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The Supplementary Material contains two algorithms for computing the SADL and SCDL

estimators in Sections 2 and 3; additional simulation results under χ2
3/LogN(0, 1) errors as and

numerical performance when n = 200; the simulation results in the presence of heteroskedastic

error and outliers; the computing time comparison and variable selection results. All the proofs

of Theorems and Corollaries are also provided.

S1 Two algorithms

Algorithm 1: The SADL adaptive Huber estimator

(i) For 1 ≤ m ≤ M , obtain the mth local `1-penalized estimator β̂m by

(2.3).

(ii) Construct the debiased lasso estimator β̂
d

m = (β̂d
m,1, · · · , β̂d

m,p)
> and

obtain the aggregated debiased lasso adaptive Huber estimator β̄
d

=

M−1∑M
m=1 β̂

d

m.
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(iii) Apply the hard-thresholding procedure with ν = C0

√
log p/N and

then finally output the SADL estimator Tν(β̄
d
) = (Tν(β̄d

1 ), · · · , Tν(β̄d
p ))>.

Algorithm 2 : The SCDL and aggregated SCDL estimators

(i) Use β̂1 as the initial estimator β̃
[0]

, for 1 ≤ t ≤ T , broadcast β̃
[t−1]

to

each local site and compute ∇βLm,τN (β̃
[t−1]

) for m = 1, . . . ,M ; trans-

mit the gradient information to the central site and then obtain β̃
[t]

by solving (3.8); Construct the multi-round communication-efficient

debiased lasso estimator β̃
d[t]

= (β̃
d[t]
1 , · · · , β̃d[t]

p )>.

(ii) Apply the hard-thresholding procedure with ν = C0

√
log p/N and

then finally output the SCDL estimator Tν(β̃
d[t]

) = (Tν(β̃d[t]
1 ), · · · , Tν(β̃d[t]

p ))>.

(iii) Repeat the procedures (i)-(ii) using L̃m(β|β̃[t−1]
m ) and obtain β̃

d[t]

m for

m = 1, . . . ,M ; compute the aggregated estimator β̃
d[t]

all = M−1∑M
m=1 β̃

d[t]

m

and apply hard-thresholding procedure in (ii) successively to obtain the

aggregated SCDL estimator.

S2 Additional simulation results

S2.1 Simulation results under χ2
3/LogN(0, 1) errors and n = 200

In this part, we show the simulation results in Section 4.2 for the other two

errors: χ2
3 and LogN(0, 1). The setting is the same as Section 4.2 except the

error term. The simulation results when (n,M) = (200, 5) for five errors are
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also provided. The results are shown in Figures S1-S4. The two columns

in Figures S1, S2 and S4 correspond to the errors χ2
3 and LogN(0, 1),

respectively. The performance of two proposed estimators have similar

performance in Section 4.2 and are comparable with the golden estimator

Tν(β̂
d
), which implies the proposed estimators are robust to various error

distributions. As shown in Figures S3 and S4, the `∞ and `2 errors of

all estimators increase when the dimension p increases. Compared with the

simulation results when n = 100, both `∞ and `2 errors of all estimators

decrease as the local sample size n increases.

S2.2 Effect of heteroskedastic error and outliers

Based on the similar simulation settings as in Sections 4.2 and 4.3, we

generate the error from a mixture distribution, i.e., εi = 0.5N(0, 1) + 0.5t3,

to evaluate the robustness of our proposed two distributed estimators to

heteroskedasticity. The simulated `∞ and `2 errors are shown in Figure S5

and we have the similar conclusions as in Sections 4.2 and 4.3. In addition,

we consider the t3 error but generate data based on the following three

cases: (1) no outliers; (2) randomly choose 5% of response yi to be yi+5; (3)

randomly choose 5% of response yi to be yi+ 10, to evaluate the robustness

of our proposed estimators. The simulated results are shown in Figures

S6-S7. The three columns correspond to the cases (1)-(3), respectively. (i)
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Figure S1: The `∞ and `2 errors for χ2
3 and LogN(0, 1) with varying p = 200, 300, 400

when (n,M) = (100, 5). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and Tν(β̂

d
)

( ).

Compared the results with no outliers, the `∞ and `2 errors of all estimators

increases in the presence of the outliers, i.e., the cases (2)-(3), especially for

β̄. Compared with the case (2), when the contamination level increases to

case (3), the `∞ and `2 errors also increase, but the proposed two estimators

have much smaller magnitudes of increase. (ii) The similar trends of the
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Figure S2: The `∞ and `2 errors for χ2
3 and LogN(0, 1) with varying number of sites

M = 5, 20, 50 when (n, p) = (100, 200). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
)

( ) and Tν(β̂
d
) ( ).

`∞ and `2 errors as in Sections 4.2 and 4.3 still hold with respect to the

varying p and M , respectively. Hence, it can be seen that the proposed two

estimators Tν(β̄
d
) and Tν(β̃

d
) do not sacrifice much with the outliers and

the performance of Tν(β̃
d
) is closer to the golden standard Tν(β̂

d
).
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Figure S3: `∞ and `2 errors for N(0, 1), t3 and Pareto(2, 4) with varying p = 200, 400,

600 when (n,M) = (200, 5). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and

Tν(β̂
d
) ( ).

S2.3 Computation time

For fixed M = 5 with the varying p = 200, 300, 400 as well as the fixed

p = 200 with the varying M = 5, 20, 50, we consider the t3 error with the

local sample size n = 100 and compare the computation time of the dif-

ferent estimators over 200 replications, respectively. The results are shown
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Figure S4: The `∞ and `2 errors for χ2
3 and LogN(0, 1) with varying p = 200, 400, 600

when (n,M) = (200, 5). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and Tν(β̂

d
)

( ).

in Table S1. (1) Under M = 5, for any fixed p, due to estimating the

unknown projection vector γ∗j in the debiasing procedure, the debiased and

sparse estimators (b), (d) and (f) take much longer time than the estima-

tors (a), (c) and (e). However, it can be seen that the computation time of

the global estimators (a) and (b) are the largest ones, respectively. As p in-
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Figure S5: The `∞ and `2 errors with varying p and M for heteroskedastic error. Here,

β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and Tν(β̂

d
) ( ).

creases, all estimators take longer time, especially for the global estimators

β̂ and Tν(β̂
d
). (2) Under p = 200, when M increases, the computation time

of the aggregated estimator β̄ and Tν(β̄
d
) do not change significantly; the

computation time of the communication-efficient estimators β̃ and Tν(β̃
d
)

increases slightly due to the transmitting gradients procedure; the compu-

tation time of β̂ and Tν(β̂) increases.
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Figure S6: The `∞ and `2 errors for cases (1)-(3) with varying p = 200, 300, 400 when

(n,M) = (100, 5). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and Tν(β̂

d
) ( ).

S2.4 Variable selection

We consider the same simulation setting as in Section 4.4 based on 500 rep-

etitions and the results are shown in the following Table S2. To implement

our proposed methods, we apply five-fold cross-validation to choose C0 of

the hard-thresholding parameter ν = C0

√
log p/N . The variable selection

results are shown in Table S2. Columns “C” and “IC” are measures of
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Figure S7: The `∞ and `2 errors for cases (1)-(3) with varying M = 5, 20, 50 when

(n, p) = (100, 200) with outliers. Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and

Tν(β̂
d
) ( ).

model complexity, with “C” representing the average number of nonzero

coefficients correctly estimated to be nonzero, and “IC” representing the

average number of zero coefficients incorrectly estimated to be nonzero.

