters of all methods are determined
by criterion (3.3).

N(0, 3) T2 DE LMN SMN

FN FP Err FN FP Err FN FP Err FN FP Err FN FP Err

VQC(5) 0.28 0.72 0.61 0.18 0.32 0.47 0.03 0.37 0.35 0.45 0.76 0.72 0.07 0.27 0.37

RVQ(5) 0.15 11.53 — 0.55 10.12 — 0.06 11.01 — 0.18 11.34 — 0.18 10.86 —

RVA(5) 0.23 2.90 — 0.05 2.53 — 0.01 2.72 — 0.53 2.78 — 0.02 2.70 —

VQC(6) 0.40 0.38 0.63 0.30 0.20 0.50 0.06 0.24 0.34 0.70 0.37 0.77 0.14 0.15 0.38

RVQ(6) 0.29 6.77 — 0.86 5.90 — 0.11 6.44 — 0.34 6.58 — 0.32 6.23 —

RVA(6) 0.36 1.53 — 0.11 1.46 — 0.02 1.55 — 0.81 1.56 — 0.04 1.55 —

LSR 0.09 9.66 0.62 0.48 9.74 1.87 0.05 9.81 0.98 0.15 9.88 1.24 0.17 9.32 1.40

LADR 0.09 5.65 0.83 0.02 4.81 0.59 0.00 5.43 0.38 0.32 6.14 1.15 0.01 5.25 0.55

CQR 0.17 7.79 0.74 0.07 6.16 0.59 0.03 4.89 0.43 0.17 9.07 0.99 0.04 4.32 0.49
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true models precisely across all settings. This real data example again

confirms the advantage of aggregating selection results from multiple loss

functions via the voting procedure.

S4 Extension to nonparametric additive models

In this section we consider the extension of our selection method to the

following nonparametric additive model:

Yi = g(Xi) + εi =
∑p

j=1gj(Xij) + εi (i = 1, . . . , n) (S4.1)

with unknown smooth functions {g1(·), . . . , gp(·)}. This model is useful for

analyzing data with many covariates when the parametric regression model

is too restrictive. In particular, because of its additive structure, it does

not suffer from the curse of dimensionality. The nonparametric functions

{g1, g2, . . . , gp} can be estimated by orthogonal series estimators as follows:

Let ξ = (ξ1, . . . , ξM)T denote the first M elements of an orthonormal basis

for approximating gj, e.g. a cosine basis or a B-spline basis; see, for example,

Section 2 in Huang et al. (2010) and Section 4 in Müller et al. (2012). Then

gj(Xij) can be well approximated by ξ(Xij)
Tβj (i = 1, . . . , n; j = 1, . . . , p)

with parameter vector βj ∈ RM and M sufficiently large, so that model
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(S4.1) has the following approximate representation:

Yi =
∑p

j=1gj(Xij) + εi ≈
∑p

j=1ξ(Xij)
Tβj + εi (i = 1, . . . , n). (S4.2)

We now write Zi for the (p×M + 1)-dimensional vector that consists of all

basis functions, i.e. for i = 1, ..., n, let Zi = {1, ξ(Xi1)
T, . . . , ξ(Xip)

T}T with

the constant one included to capture an intercept term such as the mean

or median of ε1 when regressing {Y1, . . . , Yn} on {Z1, . . . , Zn}. Adapting

the K estimators in (2.3) to the additive model yields the following sparse

estimators (β̂T
k1, . . . , β̂

T
kp)

T for (βT
1 , . . . , β

T
p )T:

(β̂k0, β̂
T
k1, . . . , β̂

T
kp)

T = arg min b{
∑n

i=1`k(Yi − Z
T
i b) +

∑p
j=1φk(‖bj‖)}

for k = 1, . . . , K, where b = (b0, b
T
1 , . . . , b

T
p )T with b0 ∈ R and bj ∈ RM for

j = 1, . . . , p. As before, φk(·) denotes a penalty function and ‖·‖ represents

the L2 norm of a vector. Then, analogously to (2.4), a voting procedure with

a threshold α is given by T̂ (α) = {j ∈ {1, . . . , p} :
∑K

k=1I{‖β̂kj‖ > 0} ≥ α}.

This yields our estimator T̂ (α) for the index set {j ∈ {1, . . . , p} : ‖βj‖ > 0}

of the influential components among {g1, . . . , gp} in model (S4.2). We leave

a rigorous analysis of the method sketched above and the treatment of more

general semiparametric regression models for future work.
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