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In Section S1, we propose an accelerated refinement algorithm RACE and indicate that the

performance of RACE and RACEn is very similar via some simulation results. In Section S2, we

demonstrate in detail how we select the tuning parameters τ and K. In Section S3, we explain

and compare the assumptions of the main theorems and corollary imposed. In Section S4, we

compare the performance of RACE initialized with the two initialization algorithms INIT and

ESC, respectively, with some of their competitors in situation of K = 3. In Section S5, we

make some additional discussions. Then, in Section S6, we present the proofs of Theorems 1-5,

Proposition 1 and Corollary S1. For simplicity, we will abbreviate It∗(p, q), PP ,c and EP ,c as

It∗ , P and E, respectively. Let δ = p/q−1. The constant C and the sequence η = ηn that tends

to 0 may vary case by case.

S1. Supplementary algorithm

Algorithm S1. (RACE)

Input: The adjacency matrix A ∈ {0, 1}n×n, an initialization algorithm

and the specific value of K ≥ 2.

∗Corresponding authors.
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Output: An estimator č ∈ [K]n of the community label vector c ∈ [K]n.

1. (Initialization) Applying the initialization algorithm to A, we get the

output c0.

2. (Refinement) For each k, l ∈ [K],

P 0
kl =


∑
u<v

AuvI{c0(u)=k,c0(v)=k}

1
2
n0
k(n0

k−1)
, k = l;∑

u,v∈[n]

AuvI{c0(u)=k,c0(v)=l}

n0
kn

0
l

, k 6= l,

with n0
k =

∑
j∈[n] I{c0(j) = k}. Let q̂0 =

∑K−1
k=1 n0

kP
0
Kk+(n0

K−1)P 0
KK/2∑K−1

k=1 n0
k+(n0

K−1)/2
, and

update P 0
Kl = q̂0 for all l ∈ [K].

For each i ∈ [n], let

č(i) = argmax
k∈[K]

K−1∑
l=1

∑
j:c0(j)=l

[
Aij logP 0

kl + (1− Aij) log(1− P 0
kl)
]
.

In Algorithm S1, it first assigns node i to the most likely group based

on the initialization algorithm c0, for each i ∈ [n]. Note that we only used

observations (Aij)i∈[n],j:c0(j) 6=K , because from the model (2.1), we can know

that the connection probability between each group and the background

node is the same, without distinction.

S.1.1 Algorithms 1 and S1 have similar performance

As we mentioned earlier, the community extraction performance of Algo-

rithm 1 and Algorithm S1 is almost the same. Here is an example in the
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S2. SELECTION OF TUNING PARAMETERS

S.1(a) ESC S.1(b) INIT

Figure S.1: The almost negligible performance difference between RACE and RACEn.

simulation in Figure S.1, with n = 100, p = 4, q = 1, λ = 12, where RACEn

is Algorithm 1 and RACE is Algorithm S1.

S2. Selection of tuning parameters

S.2.1 Selection of τ

Combined with the selection of τ in Gao et al. (2017), i.e, τ = 2d̄, where

d̄ =
∑n

i=1

∑n
j=1 Aij/n is the average degree of the networkA, we set τ = Cd̄.

Suggested by extensive simulation results, we see that C = 2, i.e. τ = 2d̄,

is also a good choice for our study.

The specific simulation settings are the same as the previous settings

(I)-(III) for K = 2. The simulation results are summarized in Figures S.2

and S.3. The horizontal axis of Figures S.2 and S.3 are C ∈ [8]. We can see
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that τ = 2d̄ is indeed a watershed in terms of extraction loss, as shown in

Figure S.2 and S.3.

S.2(a) Setting (I) S.2(b) Setting (II) S.2(c) Setting (III)

Figure S.2: The extraction loss with varying C in the case of K = 2 for Settings (I)-(III),

where the initialization algorithm is ESC.

S.2.2 Selection of K

In addition, the parameter K in the algorithm input is not known in all

cases. When K is unknown, we choose an innovative method, “corrected

Bayesian information criterion” (CBIC) that is proposed by Hu et al. (2020)

to select K. Specifically,

L(K̃; ĉ,A) = L0(A, K̃, ĉ)−
{
κn log K̃ +

1

2
K̃(K̃ + 1) log n

}
,
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S.3(a) Setting (I) S.3(b) Setting (II) S.3(c) Setting (III)

Figure S.3: The extraction loss with varying C in the case of K = 2 for Settings (I)-(III),

where the initialization algorithm is INIT.

where L0(A, K̃, ĉ) =
∑n

i=1

∑
j>i{Aij log P̂ĉ(i)ĉ(j) +(1−Aij) log(1−P̂ĉ(i)ĉ(j))}

and for each k, l ∈ [K],

P̂kl =


∑
i<j

AijI{ĉ(i)=k,ĉ(j)=k}

1
2
n̂k(n̂k−1)

, k = l,∑
i,j∈[n]

AijI{ĉ(i)=k,ĉ(j)=l}

n̂kn̂l
, k 6= l,

with n̂k =
∑

j∈[n] I{ĉ(j) = k}. Then, choose

K̂ = argmaxK̃∈K L(K̃; ĉ,A),

where K is a candidate set for K. Here, we use RACEinit or RACEesc as

the community extraction method for getting ĉ. By experience, here we set

κ = 4.5.

To see the accuracy of CBIC’s selection of K, we consider the following

settings with n = 300, d = 32, ω = (1− s, 1 + s)>/2:
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(I) q′0 = q0 = 1, p0 = r1 q0, r1 varies from 5 to 7 and s = 0;

(II) d varies from 30 to 38, p0 = 5, q0 = q′0 = 1 and s = 0;

(III) s varies from 0 to 0.24, p0 = 5 and q0 = q′0 = 1.

Table S.1: The accuracy of using “corrected Bayesian information criterion” (CBIC) to

select K based on RACEesc and RACEinit
True K = 2 True K = 3

Setting r1 RACEesc RACEinit RACEesc RACEinit

(I)

5.0 1.00 1.00 1.00 1.00
5.5 1.00 1.00 1.00 1.00
6.0 1.00 1.00 1.00 1.00
6.5 1.00 1.00 1.00 1.00
7.0 1.00 1.00 1.00 1.00
d RACEesc RACEinit RACEesc RACEinit

(II)

30 1.00 1.00 0.89 0.89
32 1.00 1.00 1.00 1.00
34 1.00 1.00 1.00 1.00
36 1.00 1.00 1.00 1.00
38 1.00 1.00 1.00 1.00
s RACEesc RACEinit RACEesc RACEinit

(III)

0.00 1.00 1.00 1.00 1.00
0.06 1.00 1.00 1.00 1.00
0.12 1.00 1.00 1.00 1.00
0.18 1.00 1.00 0.96 0.96
0.24 1.00 1.00 0.91 0.91

We have repeated all experiments 100 times, and Table S.1 shows the

accuracy of selecting the true K from the 100 times. From Table S.1, we

can see that the performance of selecting K by using CBIC is good under

the above settings.

S3. Comparison of conditions imposed

S.3.1 Comparison of conditions imposed in the main theorems

To better understand the conditions imposed in the main theorems and

corollary of this paper, we consider the following setting. Set p = n−a and
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S3. COMPARISON OF CONDITIONS IMPOSED

β = C1n
−c, where 0 ≤ a < 1, 0 ≤ c < 1 and C1 ∈ (0, 1) is a constant.

Besides, when p � q, set p − q = C2n
−b with constants C2 ∈ (0, 1) and

b ≥ a; when p� q, set p/q = C2n
b with constants C2 ∈ (0, 1) and b ≥ 0.

Then, under the above setting, we present the sufficient conditions for

Assumption 1 and the conditions imposed in Corollary 1, Theorems 1-

4, respectively, in Table S.2, which allow for extremely unbalanced node

numbers of community and background group. For example, when p � q,

i.e. a = b, if we set p = n−1/4, i.e. a = 1/4, then the order of β can be

n−(1/8−ε) for any small constant ε > 0.

Moreover, it can be seen that in our study the order of the average

degree can be much smaller than log n, whereas many existing studies re-

quire that the order of the average degree is greater than log n, such as

in Zhao et al. (2011). For example, when p = log n/n, q = 1/(n log n)

and β = 1/ log1/4 n, the conditions imposed in Theorem 1 and Theo-

rem 4 still hold, where the order of the average degree is smaller than

2 log3/4 n� log n.

S.3.2 Explanation of the additional conditions on p and q

First, we explain the rationale of the additional assumptions regarding p

and q beyond Assumption 1 in Theorems 1-4 and Corollary 1.
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Table S.2: Sufficient conditions for Assumption 1 and the conditions imposed in Corollary

1, Theorems 1-4, respectively.

p � q p� q

Assumption 1 a + 2c < 1 a + 2c < 1

Corollary 1 3b + 2c− 2a < 1 a + 2c < 1, 3b ≥ a

Theorem 1 3b + 2c− 2a < 1 a + 2c < 1

Theorem 2 a + 2c < 1 a + 2c < 1, 3b ≥ a

Theorem 3 4b + 2c− a < 1 b + 3a + 2c < 1

Theorem 4 2b + 2c− a < 1 a + 2c < 1

(1) In Theorem 1, when p→ q, the additional condition −p−q
p

β2nIt∗ (p,q)
log β

→

∞ is used to limit the speed at which p tends to q and ensure that the

background nodes can be distinguished. As presented in Table S.2, the

condition 3b− 2a+ 2c < 1 is a sufficient condition for this condition.

(2) In Theorem 2, when p� q, the additional conditions are

limn→∞
log

log(
p
q )

p

logn
< 1, p log3

(
p
q

)
<∞ and limn→∞

log βnp
log log p

q
> 3.

They are used to limit the upper bounds of p/q, 1/p and 1/β. Specifi-

cally, they require that p/q is not too large, and p and β does not ap-

proach 0 too quickly. These additional conditions are used to establish

appropriate concentration of the likelihood ratio statistic, specifically

in establishing the lower bound of the minimax risk. In Table S.2,

3b > a is a sufficient condition for p log3
(
p
q

)
<∞, a < 1 is a sufficient

condition for limn→∞
log

log(
p
q )

p

logn
< 1 and a + c < 1 is a sufficient condi-
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tion for limn→∞
log βnp
log log p

q
> 3. Therefore, under this setting, these three

additional conditions must hold if a+ 2c < 1 and 3b > a.

(3) Theorem 3 requires that βn (p−q)4

p
→∞ and the initialization algorithm

in Algorithm 1 satisfies Condition 1 with

γn = o

(
− β

log β
(p− q)

)
(S3.1)

when p � q, and

γn = o

(
− β

log β
q

log log p
q

log p
q

)
(S3.2)

when p � q. We need these additional conditions because p and q

need to be estimated, and obtaining sufficiently good estimates for

p and q requires stronger conditions on them. In Table S.2, when

p � q, 4b + c − a < 1 is a sufficient condition for βn (p−q)4

p
→ ∞, and

3b+ 2c− a < 1 is a sufficient condition for the initialization algorithm

in Algorithm 1 to satisfy Condition 1 with γn = o
(
− β

log β
(p− q)

)
.

On the other hand, when p � q, 3a + c < 1 is a sufficient condition

for βn (p−q)4

p
→ ∞, and b + 2a + 2c < 1 is a sufficient condition for

the initialization algorithm in Algorithm 1 to satisfy Condition 1 with

γn = o
(
− β

log β
q

log log p
q

log p
q

)
.

(4) In Theorem 4, the additional condition is −β
log β

βn(p−q)2

p
→ ∞, which is

used to establish the consistency of the estimate of c. In Table S.2,
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when p � q, 2b + 2c − a < 1 is sufficient to ensure this condition to

hold. When p� q, a+ 2c < 1 is sufficient.

Next, we discuss whether these additional conditions on p and q are

satisfied in some typical settings of existing studies, such as Wilson et al.

(2017), Yun and Proutiere (2016) and Zhao et al. (2011).

(1) First, we consider the requirements imposed on p and q in Wilson

et al. (2017), which are equivalent to that β, p and q with p > q are

constants. These requirements are stronger because they automatically

lead to the conditions on p and q in Theorems 1-4.

(2) Then, we consider the requirements imposed on p and q in Yun and

Proutiere (2016), which are equivalently written as β & 1, np → ∞,

1 < limn→∞ p/q < ∞ and nIt∗(p, q) → ∞. These requirements are

stronger because they automatically lead to the conditions of Theorems

1, 2 and 4. On the other hand, the conditions for p and q in Theorem

3 intersect with the above requirements, but neither implies the other.

(3) Finally, we consider the requirements on p and q in Theorem 2 of Zhao

et al. (2011): β & 1, limn→∞ p/q < ∞ and np/ log n → ∞. Because

their theorem studies the consistency of the estimated community la-

bels, we only compare their requirements with the conditions imposed
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S3. COMPARISON OF CONDITIONS IMPOSED

in Theorem 4 which also studies the consistency. We find that these

requirements are stronger because they automatically lead to the con-

ditions imposed on p and q in Theorem 4.

S.3.3 ESC is a suitable initialization algorithm for RACEn

We use the following corollary to better understand that ESC is a suitable

initialization algorithm for RACEn.

Corollary S1. Let (P , c) ∈ Θn(p, q, β) and assume that limn→∞
pβ

q(1−β)
> 2,

and − β
log β

nq4

p2 →∞ as n→∞. Then, the output of Algorithm 3, i.e. c0
esc,

satisfies

inf
(P ,c)∈Θn(p,q,β)

PP,c

(
`
(
c, c0

esc

)
≤ C(1 + ξ)

p2

nq4

)
≥ 1− n−(1+C′),

for some constants C,C ′ > 0, where ξ comes from the (1+ξ)-approximation

K-means optimization in step 3 of Algorithm 3.