From the variable selection results, we see that all methods can select all

five true predictors in all settings. The average numbers of zero coefficient
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Table S1: Average computation time (in seconds) comparison of different estimates with

changing dimension p and changing number of sites M for t3 error with local sample

size n = 100.

p M

Methods 200 300 400 5 20 50

β̄ 0.385 0.727 1.205 0.385 0.386 0.341

β̃ 0.187 0.250 0.290 0.187 0.423 0.524

β̂ 0.641 1.110 1.370 0.641 1.877 4.218

Tν(β̄
d
) 12.013 30.336 57.371 12.013 11.767 11.527

Tν(β̃
d
) 11.363 24.065 27.358 11.363 12.375 13.513

Tν(β̂
d
) 21.376 82.519 525.312 21.376 34.744 60.045

incorrectly estimated to be nonzero of our proposed methods are zero in

most of the cases, which implies that the hard-thresholding method per-

forms well.

Proof of Theorem 1.

For convenience, for any given τ > 0, define

β∗τ ≡ argmin
β∈Rp

E[`τ (yi − x>i β)],

thus β∗τ satisfies E[xiψτ (yi−x>i β∗τ )] = 0. Based on the proof of Theorem 1

in Han et al. (2022), with s2M log p/N = o(1), by multiplying the regular-

ization parameters λm used in Han et al. (2022) with an arbitrarily large
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Table S2: Variable selection results of the sparse and debiased estimators with varying

p and M .

C IC C IC C IC C IC C IC C IC

M = 5 p = 200

p = 200 p = 400 p = 600 M = 5 M = 10 M = 20

Tc(β̄
d
ols) 6 0.008 6 0 6 0.002 6 0.008 6 0 6 0

Tc(β̃
d

ols) 6 0.006 6 0.002 6 0.014 6 0.006 6 0 6 0

Tc(β̂
d

ols) 6 0.002 6 0 6 0.004 6 0.002 6 0 6 0

Tc(β̄
d
) 6 0 6 0 6 0.006 6 0 6 0 6 0

Tc(β̃
d
) 6 0 6 0.004 6 0.002 6 0 6 0 6 0

Tc(β̂
d
) 6 0.004 6 0 6 0 6 0.004 6 0 6 0

positive constant independent of m, we can show that with probability at

least 1− (e+ 1)p−c, there exists a universal constant C > 0 independent of

m, such that

‖β̂m − β∗τn‖2 ≤ C
√
sM log p/N and ‖β̂m − β∗τn‖1 ≤ Cs

√
M log p/N,

where c > 0 can be arbitrarily large by adjusting the constant C. Since

the samples are independent and identically distributed among the M sites

(homogeneous), taking λm �
√
M log p/N uniformly in m and applying the

union bound, we obtain that

max
m
‖β̂m−β∗τn‖2 ≤ C

√
sM log p/N and max

m
‖β̂m−β∗τn‖1 ≤ Cs

√
M log p/N,
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hold with probability at least 1 −M(e + 1)p−c. Under logM = O(log p),

1 −M(e + 1)p−c can be written again as 1 − (e + 1)p−c (with a different

c). The similar argument can be found in Lian and Fan (2018). This

technique will be used to derive uniform convergence rates in the following

proof. Similar to the proof of Theorem 2 in Han et al. (2022), denote

Ŝm = {1 ≤ j ≤ p | β̂m,j 6= 0} for the mth site. For any j ∈ Ŝm, let

x̂j ∈


sgn[β̂m,j] if β̂m,j 6= 0;

[−1, 1] if β̂m,j = 0.

From KKT conditions for β̂m,

1

n

∑
i∈Im

xi,Ŝm [(ψτn(yi−x>i β̂m)−ψτn(εi,τn)] = λmx̂Ŝm−
1

n

∑
i∈Im

xi,Ŝmψτn(εi,τn),

(S2.1)

where xi,Ŝm := {xi,j : j ∈ Ŝm}, x̂Ŝm := {x̂j : j ∈ Ŝm} and εi,τn = yi−x>i β∗τn .

It is easy to know that

|ψτn(yi − x>i β̂m)− ψτn(εi,τn)| ≤ |x>i (β̂m − β∗τn)|. (S2.2)

With the bounded covariates assumption and (ii) in (C2), similar to the

derivations of Lemma 6 in Belloni and Chernozhukov (2011), it can be

proved that with high probability, |Ŝm| ≤ N/(M log p). Combining Condi-
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tion (C3) and (S2.2), it leads to

∥∥∥ 1

n

∑
i∈Im

xŜm [ψτn(yi − x>i β̂m)− ψτn(εi,τn)]
∥∥∥
2

≤ sup
supp(z)⊂Ŝm,‖z‖2=1

1

n

∑
i∈Im

|z>xi||x>i (β̂m − β∗τn)|≤ C
√
sλm, (S2.3)

where λm �
√
M log p/N uniformly in m. Taking the `2-norm on both

sides of (S2.1), we get

∥∥∥ 1

n

∑
i∈Im

xi,Ŝm [ψτn(yi−x>i β̂m)−ψτn(εi,τn)]
∥∥∥
2

=
∥∥∥λmx̂Ŝm− 1

n

∑
i∈Im

xi,Ŝmψτn(εi,τn)
∥∥∥
2
.

(S2.4)

From (S2.3), (S2.4) and triangle inequality, we obtain with high probability,

|Ŝm| ≤ Cs uniformly in m.

Denote Θj as the jth row of Θ with Θ be the inverse matrix of Σ =

E{xix>i I(|εi,τn| ≤ τn)}, where εi,τn = yi − x>i β∗τn . From (iii) in (C1),

E[I(|εi,τn| ≤ τn)] > 0. It is easy to verify that

Θj = ρj/{E[xi,j(xi,j − x>i,−jγ∗j)]E[I(|εi,τn| ≤ τn)]}.

Under Condition (C3) and noticing that εi,τn is independence of xi (Propo-

sition 5, Wang et al., 2021), we have maxj ‖Θj‖0 ≤ s1. Note that

Θ̂
(m)

j = ρ̂
(m)
j /

{
n−2

∑
i∈Im

xi,j(xi,j − x>i,−jγ̂
(m)
j )

∑
i∈Im

I(|yi − x>i β̂m| ≤ τn)
}
,
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and

‖Θ̂
(m)

j −Θj‖1

≤
∥∥∥ ρj
E[xi,j(xi,j − x>i,−jγ∗j)]

∥∥∥
1︸ ︷︷ ︸

Aj

∣∣∣ 1

n−1
∑

i∈Im I(|yi − x>i β̂m| ≤ τn)
− 1

E[I(|εi,τn| ≤ τn)]

∣∣∣︸ ︷︷ ︸
B(m)

+
∥∥∥ ρ̂

(m)
j

n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )
−

ρj
E[xi,j(xi,j − x>i,−jγ∗j)]

∥∥∥
1︸ ︷︷ ︸

C
(m)
j

×
∣∣∣ 1

n−1
∑

i∈Im I(|yi − x>i β̂m| ≤ τn)

∣∣∣︸ ︷︷ ︸
D(m)

,

To proceed, we have to consider the uniform convergence rate of ‖Θ̂
(m)

j −

Θj‖1 both in j and m, i.e., maxm maxj ‖Θ̂
(m)

j −Θj‖1, which is crucial for

the proof.

By γ∗j ≡ argminγj∈Rp−1E(xi,j−x>i,−jγj)2, we have E[xi,−j(xi,j−x>i,−jγ∗j)] =

0. With λmin{E(xix
>
i )} > Cmin > 0 in (C2) and denoting τ 2j = E[xi,j(xi,j−

x>i,−jγ
∗
j)] = E[(xi,j − x>i,−jγ∗j)2], we know τ 2j = 1/Ωjj ≥ Cmin > 0 stays

away from zero and τ 2j ≤ max1≤j≤p Ξjj = O(1) uniformly in j. With

maxj ‖Θj‖0 ≤ s1, it can be seen that Aj ≤ C
√
s1 uniformly in j. The

denominators of B(m) and D(m) are greater than 0 uniformly in m by

E[I(|εi,τn| ≤ τn)] > 0.

