
Statistica Sinica: Supplement

Invariance principle and CLT for the spiked eigenvalues

of large-dimensional Fisher matrices and applications

Dandan Jiang1, Zhiqiang Hou2, Zhidong Bai3 and Runze Li4

1Xi′an Jiaotong University, 2Shandong University of Finance and Economics,

3Northeast Normal University and 4Pennsylvania State University at University Park

Supplementary Material

S1. Truncation and centralization procedures.

Let δ(A) be the indication of set A. Let x̂ij = xijδ(|xij| < ηn1

√
n1),

x̃ij = (x̂ij−Ex̂ij)/σn1 and ŷij = yijδ(|yij| < ηn2

√
n2), ỹij = (ŷij−Eŷij)/σn2 ,

where σ2
n1

= E |x̂ij − Ex̂ij|2 and σ2
n2

= E |ŷij − Eŷij|2. By the related

techniques of the proofs in Supplement B of Jiang and Bai (2021), we

can show that it is equivalent to replace the entries of xij, yij with their

corresponding truncated and centralized variables by Assumption 4. In

addition, the convergence rates of arbitrary moments of x̃ij and ỹij are

the same as the ones depicted in Lemma C.1 in Jiang and Bai (2021).

Therefore, it is reasonable to consider the generalized spiked Fisher matrix



F = S1S
−1
2 , which is generated from the entries truncated at ηn1

√
n1 for xij

and ηn2

√
n2 for yij, centralized and renormalized. For simplicity, we assume

that |xij| < ηn1

√
n1, |yij| < ηn2

√
n2, Exij = Eyij = 0,E|xij|2 = E|yij|2 = 1

for the real case and Assumption 4 is satisfied. But for the complex

case, the truncation and renormalization cannot reserve the requirement

of Ex2ij = Ey2ij = 0. However, one may prove that Ex2ij = o(n−1
1 ) and

Ey2ij = o(n−1
2 ). By the truncation procedures, the Proposition 1 still holds

in probability without the bounded fourth-moment assumption if the As-

sumption 4 is satisfied.

S2. The proof of Theorem 1

Let (X,Y) and (Z,W) be two independent pairs of random samples sat-

isfying Assumptions 1–5, where X = (x1, · · · ,xn1), Y = (y1, · · · ,yn2),

Z = (z1, · · · , zn1) and W = (w1, · · · ,wn2). Denote Xk = (x1, · · · ,xk,

zk+1, · · · , zn1) and Yk = (y1, · · · ,yk, wk+1, · · · ,wn2) with convention X =

Xn1 , Z = X0, Y = Yn2 and W = Y0. Further, let Xk0 = (x1 · · · ,xk−1,

zk+1 · · · zn1) is the overlapping part between Xk−1 and Xk, and Yk0 =

(y1 · · · ,yk−1,wk+1 · · ·wn2) is the notation of the overlapping part between

Yk−1 andYk. ΩM(λ,X,Y) defined in (2.12) is simply denoted asΩM(X,Y)

or ΩM , as the case may be. Note that the difference between Xk and Xk0



lies in the kth column. That is, xk in Xk, and the difference between Xk−1

and Xk0 is also in the kth column, (that is, zk in Xk−1). Similarly, we ob-

tain that the difference between Yk and Yk0 is yk in Yk, and the difference

between Yk−1 and Yk0 is wk in Yk−1.

To prove Theorem 1, it is equivalent to show that, for any M × M

symmetric matrix Ξ, Eeitr{ΞΩM,j(X,Y)} − Eeitr{ΞΩM,j(Z,W)} → 0 holds for

all ΩM,j(X,Y), j = 1, · · · , 5. Thus, it is sufficient to show that

Eeitr{ΞΩM,j(X,Y)} − Eeitr{ΞΩM,j(Z,Y)} → 0; (S2.1)

Eeitr{ΞΩM,j(Z,Y)} − Eeitr{ΞΩM,j(Z,W)} → 0. (S2.2)

Consider the following differences

ΩM,j(X,Y)−ΩM,j(Z,Y) =

n1∑
k=1

{
ΩM,j(Xk,Y)−ΩM,j(Xk−1,Y)

}
=

n1∑
k=1

[{
ΩM,j(Xk,Y)−ΩM,j(Xk0,Y)

}
−
{
ΩM,j(Xk−1,Y)−ΩM,j(Xk0,Y)

}]
and

ΩM,j(Z,Y)−ΩM,j(Z,W) =

n2∑
k=1

{
ΩM,j(Z,Yk)−ΩM,j(Z,Yk−1)

}
(S2.3)

=

n2∑
k=1

[{
ΩM,j(Z,Yk)−ΩM,j(Z,Yk0)

}
−
{
ΩM,j(Z,Yk−1)−ΩM,j(Z,Yk0)

}]
.

Thus, we focus on two terms: ΩM,j(Xk,Y)−ΩM,j(Xk0,Y) andΩM,j(Z,Yk)−

ΩM,j(Z,Yk0) because we can get similar results for the other two terms



ΩM,j(Xk−1,Y) − ΩM,j(Xk0,Y) and ΩM,j(Z,Yk−1) − ΩM,j(Z,Yk0), only

with xk,yk substituted by zk,wk, respectively.

Denote

F̃k0 =
1

n1

Q− 1
2D

1
2
2U

∗
2Xk0X

∗
k0
U2D

1
2
2Q

− 1
2 ;

F̃k0 =
1

n1

X∗U2D
1
2
2 (

1

n2

V∗
2Yk0Y

∗
k0V2)

−1D
1
2
2U

∗
2X;

βkx = 1− 1/n1x
∗
kΓ

1
2 (λI−F̃k0)

−1Γ
1
2
∗xk; βk0 = 1− 1/n1tr{Γ

1
2 (λI−F̃k0)

−1Γ
1
2
∗};

ϵkx = βkx − βk0 ;

where Γ1/2 = U2D
1/2
2 Q−1/2 and βkz, εkz are similarly defined as βkx and

εkx with xk replaced by zk.