Corollary S1 indicates that under certain conditions, the combination

of ESC and RACEn can output a community extraction result that reaches

the asymptotic minimax risk. Under the same setting considered in Table

S.2, when p � q, due to the assumption limn→∞
pβ

q(1−β)
> 2, we have p− q =

C1n
−b with b = a, and c = 0, and the sufficient condition for the conditions

imposed in Corollary S1 is a < 1/2. Besides, when p � q, we obtain
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that the sufficient condition for the conditions imposed in Corollary S1 is

4b+ c− 2a < 1.

S4. Simulation results in the case of K = 3

In this section, we investigate the performance of RACE in the case ofK = 3.

We consider the following five settings:

(I) q′0 = q0 = 1, p0 = r1 q0, r1 varies from 3 to 7 and s = 0;

(II) p0 = 4, q0 = 1, q′0 = r2 q0, r2 varies from 0 to 1 and s = 0;

(III) p0 = 4, q′0 = 1, q0 = r3 q
′
0, r3 varies from 0 to 1 and s = 0;

(IV) d varies from 8 to 26, p0 = 4, q0 = q′0 = 1 and s = 0;

(V) s varies from 0 to 0.4, p0 = 4 and q0 = q′0 = 1.

In this situation, we need to demonstrate not only whether the com-

munity nodes and background nodes can be well distinguished, but also

whether the communities can be well separated. Let CK = {i ∈ [n] :

c(i) = K}, ČK = {i ∈ [n] : č(i) = K}, c =
(
c(1), · · · , c(n)

)>
with

c(i) = I{i ∈ CK} and č =
(
č(1), · · · , č(n)

)>
with č(i) = I{i ∈ ČK}.

Then, `(c, č) measures the loss of community extraction. On the other

hand, we use the normalized mutual information (NMI) between c and

12



S4. SIMULATION RESULTS IN THE CASE OF K = 3

S.4(a) Setting (I) S.4(b) Setting (II) S.4(c) Setting (III)

S.4(d) Setting (IV) S.4(e) Setting (V)

Figure S.4: The performance of community extraction in the case of K = 3 for Settings

(I)-(V).

č on [n]\{CK ∩ ČK} to measure the accuracy of separating different com-

munities. Note that NMI is a common criterion for evaluating clustering

performance (Wang et al., 2020), which takes a value between 0 and 1.
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A larger NMI value reflects a better clustering result. NMI is defined as

follows. For any c1 ∈ [K1]n and c2 ∈ [K2]n, define random variables X

and Y with the joint distribution, P(X = k, Y = l) = |{(i, j) : c1(i) =

k, c2(j) = l}|/n2 for each k ∈ [K1] and l ∈ [K2]. Then the NMI be-

tween c1 and c2 is NMI(X, Y ) = 2MI(X, Y )/
(
H(X) + H(Y )

)
, where

H(X) = −
∑

k∈[K1] P(X = k) logP(X = k) and H(Y ) = −
∑

k∈[K2] P(Y =

k) logP(Y = k) are the information entropy of X and Y , respectively. Here,

MI(X, Y ) =
∑

k∈[K1]

∑
k∈[K2] P(X = k, Y = l) log P(X=k,Y=l)

P(X=k)P(Y=l)
is the mutu-

al information between X and Y .

Set n = 150, K = 3, d = 18, ω = (1 − s, 1, 1 + s)>/3. Note that

because M-E is designed to find overlapping communities, while there is no

overlapping in the simulation settings, we exclude M-E from the following

comparison. The results for K = 3 are summarized in Figures S.4 and

S.5, which suggest that RACEinit and RACEesc have very good performance

in both community extraction and community discovery (i.e. separating

different communities). Note that in setting (III), when r3 is relatively

small, SCORE has missing values because it requires that the network is

connected, hence it does not allow isolated nodes to exist in the network.

Similarly, the results of Gaoinit and Gaoesc have some missing values.
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S4. SIMULATION RESULTS IN THE CASE OF K = 3

S.5(a) Setting (I) S.5(b) Setting (II) S.5(c) Setting (III)

S.5(d) Setting (IV) S.5(e) Setting (V)

Figure S.5: The performance of community discovery (i.e. separating different commu-

nities) in case of K = 3 for Settings (I)-(V).
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S5. Additional discussions

S.5.1 Limitations of degree separability in identifying background

nodes

In this subsection, we discuss whether the separability of node degrees is suf-

ficient to identify background nodes. In fact, the ability to distinguish com-

munities and background nodes relies on the separability of edge-probability

matrix. Degree separability is one aspect of this separability, which in-

volves information loss and often cannot substitute for the separability of

edge-probability matrix. In many cases, methods based solely on degree

separability may even completely fail to differentiate between communities

and background nodes.

To showcase this point, we consider one example with K = 3, n1 =

n2 = n3 = n/3 and

P =


p 0 q

0 p q

q q q

 ,

where p = 2q. The rows or columns of this matrix exhibit clear separability.

However, for each node in one of the two communities and each background

node, their expected degrees are approximately equal or equal to (n− 1)q,

based on which the two types of nodes cannot be distinguished.
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S.6(a) Setting (I) S.6(b) Setting (II) S.6(c) Setting (III)

Figure S.6: The performance of RACE and DegreeKmeans in case of K = 2 for Settings

(I)-(III).

Next, we present some numerical results to investigate the performance

of a method based on degree separation in comparison with the proposed

method. The method based on degree separation is constructed as follows:

if K = 2, we apply K-means to {
∑n

j=1Aij}i∈[n] to obtain two clusters, where

the cluster with the smaller centroid is considered as the set of background

nodes, and the other cluster is considered as the community; if K > 2, we

apply K-means to {
∑n

j=1Aij}i∈[n] to obtain K̃ clusters and the cluster with

the smaller centroid is considered as the set of background nodes, where K̃

is selected from {2, · · · , K} by maximizing the Silhouette coefficient that is

a measure of clustering effectiveness (Rousseeuw, 1987). It should be noted

that the reason for selecting K̃ instead of using a fixed K is that the average

degrees of nodes in different communities often cannot be distinguished, as

seen in the example above. From experience, directly using K-means to

get K clusters will result in significantly poorer clustering outcomes. The

17
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S.7(a) p1 = p2 = 4q S.7(b) p1 = 5q and p2 = 4q

Figure S.7: The performance of RACE and DegreeKmeans in case of K = 3.

above method based on degree separation is written as DegreeKmeans.

The simulation settings are designed as follows. For the case of K = 2,

we consider settings (I)-(III) used in Section 4. For the case the K = 3, we

consider the following setting of P :

P =


p1 q1 q

q1 p2 q

q q q

 ,

with q1 = rq, r ∈ [0, 2] and n1 : n2 : n3 = 3 : 5 : 7. Two settings of p1 and

p2 are considered: (1) p1 = p2 = 4q, (2) p1 = 5q, p2 = 4q. The simulation

results of DegreeKmeans and RACEesc are presented in Figures S.6 and S.7

with K = 2 and K = 3, respectively. These results suggest that RACEesc

significantly outperforms DegreeKmeans in identifying background nodes.

In summary, a simple method based on degree separation, such as

DegreeKmeans, has limitations in identifying background nodes, especial-
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ly when there is sufficient separability in the edge-probability matrix but

not enough separability in average degrees. In contrast, our proposed meth-

ods make fuller use of the separability of the edge-probability matrix, thus

yielding more competitive results.

S.8(a) Setting (I) (for E(A)) S.8(b) Setting (II) (for E(A)) S.8(c) Setting (III) (for E(A))

S.8(d) Setting (I) (for A) S.8(e) Setting (II) (for A) S.8(f) Setting (III) (for A)

Figure S.8: The absolute values of the eigenvalues of A and E(A) in case of K = 2 for

Settings (I)-(III).

S.5.2 Suitable initialization method based on spectral clustering

In some related existing studies on community detection without back-

ground nodes, such as Lei and Rinaldo (2015) and Gao et al. (2017), K-

means is applied to the n×K matrix constructed by the leading K eigen-
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S.9(a) Setting (I) S.9(b) Setting (II) S.9(c) Setting (III)

Figure S.9: The performance of ESC and SC in case of K = 2 for Settings (I)-(III).

vectors of A to obtain K clusters. In fact, when a network has K communi-

ties without background nodes, the edge-probability matrix is generally full

rank and the leading K eigenvalues are significantly larger than the other

eigenvalues. In this case, selecting K eigenvectors to construct the matrix

to be used in K-means is usually the optimal choice.

However, for networks with a certain number of background nodes,

using the Kth leading eigenvector is usually not a good choice due to its low

signal-to-noise ratio. Below, we will support this argument with an example.

Under a network setting with K − 1 communities and a set of background

nodes, we generated the edge-probability matrix P and the node labels c as

in Setting (I)-(III) in Section 4, based on which we randomly generated the

adjacency matrix A. Then, we investigated the pattern of the eigenvalues

of E(A) and A, respectively. From Figures S.8(a)-S.8(c), we find that

the absolute value of E(A)’s Kth eigenvalue is generally moderately larger
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than 0, i.e. the (K + 1)th eigenvalue, and much smaller than the (K− 1)th

eigenvalue. Hence, if E(A) is known, applying K-means to the matrix

composed of the leading K eigenvectors of E(A) will be more competitive

than applying it to the matrix composed of the leading K− 1 eigenvectors.

Since E(A) is unknown, we have to consider the eigenvectors of A. From

Figures S.8(d)-S.8(f), we find that although the Kth eigenvalue of A is still

significantly smaller than the (K − 1)th eigenvalue, which is similar to the

E(A) case, it is no longer well separated from the (K + 1)th eigenvalue,

which is different from the E(A) case. This indicates that the signal-to-

noise ratio of the Kth eigenvector of A is very low.

On this ground, using the Kth eigenvector of A may has a negative im-

pact on clustering. Suggested by Figure S.9, the proposed ESC algorithm

outperforms SC in terms of identifying background nodes, where the algo-

rithm SC is the same as ESC, except that it applies K-means to the matrix

composed of the leading K eigenvectors of A. The poor performance of

SC is due to the lack of cluster information in the Kth eigenvectors of A,

which is demonstrated in Figure S.10. Figure S.10(a) presents the scatter

plot of the first two eigenvectors of A in case of K = 2, which suggests

that the first eigenvector can clearly distinguish the clusters, but the sec-

ond (Kth) eigenvector cannot distinguish the clusters at all. Similar results
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S.10(a) K = 2 S.10(b) K = 3

S.10(c) K = 3 S.10(d) K = 3

Figure S.10: Scatter plot of the eigenvectors of A.

are presented in Figures S.10(b)-S.10(d) for the case of K = 3.

Hence, we ultimately decided to use the first K − 1 eigenvectors of A

in ESC for clustering to achieve community extraction.

S.5.3 New challenges encountered

In this subsection, we will explain in detail the new challenges that our study

has encountered. These challenges are described in terms of the algorithmic

and theoretical aspects, respectively.

First, we illustrate the challenges encountered in the algorithmic aspect.
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(1) Existing methods often struggle to find a suitable initialization method

based on spectral clustering to handle networks with background n-

odes. This is because for a network with background nodes, the signal-

to-noise ratio of the Kth eigenvector of the adjacency matrixAmay be

significantly low during the eigen-decomposition process. This occurs

despite the fact that the Kth eigenvector of the expected adjacency

matrix E(A) does indeed contain a discernible signal; see Section S.5.2.

Due to this phenomenon, when K is known, if we use the leading K

eigenvectors of A as in Gao et al. (2017), it will be difficult to identify

the background nodes, as presented in Figure S.9. In fact, we will

likely disperse the background nodes into communities. When K is

unknown, if we use the model selection methods such as in Yun and

Proutiere (2016) and Ariu et al. (2023), we will generally select a num-

ber of clusters smaller than K. This typically leads to unsatisfactory

model selection performance, as demonstrated in Table S.3.

To address this challenge, when K is known, the proposed initialization

method, ESC, utilizes only the leading K−1 eigenvectors of the matrix

A. Subsequently, the K-means algorithm is applied based on these

eigenvectors to obtain K clusters. When K is unknown, to select K

clusters includingK−1 communities and a set of background nodes, we
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have combined the methods that we proposed with the CBIC criterion.

(2) In the refinement step of many existing two-step methods, such as

those proposed by Gao et al. (2017) and Gao et al. (2018), the funda-

mental concept is to assign a node to the cluster with which it has the

closest connection. However, this approach may not effectively handle

background nodes. This is primarily because background nodes do

not exhibit a tendency to favor any particular community or the set

of background nodes in terms of the probability of connection.

To address this challenge, we implement refinement similar to Yun and

Proutiere (2016), based on the likelihood information of the community

extraction model under study.

Next, we discuss the challenges encountered in the theoretical aspect. In

fact, when establishing the asymptotic minimax risk in the network model

including background nodes, many conditions on (n1, · · · , nK) and (p, q)

used in existing studies are somewhat restrictive. Hence, the asymptotic

minimax risk needs to be established under more relaxed conditions.

(1) To obtain the upper bound, Zhang and Zhou (2016) and Gao et al.