For C
(m)
j , we prove that with probability at least 1− 2p−c, there exists
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a universal constant C > 0 independent of j and m, such that

max
m

max
j

∥∥∥ ρ̂
(m)
j

n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )
−

ρj
E[xi,j(xi,j − x>i,−jγ∗j)]

∥∥∥
1
≤ Cs1

√
M log p

N
,

(S2.5)

where c > 0 can be arbitrarily large by adjusting the constant C. Since 2p−c

can be as small as possible, the left side of (S2.5) is bounded in probability

at the rate s1
√
M log p/N and can be further written as

max
m

max
j

∥∥∥ ρ̂
(m)
j

n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )
−

ρj
E[xi,j(xi,j − x>i,−jγ∗j)]

∥∥∥
1

= Op

(
s1

√
M log p

N

)
.

For themth local site and 1 ≤ j ≤ p, noting ρ̂
(m)
j = (−γ̂(m)

j,1 , . . . ,−γ̂
(m)
j,(j−1), 1,−γ̂

(m)
j,j , . . . ,−γ̂

(m)
j,(p−1)),

we can decompose it as follows

∥∥∥ ρ̂
(m)
j

n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )
−

ρj
E[xi,j(xi,j − x>i,−jγ∗j)]

∥∥∥
1

(S2.6)

≤ ‖γ∗j‖1
∣∣∣ 1

n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )
− 1

E[xi,j(xi,j − x>i,−jγ∗j)]

∣∣∣
+

‖γ̂(m)
j − γ∗j‖1

|n−1
∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )|

≤ ‖γ∗j‖1|1/τ̂ 2m,j − 1/τ 2j |+ ‖γ̂
(m)
j − γj‖1/τ̂ 2m,j,

where τ 2j = E[xi,j(xi,j − x>i,−jγ∗j)] and τ̂ 2m,j = n−1
∑

i∈Im xi,j(xi,j−x
>
i,−jγ̂

(m)
j ).

The uniform convergence rate of (S2.6) in j and m depends on the uniform

convergence rates of ‖γ̂(m)
j − γj‖1, 1/τ̂ 2m,j and |1/τ̂ 2m,j − 1/τ 2j | in j and m.

Note γ̂
(m)
j ∈ argmin

γj∈Rp−1

{hm,j(γj)+ωjm‖γj‖1} with hm,j(γj) =
∑

i∈Im(xi,j−
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x>i,−jγj)
2/(2n). By the definition of γ̂

(m)
j ,

hm,j(γ̂
(m)
j ) + ωjm‖γ̂(m)

j ‖1 ≤ hm,j(γ
∗
j) + ωjm‖γ∗j‖1, (S2.7)

where γ∗j ≡ argminγj∈Rp−1E(xi,j − x>i,−jγj)2. By the convexity of hm,j(γj),

hm,j(γ̂
(m)
j ) ≥ hm,j(γ

∗
j) +∇γjhm,j(γ

∗
j)(γ̂

(m)
j − γ∗j). (S2.8)

In the event {‖∇γjhm,j(γ
∗
j)‖∞ ≤ ωjm/2}, we have

|∇γjhm,j(γ
∗
j)(γ̂

(m)
j − γ∗j)| ≤

ωjm
2
‖γ̂(m)

j − γ∗j‖1. (S2.9)

Combining (S2.7)-(S2.9), we obtain

‖γ∗j‖1 ≥ −‖γ̂
(m)
j − γ∗j‖1/2 + ‖γ̂(m)

j ‖1. (S2.10)

Let Sj be the set of indices of nonzero components of γ∗j and Scj be the

complement of Sj. Then by triangle inequality, we have

‖γ̂(m)
j ‖1 = ‖(γ̂(m)

j − γ∗j + γ∗j)Sj‖1 + ‖(γ̂(m)
j − γ∗j + γ∗j)Scj ‖1

≥ ‖γ∗j‖1 − ‖(γ̂
(m)
j − γ∗j)Sj‖1 + ‖(γ̂(m)

j − γ∗j)Scj ‖1,

which leads to

‖(γ̂(m)
j − γ∗j)Scj ‖1 ≤ 3‖(γ̂(m)

j − γ∗j)Sj‖1, (S2.11)

by (S2.10). Under λmin{E(xix
>
i )} ≥ Cmin > 0 and s21M log p/N = o(1),
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there exists a universal constant Cλmin
> 0, such that

Cλmin
‖γ̂(m)

j − γ∗j‖22 ≤ hm,j(γ̂
(m)
j )− hm,j(γ∗j)−∇γjhm,j(γ

∗
j)(γ̂

(m)
j − γ∗j)

≤ ωjm‖γ∗j‖1 − ωjm‖γ̂
(m)
j ‖1 +

ωjm
2
‖γ̂(m)

j − γ∗j‖1

≤ 3ωjm
2
‖(γ̂(m)

j − γ∗j)Sj‖1 −
ωjm

2
‖(γ̂(m)

j − γ∗j)Scj ‖1.

Since ‖(γ̂(m)
j −γ∗j)Sj‖1 ≤ s

1/2
1 ‖γ̂

(m)
j −γ∗j‖2 holds by Cauchy-Schwarz inequal-

ity, we conclude that ‖γ̂(m)
j − γ∗j‖2 ≤ 3s

1/2
1 ωjm/(2Cλmin

) and by (S2.11)

‖γ̂(m)
j − γ∗j‖1 = ‖(γ̂(m)

j − γ∗j)Sj‖1 + ‖(γ̂(m)
j − γ∗j)Scj ‖1 ≤ 6s1ωjm/Cλmin

.

Therefore, in the event {‖∇γjhm,j(γ
∗
j)‖∞ ≤ ωjm/2}, we have

‖γ̂(m)
j − γ∗j‖1 ≤ 6s1ωjm/Cλmin

and ‖γ̂(m)
j − γ∗j‖2 ≤ 3s

1/2
1 ωjm/(2Cλmin

).

Now we show that with probability at least 1−2p−c, there exists a universal

constant C > 0 independent of j and m, such that

‖∇γjhm,j(γ
∗
j)‖∞ ≤ C

√
M log p/N, (S2.12)

where c > 0 can be arbitrarily large by adjusting the constant C. To prove

(S2.12), we firstly calculate

P (|{∇γjhm,j(γ
∗
j)}l| > ωjm/2),

where {∇γjhm,j(γ
∗
j)}l is the lth component of ∇γjhm,j(γ

∗
j) and then apply

the union bound in l. This trick is also used in the proof of Lemma 23 in

Javanmard and Montanari (2014).
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By Theorem 2.10 in Boucheron et al. (2013), we apply the Bernstein’s

inequality to

{xi,l(xi,j − x>i,−jγ∗j)}i∈Im for 1 ≤ j ≤ p and 1 ≤ l 6= j ≤ p.

Note τ 2j stays away from zero and τ 2j ≤ ξ ≡ max1≤j≤p Ξjj = O(1) uniformly

in j. With the bounded covariate assumption maxi,j |xi,j| ≤ B, we have

∑
i∈Im

E[x2i,l(xi,j − x>i,−jγ∗j)2] ≤ nB2E[(xi,j − x>i,−jγ∗j)2] ≤ nB2ξ.

In addition, with maxi,j |x>i,−jγ∗j | ≤ B in (C3),

max
i,j,l
|xi,l(xi,j−x>i,−jγ∗j)| ≤ max

i,l
|xi,l|max

i,j
|xi,j|+max

i,l
|xi,l|max

i,j
|x>i,−jγ∗j | ≤ 2B2.