Furthermore, we are frequently taking expectations about the kth sam-

ple when the remain samples are given in this proof. After taking the

expectations, we need to evaluate the resulting quantities which usually

relate to
∥∥(λI − F̃k0)

−1
∥∥, ∥∥(λI − F̃k0)

−1
∥∥, ∥n−1/2

2 Yk0∥, ∥n−1/2
1 Xk0∥, where

∥ · ∥ is the L2 norm. To avoid the overall expectation of the resulting quan-

tities brows up by the fact of huge values on the small probability, we need

to introduce some events to bound the quantities listed above as done in

Jiang and Bai (2021). As shown in Lemma C.5 of Jiang and Bai (2021),

the probability of the event that each quantity above is larger than a large

given value B is as small as n−t for any given t > 0. Following procedures



given in Jiang and Bai (2021), one may prove that the final expectations

are as small as needed. For brevity, we simply suppress the notations of

those events in the proofs as below.

Define

Ek1 = {|ϵkx| ≥ b} ∪ {|ϵkz| ≥ b},

where b is a given small positive constant.

For ΩM,1, it is obvious that ΩM,1(Xk,Y)−ΩM,1(Z,Y) = 0, then (S2.1)

holds for ΩM,1. Consider (S2.2) for ΩM,1, we have

ΩM,1(Z,Yk)−ΩM,j(Z,Yk0) =

√
p

n2

V∗
1(YkY

∗
k −Yk0Y

∗
k0)V1 =

√
p

n2

V∗
1yky

∗
kV1.

Similarly,

ΩM,1(Z,Yk−1)−ΩM,j(Z,Yk0)

=

√
p

n2

V∗
1(Yk−1Y

∗
k−1 −Yk0Y

∗
k0)V1 =

√
p

n2

V∗
1wkw

∗
kV1.

Since yk and wk have the same expectations and the second moments, and

their fourth moments satisfy the Assumption 4, then by (S2.3) and Taylor

expansion, we have

Eeitr{ΞΩM,1(Z,Y)} − Eeitr{ΞΩM,1(Z,W)} =

n2∑
k=1

Eeitr
{
ΞΩM,1(Z,Yk0)

}
·
[
Eke

itr
[
Ξ{ΩM,1(Z,Yk)−ΩM,1(Z,Yk0)}

]
−Eke

itr
[
Ξ(ΩM,1{Z,Yk−1)−ΩM,1(Z,Yk0)}

]]



=

n2∑
k=1

Eeitr
{
ΞΩM,1(Z,Yk0)

}{
Eke

itr(Ξ
√
p

n2
V∗

1yky
∗
kV1)−Eke

itr(Ξ
√
p

n2
V∗

1wkw
∗
kV1)

}
→ 0.

Therefore, (S2.2) is also true forΩM,1. Here and hereafter, Ek(·) = E(·|Z,Yk0)

in the proof of (S2.2); otherwise, Ek(·) = E(·|Xk0,Y) when it is involved in

the proof of (S2.1).

For ΩM,2, let F̃k = Q− 1
2D

1
2
2U

∗
2XkX

∗
kU2D

1
2
2Q

− 1
2/n1, then

ΩM,2(Xk,Y)−ΩM,2(Xk0,Y)=

√
pλ

n2

{
tr(λI−F̃k)

−1 − tr(λI−F̃k0)
−1
}
IM

−
√
pλ

n2
2

V∗
1YY∗V2Q

− 1
2

{
(λI− F̃k)

−1 − (λI− F̃k0)
−1
}
Q− 1

2V∗
2YY∗V1.

It follows that

F̃k = F̃k0 +
1

n1

Γ
1
2
∗xkx

∗
kΓ

1
2 (S2.4)

Then by the relationship (S2.4) and Lemma 6.9 in Bai and Silverstein

(2010), we obtain that

ΩM,2(Xk,Y)−ΩM,2(Xk0,Y)=

√
c2λ√
n2βkx

[{ 1

n1

x∗
kΓ

1
2 (λI−F̃k0)

−2Γ
1
2
∗xk

}
IM

−V∗
1Y

{ 1

n2

Y∗V2Q
− 1

2 (λI−F̃k0)
−1 1

n1

Γ
1
2
∗xkx

∗
kΓ

1
2 (λI−F̃k0)

−1Q− 1
2V∗

2Y
}
Y∗V1

]
,

where by Lemma C.3 in Jiang and Bai (2021), βkx and βk0 satisfy that

βk0 +
1

λm(λ)
→ 0;

1

λm(λ)
̸= 0, if λ > 0;

εkx = βkx − βk0 → 0; Ekε
2
kx ≤ o(n−1

1 log n1); Ekε
4
kx = o(n−1

1 ).



Here m(λ) is the Stieltjes transform of the LSD of the matrix F̃k0 and

m(λ) = −(1− c1)/λ+ c1m(λ). Denote

τ kx =
1

n1

[
x∗
kΓ

1
2 (λI−F̃k0)

−2Γ
1
2
∗xk−tr

{
Γ

1
2 (λI−F̃k0)

−2Γ
1
2
∗}]IM

−V∗
1Y

{ 1

n2

Y∗V2Q
− 1

2 (λI−F̃k0)
−1 1

n1

Γ
1
2
∗(xkx

∗
k−Ip)Γ

1
2(λI−F̃k0)

−1Q− 1
2V∗

2Y
}
Y∗V1

τ k0 =
1

n1

tr
{
Γ

1
2 (λI−F̃k0)

−2Γ
1
2
∗}IM

−V∗
1Y

{ 1

n2

Y∗V2Q
− 1

2 (λI−F̃k0)
−1 1

n1

Γ
1
2
∗Γ

1
2 (λI−F̃k0)

−1Q− 1
2V∗

2Y
}
Y∗V1

Then, we have

ΩM,2(Xk,Y)−ΩM,2(Xk0,Y)

=

√
c2λ√
n2βk0

(τ k0+τ kx)−
√
c2λ√
n2β2

k0

(τ k0+τ kx)εkx+

√
c2λ√

n2β2
k0βkx

(τ k0+τ kx)ε
2
kx

Similarly, we have

ΩM,2(Xk−1,Y)−ΩM,2(Xk0,Y)

=

√
c2λ√
n2βk0

(τ k0+τ kz)−
√
c2λ√
n2β2

k0

(τ k0+τ kz)εkz+

√
c2λ√

n2β2
k0βkz

(τ k0+τ kz)ε
2
kz,

where τ kz is defined similarly to τ kx with xk replaced by zk.