(2018) used the following condition whenK = 2: Knk/n ∈ [
√

3/5,
√

5/3]

for each k ∈ [K]. Further, Yun and Proutiere (2016) relaxed this con-
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Table S.3: The performance of model selection by using RACEesc together with CBIC

in comparison with the model selection methods in Yun and Proutiere (2016) and Ariu

et al. (2023)
True K = 2 True K = 3

Setting r1 RACEesc Y & P A, P & Y RACEesc Y & P A, P & Y

(I)

5.0 1.00 0 0 1.00 0 0
5.5 1.00 0 0 1.00 0 0
6.0 1.00 0 0 1.00 0 0
6.5 1.00 0 0 1.00 0 0
7.0 1.00 0 0 1.00 0 0
d RACEesc Y & P A, P & Y RACEesc Y & P A, P & Y

(II)

30 1.00 0 0 0.89 0 0
32 1.00 0 0 1.00 0 0
34 1.00 0 0 1.00 0 0
36 1.00 0 0 1.00 0 1.00
38 1.00 0 1.00 1.00 0 1.00
s RACEesc Y & P A, P & Y RACEesc Y & P A, P & Y

(III)

0.00 1.00 0 0 1.00 0 0
0.06 1.00 0 0 1.00 0 0
0.12 1.00 0 0 1.00 0 0
0.18 1.00 0 0 0.96 0 0
0.24 1.00 0 0 0.91 0 0

dition to nk � n/K for each k ∈ [K] and used an additional condition

1 < limn→∞ p/q < ∞. In practical problems, nK may be much larger

or smaller than the number of community nodes. Hence, the condi-

tions of Knk/n ∈ [
√

3/5,
√

5/3] and nk � n/K are unreasonable for

background nodes. In addition, the condition 1 < limn→∞ p/q <∞ is

also unreasonable, because it excludes the case where q is much smaller

than p, which is very reasonable for background nodes.

These conditions are crucial for establishing the upper bound in the

corresponding studies. Hence, we need to find a new way to establish

the upper bound under more relaxed conditions. In fact, we imposed

the following conditions on (n1, n2) and (p, q): n1 ∈
[
bβnc − 1, d(1 −
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β)ne + 1
]
, −β2nIt∗ (p,q)

log β
→ ∞ and limn→∞ p/q > 1, which are much

weaker than the above ones.

(2) To obtain the lower bound, Yun and Proutiere (2016) assumed that

1 < limn→∞ p/q = O(1) and nk � n/K for each k ∈ [K], and Gao

et al. (2018) assumed that 1 < limn→∞ p/q = O(1). Similarly, these

conditions are also unreasonable, so we consider establishing the lower

bound under the following more relaxed conditions: n1 ∈
[
bβnc −

1, d(1−β)ne+ 1
]
, −β2nIt∗ (p,q)

log β
→∞ and p � q (or p� q together with

some additional conditions).

Our approach to establishing the lower bound is partly inspired by Gao

et al. (2018)’s proof framework. In their proof, it is relatively direct

to verify the Lindeberg condition when using the Lindeberg theorem

under the condition 1 < limn→∞ p/q = O(1). However, under more

relaxed conditions, it becomes much more challenging to determine

whether the Lindeberg condition holds. To solve this problem, we

have developed a new approach, not based on the Lindeberg theorem,

but on the Liapounov theorem.
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S6. The Main Proof

We provide some necessary lemmas in the proof, and we will provide proof

of all lemmas at the end. Firstly, we provide the following lemmas, which

give the properties of t∗ and It∗ , respectively.

Lemma 1. For any 0 < q < p = (1 + δ)q < 1− ε0, where δ > 0 and ε0 is a

small positive constant. Then,

(1) t∗ ∈ (0, 1) defined in (3.11) is the only maximum point of It(p, q) on

t ≥ 0, and 1− t∗ is the only maximum point of It(q, p) on t ≥ 0;

(2) There exists a small constant C > 0 such that t∗ ∈ [C, 1 − C] when

δ . 1. And t∗ =
(
1 + o(1)

) log(log(1+δ))
log(1+δ)

when δ →∞.

Lemma 2. For any 0 < q < p = (1 + δ)q < 1− ε0, where δ > 0 and ε0 is a

small positive constant. Then,

(1) It∗ � δ2q when δ . 1;

(2) t∗p . It∗ . p when δ →∞.

For any c ∈ [2]n and its estimation ĉ, define

˜̀(c, ĉ) = min
π:[2]→[2]

1

n

n∑
i=1

I{π(c(i)) 6= ĉ(i)},

which is a recognized loss in community discovery. Assume that c̃0 is an

initialization algorithm for community discovery.
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Condition S1. For a given positive sequence {γn}, there exist a constant

C0 > 0, such that

inf
(P ,c)∈Θn(p,q,β)

PP,c
{

˜̀
(
c, c̃0

)
≤ γn

}
≥ 1− n−(1+C0), (S6.3)

where c̃0 is an initialization algorithm for community discovery.

Then, we discuss the distance between P̃
0

= (P̃ 0
kl)K×K obtained in the

initialization step and the real parameter P , where

P̃ 0
kl =


∑
u<v

AuvI{c̃0(u)=k,c̃0(v)=k}

1
2
ñ0
k(ñ0

k−1)
, k = l;∑

u,v∈[n]

AuvI{c̃0(u)=k,c̃0(v)=l}

ñ0
kñ

0
l

, k 6= l,

where ñ0
k =

∑
j∈[n] I{c̃

0(j) = k}. Let p0 = max{P 0
11, P

0
22}, and q0 =

ñ0
1P̃

0
1k∗+ñ0

2P̃
0
2k∗/2

ñ0
1+ñ0

2/2
, where k∗ = arg mink∈[2] P̃

0
kk. The community extraction

problem not only provides clustering results c̃0, but also identifies back-

ground nodes. Therefore, we give c0 based on c̃0. Specifically, c0(i) = 2 if

c̃0(i) = k∗, and c0(i) = 1 if c̃0(i) ∈ [2]\{k∗}. Based on the above definition,

we provide the following lemma, which not only characterizes the accuracy

of connection probability matrix estimation, but also describes the rela-

tionship between community discovery results and community extraction

results.

Lemma 3. Suppose that as n→∞, βn (p−q)2

p
→∞ and Condition S1 holds

with the requirement for γn replaced by γn = o(− β
log β

). Then there exists a

28



S6. THE MAIN PROOF

constant C > 0 such that

inf
(P ,c)∈Θn(p,q,β)

PP ,c

(
max

{∣∣p0 − p
∣∣ , ∣∣q0 − q

∣∣} ≤ η(p− q)
)
≥ 1− Cn−(1+C0),

(S6.4)

where η = C ′(η1 + η2) with η1 =
√

p
βn(p−q)2 and η2 = −γn log β

β
, for some

large constant C ′ > 0. Moreover, ` (c, c0) = ˜̀
(
c, c̃0

)
with probability at

least 1− Cn−(1+C0).

Lemma 3 is similar to Lemma 1 in Gao et al. (2017), we also provided

a detailed proof at the end for the completeness of proof.

S.6.1 Proof of Theorem 4

Firstly, because Theorem 4 will be used to prove Theorem 1, we will first

provide a proof of Theorem 4.

Proof of Theorem 4. Let c be the true label. Aτ , c̃0
init, c

0
init and {ν̃k}k∈[2]

come from Algorithm 2, where {ν̃k}k∈[2] are taken so that the left side of the

inequality of (2.3) reaches the minimum. Let M ′ = (Pc(i)c(j))n×n, whose

rank is 2. For all k ∈ [2], define Tk = {i : c(i) = k, ‖Ṽ i −M ′
i‖2 < b} as

in Lei and Rinaldo (2015) where Ṽ i = ν̃ c̃0
init(i)

and b = 1
2

√
βn(p− q). Note

that ‖M ′
i −M ′

j‖2 ≥ 2b for all i, j with c(i) 6= c(j).

Finally, we will prove that n˜̀
(
c, c̃0

init

)
≤
∑2

k=1 |T ck |, so let’s first the
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upper bound of
∑2

k=1 |T ck |. By the definition of Tk we have

b2

2∑
k=1

|T ck | ≤ ‖Ṽ −M ′‖2
F

≤ 2‖Ṽ − M̃‖2
F + 2‖M̃ −M ′‖2

F

≤ 2(2 + ξ)‖M̃ −M ′‖2
F (S6.5)

where M̃ is defined in (2.2). Then, the next task is to present the bound

of ‖M̃ −M ′‖2
F, which can be written as

‖M̃ −Aτ +Aτ −M ′‖2
F

=‖M̃ −Aτ‖2
F + ‖Aτ −M ′‖2

F − 2〈Aτ − M̃ ,Aτ −M ′〉

≤2〈M̃ −M ′,Aτ −M ′〉

≤1

2
‖M̃ −M ′‖2

F + 2 sup
rank(M0)≤4

‖M0‖F=1,M0=M>0

|〈M 0,A
τ −M ′〉|2. (S6.6)

The first inequality holds since ‖Aτ −M̃‖2
F ≤ ‖Aτ −M ′‖2

F, and the second

inequality holds since rank(M̃ −M ′) ≤ 4. And then, we have

‖M̃ −M ′‖2
F ≤ 4 sup

rank(M0)≤4

‖M0‖F=1,M0=M>0

|〈M 0,A
τ −M ′〉|2. (S6.7)

Then, apply singular value decomposition toM 0, that isM 0 =
∑4

k=1 skαkα
>
k .

Then,

|〈M 0,A
τ −M ′〉| ≤

4∑
k=1

sk|α>k (Aτ −M ′)αk| ≤‖Aτ −M ′‖op

4∑
k=1

sk

≤4‖Aτ −M ′‖op. (S6.8)
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The last inequality holds since sk ≤ ‖M 0‖op = 1. By Lemma 5 in Gao et al.

(2017), for any C ′ > 0, there exists some C > 0, such that ‖Aτ −M ′‖op ≤

C
√
np+ 1 with probability at least 1 − n−C′ uniformly over τ ∈ [C1(np +

1), C2(np + 1)] for some sufficiently large constants C1, C2. Then, we have

‖Aτ −M ′‖op ≤ C
√
np+ 1, with probability at least 1− n−(1+C′).

To sum up, by (S6.5), (S6.6), (S6.7) and (S6.8), we have

2∑
k=1

|T ck | ≤ C(1 + ξ)
np+ 1

βn(p− q)2
, (S6.9)

with probability at least 1− n−(1+C′).

Next, we will prove that n˜̀
(
c, c̃0

init

)
≤
∑2

k=1 |T ck |. By the assumption

that −β
log β

βn(p−q)2

p
→∞ as n→∞, we have |T ck | ≤ C(1 + ξ) np+1

βn(p−q)2 = o(βn)

for each k ∈ [2] with probability at least 1 − n−(1+C′), which means based

on the event (S6.9), Tk 6= ∅ for each k ∈ [2]. In such case, T1 and T2 have

the following properties. First, for any i ∈ T1 and j ∈ T2, c̃
0
init(i) 6= c̃0

init(j).

Otherwise, if c̃0
init(i) = c̃0

init(j), we have ‖M ′
i −M ′

j‖2 ≤ ‖Ṽ i −M ′
i‖2 +

‖Ṽ j −M ′
j‖2 < 2b, which contradicts with the fact that ‖M ′

i−M ′
j‖2 ≥ 2b

for all i, j with c(i) 6= c(j). Second, fix any k ∈ [2], and for any i, j ∈ Tk,

c̃0
init(i) = c̃0

init(j), since there are at most two values for c̃0
init(u) for each

u ∈ [n].

Combining the above two properties of {Tk}k∈[2], we have n˜̀
(
c, c̃0

init

)
≤
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k=1 |T ck |. Then, we have that for any (P , c) ∈ Θn(p, q, β),

PP,c
{
n˜̀
(
c, c̃0

init

)
≤ C(1 + ξ)

np+ 1

βn(p− q)2

}
≥ 1− n−(1+C′),

for constants C,C ′ > 0. Based on assumption −β
log β

βn(p−q)2

p
→∞, we have

PP,c
{

˜̀
(
c, c̃0

init

)
≤ γn

}
≥ 1− n−(1+C′),

for some constant C ′ > 0 with γn = o(−β/ log β). And by Lemma 3, we

have

PP,c
{
`
(
c, c0

init

)
≤ C(1 + ξ)

np+ 1

βn(p− q)2

}
≥ 1− 3n−(1+C′).

Since the results are independent of (P , c), the proof is completed.

S.6.2 Proof of Proposition 1

Next lemma provides the upper bound of the probability of ĉp,q(i) 6= c(i)

for each node i.

Lemma 4. Suppose that as n → ∞, βnIt∗ → ∞ and the initialization

algorithm c0 satisfies Condition 1 with γn = o(β). If limn→∞ p/q > 1, then

for {ĉp,q(i)}i∈[n] from (3.12), there is a sequence η → 0 such that

sup
(P ,c)∈Θn(p,q,β)

max
i∈[n]

PP ,c

(
ĉp,q(i) 6= c(i)

)
≤ exp

(
− (1− η)βnIt∗

)
+ 2n−(1+C0),

(S6.10)
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where the constant C0 > 0 is from Condition 1. And when limn→∞ p/q > 1

is replaced by limn→∞ p/q = 1, if γn = o(−β(p − q)/p), then (S6.10) still

holds.

Proof of Proposition 1. Under the assumption of Proposition 1, by Lemma

4, we have that for {ĉp,q(i)}i∈[n] from (3.12), there is a sequence η → 0 such

that

sup
(P ,c)∈Θn(p,q,β)

max
i∈[n]

PP ,c

(
ĉp,q(i) 6= c(i)

)
≤ exp

(
− (1− η)βnIt∗

)
+ 2n−(1+C0).