Taking ωjm/2 = 2
√

2B2ξ(c+ 1)M log p/N with an arbitrarily large con-

stant c > 0 independent of j and m, such that

P (|{∇γjhm,j(γ
∗
j)}l| > ωjm/2)

≤P
(
|n−1

∑
i∈Im

xi,l(xi,j − xi,−jγ∗j)| >
√

2B2ξ(c+ 1)log p/n+ 2B2(c+ 1) log p/n
)

=P
(
|
∑
i∈Im

xi,l(xi,j − xi,−jγ∗j)| >
√

2nB2ξ(c+ 1)log p+ 2B2(c+ 1)log p
)

≤2 exp(−(c+ 1) log p) = 2p−(c+1).

The first inequality is due to that
√

log p/n is the leading term when

M log p/N = o(1) and the last inequality is obtained by applying the

Bernstein’s inequality with v = nB2ξ, b = 2B2 and t = (c + 1) log p.

Taking a union bound over the (p − 1) components of ∇γjhm,j(γ
∗
j) with
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ωjm/2 = 2
√

2B2ξ(c+ 1)M log p/N , we get

P (‖∇γjhm,j(γ
∗
j)‖∞ > ωjm/2) ≤ 2p−(c+1)p = 2p−c.

Hence, (S2.12) is proved.

For the uniform convergence rates of ‖γ̂(m)
j − γ∗j‖1 and ‖γ̂(m)

j − γ∗j‖2 in

j and m, note the samples are independent and identically distributed and

the M local sites are homogeneous. From the above discussion, we can take

ωjm uniformly in j and m, i.e.,

ωjm/2 = C
√
M log p/N with C = 2

√
2B2ξ(c+ 1),

such that

P (‖∇γjhm,j(γ
∗
j)‖∞ ≤ C

√
M log p/N) ≥ 1− 2p−c,

holds for 1 ≤ j ≤ p and 1 ≤ m ≤ M simultaneously. Then by the union

bound both in j and m, we have

P (max
m

max
j
‖∇γjhm,j(γ

∗
j)‖∞ ≤ C

√
M log p/N) ≥ 1− 2pMp−c. (S2.13)

Since c > 0 is an arbitrarily large constant, with logM = O(log p), 1 −

2pMp−c can be written again as 1 − 2p−c (with a different c). Noting

(S2.13) and ωjm is independent of j and m, we know that

max
m

max
j
‖γ̂(m)

j −γ∗j‖1 ≤ Cs1
√
M log p/N and max

m
max
j
‖γ̂(m)

j −γ∗j‖2 ≤ C
√
s1M log p/N,
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hold with probability at least 1−2p−c for an another constant C independent

of m and j.

For the uniform convergence rates of |1/τ̂ 2m,j−1/τ 2j | and 1/τ̂ 2m,j in j and

m, note ‖γ̂(m)
j ‖1 ≤ ‖γ∗j‖1 + ‖γ̂(m)

j − γ∗j‖1,

τ̂ 2m,j =n−1
∑
i∈Im

xi,j(xi,j − x>i,−jγ̂
(m)
j )

=n−1
∑
i∈Im

(xi,j − x>i,−jγ̂
(m)
j )2 + n−1

∑
i∈Im

x>i,−jγ̂
(m)
j (xi,j − x>i,−jγ̂

(m)
j )

=n−1
∑
i∈Im

(xi,j − x>i,−jγ̂
(m)
j )2 + n−1

∑
i∈Im

x>i,−jγ̂
(m)
j (xi,j − x>i,−jγ∗j)

+ n−1
∑
i∈Im

x>i,−jγ̂
(m)
j x>i,−j(γ

∗
j − γ̂

(m)
j ),

and

|τ̂ 2m,j − τ 2j | ≤
∣∣∣n−1 ∑

i∈Im

(xi,j − x>i,−jγ̂
(m)
j )2 − τ 2j

∣∣∣+
∣∣∣n−1 ∑

i∈Im

x>i,−jγ̂
(m)
j (xi,j − x>i,−jγ∗j)

∣∣∣
+
∣∣∣n−1 ∑

i∈Im

x>i,−jγ̂
(m)
j x>i,−j(γ

∗
j − γ̂

(m)
j )

∣∣∣.
Note τ 2j stays away from zero and bounded uniformly in j. Along the

lines in the proof of Lemma 5.3 and Theorem 2.4 in van de Geer et al.

(2014), these three terms of decomposition can be tackled. The uniform

convergence rates of |τ̂ 2m,j−τ 2j | and 1/τ̂ 2m,j in j and m come from the uniform

convergence rates of ‖γ̂(m)
j − γ∗j‖1 and ‖γ̂(m)

j − γ∗j‖2 in j and m. By (S2.6)

and the above discussion, (S2.5) is proved.
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For B(m), it can be seen that

1

n

∑
i∈Im

I(|yi − x>i β̂m| ≤ τn)− E[I(|εi,τn | ≤ τn)]

=
{ 1

n

∑
i∈Im

I(|yi − x>i β̂m| ≤ τn)− E[I(|yi − x>i β̂m| ≤ τn)]
}

︸ ︷︷ ︸
I
(m)
1

+E[I(|yi − x>i β̂m| ≤ τn)]− E[I(|εi,τn | ≤ τn)]︸ ︷︷ ︸
I
(m)
2

=
{ 1

n

∑
i∈Im

I(|yi − x>i β̂m| ≤ τn)− 1

n

∑
i∈Im

I(|εi,τn | ≤ τn)−
[
E[I(|yi − x>i β̂m| ≤ τn)]− E[I(|εi,τn | ≤ τn)]

]}
︸ ︷︷ ︸

I
(m)
1,1

+
{ 1

n

∑
i∈Im

I(|εi,τn | ≤ τn)− E[I(|εi,τn | ≤ τn)]
}

︸ ︷︷ ︸
I
(m)
1,2

+
{
E[I(|yi − x>i β̂m| ≤ τn)]− E[I(|εi,τn | ≤ τn)]

}
︸ ︷︷ ︸

I
(m)
2

.

According to the equation (52) in Han et al. (2022), it can be proved

that I
(m)
1,1 = op(

√
M/N) and I

(m)
1,2 = Op(

√
M/N). Subsequently, I

(m)
2 =

Op(
√
sM log p/N) can be obtained by the fact that ‖β̂m−β∗τn‖2 ≤ C

√
sM log p/N

holds with probability at least 1−(e+1)p−c on the mth site. The expression

op(1) denotes a sequence that converges in probability to zero. To proceed,

we still need to consider the uniform convergence rates of I
(m)
1,1 , I

(m)
1,2 and

I
(m)
2 in m.

Among I
(m)
1,1 , I

(m)
1,2 and I

(m)
2 , it can be verified that I

(m)
2 is the leading

term such that we only need to discuss the uniform convergence rate of

I
(m)
2 in m. From the proof of Han et al. (2022), the unifrom convergence

rate of I
(m)
2 is determined by the unifrom convergence rate of ‖β̂m − β∗τn‖2

in m, i.e., maxm ‖β̂m − β∗τn‖2. As we discussed at the beginning of the

proof, maxm ‖β̂m − β∗τn‖2 ≤ C
√
sM log p/N and maxm ‖β̂m − β∗τn‖1 ≤
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Cs
√
M log p/N hold with probability at least 1− (e+ 1)p−c when logM =

O(log p). Based on the above results, the uniform convergence rates of I
(m)
1,1 ,

I
(m)
1,2 , and I

(m)
2 in m are controlled by maxm I

(m)
2 = Op(

√
sM log p/N) and

the uniform convergence rate of B(m) in m is obtained.