Now, we are in position to prove Eeitr{ΞΩM,2(X,Y)}−Eeitr{ΞΩM,2(Z,Y)} →

0 for anyM ×M symmetric matrix Ξ. By the notations introduced before,

we have

Eeitr{ΞΩM,2(X,Y)} − Eeitr{ΞΩM,2(Z,Y)} =

n1∑
k=1

Eeitr
{
ΞΩM,2(Xk0,Y)

}
(S2.5)



·
[
Eke

itr
[
Ξ{ΩM,2(Xk,Y)−ΩM,2(Xk0,Y)}

]
−Eke

itr
[
Ξ{ΩM,2(Xk−1,Y)−ΩM,2(Xk0,Y)}

]]
=

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

][
Eke

itr
[
Ξ{

√
c2λτkx√
n2βk0

−
√
c2λ(τk0+τkx)εkx√

n2β
2
k0

+
√
c2λ(τk0+τkx)ε2kx√

n2β
2
k0

βkx
}
]

−Eke
itr
[
Ξ{

√
c2λτkz√
n2βk0

−
√
c2λ(τk0+τkz)εkz√

n2β
2
k0

+
√
c2λ(τk0+τkz)ε

2
kz√

n2β
2
k0

βkz
}
]]

=

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]
[
Eke

itr
[
Ξ{

√
c2λτkx√
n2βk0

−
√
c2λ(τk0+τkx)εkx√

n2β
2
k0

}
]
−Eke

itr
[
Ξ{

√
c2λτkz√
n2βk0

−
√
c2λ(τk0+τkz)εkz√

n2β
2
k0

]]
+

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]
[
Eke

itr
[
Ξ{

√
c2λτkx√
n2βk0

−
√
c2λ(τk0+τkx)εkx√

n2β
2
k0

}
][
e
itr
{

Ξ
√
c2λ(τk0+τkx)ε2kx√

n2β
2
k0

βkx

}
− 1

]
− Eke

itr
[
Ξ{

√
c2λτkz√
n2βk0

−
√
c2λ(τk0+τkz)εkz√

n2β
2
k0

}
][
e
itr
{

Ξ
√

c2λ(τk0+τkz)ε
2
kz√

n2β
2
k0

βkz

}
− 1

]]
.

Similar to the proof of Theorem 3.2 in Jiang and Bai (2021), we can show

that the last summation is o(1). Take its first term as an example,∣∣∣∣∣
n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]

Eke
itr
[
Ξ{

√
c2λτkx√
n2βk0

−
√
c2λ(τk0+τkx)εkx√

n2β
2
k0

}
][
e
itr
{

Ξ
√
c2λ(τk0+τkx)ε2kx√

n2β
2
k0

βkx

}
− 1

]∣∣∣∣∣
≤

n1∑
k=1

E

[
K0Ek{2δ(|εkx| ≥ δk)}+

K̃0√
n2

Ek|trΞλ(τ k0 + τ kx)ε
2
kx|

]

≤
n∑
k=1

K0Ekε
4
k +

K̃0√
n2

{Ek|(trΞλ(τ k0 + τ k)|2Eε4k}1/2 = o(1),

where we have used the facts that Ekε
4
kx = o(n−1

1 ),Ek|trΞλ(τ k0 + τ k)|2 ≤

K0 with K0, K̃0 being some suitable constants valued different at different



appearances. The Chebyshev’s inequality is also applied when |εkx| ≥ δk

and then the Taylor expansion and Cauchy-Schwartz inequality are used to

the case of |εkx| < δk. The δk should not be too small, like the half of the

non-zero limit of βk0; then, we have

|βkx| ≥ |βk0| − |εkx|

and moreover |βkx| ≥ 1/2|βk0|, which is bounded from below. Then its last

term can be handled in the same way. Therefore, we have

Eeitr{ΞΩM,2(X,Y)} − Eeitr{ΞΩM,2(Z,Y)} =

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]
·
[
Eke

itr
[
Ξ{

√
c2λτkx√
n2βk0

−
√
c2λ(τk0+τkx)εkx√

n2β
2
k0

}
]
−Eke

itr
[
Ξ{

√
c2λτkz√
n2βk0

−
√
c2λ(τk0+τkz)εkz√

n2β
2
k0

]]
+ o(1)

By the same strategy, we may show that

Eeitr{ΞΩM,2(X,Y)} − Eeitr{ΞΩM,2(Z,Y)} =

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]
(S2.6)

·
[
Eke

itr
{
Ξ(

√
c2λτkx√
n2βk0

−
√
c2λτk0εkx√

n2β
2
k0

)
}
−Eke

itr
{
Ξ(

√
c2λτkz√
n2βk0

−
√
c2λτk0εkz√

n2β
2
k0

)
}]

+ o(1)

Since

[
tr
{
Ξ(

√
c2λτ kx√
n2βk0

−
√
c2λτ k0εkx√
n2β2

k0

)
}]2

=
c2
n2

[
1

β2
k0

{
tr(Ξλτ kx)

}2 − 2

β3
k0

tr(Ξλτ kx)tr(Ξλτ k0εkx) +
1

β4
k0

{
tr(Ξλτ k0)

}2
ε2kx

]



and noted that

Ek
{
tr(Ξλτ k)tr(Ξλτ k0)

}
= o(1); Ek{tr(Ξλτ k0)

}2
= o(n−1

1 log n1).

So we only focus on the term
{
tr(Ξλτ kx)

}2
.

Let R1 = λΓ
1
2 (λI−F̃k0)

−2Γ
1
2
∗ and R2 =

√
λ√
n2
Y∗V2Q

− 1
2 (λI−F̃k0)

−1Γ
1
2
∗,

then we have

Ek
{
tr(Ξλτ kx)

}2

=Ek
[
tr{ 1

n1

Ξ(x∗
kR1xk − trR1)}

]2
+Ek

[
tr{ 1

n1

ΞV∗
1YR2(xkx

∗
k−Ip)R

∗
2Y

∗V1}
]2

− 2Ek
[
tr{ 1

n1

Ξ(x∗
kR1xk − trR1)}tr{

1

n1

ΞV∗
1YR2(xkx

∗
k−Ip)R

∗
2Y

∗V1}
]

By equation (1.15) in Bai and Silverstein (2004), we can further show

that

Ek
[
tr{ 1

n1

Ξ(x∗
kR1xk − trR1)}

]2
=

1

n2
1

{tr(Ξ)}2Ek(x∗
kR1xk − trR1)

2

=
1

n2
1

{tr(Ξ)}2
{
(E|x11|4 − |Ex211|2 − 2)

∑
t

r21,tt + 2tr(R2
1)
}
= o(n−1

1 log n1),

where r1,ts is the (t, s)th element of the matrix R1.