And then, we have

E`(c, ĉp,q) =
1

n

n∑
i=1

P
(
ĉp,q(i) 6= c(i)

)
≤ exp

(
− (1− η)βnIt∗

)
+ 2n−(1+C0).

If limn→∞
βnIt∗
logn

≤ 1, we have exp
(
− (1 − η)βnIt∗

)
≥ n−(1−η̃) for some

η̃ → 0. Hence, exp
(
− (1 − η)βnIt∗

)
� n−(1+C0), which implies that

E`(c, ĉp,q) ≤ exp
(
− (1− η)βnIt∗

)
for some positive sequence η → 0.

If limn→∞
βnIt∗
logn

> 1, there exists a small ε > 0 such that 1 + ε <

limn→∞
(1−η)βnIt∗

logn
. And we have exp

(
− (1 − η)βnIt∗

)
≤ n−(1+ε/2), which

means E`(c, ĉp,q) ≤ n−(1+C) for some small positive constant C. This situ-

ation means that ĉp,q exactly restored the label c in the expected sense and

the specific minimax risk rate is not as important.

33



QUAN YUAN, BINGHUI LIU, DANNING LI AND YANYUAN MA

S.6.3 Proof of Theorem 1

Proof of Theorem 1. Firstly, −β2nIt∗
log β

→ ∞ can lead to −β2n(p−q)2

p log β
→ ∞.

Specifically, by Lemma 2, when p � q, we have It∗ � (p−q)2

p
and when p� q,

we have It∗ . p and (p−q)2

p
� p which can deduce −β2n(p−q)2

p log β
→ ∞, which

demonstrate that the conditions of Theorem 1 are sufficient conditions for

the condition of Theorem 4.

Moreover, under the assumption of Theorem 1, by Theorem 4, there

exist a constant C0 > 0 and a positive sequence γn = o(β) when limn→∞
p
q
>

1 and γn = o(β p−q
p

) when limn→∞
p
q

= 1. such that

inf
(P ,c)∈Θn(p,q,β)

min
i∈[n]

PP,c
{
`
(
c−i, c

0
init,−i

)
≤ γn

}
≥ 1− (n− 1)−(1+2C0)

≥ 1− n−(1+C0),

since the result of Theorem 4 are independent of i.

S.6.4 Proof of Theorem 2

Proof of Theorem 2. For simplicity, Θn(p, q, β) is abbreviated as Θ in the

following proof. First, we will construct some subspaces of Θ, which can be

sufficient for deriving the lower bound.

1. When lim
n→∞

β < 1
2
, there exists a c∗ ∈ [2]n that satisfies n1(c∗) = bβnc.

Choose η0βn nodes from {i : c∗(i) = 2} and put them in set T , where η0
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tends to 0 and satisfies − log(η0β) = o(βnIt∗). Define Θ1
n(p, q, β) as

{
(P, c) ∈ Θn(p, q, β) : P11 = p, P12 = P22 = q, for all i ∈ T c, c(i) = c∗(i)

}
.

Similarly, Θ1
n(p, q, β) is abbreviated as Θ1. Then, we have

inf
ĉ

sup
(P ,c)∈Θ

E`(c, ĉ) ≥inf
ĉ

sup
(P ,c)∈Θ1

E`(c, ĉ)

≥inf
ĉ

1

|Θ1|
∑

(P ,c)∈Θ1

E`(c, ĉ)

=inf
ĉ

1

|Θ1|
∑

(P ,c)∈Θ1

1

n

n∑
i=1

P
(
ĉ(i) 6= c(i)

)
≥ 1

n|Θ1|

n∑
i=1

inf
ĉ(i)

∑
(P ,c)∈Θ1

P
(
ĉ(i) 6= c(i)

)
=

1

n|Θ1|
∑
i∈T

inf
ĉ(i)

∑
(P ,c)∈Θ1

P
(
ĉ(i) 6= c(i)

)
. (S6.11)

The last inequality holds since for any i ∈ T c, c(i) = c∗(i).

Then, for any given i ∈ T and k ∈ [2], let Θ(i,k) = Θ
(i,k)
n (p, q, β) ={

(P, c) ∈ Θ1
n(p, q, β) : c(i) = k

}
. We can see that Θ(i,1) ∪ Θ(i,2) = Θ1 and

Θ(i,1) ∩ Θ(i,2) = ∅. Moreover, there is a one-to-one correspondence between

the elements in Θ(i,1) and Θ(i,2). For example, for any c1 in C(Θ(i,1)) =
{
c :

(P, c) ∈ Θ(i,1)
}
, there is a unique c2 in C(Θ(i,2)) =

{
c : (P, c) ∈ Θ(i,2)

}
with c2(j) = c1(j) for all j 6= i corresponding to it, and for any c2 in

C(Θ(i,2)), there is also a unique c1 in C(Θ(i,1)) with c1(j) = c2(j) for all
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j 6= i corresponding to it. Then, we have

inf
ĉ

sup
(P ,c)∈Θ

E`(c, ĉ)

≥ 1

n|Θ1|
∑
i∈T

inf
ĉ(i)

2∑
k=1

∑
(P ,c)∈Θ(i,k)

P
(
ĉ(i) 6= c(i)

)
≥ 1

n|Θ1|
∑
i∈T

∑
(P ,c)∈Θ(i,1)

inf
ĉ(i)

[
PP ,c (ĉ(i) 6= 1) + PP ,σi[c]

(
ĉ(i) 6= 2

)]
, (S6.12)

where σi[c] =
(
c(1), · · · , c(i−1), σ

(
c(i)

)
, c(i+ 1), · · · , c(n)

)>
, and for any

x in {1, 2}, σ(x) = 1 if x = 2, otherwise σ(x) = 2. Then,

inf
ĉ

sup
(P ,c)∈Θ

E`(c, ĉ) ≥η0β

2
exp

(
− (1 + η)βnIt∗

)
= exp

(
−
(
1 + o(1)

)
βnIt∗

)
. (S6.13)

Combining |Θ(i,1)| = |Θ(i,2)| = 1
2
|Θ1|, Lemma 5 and |T | = η0βn, the in-

equality in (S6.13) is established for some η → 0. The equality in (S6.13)

holds since − log(η0β) = o(βnIt∗).

2. When lim
n→∞

β = 1
2
, if n is odd, define

Θ2 = Θ2
n(p, q, β)

=

{
(P, c) ∈ Θn(p, q, β) : P11 = p, P12 = P22 = q, for all k ∈ [2],

nk(c) ∈
{n− 1

2
,
n+ 1

2

}}
.

If n is even, define

Θ2 = Θ2
n(p, q, β)
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=

{
(P, c) ∈ Θn(p, q, β) : P11 = p, P12 = P22 = q, for all k ∈ [2],

nk(c) ∈
{n

2
− 1,

n

2
,
n

2
+ 1
}}

.

In addition, for any i ∈ [n] and c ∈ Θ2, define

ψi(c) =


σi[c], nc(i)(c) ≥ n

2
,

c, otherwise,

and

Θ̃(i,1) = Θ̃(i,1)
n (p, q, β) =

{
(P, c) : (P, c) ∈ Θ2, ψi(c) 6= c

}
,

Θ̃(i,2) = Θ̃(i,2)
n (p, q, β) =

{
(P, c̃) : (P, c) ∈ Θ̃(i,1), c̃ = ψi(c)

}
.

Note that Θ̃(i,1) ⊂ Θ2, Θ̃(i,2) ⊂ Θ2, |Θ̃(i,1)| = |Θ̃(i,2)| and there is a one-to-one

mapping between Θ̃(i,1) and Θ̃(i,2). In particular, for any c1 in C(Θ̃(i,1)) ={
c : (P, c) ∈ Θ̃(i,1)

}
, there is only one c2 in C(Θ̃(i,2)) =

{
c : (P, c) ∈ Θ̃(i,2)

}
corresponding to it, with c1(j) = c2(j) for any j 6= i. Besides, there

must exist some i in [n] such that |Θ̃
(i,1)|
|Θ2| ≥

1
2
. Because if for all i ∈ [n],

|Θ̃(i,1)|
|Θ2| < 1

2
, we have n |Θ

2|
2

>
∑n

i=1 |Θ̃(i,1)| ≥ n
2
|Θ2|, which would lead to a

contradiction. It is not difficult to see that for any i 6= j ∈ [n], there is a

one-to-one correspondence between Θ̃(i,1) and Θ̃(j,1). In particular, for any

c1 in C(Θ̃(i,1)), there is a unique c2 in C(Θ̃(i,2)), with c2(l) = c1(l) for any

l ∈ [n]\{i, j}, c2(i) = c1(j), and c2(j) = c1(i). Since i and j are arbitrarily

selected, we have |Θ̃(i,1)| = |Θ̃(j,1)| for any i 6= j ∈ [n]. Thus, |Θ̃
(i,1)|
|Θ2| ≥

1
2
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holds for any i ∈ [n]. Then, we have

inf
ĉ

sup
(P ,c)∈Θ

E`(c, ĉ) ≥ inf
ĉ

sup
(P ,c)∈Θ2

E`(c, ĉ) ≥ inf
ĉ

1

|Θ2|
∑

(P ,c)∈Θ2

E`(c, ĉ)

=inf
ĉ

1

|Θ2|
∑

(P ,c)∈Θ2

1

n

n∑
i=1

P
(
ĉ(i) 6= c(i)

)
≥ 1

n|Θ2|

n∑
i=1

inf
ĉ(i)

∑
(P ,c)∈Θ2

P
(
ĉ(i) 6= c(i)

)
≥ 1

2n|Θ2|

n∑
i=1

∑
(P ,c)∈Θ̃(i,1)

inf
ĉ(i)

[
PP ,c

(
ĉ(i) 6= c(i)

)
+ PP ,ψi(c)

(
ĉ(i) 6= ψi(c)(i)

)]

≥ exp

(
−1

2
(1 + η)nIt∗

)
, (S6.14)

for some η → 0. The fourth equation holds because Θ̃(i,1) ⊂ Θ2, Θ̃(i,2) ⊂ Θ2

and ψi is a one-to-one correspondence between Θ̃(i,1) and Θ̃(i,2). Combining

|Θ̃(i,1)|
|Θ2| ≥

1
2
, Lemma 5 and nIt∗ →∞, the last inequality holds.

Assume that {Xi}n0
i=1 is a sequence of independent random variables.

Let X = (X1, · · · , Xn0)>, and then we consider the following hypothesis

testing problem

H0 : X ∼
n0⊗
i=1

Bern (p) , H1 : X ∼
n0⊗
i=1

Bern (q) , (S6.15)

where 0 < q < p = (1 + δ)q < 1− ε0, δ > 0, and ε0 > 0 is a small constant.

Then the following lemma presents the minimum possible Type I+II error

of the above hypothesis testing.

Lemma 5. Assume that as n→∞, n0It∗(p, q)→∞ and p � q. Then, we
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have

inf
φ

(
PH0φ+ PH1(1− φ)

)
≥ exp

(
− (1 + η)n0It∗(p, q)

)
, (S6.16)

for some η → 0. If n0It∗(p, q) . 1, then infφ
(
PH0φ + PH1(1 − φ)

)
≥ C

for some constant C > 0. When p � q is replaced by p � q, if additional

conditions

p log3
(p
q

)
<∞, lim

n→∞

log
log( p

q
)

p

log n
< 1 and lim

n→∞

log βnp

log log p
q

> 3

are added, (S6.16) still holds.

S.6.5 Proof of Theorem 3

We give some necessary lemmas, i.e. Lemmas 6 and 7. Lemma 6 is similar to

Lemma 1 in Gao et al. (2017), discussing the distance between P 0i obtained

in the initialization step and the real parameter P . Lemmas 7 characterizes

the loss of the refinement step in RACEn.

Lemma 6. Suppose that as n→∞, βn (p−q)2

p
→∞ and Condition 1 holds

with the requirement for γn replaced by γn = o(− β
log β

). Then there exists a

constant C > 0 such that

inf
(P ,c)∈Θn(p,q,β)

min
i∈[n]

PP ,c

(
max

{∣∣p̂0i − p
∣∣ , ∣∣q̂0i − q

∣∣} ≤ η(p− q)
)
≥ 1−Cn−(1+C0),

(S6.17)
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where p̂0i and q̂0i are obtained in the refinement step of Algorithm 1, the con-

stant C0 > 0 is from Condition 1 and η = C ′(η1+η2) with η1 =
(

p
βn(p−q)2

)1/2

and η2 = −γn log β
β

, for some large constant C ′ > 0.

The proof of Lemma 6 can be directly obtained from Lemma 3. Since

˜̀
(
c−i, c

0
−i
)
≤ `

(
c−i, c

0
−i
)
, by Lemma 3, we have

inf
(P ,c)∈Θn(p,q,β)

min
i∈[n]

PP ,c

(
max

{∣∣p̂0i − p
∣∣ , ∣∣q̂0i − q

∣∣} ≤ η(p− q)
)

≥ 1− 1

2
C(n− 1)−(1+C0) ≥ 1− Cn−(1+C0),

for some constant C > 0. Because the result are independent of i, which

means the proof is complete.

Lemma 7. Suppose that as n→∞, βn (p−q)4

p
→∞, βnIt∗ →∞ and Condi-

tion 1 holds with γn = o
(
−β(p−q)

log β

)
when p � q, and γn = o

(
− βq

log β

log log p
q

log p
q

)
when p� q. Then for {č(i)}i∈[n] in Algorithm 1, there is a sequence η → 0

and a constant C > 0, such that

sup
(P ,c)∈Θn(p,q,β)

max
i∈[n]

PP ,c

(
č(i) 6= c(i)

)
≤ exp

(
− (1− η)βnIt∗

)
+ Cn−(1+C0),

(S6.18)

where the constant C0 > 0 is from Condition 1.