Based on the above discussion about Aj, B
(m), C

(m)
j and D(m), we have

with probability at least 1 − 2(e + 1)p−c, there exists a universal constant

C > 0 independent of j and m, such that

max
m

max
j
‖Θ̂

(m)

j −Θj‖1 ≤ C(s1 ∨
√
ss1)

√
M log p

N
, (S2.14)

and (S2.14) can be further written as

max
m

max
j
‖Θ̂

(m)

j −Θj‖1 = Op

(
(s1 ∨

√
ss1)

√
M log p

N

)
, (S2.15)

for simplicity. In the following text, the notation Op can be interpreted

similarly.

From the construction of β̄
d
, we can decompose β̄

d − β∗τn as follows:

β̄
d − β∗τn =

1

M

M∑
m=1

(β̂
d

m − β∗τn)

=
1

M

M∑
m=1

[(β̂m − β∗τn) +
1

n
Θ̂

(m) ∑
i∈Im

xiψτn(yi − x>i β̂m)],
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where Θ̂
(m)

= {Θ̂
(m)

j : 1 ≤ j ≤ p} and note

β̂
d

m − β∗τn = β̂m − β∗τn +
1

n
Θ̂

(m) ∑
i∈Im

xiψτn(yi − x>i β̂m)

=
1

n
Θ̂

(m) ∑
i∈Im

xiψτn(εi,τn) +
1

n
(Θ̂

(m)
−Θ)

∑
i∈Im

xiψτn(yi − x>i β̂m) + β̂m − β∗τn

+
1

n
Θ
∑
i∈Im

xi[ψτn(yi − x>i β̂m)− ψτn(εi,τn)] +
1

n
(Θ− Θ̂

(m)
)
∑
i∈Im

xiψτn(εi,τn).

It can be seen that

β̄
d − β∗τn =

[ 1

M

M∑
m=1

1

n
Θ̂

(m) ∑
i∈Im

xiψτn(εi,τn)
]

+
[ 1

M

M∑
m=1

1

n
(Θ̂

(m)
−Θ)

∑
i∈Im

xiψτn(yi − x>i β̂m)
]

+
1

M

M∑
m=1

(β̂m − β∗τn) +
{ 1

M

M∑
m=1

1

n
Θ
∑
i∈Im

[xiψτn(yi − x>i β̂m)− xiψτn(εi,τn)]
}

+
[ 1

M

M∑
m=1

1

n
(Θ− Θ̂

(m)
)
∑
i∈Im

xiψτn(εi,τn)
]

= ∆1 + ∆2 + ∆3 + ∆4 + ∆5

= ∆1 +
1

M

M∑
m=1

[∆
(m)
2 + ∆

(m)
3 + ∆

(m)
4 + ∆

(m)
5 ].

Moreover, denote ∆
(m)
4 = ∆4,1+∆

(m)
4,2 , where ∆4,1 = ΘE[xiψτn(yi−x>i β̂m)−

xiψτn(εi,τn)] and

∆
(m)
4,2 =

1

n
Θ
∑
i∈Im

[xiψτn(yi−x>i β̂m)−xiψτn(εi,τn)]−ΘE[xiψτn(yi−x>i β̂m)−xiψτn(εi,τn)].

Next, we will derive the bounds of ∆1, ∆2, ∆3+∆4,1, ∆4,2 = M−1∑M
m=1 ∆

(m)
4,2

and ∆5, respectively. Under Conditions (C2), (C3) and Cauchy-Schwarz in-
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equality,

max
1≤j≤p

∥∥Θj

∥∥
1
≤ max

1≤j≤p

√
s1
∥∥Θj

∥∥
2
≤ C
√
s1. (S2.16)

For ∆
(m)
2 , by KKT conditions and logM = O(log p), noting λm �

√
M log p/N

uniformly in m and (S2.15), we have

max
m
‖∆(m)

2 ‖∞ = max
m

∥∥∥(Θ̂
(m)
−Θ)

1

n

∑
i∈Im

xiψτn(yi − x>i β̂m)
∥∥∥
∞

≤ max
j,m
‖Θ̂

(m)

j −Θj‖1
∥∥∥ 1

n

∑
i∈Im

xiψτn(yi − x>i β̂m)
∥∥∥
∞

≤ max
j,m
‖Θ̂

(m)

j −Θj‖1 λm

= Op

((s1 ∨
√
ss1)M log p

N

)
. (S2.17)

By Conditions (C1)-(C2) and equation (47) in the Supplement of Han et al.

(2022), noting the uniform convergence of β̂m discussed at the beginning of

the proof, we have

max
m
‖Σ(β̂m−β∗τn)+E[xiψτn(yi−x>i β̂m)−xiψτn(εi,τn)]‖∞= Op

(sM log p

N

)
.

(S2.18)
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Thus for ∆
(m)
3 +∆4,1, by Hölder’s inequality, (S2.16) and (S2.18), we obtain

max
m
‖∆(m)

3 + ∆4,1‖∞

= max
m
‖β̂m − β∗τn + ΘE[xiψτn(yi − x>i β̂m)− xiψτn(εi,τn)]‖∞

= max
m
‖ΘΣ(β̂m − β∗τn) + ΘE[xiψτn(yi − x>i β̂m)− xiψτn(εi,τn)]‖∞

≤ max
j,m
‖Θj‖1‖Σ(β̂m − β∗τn) + E[xiψτn(yi − x>i β̂m)− xiψτn(εi,τn)]‖∞

=Op

(s√s1M log p

N

)
. (S2.19)

For ∆4,2 = M−1∑M
m=1 ∆

(m)
4,2 , noting the uniform convergence of β̂m, apply-

ing the bounds (37) and (45) in Han et al. (2022), it leads to

max
m
‖∆(m)

4,2 ‖∞ = Op

(√
sM log p

N
+

√
s
1/2
1 s1/2(N/M)−1/2

√
log p

)
Op

(√
ss1M log p

N

)

=Op

(
(s ∨ s1)M log p

N

)
. (S2.20)

Applying (S2.14) and Hölder’s inequality, we can show that ∆
(m)
5 also holds

with the same bound as ∆
(m)
2 . Combining (S2.17), (S2.19), (S2.20) and

s1 � s in Condition (C3), we get

‖∆2 + ∆3 + ∆4,1 + ∆4,2 + ∆5‖∞ =
∥∥∥ 1

M

M∑
m=1

[∆
(m)
2 + ∆

(m)
3 + ∆

(m)
4 + ∆

(m)
5 ]
∥∥∥
∞

≤ max
m
‖∆(m)

2 + ∆
(m)
3 + ∆4,1 + ∆

(m)
4,2 + ∆

(m)
5 ‖∞ = Op

(
s3/2M log p

N

)
.

For ∆1, note that (S2.15) and E[xiψτn(εi,τn)] = 0. Applying Hoeffding’s
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inequality, we get

‖∆1‖∞ =
∥∥∥ 1

N

M∑
m=1

Θ̂
(m) ∑

i∈Im

xiψτn(εi,τn)
∥∥∥
∞

≤
∥∥∥ 1

N

M∑
m=1

(Θ̂
(m)
−Θ)

∑
i∈Im

xiψτn(εi,τn)
∥∥∥
∞

+
∥∥∥ 1

N

M∑
m=1

Θ
∑
i∈Im

xiψτn(εi,τn)
∥∥∥
∞

= Op

(√ log p

N

)
.