Let ∆ = R∗
2Y

∗V1ΞV
∗
1YR2, then

Ek
[
tr{ 1

n1

Ξ(x∗
kR1xk − trR1)}tr{

1

n1

ΞV∗
1YR2(xkx

∗
k−Ip)R

∗
2Y

∗V1}
]

=
1

n2
1

tr(Ξ)(x∗
kR1xk − trR1)(x

∗
k∆xk − tr∆)

=
1

n2
1

tr(Ξ)
{
(E|x11|4 − |Ex211|2 − 2)

∑
t

r1,tt∆tt + 2tr(R1∆)
}
= o(n−1

1 log n1),



where ∆ts is the (t, s)th element of the matrix ∆.

Moreover,

Ek
[
tr{ 1

n1

ΞV∗
1YR2(xkx

∗
k−Ip)R

∗
2Y

∗V1}
]2

=
1

n2
1

(x∗
k∆xk − tr∆)2

=
1

n2
1

{
(E|x11|4 − |Ex211|2 − 2)

∑
t

∆2
tt + 2tr(∆2)

}
= o(n−1

1 log n1) +
2

n2
1

tr(∆2),

where 2n−2
1 tr(∆2) is bounded as shown below. In fact, let et be a p-

dimensional unit vector with the tth element equal to 1 and others equal

to 0, we obtain

2

n2
1

tr(∆2) =
2

n2
1

∑
t,s

∆2
ts =

2

n2
1

∑
t,s

(e∗tR
∗
2Y

∗V1ΞV
∗
1YR2es)

2 = O(1).

Therefore,

Ek
{
tr(Ξλτ kx)

}2
=

2

n2
1

tr(∆2) + o(n−1
1 log n1).

Because X and Z satisfy Assumptions 1–5, the bounded 2n−2
1 tr(∆2) is

the same as xk instead by zk. Furthermore, recall (S2.6), we have

Eeitr{ΞΩM,2(X,Y)} − Eeitr{ΞΩM,2(Z,Y)} =

n1∑
k=1

Ee
itr
[
Ξ{ΩM,2(Xk0,Y)+

√
c2λ√

n2βk0
τk0}

]
[
Eke

i
√
c2√

n2βk0
tr
{
Ξ(λτkx−

λτk0εkx
βk0

)
}
−1−

i
√
c2√

n2βk0
tr
{
Ξ(λτ kx−

λτ k0εkx
βk0

)
}
+
c2tr∆

2

n2β2
k0n

2
1

− Eke
i
√
c2√

n2βk0
tr
{
Ξ(λτkz−

λτk0εkz
βk0

)
}
+1+

i
√
c2√

n2βk0
tr
{
Ξ(λτ kz−

λτ k0εkz
βk0

)
}
− c2tr∆

2

n2β2
k0n

2
1

]
+o(1)

→ 0.

Therefore (S2.1) holds for ΩM,2.



Consider (S2.2) for ΩM,2. Since we only care about the trace, and there

exists an orthogonal (p−M)×n matrix U0n = (U0n−1,U01) such that it is

equivalent to focus on Ω̃M,2(Z,Yk)− Ω̃M,2(Z,Yk0) as below when we study

ΩM,2(Z,Yk)−ΩM,2(Z,Yk0).

Ω̃M,2(Z,Yk)− Ω̃M,2(Z,Yk0) =

√
pλ

n2

[{
tr(λI−F̃ky)

−1 − tr(λI−F̃k0)
−1
}
IM

−
{
V∗

1YkU
∗
0n(λI− F̃ky)

−1U0nY
∗
kV1 −V∗

1Yk0U0n−1(λI− F̃k0)
−1U∗

0n−1Y
∗
k0V1

}]
,

where

F̃ky =
1

n1

(
1

n2

V∗
2YkY

∗
kV2)

− 1
2D

1
2
2U

∗
2XX∗U2D

1
2
2 (

1

n2

V∗
2YkY

∗
kV2)

− 1
2 ;

F̃ky0 =
1

n1

(
1

n2

V∗
2Yk0Y

∗
k0V2)

− 1
2D

1
2
2U

∗
2XX∗U2D

1
2
2 (

1

n2

V∗
2Yk0Y

∗
k0V2)

− 1
2 .

Since YkY
∗
k = Yk0Y

∗
k0+yky

∗
k, by the (6.1.11) in Bai and Silverstein (2010),

we have F̃ky = F̃ky0/cky, where

cky = 1 +
1

n1

y∗
kV2(

1

n2

V∗
2Yk0Y

∗
k0V2)

−1V∗
2yk; (S2.7)

ck0 = 1 +
1

n1

tr(
1

n2

V∗
2Yk0Y

∗
k0V2)

−1 and cky → ck0.

Then

Ω̃M,2(Z,Yk)− Ω̃M,2(Z,Yk0) (S2.8)

=

√
c2λ√
n2

[{
tr(λI− F̃ky0

cky
)−1−tr(λI−F̃ky0)

−1
}
I−V∗

1ykU
∗
01(λI−

F̃ky0

cky
)−1U01y

∗
kV1

−V∗
1Yk0U

∗
0n−1(λI−

F̃ky0

cky
)−1U01y

∗
kV1 −V∗

1ykU
∗
01(λI−

F̃ky0

cky
)−1U0n−1Y

∗
k0V1



−V∗
1Yk0U

∗
0n−1

{
(λI− F̃ky0

cky

)−1−(λI−F̃ky0

)−1}
U0n−1Y

∗
k0V1

]
.

Similarly, Ω̃M,2(Z,Yk−1)− Ω̃M,2(Z,Yk0) has the same expression as the one

in (S2.8), except that yk and cky are replaced by wk and ckw, where ckw is

similarly defined as cky with wk instead of wk and satisfies that ckw → ck0,

too. Because yk and wk have the same mean and variance, by the same

techniques in (S2.5), it can be proved that

Eeitr{ΞΩ̃M,2(Z,Y)} − Eeitr{ΞΩ̃M,2(Z,W)} → 0.

Therefore, the equation (S2.2) holds for ΩM,2.