Proof of Theorem 3. By Lemma 7, for any (P , c) ∈ Θ and i ∈ [n], we have

P
(
č(i) 6= c(i)

)
≤ exp

(
− (1−η′)βnIt∗

)
+Cn−(1+C0), for constants C,C0 > 0
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and some η′ → 0. Set η = η′+ 1√
βnIt∗

, and by Markov’s inequality, we have

P
{
`(c, č) > exp

(
− (1− η)βnIt∗

)}
≤

1
n

∑n
i=1 P

(
č(i) 6= c(i)

)
exp

(
− (1− η)βnIt∗

)
≤ exp

(
(η′ − η)βnIt∗

)
+

Cn−(1+C′0)

exp
(
− (1− η)βnIt∗

)
= exp(−

√
βnIt∗) +

Cn−(1+C′0)

exp
(
− (1− η)βnIt∗

) . (S6.19)

If exp
(
− (1− η)βnIt∗

)
> Cn−(1+C′0/2), then

P
{
`(c, č) > exp

(
− (1− η)βnIt∗

)}
≤ exp

(
−
√
βnIt∗

)
+ Cn−C

′
0/2 → 0.

If exp
(
− (1− η)βnIt∗

)
≤ Cn−(1+C′0/2), then

P
{
`(c, č) > exp

(
− (1− η)βnIt∗

)}
≤ P

(
`(c, č) > 0

)
= P

(
n⋃
i=1

{
č(i) 6= c(i)

})

≤
n∑
i=1

P
(
č(i) 6= c(i)

)
≤

n∑
i=1

[
exp

(
− (1− η′)βnIt∗

)
+ Cn−(1+C′0)

]
≤ Cn−C

′
0/2 + Cn−C

′
0 → 0. (S6.20)

The last inequality in (S6.20) holds since η ≥ η′, which implies exp
(
− (1−

η′)βnIt∗
)
≤ exp

(
− (1− η)βnIt∗

)
≤ Cn−(1+C′0/2). Therefore, we can obtain

that

P
{
`(c, č) > exp

(
− (1− η)βnIt∗

)}
→ 0,
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which completes the proof.

S.6.6 Proof of Theorem 5

Let’s first take a look at the separability of a node with c(i) = 1 and a node

with c(i) = 2 based on parameter matrix (Pc(i)c(j))n×n, which is shown in

the following lemma.

Lemma 8. For (P , c) ∈ Θn(p, q, β), set M ′ = (Pc(i)c(j))n×n, whose rank is

2. Let UΛU> be the eigen-decomposition of M ′.

Then, Λ = diag (λ1, λ2) with λ1 = x+
√
x̃2 + y2 and λ2 = x−

√
x̃2 + y2,

where

x =
n1(c)p+ n2(c)q

2
, x̃ =

n1(c)p− n2(c)q

2
, and y =

√
n1(c)n2(c)q.

Besides, c(i) = c(j) if and only if Ui1 = Uj1 and if c(i) 6= c(j), (Ui1 −

Uj1)2 = ∆2 as long as ∆ > 0, where Uij is the (i, j)-th element of matrix

U , and

∆2 =
1

(x̃+ z)2 + y2

{
1√
n1(c)

(x̃+ z)− 1√
n2(c)

y

}2

, (S6.21)

with z =
√
x̃2 + y2.

Proof of Theorem 5. Let c be the true label. Aτ , Û
K−1

= Û
1

= (Û1) ∈

Rn, c̃0
esc, c

0
esc and {ν̃k}k∈[2] with ν̃k ∈ R come from Algorithm 2, where
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{ν̃k}k∈[2] are taken so that the left side of the inequality of (2.5) reaches

the minimum. Let M ′ = (Pc(i)c(j))n×n, whose rank is 2. Let UΛU> be

the eigen-decomposition of M ′, and for each i in [n], let Ūi1 = ϑUi1 where

ϑ ∈ {−1, 1}, which will be determined later.

For each k ∈ [2], define T̃k = {i : c(i) = k, |Ṽi − Ūi1| < ∆/2} where

Ṽi = ν̃c̃0
esc(i)

and ∆ is defined in (S6.21). Note that |Ūi1 − Ūj1| = ∆ for all

i, j with c(i) 6= c(j).

Finally, we will prove that n˜̀
(
c, c̃0

esc

)
≤
∑2

k=1 |T̃ ck |, so let’s first the

upper bound of
∑2

k=1 |T̃ ck |. By the definition of T̃k we have

1

4
∆2

2∑
k=1

|T̃ ck | ≤
n∑
i=1

(Ṽi − Ūi1)2

≤ 2
n∑
i=1

(Ṽi − Û1
i )2 + 2

n∑
i=1

(Û1
i − Ūi1)2

≤ 2(2 + ξ)
n∑
i=1

(Û1
i − Ūi1)2, (S6.22)

Next, the next task is to present the bound of
∑n

i=1(Û1
i −Ūi1)2, which can be

obtained through the Davis-Kahan theorem. The version of Davis-Kahan

theorem used here is Theorem 4.5.5 in Vershynin (2018). Specifically, let S

and T be symmetric matrices with the same dimensions. Fix i and assume

that the i-th largest eigenvalue of S is well separated from the rest of the

spectrum:

min
j:j 6=i
|λi(S)− λj(S)| = δ̃ > 0,
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Then the unit eigenvectors vi(S) and vi(T ) are close to each other up to a

sign, namely

∃ϑ̃ ∈ {−1, 1} :
∥∥∥vi(S)− ϑ̃vi(T )

∥∥∥
2
≤ 23/2‖S − T ‖op

δ̃
.

Hence, setting S = Aτ , T = M ′ and ϑ = arg minϑ̃∈{−1,1} ‖vi(S) −

ϑ̃vi(T )‖2, we have δ̃ = |λ1 − λ2| where λ1 and λ2 are eigenvalues of matrix

M ′, whose specific forms are given in Lemma 8. Then, we have

n∑
i=1

(Û1
i − Ūi1)2 ≤

23‖Aτ −M ′‖2
op

(λ1 − λ2)2
. (S6.23)

By Lemma 5 in Gao et al. (2017), for any C ′ > 0, there exists some C > 0,

such that ‖Aτ −M ′‖op ≤ C
√
np+ 1 with probability at least 1−n−C′ uni-

formly over τ ∈ [C1(np+1), C2(np+1)] for some sufficiently large constants

C1, C2.

To sum up, by (S6.22) and (S6.23), we have

2∑
k=1

|T̃ ck | ≤ C(1 + ξ)
np+ 1

∆2(λ1 − λ2)2
, (S6.24)

with probability at least 1− n−(1+C′).

Next, we will prove that n˜̀
(
c, c̃0

esc

)
≤
∑2

k=1 |T̃ ck |. By the assumption

that −β∆2(λ1−λ2)2

p log β
→ ∞ as n → ∞, we have |T̃ ck | ≤ C(1 + ξ) np+1

∆2(λ1−λ2)2 =

o(βn) for each k ∈ [2] with probability at least 1 − n−(1+C′), which means

based on the event (S6.24), T̃k 6= ∅ for each k ∈ [2]. In such case, T̃1 and

T̃2 have the following properties. First, for any i ∈ T̃1 and j ∈ T̃2, c̃
0
esc(i) 6=
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c̃0
esc(j). Otherwise, if c̃0

esc(i) = c̃0
esc(j), we have ‖Ūi1− Ūj1‖2 ≤ ‖Ṽi− Ūi1‖2 +

‖Ṽj − Ūj1‖2 < ∆, which contradicts with the fact that ‖Ūi1 − Ūj1‖2 = ∆

for all i, j with c(i) 6= c(j). Second, fix any k ∈ [2], and for any i, j ∈ T̃k,

c̃0
esc(i) = c̃0

esc(j), since there are at most two values for c̃0
esc(u) for each

u ∈ [n].

Combining the above two properties of {T̃k}k∈[2], we have n˜̀
(
c, c̃0

esc

)
≤∑2

k=1 |T̃ ck |. Then, we have that for any (P , c) ∈ Θn(p, q, β),

PP,c
{
n˜̀
(
c, c̃0

esc

)
≤ C(1 + ξ)

np+ 1

∆2(λ1 − λ2)2

}
≥ 1− n−(1+C′),

for constants C,C ′ > 0. Based on assumption −β
log β

∆2(λ1−λ2)2

p
→∞, we have

PP,c
{

˜̀
(
c, c̃0

esc

)
≤ γn

}
≥ 1− n−(1+C′),

for some constant C ′ > 0 with γn = o(−β/ log β). And by Lemma 3, we

have

PP,c
{
n`
(
c, c0

esc

)
≤ C(1 + ξ)

np+ 1

∆2(λ1 − λ2)2

}
≥ 1− 3n−(1+C′).

for constants C,C ′ > 0 and since p� 1/n, the proof is completed.

S.6.7 Proof of Corollary 2

Proof of Corollary S1. Firstly, we give the lower bound of (λ1 − λ2)2. For

simplicity, we abbreviate nk(c) as nk for each k ∈ [2]. By assumption
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limn→∞
pβ

q(1−β)
> 2, there is a small constant ε > 0 such that limn→∞

pβ
q(1−β)

>

2 + ε. Then,

(λ1 − λ2)2 = (n1p− n2q)
2 + 4n1n2q

2

= n1n2

{(√
n1

n2

p−
√
n2

n1

q

)2

+ 4q2

}

≥ n1n2

{
(1 + ε)2 1− β

β
q2 + 4q2

}
≥ β(1− β)n2q2

{
(1 + ε)2 1− β

β
+ 4

}
≥ (1− β)2n2q2(1 + ε)2 & n2q2. (S6.25)

The first inequality holds by the fact that
√

n1

n2
p −

√
n2

n1
q ≥ (1 + ε)(1 −

β)q/β when limn→∞
pβ

q(1−β)
> 2 + ε. Next, we calculate the upper bound of

(x̃ + z)2 + y2 and the lower bound of
{

1√
n1

(x̃+ z)− 1√
n2
y
}2

respectively,

and then give the lower bound of ∆2.

(x̃+ z)2 + y2

=

{
1

2
(n1p− n2q) +

(
1

22
(n1p− n2q)

2 + n1n2q
2

) 1
2

}2

+ n1n2q
2

≤ 2

{
1

2
(n1p− n2q) +

(
1

22
(n1p− n2q)

2 + n1n2q
2

) 1
2

}2

≤ 2n1n2

{
1

2

(
1− β
β

) 1
2

p+

(
1

4

1− β
β

p2 + q2

) 1
2

}2

≤ 2n1n2p
2

{
4 +

1− β
β

}
. (S6.26)
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The second inequality holds since (n1/n2)1/2 p−(n2/n1)1/2 q ≤
{(

1−β
β

)1/2

p−(
β

1−β

)1/2

q
}
/2 ≤

(
1−β
β

)1/2

p/2. Besides,

{
1
√
n1

(x̃+ z)− 1
√
n2

y

}2

=

[
1
√
n1

{
1

2
(n1p− n2q) +

(
1

22
(n1p− n2q)

2 + n1n2q
2

) 1
2

}

− 1
√
n2

√
n1n2q

]2

≥

[
√
n2

{
1

2
(1 + ε)

(
1− β
β

) 1
2

+

(
1

22
(1 + ε)2 1− β

β
+ 1

) 1
2

}
−
√
n1

]2

q2

≥

{
√
n2(1 + ε)

(
1− β
β

) 1
2

−
√
n1

}2

q2. (S6.27)

Combining (S6.26) and (S6.27), we can obtain that,

∆2 ≥ 1

2n1n2p2
{

4 + 1−β
β

} {√n2(1 + ε)

(
1− β
β

) 1
2

−
√
n1

}2

q2

≥ 1

2p2 1+3β
β

ε2q2

βn
=

ε2q2

2(1 + 3β)np2
&

q2

np2
. (S6.28)

Then, combining (S6.25) and (S6.28), and the results are independent of

(P , c), our proof is complete.

Proof of Lemma 1. Let dIt(p,q)
dt

= 0, i.e.

−
( q
p
)tp log q

p
+ ( 1−q

1−p)t(1− p) log 1−q
1−p

qtp1−t + (1− q)t(1− p)1−t = 0,
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and then, we can get dIt(p,q)
dt

∣∣
t=t∗

= 0. Besides, for any t > 0, the second

derivative of It(p, q) is as follows

−
( q
p
)tp(log q

p
)2 + ( 1−q

1−p)t(1− p)(log 1−q
1−p)2

(qtp1−t + (1− q)t(1− p)1−t)2
,

which is strictly less than 0. Thus, we have that t∗ is the only maximum

point of It(p, q) on [0,+∞). Combined with I0(p, q) = I1(p, q), we have

t∗ ∈ (0, 1). In addition, t′∗ = 1 − t∗ is the only maximum point of It(q, p)

on (0, 1), since for any t > 0, the second derivative of It(q, p) is strictly less

than 0, I0(q, p) = I1(q, p) and It(q, p) = I1−t(p, q) for any t ∈ [0, 1]. Thus,

we get (1).

Next, we investigate the properties of t∗ in (2). Firstly, considering the

situation where δ � 1, in retrospect, t∗ has the following form

t∗ =
log
[

(p−1)
(

log(1−p)−log(1−q)
)

p(log p−log q)

]
log
(
q(1−p)
p(1−q)

) =
log
[

(1+δ)q−1
(1+δ)q

log
1−(1+δ)q

1−q
log(1+δ)

]
log
(

1−(1+δ)q
(1−q)(1+δ)

) .