Under Conditions (i), (iii) in (C1) and Condition (ii) in (C2), along

the lines in the proof of the Proposition 5 in Wang et al. (2021), the slope

parts of β∗τ and β∗ are the same but the intercept terms have a constant

difference depending on τ , i.e., β∗τ = (β∗1 + ατ ,β
∗>
−1)
>. Moreover, ατ with

τ > σ satisfies the bound

|ατ | ≤
σ2 − E[ψ2

τ (ε)]

1− τ−2σ2

1

τ
. (S2.21)

From the above discussion, with τn � σ
√
N/(M log p) and (S2.21), we have

‖β̄d
−1 − β∗−1‖∞ = Op

(√ log p

N
+
s3/2M log p

N

)
, |β̄d

1 − β∗1 | = Op

(√M log p

N
+
s3/2M log p

N

)
.

(S2.22)

However,
√
M log p/N in |β̄d

1 − β∗1 | is slower than the optimal convergence

rate. We refer to the following result to control |ατn| better.

Proposition B.1 (Sun et al., 2020) Assume that E(ε) = 0, σ2 = E(ε2) >

0 and E(|ε|2+κ) <∞ from some κ ≥ 0. Then we have

|Eψτ (ε)| ≤ min{τ−1σ2, τ−1−κE(|ε|2+κ)}.
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Moreover, if κ > 0,

σ2 − 2κ−1τ−κE(|ε|2+κ) ≤ E{ψ2
τ (ε)} ≤ σ2. (S2.23)

If κ > 0, from (S2.21) and (S2.23), we get

|ατ | ≤
σ2 − E{ψ2

τ (ε)}
1− τ−2σ2

1

τ
≤ 2κ−1τ−(κ+1)E (|ε|2+κ)

1− τ−2σ2
.

Thus with condition E (|ε|3) <∞, we get

|ατn| ≤
2τn
−2E (|ε|3)

1− τn−2σ2
� M log p

N
. (S2.24)

Finally, combining (S2.22) and (S2.24), we get

‖β̄d − β∗‖∞ = Op

(√ log p

N
+
s3/2M log p

N

)
.

Proofs of Theorem 2 and Corollary 1.

The strategy of proving this part is similar to the proof of Theorem 1. For

1 ≤ j ≤ p, decompose the jth component β̄
d − β∗τn as

β̄d
j − β∗τn,j =

[ 1

M

M∑
m=1

1

n
Θ̂

(m)

j

∑
i∈Im

xiψτn(εi,τn)
]

+
[ 1

M

M∑
m=1

1

n
(Θ̂

(m)

j −Θj)
∑
i∈Im

xiψτn(yi − x>i β̂m)
]

+
[ 1

M

M∑
m=1

(β̂m,j − β∗j )
]

+
{ 1

M

M∑
m=1

1

n
Θj

∑
i∈Im

[xiψτn(yi − x>i β̂m)− xiψτn(εi,τn)]
}

+
[ 1

M

M∑
m=1

1

n
(Θj − Θ̂

(m)

j )
∑
i∈Im

xiψτn(εi,τn)
]

=Ω1 + Ω2 + Ω3 + Ω4 + Ω5

=Ω1 +
1

M

M∑
m=1

[Ω
(m)
2 + Ω

(m)
3 + Ω

(m)
4 + Ω

(m)
5 ].
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Similar to the decomposition in the proof of Theorem 1, Ω
(m)
4 = Ω4,1+Ω

(m)
4,2 .

With M = o(
√
N/(s3/2 log p)), from the proof of Theorem 1, we have Ω2,

Ω3 + Ω4,1, Ω4,2 = M−1∑M
m=1 Ω

(m)
4,2 and Ω5 equal op(N

−1/2). Moreover,

with the conditions M = o(
√
N/(s3/2 log p)) and E(|ε|3) < ∞,

√
N |ατn| .

√
NM log p/N = op(s

−3/2) ≤ op(1) by (S2.24). Noting β∗τn = (β∗1 +

ατn ,β
∗>
−1)
>, the proof is completed.

For each j ∈ {1, . . . , p} and i ∈ Im,m ∈ {1, . . . ,M}, denote ζi,j =

Θjxiψτn (εi,τn) /(
√
Nσj), by the definition of β∗τn , we can verify that

E(ζi,j) = 0, V ar(
M∑
m=1

∑
i∈Im

ζi,j) = 1.

Moreover, for all η > 0, with the finite variance assumption in (C1) and

E(|ε|3) <∞,

lim
M→∞

lim
n→∞

M∑
m=1

∑
i∈Im

E[(ζi,j)
2I{|ζi,j| > η}] = 0. (S2.25)

From Theorem 2, for 1 ≤ j ≤ p, with the conditionM = o(
√
N/(s3/2 log p)),

we can write
√
N(β̄d

j − β∗j )/σj as

√
N
β̄d
j − β∗j
σj

=
1√
N

M∑
m=1

∑
i∈Im

Θ̂
(m)

j xiψτn(εi,τn)

σj
+ op(1)

=
{ M∑
m=1

∑
i∈Im

Θjxiψτn(εi,τn)√
Nσj

}
+
{ M∑
m=1

∑
i∈Im

(Θ̂
(m)

j −Θj)xiψτn(εi,τn)
√
Nσj

}
+ op(1).

Using (S2.25), we know that
∑M

m=1

∑
i∈Im ζ

(m)
i,j → N(0, 1) in distribution

by the Lindeberg-Feller central limit theorem. In addition, with (S2.14)
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and M = o(
√
N/(s3/2 log p)), we have

∣∣ M∑
m=1

∑
i∈Im

(Θ̂
(m)

j −Θj)xiψτn(εi,τn)
√
Nσj

∣∣ ≤ max
j,m
‖Θ̂

(m)

j −Θj‖1
∥∥ M∑
m=1

∑
i∈Im

xiψτn(εi,τn)√
Nσj

∥∥
∞

= Op

(
(s1 ∨

√
ss1)

√
M log p

N

)
Op(
√

log p) = op(1).

Thus the proof is completed.

Proof of Theorem 3.

From the results in Theorem 1 and M = O(
√
N/(s3 log p)), we have P (E)

happens with high probability for the event E := {‖β̄d−β∗‖∞ ≤ C0

√
log p/N}

with a sufficiently large constant C0, i.e., under E , with ν = C0

√
log p/N ,

ν ≥ ‖β̄d − β∗‖∞ holds. Since S is the support of β∗, then for the event

E , we have Tν(β̄
d
Sc) = 0 as ‖β̄d

Sc‖∞ ≤ ν. For j ∈ S, if |β∗j | ≥ 2ν, note

|β̄d
j | ≥ |β∗j | − ν ≥ ν, and we get |Tν(β̄d

j ) − β∗j | = |β̄d
j − β∗j | ≤ ν. When

|β∗j | < 2ν, |Tν(β̄d
j )− β∗j | ≤ |β∗j | ∨ |β̄d

j − β∗j | ≤ 2ν. In the event E , we have

‖Tν(β̄
d
)− β∗‖2 = ‖Tν(β̄

d
S)− β∗S‖2 ≤ 2

√
sν,

‖Tν(β̄
d
)− β∗‖∞ = ‖Tν(β̄

d
S)− β∗S‖∞ ≤ 2ν.

Proof of Theorem 4.