Thirdly, for ΩM,3, we consider the equation (S2.1) firstly. Since for each

(k, k)th block of ΩM,3, if we choose λ = ψn,k, then

[ΩM,3(λ,X,Y)][k,k]=
[K0λ√
n1

{
tr(λI−F̃)−1I−U∗

1X
(
λI−F̃

)−1
X∗U1

}]
[k,k]

,

where F̃ =
1

n1

X∗U2D
1
2
2Q

−1D
1
2
2U

∗
2X. We find that the latter term

Ω̃M,3(λ,X,Y) =
λ

√
n1

{
tr(λI−F̃)−1I−U∗

1X
(
λI−F̃

)−1
X∗U1

}
to be in line with the conclusions of Theorem 3.2 in Jiang and Bai (2021),

as well as we set the Γ = U2D
1/2
2 Q−1D

1/2
2 U∗

2 in their result. Thus, we get

Eeitr{ΞΩ̃M,3(X,Y)} − Eeitr{ΞΩ̃M,3(Z,Y)} → 0.

Furthermore, the equation (S2.1) holds for each (k, k)th block of ΩM,3 with

λ = ψn,k.



We continue to prove the equation (S2.2) for ΩM,3. As known that

Ω̃M,3(Z,Yk)− Ω̃M,3(Z,Yk0)

=
λ

√
n1

[{
tr(λI−F̃ky)

−1−tr(λI−F̃k0)
−1
}
I−U∗

1X
{
(λI−F̃ky

)−1−(λI−F̃k0

)−1}
X∗U1

]
,

where F̃ky = 1/n1X
∗U2D

1
2
2 (

1
n2
V∗

2YkY
∗
kV2)

−1D
1
2
2U

∗
2X. SinceYkY

∗
k = Yk0Y

∗
k0+

yky
∗
k, we also have F̃ky = F̃k0/cky, where cky is defined in (S2.7). Then

Ω̃M,3(Z,Yk)− Ω̃M,3(Z,Yk0) (S2.9)

=
λ

√
n1

[{
tr(λI− F̃k0

cky
)−1−tr(λI−F̃k0)

−1
}
I−U∗

1X
{
(λI− F̃k0

cky

)−1−(λI−F̃k0

)−1}
X∗U1

]
.

Similarly,

Ω̃M,3(Z,Yk−1)− Ω̃M,3(Z,Yk0)

=
λ

√
n1

[{
tr(λI− F̃k0

ckw
)−1−tr(λI−F̃k0)

−1
}
I−U∗

1X
{
(λI− F̃k0

ckw

)−1−(λI−F̃k0

)−1}
X∗U1

]
,

where ckw is similarly defined as cky with yk replaced by wk and satisfies

that ckw → ck0, too. Because yk and wk have the same mean and variance,

by the same techniques of Theorem 3.2 in Jiang and Bai (2021), it can be

proved that

Eeitr{ΞΩ̃M,3(Z,Y)} − Eeitr{ΞΩ̃M,3(Z,W)} → 0.

Therefore, the equation (S2.2) holds for each (k, k)th block of ΩM,3 with

λ = ψn,k.



For the fourth part,

ΩM,4(Xk,Y)−ΩM,4(Xk0,Y) (S2.10)

=

√
p

n1n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k

)−1
Q− 1

2D
1
2
2U

∗
2XkX

∗
kU1D

1
2
1

−
√
p

n1n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k0

)−1
Q− 1

2D
1
2
2U

∗
2Xk0X

∗
k0U1D

1
2
1

=

√
c1√
n1

{
1

n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k

)−1
Q− 1

2D
1
2
2U

∗
2XkX

∗
kU1D

1
2
1

− 1

n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k0

)−1
Q− 1

2D
1
2
2U

∗
2XkX

∗
kU1D

1
2
1

}
+

√
c1√
n1

{
1

n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k0

)−1
Q− 1

2D
1
2
2U

∗
2XkX

∗
kU1D

1
2
1

− 1

n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k0

)−1
Q− 1

2D
1
2
2U

∗
2Xk0X

∗
k0U1D

1
2
1

}
.

Consider the former part in (S2.10), we recall the Lemma 6.9 in Bai and

Silverstein (2010) and obtain

√
c1√
n1n2

V∗
1YY∗V2Q

− 1
2

{
(λI− F̃k)

−1 − (λI− F̃k0)
−1
}
Q− 1

2D
1
2
2U

∗
2XkX

∗
kU1D

1
2
1

=

√
c1√

n1βkx
V∗

1Y

{
1

n2

Y∗V2Q
− 1

2 (λI− F̃k0)
−1

· 1

n1

Γ
1
2
∗xkx

∗
kΓ

1
2 (λI− F̃k0)

−1Q− 1
2D

1
2
2U

∗
2Xk

}
X∗
kU1D

1
2
1

=

√
c1√

n1βkx
tr

{
1

n2

Y∗V2Q
− 1

2 (λI− F̃k0)
−1

· 1

n1

Γ
1
2
∗xkx

∗
kΓ

1
2 (λI− F̃k0)

−1Q− 1
2D

1
2
2U

∗
2Xk

}
Cov(V∗

1Y,U
∗
1Xk)D

1
2
2 + o(1)

→0M .



By XkX
∗
k = Xk0X

∗
k0 + xkx

∗
k, the later part in (S2.10) is

√
c1√
n1

(
1

n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃k0

)−1
Q− 1

2D
1
2
2U

∗
2xkx

∗
kU1D

1
2
1

)
→ 0M .

Therefore, for any M ×M symmetric matrix Ξ, we have

Eeitr{ΞΩM,4(X,Y)} − Eeitr{ΞΩM,4(Z,Y)} =
n∑
k=1

[
Eeitr

{
ΞΩM,4(Xk,Y)

}
− Eeitr

{
ΞΩM,4(Xk−1,Y)

}]
=

n∑
k=1

Eeitr
{
ΞΩM,4(Xk0,Y)

}[
Eke

itr
[
Ξ{ΩM,4(Xk,Y)−ΩM,4(Xk0,Y)

}]
−Eke

itr
[
Ξ{ΩM,4(Xk−1,Y)−ΩM,4(Xk0,Y)}

]]
→0.

Apply the similar techniques in (S2.9) and (S2.10), we also have

Eeitr{ΞΩM,4(Z,Y)} − Eeitr{ΞΩM,4(Z,W)} → 0.