Then, we rewrite t∗ as

t∗ =1−
log 1−q

q
+ log

(
− log

(
1− δq

1−q

))
− log log(1 + δ)

log(1 + δ)− log
(
1− δq

1−q

) (S6.29)

=1−
log 1−q

δq
+ log

(
− log

(
1− δq

1−q

))
− log log(1+δ)

δ

log(1 + δ)− log
(
1− δq

1−q

) . (S6.30)

From (S6.30), we can see that when δ or δq tends to 0, we can see t∗ more

clearly. First, we analyze the case when δq & 1. We will first present that

t∗ stays away from 0 and 1 by using reduction to absurdity.
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From (S6.29), we know that the statement that there is a certain dis-

tance between t∗ and 1 is equivalent to the statement that there is a cer-

tain distance between −1−q
q

log
(

1− δq
1−q

)
log(1+δ)

and 1. Let y = q
1−q and assume

− 1
y

log(1−δy)
log(1+δ)

= 1. Note that δy < 1 since p < 1 − ε0 for some small con-

stant ε0 ∈ (0, 1). Then, due to log(1 − x) < −x for any x < 1, we have

δ < log(1 + δ), and there is a contradiction.

Similarly, to illustrate that t∗ is away from 0, assume

−1

y

log(1− δy)

log(1 + δ)
=

1 + δ

1− δy
.

Due to log(1− x) > − x
1−x for any x ∈ (0, 1), we have δ > (1 + δ) log(1 + δ).

And there is a contradiction, since f(δ) = δ − (1 + δ) log(1 + δ) decreases

monotonically on (0,+∞).

Next, we consider the case of δq = o(1). When δ = o(1), from (S6.29)

and by the Taylor expansion of log(1 + x) at x = 0, we can get

t∗ = 1−
log
[
1 + 1

2
δq

1−q + 1
3

(
δq

1−q

)2

+ o(δ2q2)
]
− log

[
1− 1

2
δ + 1

3
δ2 + o(δ2)

]
log(1 + δ)− log

(
1− δq

1−q

) .

Using the Taylor expansion of log(1 + x) at x = 0 again, we have

t∗ = 1− 1

2

q
1−q

(
1 + 5

12
δq

1−q

)
+ 1− 5

12
δ + o(δ)

q
1−q

(
1 + 1

2
δq

1−q

)
+ 1− 1

2
δ + o(δ)

.

Simplifying the numerator, we can get

t∗ =
1

2
− δ 1− 2q

24(1− q)
+ o(δ).
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The rest case in δ � 1, is q = o(1). From (S6.29) and by the Taylor expan-

sion of log(1 + x) at x = 0, and through simple calculations, we have

t∗ =
(
1 + o(1)

) log(1 + δ)− log δ + log log(1 + δ)

log(1 + δ)
.

Thus, due to the fact that for δ > 0,

log(1 + δ) > log δ − log log(1 + δ) >
1

2
log(1 + δ),

we have t∗ ∈ [ε, 1
2
− ε] for a constant ε > 0.

Finally, we consider the case where δ →∞. We rewrite t∗ as

t∗ =
− log log(1 + δ) + log

(
− 1−p

p
log 1−p

1−q

)
− log(1 + δ) + log 1−p

1−q
.

Since p < 1 − ε0 for some small constant ε0 ∈ (0, 1), when p � q, we have

− log 1−p
1−q � p and log(1 − p) � −p, which means the dominant terms of

numerator and denominator are − log log(1 + δ) and − log(1 + δ). Hence,

t∗ =
(
1 + o(1)

) log log(1 + δ)

log(1 + δ)
,

when δ →∞.

Proof of Lemma 2. For any t, p, q ∈ (0, 1), define Jt(p, q) = 2
(
tp+(1−t)q−

ptq1−t
)
, which is nonnegative. Then,

It(p, q) = − log
(
qtp1−t + (1− q)t(1− p)1−t

)
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= − log

(
1− 1

2
Jt(q, p)−

1

2
Jt(1− q, 1− p)

)
.

Due to Lemma 11 in Gao et al. (2018), we have 2 min(t∗, 1−t∗)(√p−√q)2 ≤

Jt∗(q, p) ≤ 2(
√
p−√q)2 and Jt∗(1− q, 1− p) . (p− q)2 since 1− p > ε0 for

some small constant ε0 ∈ (0, 1).

The first task is to give the proof of (1). From Lemma 1, when δ . 1, t∗

stays away from 0 and 1, hence Jt∗(q, p) � δ2q and Jt∗(1− q, 1− p) . δ2q2.

First, we consider the case of δ2q = o(1). When δ2q = o(1), Jt∗(q, p) and

Jt∗(1− q, 1− p) both tend to 0. Hence,

It∗(p, q) = − log
(

1− 1

2
Jt∗(q, p)−

1

2
Jt∗(1− q, 1− p)

)
=

1

2

(
1 + o(1)

)(
Jt∗(q, p) + Jt∗(1− q, 1− p)

)
,

which indicates that It∗ � δ2q.

Next, we consider the case of δ2q � 1. Since δ . 1 and q < 1, when

δ2q � 1, we have δ, q � 1. And then, we have I1/2(p, q) stays away from 0. In

addition, from the proof of Lemma 1, we have for any t ∈ [0, 1], the second

derivative of It(p, q) is strictly less than 0, and I0(p, q) = I1(p, q) = 0.

Besides, from Lemma 1, when δ � 1, t∗ stays away from 0 and 1. And

based on the above information, we have It∗(p, q) � 1. And the proof of (1)

is completed.

The following task is to give the proof of (2). Let’s first give the lower
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bound of It∗(p, q). From the proof of (1),

It∗(p, q) ≥
1

2
Jt∗(q, p) +

1

2
Jt∗(1− q, 1− p)

≥ t∗
{

(
√
p−√q)2 +

(√
1− p−

√
1− q

)2
}

& t∗p,

where the second inequality holds since 2 min(t∗, 1 − t∗)(
√
p − √q)2 ≤

Jt∗(q, p) ≤ 2(
√
p − √q)2 and the last inequality holds since when p � q,

t∗ → 0, and 1− p > ε0 for some small constant ε0 ∈ (0, 1).

Next, we give the upper bound of It∗(p, q). When p = o(1), we have

It∗(p, q) =
1

2

(
1 + o(1)

)(
Jt∗(q, p) + Jt∗(1− q, 1− p)

)
≤

(
1 + o(1)

){
(
√
p−√q)2 +

(√
1− p−

√
1− q

)2
}

. p.

When p & 1, by the definition of It(p, q), we have

It∗(p, q) = − log
(
qt
∗
p1−t∗ + (1− q)t∗(1− p)1−t∗

)
= − log

{
p

(
q

p

)t∗
+ (1− p)

(
1− q
1− p

)t∗}
= − log

{(
1 + o(1)

)
(1− p)

}
. p.

When p � q,
(
q
p

)t∗
→ 0 and

(
1−q
1−p

)t∗
→ 1 since when p � q, t∗ → 0, and

1 − p > ε0 for some small constant ε0 ∈ (0, 1), and thus the third equality
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holds.

Proof of Lemma 3. For any (P , c) ∈ Θn(p, q, β), define event E = {˜̀
(
c, c̃0

)
≤ γn}. Because γn = o(− β

log β
), there is a unique π : [2] → [2] that makes

˜̀
(
c, c̃0

)
= `

(
π[c], c̃0

)
, where π[c] =

(
π(c(1)), · · · , π(c(n))

)>
. Without loss

of generality, assume that π(1) = 1 and π(2) = 2. In addition, for any

k, l ∈ [2], let Ck = {i : c(i) = k}, C̃k = {i : c̃0(i) = k}, nk = |Ck| , ñk =
∣∣∣C̃k∣∣∣ ,

Ekl =
{

(i, j) : i < j, i ∈ Ck, j ∈ Cl, Aij = 1
}

and Ẽkl =
{

(i, j) : i < j, i ∈

C̃k, j ∈ C̃l, Aij = 1
}
. Fix any k ∈ [2]. On E,

∃γ1, γ2 ≥ 0, γ1 + γ2 ≤ γn, s.t. n1 ≥
∣∣∣C̃1 ∩ C1

∣∣∣ ≥ n1 − γ1n

and n2 ≥
∣∣∣C̃2 ∩ C2

∣∣∣ ≥ n2 − γ2n.(S6.31)

Let C ′k be any deterministic subset of [n] such that (S6.31) holds with C̃k

replaced by C ′k, i.e. ∃ γ1(C ′k), γ2(C ′k) ≥ 0, γ1(C ′k) + γ2(C ′k) ≤ γn, such that

n1 ≥
∣∣∣C̃1 ∩ C1

∣∣∣ ≥ n1 − γ1n and n2 ≥
∣∣∣C̃2 ∩ C2

∣∣∣ ≥ n2 − γ2n. Then, there are

at most

γnn∑
l=0

 n1

l

 γnn−l∑
m=0

 n2

m

 ≤ (γnn+ 1)2

(
en1

γnn

)γnn( en2

γnn

)γnn

≤ exp

{
2 log(γnn+ 1) + 2γnn log

e

γn

}
≤ exp

{
C1γnn log

1

γn

}
53



QUAN YUAN, BINGHUI LIU, DANNING LI AND YANYUAN MA

different subsets satisfying this property, where C1 is a positive constant.

The first inequality holds since γnn = o(βn). For any k, l ∈ [2], let E ′kl =

{(i, j) : i < j, i ∈ C ′k, j ∈ C ′l, Aij = 1}, and n′k = |C ′k|. By definition of C ′k, we

can get nk − γk(C ′k)n ≤ n′k ≤ nk + γk(C ′k)n for each k ∈ [2].

Hence, we can get the fact that |E ′11| consists of n′1(n′1−1)/2 independent

Bernoulli random variables, where at most γnn(n1 + γnn) of them follow

Bern (q), Due to the property of E ′11, we have

γnn(n1 + γnn)q + {1
2
n′1(n′1 − 1)− γnn(n1 + γnn)}p

1
2
n′1(n′1 − 1)

≤ E
|E ′11|

1
2
n′1(n′1 − 1)

≤ p.

Under the assumption γn = η2(− β
log β

), we have∣∣∣∣E |E ′11|
1
2
n′1(n′1 − 1)

− P11

∣∣∣∣ ≤ C
γn
β

(p− q) = −C η2

log β
(p− q), (S6.32)

for a constant C > 0. Similarly, we can obtain that |E ′22| consists of n′2(n′2−

1)/2 independent Bernoulli random variables, where at most γnn(γnn−1)/2

of them follow Bern (p), Due to the property of E ′22, we have

q ≤ E
|E ′11|

1
2
n′1(n′1 − 1)

≤
1
2
γnn(γnn− 1)p+ {1

2
n′2(n′2 − 1)− 1

2
γnn(γnn− 1)}q

1
2
n′2(n′2 − 1)

.

Under the assumption γn = η2(− β
log β

), we have∣∣∣∣E |E ′22|
1
2
n′1(n′1 − 1)

− P22

∣∣∣∣ ≤ C
γ2
n

β2
(p− q) = −C η2

2

log2 β
(p− q), (S6.33)

for a constant C > 0. Besides, since |E ′kk| =
∑

u<v∈C′k
Auv, we can get

Var(|E ′kk|) =
∑

u<v∈C′k

VarAuv =
∑

u<v∈C′k

Pc(u)c(v)(1− Pc(u)c(v))
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≤ 1

2
n′k(n

′
k − 1)p ≤ 1

2
(nk + γnn)2p.

By Bernstein’s inequality, for any t > 0,

P
{∣∣∣|E ′kk| − E|E ′kk|

∣∣∣ > t
}
≤ 2 exp

{
− t2

2
(

1
2

(nk + γnn)2 p+ 1
3
t
)} .

Let

t2 = 2 (nk + γnn)2 p
(
C1γnn log γ−1

n + (1 + C0) log n
)

∨
(

2C1γnn log γ−1
n + 2(1 + C0) log n

)2

.
(
nk
(
npγn log γ−1

n

) 1
2 + γnn log γ−1

n

)2

,

where the second equality holds since γn log γ−1
n ≥ 1

n
log n for any 1

γn
≤ n

because log x
x

decreases monotonically on [e,+∞). And γn <
1
n

means the

initialization is already perfect. When γn < 1
n
, we can still continue to

the following arguments by replacing every γn with 1
n

and all the steps still

hold. Then, there exists a constant C(C0, C1) > 0 that depends only on C0

and C1, such that

P
{∣∣∣|E ′kk| − E|E ′kk|

∣∣∣ > C(C0, C1)
(
nk (npγn log γ−1

n )
1
2 + γnn log γ−1

n

)}
≤ 2 exp {−C1γnn log γ−1

n }n−(1+C0).