The proof of Theorem 4 is similar with the proof of Theorem 1. We refer

Corollary 3.1 in Luo et al.(2022) as a start point. By multiplying the

regularization parameters λ̃
[t]
m used in Luo et al. (2022) by an arbitrarily
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large positive constant independent of m for t = 1, . . . , T , after T � dlogMe

rounds of communication, we can show that with probability at least 1 −

log(M)p−c, there exists a universal constant C > 0 independent of m, such

that ‖β̃[T ]

m − β∗‖1 ≤ Cs
√

log p/N and ‖β̃[T ]

m − β∗‖2 ≤ C
√
slog p/N , where

c > 0 can be arbitrarily large by adjusting the constant C. Similar the proof

of Theorem 1, taking λ̃
[T ]
m uniformly in m and applying the union bound,

we obtain that

max
m
‖β̃[T ]

m − β∗‖1 ≤ Cs
√

log p/N and max
m
‖β̃[T ]

m − β∗‖2 ≤ C
√
slog p/N,

hold with probability at least 1 − log(M)Mp−c. Under logM = O(log p),

1− log(M)Mp−c can be written again as 1−p−c (with a different c). Noting

β∗τN = (β∗1 + ατN ,β
∗>
−1)
> and ‖β∗τN −β

∗‖∞ = |ατN | ≤
√

log p/N by (S2.21),

the above results also holds for β∗τN .

From the construction of β̃
d[T ]
j , we have

β̃
d[T ]
j − β∗τN ,j =β̃

[T ]
j −

∇βj L̃1(β̃
[T ]
j , β̃

[T ]

−j |β̃
[T ]

)− γ̂(1)>
j ∇β−j L̃1(β̃

[T ]
j , β̃

[T ]

−j |β̃
[T ]

)

n−2
∑

i∈I1(xi,j − x
>
i,−jγ̂

(1)
j )
∑

i∈I1 I(|yi − x>i β̃
[T ]| ≤ τn)

−β∗τN ,j.

Note that

L̃1(β|β̃
[T ]

) = L1,τn(β)− 〈∇βL1,τn(β̃
[T ]

)−∇βLτN (β̃
[T ]

),β〉

= L1,τn(β)− 〈∇βL1,τn(β̃
[T ]

)− 1

M

M∑
m=1

∇βLm,τN (β̃
[T ]

),β〉.



Wei Ma, Junzhuo Gao, Lei Wang and Heng Lian

From the definition of LτN (β) = N−1
∑N

i=1 `τN (yi − x>i β) and noting

∇βL̃1(β̃
[T ]
j , β̃

[T ]

−j |β̃
[T ]

) =∇βL1,τn(β[T ])−
(
∇βL1,τn(β̃

[T ]
)− 1

M

M∑
m=1

∇βLm,τN (β̃
[T ]

)
)

=∇βL1,τn(β̃
[T ]

)−
(
∇βL1,τn(β̃

[T ]
)−∇βLτN (β̃

[T ]
)
)

=∇βLτN (β̃
[T ]

) = − 1

N

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

).

Denote Θ̃
(m)

j = ρ̂
(m)
j /{n−2

∑
i∈Im xi,j(xi,j−x

>
i,−jγ̂

(m)
j )

∑
i∈Im I(|yi−x>i β̃

[T ]| ≤

τn)}, where ρ̂
(m)
j = (−γ̂(m)

j,1 , . . . ,−γ̂
(m)
j,(j−1), 1,−γ̂

(m)
j,j , . . . ,−γ̂

(m)
j,(p−1)). Then

β̃
d[T ]
j − β∗τN ,j =β̃

[T ]
j −

∇βj L̃1(β̃
[T ]
j , β̃

[T ]

−j |β̃
[T ]

)− γ̂(1)>
j ∇β−j L̃1(β̃

[T ]
j , β̃

[T ]

−j |β̃
[T ]

)

n−2
∑

i∈I1(xi,j − x
>
i,−jγ̂

(1)
j )
∑

i∈I1 I(|yi − x>i β̃
[T ]| ≤ τn)

−β∗τN ,j

=β̃
[T ]
j − β∗τN ,j −

ρ̂
(1)
j ∇βLτN (β̃

[T ]
)

n−2
∑

i∈I1(xi,j − x
>
i,−jγ̂

(1)
j )
∑

i∈I1 I(|yi − x>i β̃
[T ]| ≤ τn)

=β̃
[T ]
j − β∗τN ,j +

1

N
Θ̃

(1)

j

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

).

Thus,

β̃
d[T ] − β∗τN =β̃

[T ] − β∗τN +
1

N
Θ̃

(1)
N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)

=
[ 1

N
Θ̃

(1)
N∑
i=1

xiψτN (εi,τN )
]

+
[ 1

N
(Θ̃

(1) −Θ)
N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)
]

+
[
β̃

(T ) − β∗τN
]

+
{ 1

N
Θ

N∑
i=1

[xiψτN (yi − x>i β̃
[T ]

)− xiψτN (εi,τN )]
}

+
[ 1

N
(Θ− Θ̃

(1)
)

N∑
i=1

xiψτN (εi,τN )
]

=Π1 + Π2 + Π3 + Π4 + Π5. (S2.26)
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Similarly the proof of Theorem 1,

Π4 =
1

N
Θ

N∑
i=1

[xiψτN (yi − x>i β̃
[T ]

)− xiψτN (εi,τN )]=ΘE[xiψτN (yi − x>i β̃
[T ]

)− xiψτN (εi,τN )]

+
{ 1

N
Θ

N∑
i=1

[xiψτN (yi − x>i β̃
[T ]

)−xiψτN (εi,τN )]−ΘE[xiψτN (yi − x>i β̃
[T ]

)−xiψτN (εi,τN )]
}

=Π4,1 + Π4,2.

Moreover, the uniform convergence of Θ̃
(m)

j in j and m can be discussed as

in the proof of Theorem 1 with s21M log p/N = o(1). From the construction

of Θ̃
(m)

j , the only difference between Θ̃
(m)

j and Θ̂
(m)

j is the indicator part.

From (iii) in (C1), E[I(|εi,τn| ≤ τn)] > 0. Similar to the decomposition in

the proof of Theorem 1,

1

n

∑
i∈Im

I(|yi − x>i β̃
[T ]| ≤ τn)− E[I(|εi,τn | ≤ τn)]

=
{ 1

n

∑
i∈Im

I(|yi − x>i β̃
[T ]| ≤ τn)− E[I(|yi − x>i β̃

[T ]| ≤ τn)]
}

︸ ︷︷ ︸
I
′(m)
1

+E[I(|yi − x>i β̃
[T ]| ≤ τn)]− E[I(|εi,τn | ≤ τn)]︸ ︷︷ ︸

I
′
2

=
{ 1

n

∑
i∈Im

I(|yi − x>i β̃
[T ]| ≤ τn)− 1

n

∑
i∈Im

I(|εi,τn | ≤ τn)−
[
E[I(|yi − x>i β̃

[T ]| ≤ τn)]− E[I(|εi,τn | ≤ τn)]
]}

︸ ︷︷ ︸
I
′(m)
1,1

+
{ 1

n

∑
i∈Im

I(|εi,τn | ≤ τn)− E[I(|εi,τn | ≤ τn)]
}

︸ ︷︷ ︸
I
′(m)
1,2

+E[I(|yi − x>i β̃
[T ]| ≤ τn)]− E[I(|εi,τn | ≤ τn)]︸ ︷︷ ︸

I
′
2

.

Compared with the part of the proof in Theorem 1, I
′(m)
1,1 , I

′
2 depend on

β̃
[T ]

rather than β̂m. Similarly, it can be proved that I
′(m)
1,1 = op(

√
M/N)

and I
′(m)
1,2 = Op(

√
M/N). I

′
2 = Op(

√
s log p/N) can be obtained by the fact

that ‖β̃[T ] − β∗τN‖2 ≤ C
√
s log p/N holds with probability at least 1− p−c.
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To proceed, we still need to consider the uniform convergence rates of I
(m)′

1,1

and I
(m)′

1,2 in m.

