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S1 Proof of Theorem 1

S1.1 Preliminaries

Following standard definitions in Hilbert spaces, we denote the space of Hilbert-Schmidt

operators on L2(T ) or (L2(T ))p as BHS{L2(T )} or BHS{(L2(T ))p}. Let (f1 ⊗ f2)

be the operator from L2(T ) to L2(T ) defined by (f1 ⊗ f2)(g) = ⟨f1, g⟩f2 for any

f1, f2, g ∈ L2(T ), and (f1 ⊗p f2) be the operator from (L2(T ))p to (L2(T ))p defined

by (f1 ⊗p f2)(g) = ⟨f1, g⟩pf2 for any f1,f2, g ∈ (L2(T ))p. The space of BHS{L2(T )}

forms a Hilbert space, equipped with the inner product ⟨·, ·⟩HS s.t. ⟨K1,K2⟩HS =

∑∞
l=1⟨K1el,K2el⟩ for any orthonormal basis {el} in L2(T ), and the induced norm ∥ ·

∥HS . Similarly, BHS{(L2(T ))p} is a Hilbert space with the inner product ⟨·, ·⟩HSp
s.t.

⟨K1,K2⟩HSp =
∑∞

j=1⟨K1ej ,K2ej⟩p for any orthonormal {ej} in (L2(T ))p, and the

induced norm ∥ · ∥p. For an operator K ∈ BHS{L2(T )} and a matrix B ∈ Rp×p, the

operatorBK ∈ BHS{(L2(T )p} is defined by (BK)f = K(Bf) for any f = (f1, . . . , fp)
T ∈
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(L2(T ))p, whereBf ∈ (L2(T )p takes valuesB{f(t)} ∈ Rp, K(f) = {K(f1), . . . ,K(fp)}T ∈

(L2(T ))p.

For a multivariate functional process X = (X1, . . . , Xp)
T ∈ (L2(T ))p with E(X) =

µ = (µ1, . . . , µp)
T, the covariance operator G is defined as

G = E{(X − µ)⊗p (X − µ)},

and for j, k = 1, . . . , p, the cross-covariance operator Gjk for each {Xj , Xk} is defined as

Gjk = E {(Xj − µj)⊗ (Xk − µk)} .

We refer to Chapter 7 of Hsing and Eubank (2015) for more details on the (cross)

covariance operators in Hilbert space.

Following the definition of partial separability, we say that a covariance operator G

is partially separable if there exist an orthonormal basis {φl}∞l=1 of L2(T ) and a sequence

of p× p positive-definite matrices {Σl = (σl(j, k))j,k=1,...p}, s.t.

G =

∞∑
l=1

Σl φl ⊗ φl, (S1.1)

or equivalently, for any j, k = 1, . . . , p,

Gjk =

∞∑
l=1

σl(j, k)φl ⊗ φl. (S1.2)

Suppose we observe i.i.d. samples X1, . . . ,Xn from X. The sample mean function is

obtained by µ̂ = n−1
∑n

i=1 Xi. We estimate G by the sample covariance operator

Ĝ =
1

n

n∑
i=1

(Xi − µ̂)⊗p (Xi − µ̂),
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S1. PROOF OF THEOREM 1

and Gjk by

Ĝjk =
1

n

n∑
i=1

(Xij − µ̂j)⊗ (Xik − µ̂k).

If G is partially separable, the marginal covariance operator H :=
∑p

j=1 Gjj has the

decomposition

H =

∞∑
l=1

λl φl ⊗ φl,

where λl = tr(Σl). And H is estimated by Ĥ =
∑p

j=1 Ĝjj .

S1.2 Proof of Theorem 1

To alleviate the notation, we assume E(X) = 0 w.l.o.g. To begin with, we state the

weak convergence result for the covariance estimators Ĝ, Ĝjk and Ĥ, which is based on

the central limit theorem for random elements of a Hilbert space (see. e.g. Theorem

7.7.6 of Hsing and Eubank, 2015). Define

Zn =
√
n(Ĝ − G),Zn(j, k) =

√
n(Ĝjk − Gjk) and Zn,p =

√
n(Ĥ − H) =

p∑
j=1

Zn(j, j).

By Condition 1 and Theorem 8.1.2 of Hsing and Eubank (2015), Zn converges weakly

to a mean-zero Gaussian random element, say Z, in BHS{(L2(T ))p}, which also implies

the asymptotic normality of Zn(j, k) and Zn,p.