The fifth, since the ΩM,5 is the transpose of ΩM,4, it automatically

arrives at

Eeitr{ΞΩM,5(X,Y)}−Eeitr{ΞΩM,5(Z,Y)}→0; Eeitr{ΞΩM,5(Z,Y)}−Eeitr{ΞΩM,5(Z,W)}→0.

To conclude, we obtain the equations (S2.1) and (S2.2) are valid for the

ΩM,j, j = 1, 2, · · · , 5. In a word, we finally get

Eeitr{ΞΩM (X,Y)} − Eeitr{ΞΩM (Z,W)} → 0

for any M ×M symmetric matrix Ξ. The invariance principle theorem for

generalized spiked Fisher matrices is completed.



S3. Detailed derivations of B1(lp,j) and B2(lp,j).

By the formula A−1−B−1 = A−1(B−A)B−1 for any two invertible square

matrices A and B, we obtain that

B1(lp,j) =
ψ2
n,k

n2
2

V∗
1YY∗V2Q

− 1
2 (ψn,kI− F̃)−1Q− 1

2V∗
2YY∗V1

−
l2p,j
n2
2

V∗
1YY∗V2Q

− 1
2 (lp,jI− F̃)−1Q− 1

2V∗
2YY∗V1

=
ψ2
n,k

n2

V∗
1Y

[
1

n2

Y∗V2Q
− 1

2

{
(ψn,kI−F̃)−1− (lp,jI−F̃)−1

}
Q− 1

2V∗
2Y

]
Y∗V1

−
l2p,j − ψ2

n,k

n2

V∗
1Y

{ 1

n2

Y∗V2Q
− 1

2 (lp,jI− F̃)−1Q− 1
2V∗

2Y
}
Y∗V1

=
1
√
p
γkjψ

3
n,k

1

n2

tr
[
(ψn,kI−F̃)−1

{
(ψn,k +

1
√
p
γkjψn,k)I−F̃

}−1
]
IM

− 1
√
p
γkj2ψ

2
n,k

1

n2

tr(lp,jI−F̃)−1IM + o(
ψn,k√
p
)

=
1
√
p
γkj

{
c2ψ

3
n,km2(ψn,k) + 2c2ψ

2
n,km(ψn,k)

}
IM + o(

ψn,k√
p
); (S3.1)

B2(lp,j) =
ψn,k
n1

D
1
2
1U

∗
1X

(
ψn,kI−F̃

)−1
X∗U1D

1
2
1 −

lp,j
n1

D
1
2
1U

∗
1X

(
lp,jI−F̃

)−1
X∗U1D

1
2
1

=
ψn,k
n1

D
1
2
1U

∗
1X

{
(ψn,kIn1 − F̃)−1 − (lp,jIn1 − F̃)−1

}
X∗U1D

1
2
1

− lp,j − ψn,k
n1

D
1
2
1U

∗
1X(lp,jIn1 − F̃)−1X∗U1D

1
2
1

=
1
√
p
γkjψ

2
n,k

1

n1

tr
{
(ψn,kIn1 − F̃)−2

}
D1

− 1
√
p
γkjψn,k

1

n1

tr
{
(ψn,kIn1 − F̃)−1

}
D1 + o(

ψn,k√
p
)

=
1
√
p
γkj

{
ψ2
n,km2(ψn,k) + ψn,km(ψn,k)

}
D1 + o(

ψn,k√
p
). (S3.2)



The proof is completed.

S4. Proof of Theorem 2

Proof. As shown in Section 2 in article body, every sample spiked eigen-

value of F, lp,j, j ∈ Jk, k = 1, · · · , K, satisfies the equation (2.14). Fur-

thermore, since ψn,k satisfies the equation (2.13), it means that the popu-

lation spiked eigenvalues αu in the uth diagonal block of D1 makes ψn,k +

c2ψ
2
n,km(ψn,k) + ψn,km(ψn,k)αu keep away from 0, if u ̸= k; and satisfies

ψn,k + c2ψ
2
n,km(ψn,k) + ψn,km(ψn,k)αk = 0. For nonzero limit of spiked

eigenvalue, ψn,k, each kth diagonal block of the equation (2.14) is multi-

plied p1/4 by rows and columns, respectively. Then, by Lemma 4.1 in Bai,

et al. (1991), it follows from (2.14) that

∣∣∣∣γkjψn,k{1+c2ψ2
n,km2(ψn,k)+2c2ψn,km(ψn,k)+αkψn,km2(ψn,k)+αkm(ψn,k)

}
Imk

+ψn,k
[
ΩM(ψn,k,X,Y)

]
kk

+ o(ψn,k)

∣∣∣∣ = 0, (S4.1)

where [ · ]kk is the kth diagonal block of a matrix corresponding to the

indices {i, j ∈ Jk}. According to the Skorokhod strong representation in

Skorokhod (1956); Hu and Bai (2014), it follows that the convergence of

ΩM(ψn,k,X,Y) and (2.14) can be achieved simultaneously in probability 1

by choosing an appropriate probability space.



Recall ϕk in (3.2), the equation (S4.1) arrives at
∣∣∣γkjϕkImk

+
[
Ωψk

]
kk
+

o(1)
∣∣∣ = 0. Thus, it is obvious that γkj asymptotically satisfies that

∣∣∣γkj · ϕkImk
+
[
Ωψk

]
kk

∣∣∣ = 0, (S4.2)

where Ωψk
is an M ×M Hermitian matrix, being the limiting distribution

of ΩM(ψn,k,X,Y).

Therefore, by the equation (S4.2), themk-dimensional real vector {γkj, j ∈

Jk} converges weakly to the distribution of the mk eigenvalues of the Gaus-

sian random matrix − [Ωψk
]kk

/
ϕk for each distinct spiked eigenvalue. The

distribution of Ωψk
is detailed in Corollary 1. Then, the CLT for each

distinct spiked eigenvalue of a generalized spiked Fisher matrix is estab-

lished.

S5. Proof of Corollary 1

Proof. When Assumption 5 is valid, by Theorem 1, we can derive the lim-

iting distribution ofΩM(ψn,k,X,Y) under the Gaussian assumption of the

entries from X and Y. For U = (U1,U2), V = (V1,V2) defined in (2.5),

let Us,·i and Vs,·i be the ith column of Us and Vs, s = 1, 2, respectively.