Note that I
(m)′

1,2 is the leading term and we only need to discuss the

uniform convergence rate of I
(m)′

1,2 in m. For I
(m)′

1,2 , since I
(m)′

1,2 is a mean of

i.i.d. random variables and 0 ≤ I(|εi,τn| ≤ τn) ≤ 1, we have P (|nI(m)′

1,2 | ≤

t) ≥ 1− 2 exp(−2t2/n) by applying Hoeffding’s inequality directly. Taking

t =
√

(cn log p)/2 with an arbitrarily large constant c > 0 independent of

m and applying the union bound, we have

P (max
m
|I(m)′

1,2 | ≤
√

(c log p)/2n) = P (max
m
|nI(m)′

1,2 | ≤
√

(cn log p)/2)

≥ 1− 2M exp(−c log p) = 1− 2Mp−c.

With logM = O(log p), 1− 2Mp−c can be written again as 1− 2p−c (with

a different c), thus maxm |I(m)′

1,2 | = Op(
√

(M log p)/N) and maxm |I(m)′

1,1 +

I
(m)′

1,2 + I
′
2| = Op(

√
M log p/N ∨

√
s log p/N). Therefore, the uniform con-

vergence rate of Θ̃
(m)

j in j and m is obtained.

max
m

max
j
‖Θ̃(m)

j −Θj‖1 = Op

(
s1

√
M log p

N
∨
√
s1s log p

N

)
= Op

(
s1

√
M log p

N

)
.

(S2.27)

Using the similar arguments in the proof of Theorem 1, we can derive the

bounds of the terms of Π1, Π2, Π3 + Π4,1, Π4,2 and Π5 respectively. Unlike

the proof of Theorem 1, β̃
[T ]

has a faster convergence rate than β̂m and

leads to a better performance. For Π2, noting (S2.27) and λ̃
[T ]
1 �

√
log p/N
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with T � dlogMe, we have

‖Π2‖∞ =
∥∥∥ 1

N
(Θ̃

(1) −Θ)
N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)
∥∥∥
∞

≤ max
1≤j≤p

‖(Θ̃(1)

j −Θj)‖1
∥∥∥ 1

N

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)
∥∥∥
∞

≤ λ̃
[T ]
1 max

1≤j≤p
‖Θ̃(1)

j −Θj‖1

= Op

(s1√M log p

N

)
. (S2.28)

The same bound also holds for ‖Π5‖∞. Then for Π3 + Π4,1, noting the

convergence rate of β̃
[T ]

we discussed at the beginning of the proof, we can

obtain

‖Π3 + Π4,1‖∞

= ‖β̃(T ) − β∗τN + ΘE[xiψτN (yi − x>i β̃
[T ]

)− xiψτN (εi,τN )]‖∞

= ‖ΘΣ(β̃
[T ] − β∗τN ) + ΘE[xiψτN (yi − x>i β̃

[T ]
)− xiψτN (εi,τN )]‖∞

≤ max
1≤j≤p

‖Θj‖1||Σ(β̃
[T ] − β∗τN ) + E[xiψτN (yi − x>i β̃

[T ]
)− xiψτN (εi,τN )]‖∞

= Op

(s√s1 log p

N

)
. (S2.29)

Similarly,

‖Π4,2‖∞ = Op

((s1 ∨ s1) log p

N

)
. (S2.30)
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For Π1, applying Hoeffding’s inequality, we get

‖Π1‖∞ =
∥∥∥ 1

N

M∑
m=1

∑
i∈Im

Θ̃
(1)
xiψτN (εi,τN )

∥∥∥
∞

≤
∥∥∥ 1

N

M∑
m=1

(Θ̃
(1) −Θ)

∑
i∈Im

xiψτN (εi,τN )
∥∥∥
∞

+
∥∥∥ 1

N

M∑
m=1

Θ
∑
i∈Im

xiψτN (εi,τN )
∥∥∥
∞

= Op

(√ log p

N

)
.

Combining (S2.28), (S2.29) and (S2.30), ‖Π2‖∞, ‖Π3 + Π4,1‖∞, ‖Π4,2‖ and

‖Π5‖∞ have a uniform bound. Moreover, noting β∗τN = (β∗1 + ατN ,β
∗>
−1)
>

and ‖β∗τN − β
∗‖∞ = |ατN | ≤

√
log p/N by (S2.21). We get

‖β̃d[T ] − β∗‖∞ = Op

(√ log p

N
+
s
√
M log p

N

)
.

In addition, since Θ̃
(1)

j is computed based on the central site and every

site can be regarded as a central site and optimize their corresponding

optimization problem in parallel, thus

β̃
d[T ]
all,j − β

∗
τN ,j

=
1

M

M∑
m=1

(β̃
d[T ]
m,j − β∗τN ,j)

=
1

M

M∑
m=1

[β̃
d[T ]
m,j − β∗τN ,j +

1

N
Θ̃

(m)

j

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

m )]

=
1

M

M∑
m=1

[Π
(m)
1 + Π

(m)
2 + Π

(m)
3 + Π

(m)
4 + Π

(m)
5 ],

where Π
(m)
t , t = 1, 2, 3, 4, 5, are the corresponding terms in (S2.26) by re-

placing Θ̃
(1)

j with Θ̃
(m)

j . Note that (S2.27) and maxm ‖β̃
[T ]

m − β∗τN‖1 ≤

Cs
√

log p/N , maxm ‖β̃
[T ]

m −β∗τN‖2 ≤ C
√
slog p/N hold with probability at
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least 1 − p−c, as we discussed at the beginning of the proof. Using the

similar technique in the proof of Theorem 1, with |ατN | ≤
√

log p/N , the

proof is completed.

Proof of Theorem 5.

For 1 ≤ j ≤ p, decompose the jth component β̃
d[T ] − β∗τN as

β̃
d[T ]
j − β∗τN ,j =β̃

[T ]
j − β∗τN ,j +

1

N
Θ̃

(1)

j

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)

=
[ 1

N
Θ̃

(1)

j

N∑
i=1

xiψτN (εi,τN )
]

+
[ 1

N
(Θ̃j −Θj)

N∑
i=1

xiψτN (yi − x>i β̃
[T ]

)
]

+ [β̃
[T ]
j − β∗τN ,j] +

{ 1

N
Θj

N∑
i=1

[xiψτN (yi − x>i β̃
[T ]

)− xiψτN (εi,τN )]
}

+
[ 1

N
(Θj − Θ̃

(1)

j )
N∑
i=1

xiψτN (εi,τN )
]

=Ξ1 + Ξ2 + Ξ3 + Ξ4 + Ξ5,

Similarly, Ξ4 = Ξ4,1 + Ξ
(m)
4,2 . With M = o(N/(s2 log2 p)), from the proof of

Theorem 4, we have Ξ2, Ξ3 + Ξ4,1, Ξ4,2 and Ξ5 equal op(N
−1/2). Noting

β∗τN = (β∗1 + ατN ,β
∗>
−1)
>, under the conditions E(|ε|3) < ∞ and M =

o(N/(s2 log2 p)) in Theorem 4,
√
N |ατN | .

√
N log p/N = Op(log p/

√
N) ≤

op(1) by (S2.24). For 1 ≤ j ≤ p, we have

β̃
d[T ]
j − β∗j =

1

N
Θ̃

(1)

j

N∑
i=1

xiψτN (εi,τN ) + op(N
−1/2).
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Thus from β̃
d[T ]

all = M−1∑M
m=1 β̃

d[T ]

m and the uniform bounds of Π
(m)
t , t =

1, 2, 3, 4, 5, we get

β̃
d[T ]
all,j − β

∗
j =

1

M

M∑
m=1

1

N
Θ̃

(m)

j

N∑
i=1

xiψτN (εi,τN ) + op(N
−1/2).

Proof of Corollary 2 and Theorem 6.

With the results in Theorem 4 and Theorem 5, the proof in this part is

similar with the proofs of Corollary 1 and Theorem 3 and thus are omitted

for saving space.
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