Proof of Theorem 1(a). According to the definition of Tn(l, j, l
′, k) and the
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notations in Section S1.1, we have

Tn(l, j, l
′, k) =

1√
n

n∑
i=1

θ̂i,lj θ̂i,l′k =
1√
n
⟨Xij , φ̂l⟩⟨Xik, φ̂l′⟩

=
1√
n

〈
n∑

i=1

Xij ⊗Xik, φ̂l ⊗ φ̂l′

〉
HS

=
√
n⟨Ĝjk, φ̂l ⊗ φ̂l′⟩HS

=
√
n⟨Ĝjk − Gjk, φl ⊗ φl′⟩HS +

√
n⟨Gjk, (φ̂l − φl)⊗ φl′⟩HS

+
√
n⟨Gjk, φl ⊗ (φ̂l′ − φl′)⟩HS

for1 ≤ l ̸= l′ ≤ Ln, 1 ≤ j ≤ k ≤ p. Recall that {φ̂l} are the eigenfunctions of Ĥ. By

Condition 2 and Theorem 5.1.8 of Hsing and Eubank (2015), we have

(φ̂l − φl) = Ml(Ĥ − H)φl + op(φ̂l − φl),

where Ml =
∑

m ̸=l(λl − λm)−1φm ⊗ φm ∈ BHS{L2(T )}. It follows that

Tn(l, j, l
′, k) =

√
n⟨Ĝjk − Gjk, φl ⊗ φl′⟩HS +

√
n⟨Gjk,Ml(Ĥ −H)φl ⊗ φl′⟩HS

+
√
n⟨Gjk, φl ⊗Ml′(Ĥ −H)φl′⟩HS + op(1). (S1.3)

Denote the first three terms on the right hand side of (S1.3) as I1, I2 and I3, respectively.

Recall the definitions of Ĝjk and Ĥ in Section S1.1, and notice that the partial separability

assumption implies ⟨Gjk, φl ⊗ φl′⟩ = E(⟨Xj , φl⟩⟨Xk, φl′⟩) = E(θljθl′k) = 0 and similarly
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⟨H,φl ⊗ φl′⟩ = 0, it follows that

I1 =
√
n⟨Ĝjk, φl ⊗ φl′⟩HS =

1√
n

n∑
i=1

⟨Xij ⊗Xik, φl ⊗ φl′⟩HS

=
1√
n

n∑
i=1

⟨Xij , φl⟩⟨Xik, φl′⟩ =
1√
n

n∑
i=1

θi,ljθi,l′k,

(S1.4)

and then, noting (S1.2),

I2 =

〈 ∞∑
q=1

σq(j, k)φq ⊗ φq,Ml(Ĥ − H)φl ⊗ φl′

〉
HS

=

∞∑
q=1

σq(j, k)⟨φq,Ml Ĥφl⟩⟨φq, φl′⟩,

where the infinite sum and inner product are exchangeable since
∑∞

q=1 σq(j, k) < ∞.

Due to the orthogonality of eigenfunctions, i.e., ⟨φl, φl′⟩ = I(l = l′), we then have

I2 =σl′ (j, k)
〈
φl′ ,Ml Ĥ φl

〉
=

1√
n
σl′(j, k) ·

∑
m ̸=l

p∑
j=1

n∑
i=1

〈
φl′ ,

{(
(λl − λm)−1φm ⊗ φm

)
(Xij ⊗Xij)

}
φl

〉
=

1√
n
σl′(j, k) ·

∑
m ̸=l

p∑
j=1

n∑
i=1

∞∑
q,q′=1

⟨φl′ ,
{
(λl − λm)−1(θi,qjθi,q′j) ⟨φm, φq′⟩⟨φq, φl⟩} φm

〉
=

1√
n
σl′(j, k) ·

∑
m ̸=l

p∑
j=1

n∑
i=1

⟨φl′ ,
{
(λl − λm)−1θi,ljθi,mj

}
φm⟩

=
1√
n
σl′(j, k) ·

∑
m ̸=l

p∑
j=1

n∑
i=1

{
(λl − λm)−1θi,ljθi,mj

}
⟨φl′ , φm⟩

=
1√
n

σl′(j, k)

λl − λl′

n∑
i=1

p∑
j=1

θi,ljθi,l′j . (S1.5)

Similarly to (S1.5), it can be derived that

I3 =
〈
Gjk, φl ⊗

(
Ml′ Ĥ φl′

)〉
HS

=
1√
n

σl(j, k)

λl′ − λl

n∑
i=1

p∑
j=1

θi,ljθi,l′j . (S1.6)
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Combining (S1.4) to (S1.6), we have