Under the assumption 1
η2

1
= βn(p−q)2

p
→ ∞, we have (p/(βn))1/2 =

η1(p − q) and 1
βn

= η2
1

(p−q)2

p
≤ η2

1(p − q). Besides, since γn = o(− β
log β

), we

have γn ≤ − β
log β

as n → ∞, which implies that 1
β
γn log γ−1

n . 1. Thus, we
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have ∣∣∣∣ |E ′kk|
1
2
n′k(n

′
k − 1)

− E
|E ′kk|

1
2
n′k(n

′
k − 1)

∣∣∣∣
≤ C(C0, C1)

(
1

nk

(
npγn log γ−1

n

) 1
2 +

n

n2
k

γn log γ−1
n

)
≤ C

((
p

βn

1

β
γn log γ−1

n

) 1
2

+
1

βn

1

β
γn log γ−1

n

)

≤ Cη1(p− q), (S6.34)

for a positive constant C > 0, with probability at least 1 − 2n−(1+C0)

× exp {−C1γnn log γ−1
n }. Using the triangle inequality to (S6.32), (S6.33)

and (S6.34), we have ∣∣∣∣ |E ′kk|
1
2
n′k(n

′
k − 1)

− Pkk
∣∣∣∣ ≤ η(p− q),

with probability at least 1− 2 exp {−C1γnn log γ−1
n }n−(1+C0), and here η =

C(η1 + η2) for some large constant C > 0. Next, apply the union bound

to obtain the upper bound of

∣∣∣∣ |Ẽkk|1
2
ñk(ñk−1)

− Pkk
∣∣∣∣ . For the sake of simplicity,

define event

FC′k =

{∣∣∣∣ |E ′kk|
1
2
n′k(n

′
k − 1)

− Pkk
∣∣∣∣ ≤ η(p− q)

}
,

and let {C ′k} denote the set that contains all C ′k that satisfies (S6.31). Hence,

| {C ′k} | ≤ exp {C1γnn log γ−1
n } . Then, we have

P

 ⋂
C′k∈{C′k}

FC′k
∣∣∣E
 = 1− P

 ⋃
C′k∈{C′k}

F cC′k
∣∣∣E
 ≥ 1− 2n−(1+C0).
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Similar to FC′k , define event

FC̃k =


∣∣∣∣∣∣

∣∣∣Ẽkk∣∣∣
1
2
ñk(ñk − 1)

− Pkk

∣∣∣∣∣∣ ≤ η(p− q)

 ,

and then, we have

P
(
FC̃k |E

)
≥ P

 ⋂
C′k∈{C′k}

FC′k
∣∣∣E
 ≥ 1− 2n−(1+C0).

The above completes the proof of the upper bound of
∣∣∣P̃ 0

kk − Pkk
∣∣∣ for any k

in [2]. The proof for
∣∣∣P̃ 0

kl − Pkl
∣∣∣ for k 6= l ∈ [2], are analogous and hence are

omitted. Based on these results, a final union bound over {(k, l) : k, l ∈ [2]}

can be obtained, i.e.

P
{

max
k,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣ ≤ η(p− q)
∣∣∣E} ≥ 1− 9n−(1+C0).

Then,

P
{

max
k,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣ > η(p− q)
}

= P(E)P
{

max
k,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣ > η(p− q)
∣∣∣E}

+P(Ec)P
{

max
k,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣ > η(p− q)
∣∣∣Ec

}
≤ 9n−(1+C0) + n−(1+C0) = 10n−(1+C0).

Review that ˜̀
(
c, c̃0

)
= minπ:[2]→[2] `

(
π[c], c̃0

)
. From the above proof,

if `
(
π[c], c̃0

)
= ˜̀

(
c, c̃0

)
with π(1) = 1 and π(2) = 2, we have η(p − q) ≥

maxk,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣ holds with probability at least 1 − 10n−(1+C0). On
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η(p − q) ≥ maxk,l∈[2]

∣∣∣P̃ 0
kl − Pkl

∣∣∣, we have P̃ 0
11 > p − η(p − q) and P̃ 0

22 <

q + η(p − q), and then, P̃ 0
11 − P̃ 0

22 > p − q − 2η(p − q) > 0, which implies

p0 = max{P̃ 0
11, P̃

0
22} = P̃ 0

11 and k∗ = 2. And easy to obtain |p0−p| ≤ η(p−q),

|q0 − q| ≤ η(p − q) and c0 = c̃0. If `
(
π[c], c̃0

)
= ˜̀

(
c, c̃0

)
with π(1) = 2

and π(2) = 1, we have maxk,l∈[2]

∣∣∣P̃ 0
kl − Pπ(k)π(l)

∣∣∣ ≤ η(p − q) holds with

probability at least 1−10n−(1+C0). On maxk,l∈[2]

∣∣∣P̃ 0
kl − Pπ(k)π(l)

∣∣∣ ≤ η(p−q),

we have P̃ 0
22 > p− η(p− q) and P̃ 0

11 < q + η(p− q), and then, P̃ 0
22 − P̃ 0

11 >

p− q − 2η(p− q) > 0, which implies p0 = max{P̃ 0
11, P̃

0
22} = P̃ 0

22 and k∗ = 1.

And easy to obtain |p0 − p| ≤ η(p− q), |q0 − q| ≤ η(p− q) and c0 = π[c̃0].

Then, the proof of this lemma is completed since C = 10 and η do not

rely on (P, c).

Proof of Lemma 4. For any (P , c) ∈ Θn(p, q, β) and i ∈ [n], define event

Di =
{
`
(
c−i, c

0
−i
)
≤ γn

}
. And then, we have

P
(
ĉp,q(i) 6= c(i)

)
= Pc(i)=1

(
ĉp,q(i) = 2

)
+ Pc(i)=2

(
ĉp,q(i) = 1

)
= Pc(i)=1

{
(ĉp,q(i) = 2) ∩Di

}
+ Pc(i)=1

{
(ĉp,q(i) = 2) ∩Dc

i

}
+ Pc(i)=2

{
(ĉp,q(i) = 1) ∩Di

}
+ Pc(i)=2

{
(ĉp,q(i) = 1) ∩Dc

i

}
≤ Pc(i)=1

{
(ĉp,q(i) = 2) ∩Di

}
+ Pc(i)=1

{
Dc
i

}
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+ Pc(i)=2

{
(ĉp,q(i) = 1) ∩Di

}
+ Pc(i)=2

{
Dc
i

}
.

Next, we just need to provide the upper bounds of Pc(i)=1

{
(ĉp,q(i) = 2)∩Di

}
and Pc(i)=2

{
(ĉp,q(i) = 1) ∩Di

}
separately.

Pc(i)=1

{
(ĉp,q(i) = 2) ∩Di

}
= Pc(i)=1

[{ ∑
j 6=i:c0i(j)=1

(Aij log q + (1− Aij) log(1− q))

>
∑

j 6=i:c0i(j)=1

(Aij log p+ (1− Aij) log(1− p))
}
∩Di

]

= Pc(i)=1

[{ ∑
j 6=i:c0i(j)=1

(
Aij log

q

p
+ (1− Aij) log

1− q
1− p

)
> 0

}
∩Di

]

= E

(
Ec(i)=1

[
I

{ ∑
j 6=i:

c0i(j)=1

(
Aij log

q

p
+ (1− Aij) log

1− q
1− p

)
> 0

}

×I{Di}

∣∣∣∣∣A−i
])

.

Besides, note that A−i and Ai are independent of each other. And then,

using the Chernoff bound, choose t = t∗, we have

Pc(i)=1

{
(ĉp,q(i) = 2) ∩Di

}
≤ E

[ ∏
j 6=i:c0i(j)=1

c(j)=1

{
p1−t∗qt

∗
+ (1− p)1−t∗(1− q)t∗

}

×
∏

j 6=i:c0i(j)=1
c(j)=2

{
p−t

∗
q1+t∗ + (1− p)−t∗(1− q)1+t∗

}
I{Di}

]

≤ E

[
exp

{
− (n1(c)− γnn) It∗

}
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×
{(

p−t
∗
q1+t∗ + (1− p)−t∗(1− q)1+t∗

)γnn }I{Di}

]
≤ exp

(
− (1− η)βnIt∗

)
P{Di}

≤ exp
(
− (1− η)βnIt∗

)
,

for some positive sequence η → 0. The third inequality holds because

p−t
∗
q1+t∗ + (1− p)−t∗(1− q)1+t∗ ≤ {(1− q)/(1− p)}t∗ = exp[t∗ log{1 + (p−

q)/(1−p)}] ≤ exp{t∗(p−q)/(1−p)}, and by Lemma 1 and Lemma 2, when

limn→∞ p/q > 1, γnnt
∗(p−q)/(1−p) � γnnt

∗(p−q)2/p . γnnIt∗ � βnIt∗ if

γn = o(β) and when limn→∞ p/q = 1, γnnt
∗(p−q)/(1−p)� βn(p−q)2/p �

βnIt∗ if γn = o(β(p− q)/p). Similarly, we have

Pc(i)=2

{
(ĉp,q(i) = 1) ∩Di

}
= Pc(i)=2

[{ ∑
j 6=i:c0i(j)=1

(Aij log p+ (1− Aij) log(1− p))

>
∑

j 6=i:c0i(j)=1

(Aij log q + (1− Aij) log(1− q))
}
∩Di

]

= Pc(i)=2

[{ ∑
j 6=i:c0i(j)=1

(
Aij log

p

q
+ (1− Aij) log

1− p
1− q

)
> 0

}
∩Di

]

= E

(
Ec(i)=2

[
I

{ ∑
j 6=i:

c0i(j)=1

(
Aij log

p

q
+ (1− Aij) log

1− p
1− q

)
> 0

}

×I{Di}

∣∣∣∣∣A−i
])

.

And then, using the Chernoff bound, choose t = 1− t∗, we have

Pc(i)=2

{
(ĉp,q(i) = 1) ∩Di

}
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≤ E

[ ∏
j 6=i:c0i(j)=1

{
p1−t∗qt

∗
+ (1− p)1−t∗(1− q)t∗

}
I{Di}

]

≤ E

[
exp

{
− (n1(c)− γnn) It∗

}
I{Di}

]
≤ exp

(
− (1− η)βnIt∗

)
P{Di}

≤ exp
(
− (1− η)βnIt∗

)
,

for some positive sequence η → 0. Hence, we have that

P
(
ĉp,q(i) 6= c(i)

)
≤ exp

(
− (1− η)βnIt∗

)
+ 2n−(1+C0),

for some positive sequence η → 0. Note that the results are independent of

(P , c) and i, thereby proving completion.

Proof of Lemma 5. The proof of Lemma 5 is similar to the proof of Lemma

2 in Gao et al. (2018). Since (S6.15) is a a simple-versus-simple hypothesis

testing problem, by the Neyman-Pearson lemma, the optimal test is the

likelihood ratio test φ∗, which rejects H0 if

n0∏
i=1

pXi (1− p)1−Xi <

n0∏
i=1

qXi (1− q)1−Xi .

Therefore,

PH0φ
∗ =P

(
n0∑
i=1

[
Xi log

q

p
+ (1−Xi) log

1− q
1− p

]
> 0

)
. (S6.35)
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Let Y1, · · · , Yn0 be independent and identically distributed random variables

with the distribution given by

P
(
Y = log

q

p

)
= p, P

(
Y = log

1− q
1− p

)
= 1− p.

Let Y = (Y1, · · · , Yn0)>, y = (y1, · · · , yn0)> ∈ Rn0 and for any fixed t > 0,

let Kn(t) = logE(etY1). Then, we have

PH0φ
∗ = P

(
n0∑
i=1

Yi > 0

)

=
∑

∑n0
i=1 yi>0

P (Y = y) =
∑

∑n0
i=1 yi>0

n0∏
i=1

P (Yi = yi)

= en0Kn(t∗)
∑

∑n0
i=1 yi>0

e−t
∗∑n0

i=1 yi

n0∏
i=1

P (Yi = yi) e
t∗yi

eKn(t∗)
,

where t∗ is defined in (3.11). In addition, let Z1, · · · , Zn0 be independent

and identically distributed random variables with the distribution given by

PZ
(
Z = log

q

p

)
=
p1−t∗qt

∗

eKn(t∗)
,

PZ
(
Z = log

1− q
1− p

)
=

(1− p)1−t∗ (1− q)t
∗

eKn(t∗)
.

Note that

en0Kn(t∗) = en0 log
(
p1−t∗qt

∗
+(1−p)1−t∗ (1−q)t

∗)
= e−n0It∗ ,

and due to Lemma 1, t∗ is the only maximum point of en0Kn(t) on t > 0.

Let f(t) = p1−tqt + (1− p)1−t(1− q)t. We have

f ′(t) = p1−tqt log
qt

pt
+ (1− p)1−t (1− q)t log

(1− q)t

(1− p)t
.
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Thus, we have EZ(Z) = f ′(t∗)

eKn(t∗) = 0. In addition, for some L > 0,

∑
∑n0
i=1 yi>0

e−t
∗∑n0

i=1 yi

n0∏
i=1

P (Yi = yi) e
t∗yi

eKn(t∗)

≥
∑

0<
∑n0
i=1 yi<L

e−
∑n0
i=1 yi

n0∏
i=1

P (Yi = yi) e
t∗yi

eKn(t∗)

≥e−t∗L
∑

0<
∑n0
i=1 yi<L

n0∏
i=1

P (Yi = yi) e
t∗yi

eKn(t∗)

=e−t
∗L

∑
0<

∑n0
i=1 yi<L

n0∏
i=1

PZ (Zi = yi)

=e−t
∗LPZ

(
0 <

n0∑
i=1

Zi < L

)
,

where Z = (Z1, · · · , Zn0)>.

Then, we consider the lower bound of e−t
∗LPZ (0 <

∑n0

i=1 Zi < L). First,

we calculate the expectation of Z2
i . For any i ∈ [n0],

EZ(Z2
i ) =

p1−t∗qt
∗

eKn(t∗)

(
log

q

p

)2

+
(1− p)1−t∗ (1− q)t

∗

eKn(t∗)

(
log

1− q
1− p

)2

.