Denote ξs,i = X∗Us,·i and ηs,i = Y∗Vs,·i where s = 1, 2; i = 1, · · ·M for

s = 1 and i = M + 1, · · · p for s = 2. Thus ξs,i,ηs,i can be viewed as the



independent random sample matrix with zero mean and identity covariance

matrix under Gaussian assumption.

Let ωij be the (i, j)th element of ΩM , then by the Lemma 2.7 in Bai and

Silverstein (1998) and the expression ofΩM , we have limmin(n1,n2,p)→0 E(ωij) →

0. The ΩM,i(λ,X,Y), i = 1, · · · , 5 defined in (2.12) are briefly denoted as

ΩM,i if no confusion. Then we have

Cov
(
ΩM(ψn,k,X,Y)

)
= Cov

(
ΩM,1

)
+Cov

(
ΩM,2

)
+2Cov

(
ΩM,1,ΩM,2

)
(S5.1)

+Cov
(
ΩM,3

)
+Cov

(
ΩM,4

)
+Cov

(
ΩM,5

)
+Cov

(
ΩM,4,ΩM,5

)
+Cov

(
ΩM,5,ΩM,4

)
For the first term in (S5.1), we have Cov

(
ΩM,1

)
= c2/n2Cov(V

∗
1YY∗V1−

n2IM). Then, by the equation (1.15) in Bai and Silverstein (2004), it is ob-

vious that the variance of diagonal elements of ΩM,1, denoted as ω1,jj, is

Var(ω1,jj) =
c2
n2

E(η∗
1,jIn2η1,j − n2)

2 → 2c2. (S5.2)

and the variance of off-diagonal elements of ΩM,1, denoted as ω1,j1j2 , j1 ̸= j2,

is

Var(ω1,j1j2) =
c2
n2

E(η∗
1,j1

In2η1,j2 − n2)
2 → c2, j1 ̸= j2

for the real case. For the complex case, Var(ω1,j1j2) → c2 for all j1, j2,

including the case of j1 = j2.



Similar calculations as below are all based on the equation (1.15) in Bai

and Silverstein (2004). The second term in (S5.1) is

Cov
(
ΩM,2

)
=
c2ψ

2
n,k

n2

Cov
[
V1

∗Y
Y∗V2Q

− 1
2 (ψn,kI−F̃)−1Q− 1

2V2
∗Y

n2

Y∗V1−tr(ψn,kI−F̃)−1IM

]
Then the variance of diagonal element of ΩM,2, denoted as ω2,jj, is

Var(ω2,jj)

=
c2ψ

2
n,k

n2

E
[
η∗
1,j

Y∗V2Q
− 1

2 (ψn,kI− F̃)−1Q− 1
2V∗

2Y

n2

η1,j − tr(ψn,kI− F̃)−1
]2

=2
c2
n2

ψ2
ktr(ψn,kI−F̃)−2 → 2c22ψ

2
km2(ψk) (S5.3)

and the one of off-diagonal element of ΩM,2, denoted as ω2,j1j2 , j1 ̸= j2, is

Var(ω2,j1j2) → c22ψ
2
km2(ψk), j1 ̸= j2

for the real case. For the complex case, Var(ω2,j1j2) = c22ψ
2
km2(ψk) for all

j1, j2, including the case of j1 = j2.

The third term in (S5.1) is

2Cov
(
ΩM,1,ΩM,2

)
= −2c2ψn,k

n2

Cov
((

V∗
1YY∗V1 − n2IM

)
,

[
V1

∗Y
Y∗V2Q

− 1
2 (ψn,kI−F̃)−1Q− 1

2V2
∗Y

n2

Y∗V1−tr(ψn,kI−F̃)−1IM
])
.

Then the diagonal element of 2Cov(ΩM,1,ΩM,2) has the following variance

Var(ω12,jj) =− 2c2ψn,k
n2

E
{(

η∗
1,jIn2η1,j − n2

)



·
[
η∗
1,j

Y∗V2Q
− 1

2 (ψn,kI−F̃)−1Q− 1
2V2

∗Y

n2

η1,j−tr(ψn,kI−F̃)−1
]}

=− 4c2ψn,k
n2

tr(ψn,kI−F̃)−1 → 4c22ψkm(ψk). (S5.4)

For the off-diagonal element of 2Cov(ΩM,1,ΩM,2), we have Var(ω12,j1j2) →

2c22ψkm(ψk), j1 ̸= j2 for the real case. For the complex case, Var(ω12,j1j2) =

2c22ψkm(ψk) for all j1, j2, including the case of j1 = j2.

The fourth term in (S5.1) is obtained that

Cov
(
ΩM,3

)
=
c1
n1

Cov
(
D

1
2
1U

∗
1X

(
ψn,kIn1−F̃

)−1
X∗U1D

1
2
1 −tr(ψn,kIn1−F̃)−1D1

)
.

Then the variance of diagonal elements of ΩM,3, denoted as ω3,jj, is

Var(ω3,jj) =
c1
n1

α2
kE

{
ξ∗1,j(ψn,kIn1 − F̃)−1ξ1,j−tr(ψn,kIn1 − F̃)−1

}2

=2
c1
n1

α2
ktr(ψn,kIn1 − F̃)−2 → 2c1α

2
km2(ψk) (S5.5)

and the one for the off-diagonal element of ΩM,3 has the variance that

Var(ω3,j1j2) → c1α
2
km2(ψk), j1 ̸= j2 for the real case. For the complex case,

Var(ω2,j1j2) = c1α
2
km2(ψk) for all j1, j2, including the case of j1 = j2.

Finally, consider the rest terms in (S5.1). Since ΩM,5 is the transpose

of ΩM,4, then it holds for the diagonal elements of the rest terms that

Cov
(
ΩM,4

)
+ Cov

(
ΩM,5

)
+ Cov

(
ΩM,4,ΩM,5

)
+ Cov

(
ΩM,5,ΩM,4

)
=

4c2
n2
1n2

Cov
(
V∗

1YY∗V2Q
− 1

2

(
ψn,kI− F̃

)−1
Q− 1

2D
1
2
2U

∗
2XX∗U1D

1
2
1

)



Then, for the diagonal elements of rest part, denoted as ω4,jj, the variance

is

Var(ω4,jj) = 4
c2
n2
1n2

E
{
η∗
1,jY

∗V2Q
− 1

2

(
ψn,kI− F̃

)−1
Q− 1

2D
1
2
2U

∗
2XX∗U1D

1
2
1

·D
1
2
1U

∗
1XX∗U2D

1
2
2Q

− 1
2

(
ψn,kI−F̃

)−1
Q− 1

2V∗
2Yη1,j

}
=

4c2αk
n1

tr
{
(ψn,kI− F̃)−1F̃(ψn,kI− F̃)−1

}
→ 4c1c2αkm3(ψk) (S5.6)

and the variance of off-diagonal elements of the rest, denoted as ω4,j1j2 , j1 ̸=

j2, is Var(ω4,j1j2) → 2c1c2αkm3(ψk), j1 ∈ Jk1 ̸= j2 ∈ Jk2 for the real case.