When p � q, by Lemma 2, It∗ = −Kn(t∗) � δ2q, and then we have

eKn(t∗) = e−It∗ � 1. Moreover, we have t∗ ∈ [ε, 1 − ε], for a small enough

constant ε > 0 by Lemma 1. Thus,

EZ(Z2
i ) � (p−q)2

p
,
∑n0

i=1 VarZ Zi � n0
(p−q)2

p
.

Note that the value of Zi is bounded by some constant, for any i ∈ [n0].

Under the assumption that n0It∗(p, q)→∞ and p � q, we have n0(p−q)2

p
→
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∞ by Lemma 2. Hence, I
{
|Zi − EZ(Zi)| > ε (

∑n0

i=1 VarZ (Zi))
1/2
}
→ 0 for

every i and for any constant ε > 0. Thus

lim
n0→∞

n0∑
i=1

EZ (Zi − EZ(Zi))
2 I

|Zi − EZ(Zi)| > ε

(
n0∑
i=1

VarZ (Zi)

) 1
2

 = 0,

for any constant ε > 0. Together with
∑n0

i=1 EZ(Zi) = 0, the Lindeberg con-

dition implies that under PZ ,
∑n0
i=1 Zi

(
∑n0
i=1 VarZ(Zi))

1/2 converges to N(0, 1). Then

set L = (
∑n0

i=1 VarZ (Zi))
1/2 �

√
n0It∗ . Hence, L = o(n0It∗), and combined

with t∗ ∈ [ε, 1− ε], for a small enough constant ε > 0, we have

PH0φ
∗ ≥ exp

(
− (1 + η)n0It∗

)
,

for some η → 0.

When p� q, by Lemma 2, t∗p . It∗ . p, and we have eKn(t∗) = e−It∗ �

1. Then,

EZ(Z2
i ) � p1−t∗qt

∗
(

log
q

p

)2

+ (1− p)1−t∗ (1− q)t
∗
(

log
1− q
1− p

)2

= p exp
{(

1 + o(1)
)

log log(1 + δ)
}
.

The last equality holds since t∗ =
(
1 + o(1)

) log(log(1+δ))
log(1+δ)

when δ → ∞ by

Lemma 1, where δ = p−q
q

. Similarly, we have

EZ(|Zi|3) � p1−t∗qt
∗
∣∣∣∣log

q

p

∣∣∣∣3 + (1− p)1−t∗ (1− q)t
∗
∣∣∣∣log

1− q
1− p

∣∣∣∣3
= p exp

{
2
(
1 + o(1)

)
log log(1 + δ)

}
.

Under the assumption p log3(p/q) <∞, we have EZ(|Zi|3) <∞. Then, we
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have

EZ(|Zi|3)

(EZ(Z2
i ))

3
2

= p−
1
2 exp

{
1

2

(
1 + o(1)

)
log log(1 + δ)

}
.

By the assumption that when p� q,

lim
n→∞

log
log( p

q
)

p

log n
< 1,

we have EZ(|Zi|3)

(EZ(Z2
i ))

3
2

= o(
√
n). And then, by Corollary 2.7.2 of Lehmann

(1999), i.e. Liapounov theorem, we have that under PZ ,
∑n0
i=1 Zi

(
∑n0
i=1 VarZ(Zi))

1/2

converges to N(0, 1). Then set L = (
∑n0

i=1 VarZ (Zi))
1/2

. By the assumption

that when p� q,

lim
n→∞

log βnp

log log p
q

> 3,

we have L� n0pt
∗ . n0It∗ , which means

PH0φ
∗ ≥ exp

(
− (1 + η)n0It∗

)
,

for some η → 0.

By the same way, it can be proved that

PH1

(
1− φ∗

)
≥ exp

(
− (1 + η)n0It∗

)
,

for some η → 0.

Proof of Lemma 7. Fix any (P , c) ∈ Θn(p, q, β) and i ∈ [n]. c0i, p̂0i, q̂0i

and č are obtained in the initialization step and the refinement step of

Algorithm 1.
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Then, for some η0 → 0, which will be determined later. For i ∈ [n],

define events

Fi =
{
`
(
c, c0i

)
≤ γn,

∣∣p̂0i − p
∣∣ ≤ η0(p− q),

∣∣q̂0i − q
∣∣ ≤ η0(p− q)

}
.

Combined the assumption of Lemma 7, by Lemma 6, we have

inf
(P ,c)∈Θn(p,q,β)

min
i∈[n]

PP ,c (Fi) ≥ 1− Cn−(1+C0),

for constants C,C0 > 0, with η0 = o(p − q), and η0 = o
(
q

log log p
q

log p
q

)
when

p � q. Moreover, for simplicity, we write p̂ as p̂0i and q̂ as q̂0i. Then, we

have

P
(
č(i) 6= c(i), Fi

)
≤ Pc(i)=1

(
č(i) = 2, Fi

)
+ Pc(i)=2

(
č(i) = 1, Fi

)
.

The next step is to get the upper bounds of the two terms on the right-hand

side of the above inequality. Firstly, we have

Pc(i)=1

(
č(i) = 2 and Fi

)
=Pc(i)=1

 ∑
j:č(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0 and Fi


=Pc(i)=1

[ ∑
j:č(j)=1
c(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)

+
∑

j:č(j)=1
c(j)=2

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0

∣∣∣Fi]P(Fi). (S6.36)

Next, we focus on the conditional distribution in (S6.36). On c(i) = 1,
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using the Chernoff bound, for any λ > 0,

Pc(i)=1

[ ∑
j:č(j)=1
c(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)

+
∑

j:č(j)=1
c(j)=2

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0

∣∣∣Fi]

≤
∏

j:č(j)=1
c(j)=1

E.|Fi,c(i)=1 exp

[
λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]

×
∏

j:č(j)=1
c(j)=2

E.|Fi,c(i)=1 exp

[
λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]
.

(S6.37)

Note that for any j ∈ {j′ : č(j′) = 1, c(j′) = 1}, P (Aij = 1) = p when

c(i) = 1. Then,

E.|Fi,c(i)=1 exp

[
λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]

= p

(
q̂

p̂

)λ
+ (1− p)

(
1− q̂
1− p̂

)λ
= qλp1−λ

[(
pq̂

p̂q

)λ
− 1

]
+ (1− q)λ(1− p)1−λ

[(
(1− p)(1− q̂)
(1− p̂)(1− q)

)λ
− 1

]
+qλp1−λ + (1− q)λ(1− p)1−λ.

Since p keeps away from 1, by simple manipulation, we have pq̂
p̂q
≤ 1 +Cη0δ

and (1−p)(1−q̂)
(1−p̂)(1−q) ≤ 1 +Cη0δ, for some constant C > 0. Consider the fact that

(1 + Cx)λ − 1 ≤ 2Cλx as x → 0 and η0 = o(p − q), and η0 = o
(
q

log log p
q

log p
q

)
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when p� q. Then, set λ = t∗, where t∗ ∈ (0, 1) by Lemma 1, and we have

E.|Fi,c(i)=1 exp

[
t∗
(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]
≤

(
qt
∗
p1−t∗ + (1− q)t∗(1− p)1−t∗

)
(1 + 2Ct∗η0δ)

≤ exp
(
− (1− η)It∗

)
,

for a sequence η → 0. Here, the last inequality holds since when p � q

log(1+2Ct∗η0δ) = o(δ2p) and It∗ � δ2q by (1) of Lemma 2 and when p� q

log(1 + 2Ct∗η0δ) = o(t∗δq) and It∗ & t∗p = t∗(1 + δ)q by (2) of Lemma 2.

Besides, for any j ∈ {j′ : č(j′) = 1, c(j′) = 2}, P (Aij = 1) = q. Then,

E.|Fi,c(i)=1 exp

[
λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]

= q

(
q̂

p̂

)λ
+ (1− q)

(
1− q̂
1− p̂

)λ
= qλp1−λ q

p
+ (1− q)λ(1− p)1−λ 1− q

1− p
+ qλp1−λ q

p

[(
pq̂

p̂q

)λ
− 1

]

+(1− q)λ(1− p)1−λ 1− q
1− p

[(
(1− p)(1− q̂)
(1− p̂)(1− q)

)λ
− 1

]
.

Besides, we also have

E.|Fi,c(i)=1 exp

[
t∗
(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]
≤

(
qt
∗
p1−t∗ q

p
+ (1− q)t∗(1− p)1−t∗ 1− q

1− p

)
(1 + 2Ct∗η0δ)

≤ 1 + Cδq,

for a large constant C > 0, and although it is somewhat ambiguous, in order
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to reduce unnecessary symbols, C may have different values in different

places, but it will not affect the results. The last inequality holds since

qt
∗
p1−t∗ q

p
+ (1 − q)t∗(1 − p)1−t∗ 1−q

1−p ≤ q + 1−q
1−p(1 − q) = 1 + (1 − q) δq

1−p and

η0δ = o(δq). Denote m̌1 = m̌1(c, č) = |{j : c(j) = 1, č(j) = 2}|, m̌2 =

m̌2(c, č) = |{j : c(j) = 2, č(j) = 1}| and n1 = n1(c) = |{j : c(j) = 1}|. We

have,

Pc(i)=1

(
č(i) = 2, Fi

)
≤(1 + Cδq)m̌2 exp

(
− (1− η)It∗(n1 − m̌1)

)
≤ exp

(
− (1− η)βnIt∗

)
, (S6.38)

for a sequence η → 0, and in order to reduce unnecessary symbols, η may

be different in different places, but it will not affect the results. On Fi, we

know that m̌1 ≤ γnn and m̌2 ≤ γnn. And under the assumption that γn

satisfied γn = o
(
−β(p−q)

log β

)
and γn = o

(
− βq

log β

)
when p � q, we can get

(1 +Cδq)m̌2 ≤ exp
(
γnn log(1 +Cδq)

)
= exp

(
o(1)βnIt∗

)
, which establishes

the last inequality. On the other hand,

Pc(i)=2

(
č(i) = 1, Fi

)
= Pc(i)=2

− ∑
j:č(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0, Fi


= Pc(i)=2

[
−

∑
j:č(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0

∣∣∣Fi] P(Fi).

Next, we focus on the conditional distribution in the last equation above.
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On c(i) = 2, using Chernoff bound again, for any λ > 0,

Pc(i)=2

[
−

∑
j:č(j)=1

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)
> 0

∣∣∣Fi]

≤
∏

j:č(j)=1

E.|Fi,c(i)=2 exp

[
− λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]
. (S6.39)

And for any j ∈ [n], P (Aij = 1) = q. Then,

E.|Fi,c(i)=2 exp

[
− λ

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]

= q

(
q̂

p̂

)−λ
+ (1− q)

(
1− q̂
1− p̂

)−λ
= pλq1−λ + (1− p)λ(1− q)1−λ + pλq1−λ

[(
pq̂

p̂q

)−λ
− 1

]

+(1− p)λ(1− q)1−λ

[(
(1− p)(1− q̂)
(1− p̂)(1− q)

)−λ
− 1

]
.

Let λ = 1− t∗. By simple manipulation, we have,

E.|Fi,c(i)=2 exp

[
− (1− t∗)

(
Aij log

q̂

p̂
+ (1− Aij) log

1− q̂
1− p̂

)]

≤
(
qt
∗
p1−t∗ + (1− q)t∗(1− p)1−t∗

)(
1 + 2C(1− t∗)η0δ

)
≤(1 + Cη0δ) exp(−It∗), (S6.40)

where C > 0 is a large constant. Denote ň1 = ň1(č) = |{j : č(j) = 1}|.

And then, we have,

Pc(i)=2

(
č(i) = 1 and Fi

)
≤(1 + Cη0δq)

ň1 exp(−ň1It∗)

≤ exp
(
− (1− η)βnIt∗

)
, (S6.41)
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for a sequence η → 0. Since η0 = o(p − q), and η0 = o
(
q

log log p
q

log p
q

)
when

p� q, we can get (1 +Cη0δ)
ň1 = exp

(
ň1 log(1 +Cη0δ)

)
= exp

(
o(1)ň1It∗

)
.

Thus, the last inequality in (S6.41) holds. And then,

P
(
č(i) 6= c(i)

)
≤ P

(
č(i) 6= c(i), Fi

)
+ Cn−(1+C0)

≤ Pc(i)=1

(
č(i) 6= 2, Fi

)
+ Pc(i)=2

(
č(i) 6= 1, Fi

)
+ Cn−(1+C0)

≤ exp
(
− (1− η)βnIt∗

)
+ Cn−(1+C0),

for a sequence η → 0 since βnIt∗ → ∞ as n → ∞. The proof is then

completed since C and η do not rely on i or (P , c).

Proof of Lemma 8. Firstly, we abbreviate nk(c) as nk for each k ∈ [2].

Let Γ = diag
(√

n1,
√
n2

)
and Z = (Zik) ∈ {0, 1}n×2 with Zik = 1 if

and only if c(i) = k. Let U 0ΛU
>
0 be the eigen-decomposition of ΓPΓ

and we can calculate Λ = diag (λ1, λ2). And then M ′ = ZPZ> =

ZΓ−1ΓPΓ
(
ZΓ−1

)>
= ZΓ−1U 0ΛU

>
0

(
ZΓ−1

)>
. Since

(
ZΓ−1

)>
ZΓ−1 =

diag (1, 1), we have M ′ = UΛU> where U = ZΓ−1U 0. Hence, we can

obtain that U i = U j if and only if c(i) = c(j) where U i is the i-th row of

U , and we can calculate

Ui1 =
1√
n1(c)

x̃+ z√
(x̃+ z)2 + y2

, if c(i) = 1,
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and

Ui2 =
1√
n2(c)

y√
(x̃+ z)2 + y2

, if c(i) = 2,

which completes the proof.
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