For the complex case, Var(ω4,j1j2) = 2c1c2αkm3(ψk) for all j1, j2, including

the case of j1 = j2.

Let

θk = c2 + c22ψ
2
km2(ψk) + 2c22ψkm(ψk) + c1α

2
km2(ψk) + 2c1c2αkm3(ψk).

Therefore, combining all the equations (S5.2)–(S5.6), it is concluded that

ΩM(ψn,k,X,Y) converges weakly to an M × M Hermitian matrix Ωψk
,

where θk
−1/2 [Ωψk

]kk is GOE for the real case, with the entries above the di-

agonal being i.i.d.N (0, 1) and the entries on the diagonal being i.i.d.N (0, 2).

For the complex case, the θk
−1/2 [Ωψk

]kk is GUE, whose diagonal entries

are i.i.d. real N (0, 1), and the off diagonal entries are i.i.d. complex

CN (0, 1).



S6. Proof of Remark 1

When Assumption 5 is invalid, but is weakened to the Assumption 5′, we

reconsider each ΩM,i and find that only the first three terms, ΩM,1, ΩM,2,

ΩM,3, give rise to the additional items associated with the fourth moment.

The first item is about ΩM,1. By the formula (1.15) of Bai and Silver-

stein (2004), for the variance of diagonal elements of ΩM,1, we have

Var(ω1,jj) =
c2
n2

E(η∗
1,jIn2η1,j − n2)

2 → (1 + q)c2 + βy,jjjjc2.

For the variance of off-diagonal elements of ΩM,1, Var(ω1,j1j2) → c2 +

βy,j1j2j1j2c2, j1 ̸= j2. For the covariances, we have Cov(ω1,i1j1 , ω1,i2j2) =

βy,i1j1i2j2c2, where q = 1 for real case and q = 0 for complex, and these βy,·’s

are defined in Remark 1. So the first additive item involved with the fourth

moment is βy,·c2.

The second term is related to ΩM,2. For the variance of diagonal ele-

ments of ΩM,2, we have

Var(ω2,jj) =
c2ψ

2
n,k

n2

E
{
η∗
1,j

Y∗V2Q
− 1

2 (ψn,kI−F̃)−1Q− 1
2V2

∗Y

n2

η1,j−tr(ψn,kI−F̃)−1
}2

→ (1 + q)c22ψ
2
km2(ψk) + βy,jjjjc

3
2ψ

2
km

2(ψk).

For the variance of off-diagonal elements ofΩM,2, it arrives at Var(ω2,j1j2) →

c22ψ
2
km2(ψk) + βy,j1j2j1j2c

3
2ψ

2
km

2(ψk), j1 ̸= j2. For the covariances, we have



Cov(ω2,i1j1 , ω2,i2j2) = βy,i1j1i2j2c
3
2ψ

2
km

2(ψk). So the second additive item in-

volved with the fourth moment is βy,·c
3
2ψ

2
km

2(ψk).

The third term is given by the covariance matrix 2Cov(ΩM,1,ΩM,2).

For its diagonal elements, we have

Var(ω12,jj) =− 2c2ψn,k
n2

E
{(

η∗
1,jIn2η1,j − n2

)
·
[
η∗
1,j

Y∗V2Q
− 1

2 (ψn,kI−F̃)−1Q− 1
2V2

∗Y

n2

η1,j−tr(ψn,kI−F̃)−1
]}

→2(1 + q)c22ψkm(ψk) + βy,jjjj2c
2
2ψkm(ψk).

For the off-diagonal elements of 2Cov(ΩM,1,ΩM,2), it follows that Var(ω12,j1j2)

→ 2c22ψkm(ψk) + βy,j1j2j1j22c
2
2ψkm(ψk), when j1 ̸= j2. For its covariances,

Cov(ω12,i1j1 , ω12,i2j2) = βy,i1j1i2j22c
2
2ψkm(ψk). The third additive item in-

volved with the fourth moment is βy,·2c
2
2ψkm(ψk).

The fourth term comes from ΩM,3. From the detailed proof of Corol-

lary 3.1 in Jiang and Bai (2021), we may obtain the following results. For

the variance of diagonal elements of ΩM,3,

Var(ω3,jj) → (1 + q)c1α
2
km2(ψk) + βx,jjjjc1α

2
km

2(ψk).

For the variance of off-diagonal elements of ΩM,3,

Var(ω3,j1j2) → c1α
2
km2(ψk) + βx,j1j2j1j2 · c1α2

km
2(ψk), j1 ̸= j2.



For its covariances,

Cov(ω3,i1j1 , ω3,i2j2) = βx,i1j1i2j2c1α
2
km

2(ψk).

So the fourth additive item involved with the fourth moment is βx,·c1α
2
km

2(ψk).

To sum up, the whole additive item involved with the fourth moment

is

βx,·ν1 + βy,·ν2,

where ν1 = c1α
2
km

2(ψk) and ν2 = c2 + 2c22ψkm(ψk) + c32ψ
2
km

2(ψk) = c2
(
1 +

c2ψkm(ψk)
)2
. Then, under the assumptions of Remark 1, the limiting distri-

bution ofΩM(ψn,k,X,Y) turns to anM×M Hermitian matrixΩψk
= (ωij),

which has the independent Gaussian entries of mean zero and variance

Cov(ωi1,j1 , ωi2,j2) =


(q + 1)θk + βx,iiiiν1 + βy,iiiiν2, i1 = j1 = i2 = j2 = i;

θk + βx,ijijν1 + βy,ijijν2, i1 = i2 = i ̸= j1 = j2 = j;

βx,i1j1i2j2ν1 + βy,i1j1i2j2ν2, other cases,

where θk is defined in (2.15). Thus, the conclusion of Remark 1 is obtained.
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