Tn(l, j, l
′, k) =

1√
n

n∑
i=1

θi,ljθi,l′k +
1√
n

σl′(j, k)

λl − λl′

n∑
i=1

p∑
j=1

θi,ljθi,l′j

+
1√
n

σl(j, k)

λl′ − λl

n∑
i=1

p∑
j=1

θi,ljθi,l′j + op(1)

=
1√
n

n∑
i=1

θi,ljθi,l′k +
ηl,l′(j, k)√

n

n∑
i=1

p∑
j=1

θi,ljθi,l′j + op(1),

where ηl,l′(j, k) = (λl − λl′)
−1(σl′(j, k)− σl(j, k)). Define

Zn(l, j, l
′, k) :=

1√
n

n∑
i=1

θi,ljθi,l′k +
ηl,l′(j, k)√

n

n∑
i=1

p∑
j=1

θi,ljθi,l′j , (S1.7)

it follows that Tn(l, j, l
′, k) = Zn(l, j, l

′, k)+op(1). The asymptotic normality of Zn(l, j, l
′, k)

follows directly from the standard central limit theorem for random variables, observing

that E
∥∥∥ηl,l′(j, k)∑p

j=1 θljθl′j + θljθl′k

∥∥∥2 < ∞ implied by Condition 1. This completes

the proof of Theorem 1(a).

Proof of Theorem 1(b). Based on the arguments for deriving I1 to I3 in the

proof of Theorem 1(a), we actually have Zn(l, j, l
′, k) = I1+ I2+ I3. According to (S1.3)

and recall the definitions of Zn(j, k) and Zn,p, we can rewrite Zn(l, j, l
′, k) by

Zn(l, j, l
′, k) = ⟨Zn(j, k), φl ⊗ φl′⟩HS + σl′(j, k) ⟨φl′ ,MlZn,p φl⟩+ σl(j, k) ⟨φl,Ml′Zn,p φl′⟩

= ⟨Zn(j, k), φl ⊗ φl′⟩HS + ⟨σl′(j, k)MlZn,p + σ(j, k)Ml′Zn,p, φl ⊗ φl′⟩HS

= ⟨Zn(j, k) + σl′(j, k)MlZn,p + σ(j, k)Ml′Zn,p, φl ⊗ φl′⟩HS , (S1.8)

which actually defines a continuous linear mapping from Zn to Zn(l, j, l
′, k). To be

explicit, define φ̃lj ∈ (L2(T ))p such that the jth element of φ̃lj is φl and other el-
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ements are zero, i.e., φ̃lj = (0, · · · , φl, · · · , 0)T. Consider the continuous mapping

Ajkll′ from BHS{(L2(T ))p} to R that Ajkll′(F) = ⟨F , φ̃lj ⊗p φ̃l′k⟩HS for any F ∈

BHS{(L2(T ))p}, then ⟨Zn(j, k), φl ⊗ φl′⟩HS = Ajkll′(Zn) and ⟨MlZn,p, φl ⊗ φl′⟩HS =

p∑
q=1

Aqqll′(IpMlZn), where Ip is the p-dimensional identity matrix. Denote Zn =

(Zn(l, j, l
′, k) : 1 ≤ l ̸= l′ ≤ Ln, 1 ≤ j ≤ k ≤ p)T, which is the counterpart of Tn

with length q. Let Ψl,j,l′,k = Ajkll′ + σl′(j, k)
p∑

q=1
Aqqll′IpMl + σl(j, k)

p∑
q=1

Aqqll′IpM′
l,

and Ψ be the mapping from BHS{(L2(T ))p} to Rq with Ψ(F)l,j,l′,k = Ψl,j,l′,k(F), i.e.

for any F ∈ BHS{(L2(T ))p}, Ψ(F) is a q-dimensional vector with the (l, j, l′, k)th el-

ement being Ψl,j,l′,k(X). Based on (S1.8) and the definition of Ajkll′ and Ψl,j,l′,k, we

actually have

Zn = Ψ(Zn),

and it follows from the asymptotic normality of Zn and the continuous mapping theorem

in metric spaces (e.g. Aston et al., 2017) that Zn converges to a Gaussian random vector

in Rq, which consequently implies that Tn is asymptotically jointly Gaussian.

We then derive the asymptotic covariance structure Θ based on the form (S1.7) of

Zn(l, j, l
′, k). Define κ l,l′,j1,j2,k1,k2

= E (θlj1θl′k1
θlj2θl′k2

) and note that partial separa-

bility implies E
(
θl1j1θl′1k1

θl2j2θl′2k2

)
= I(l1 = l2)I(l

′
1 = l′2)κ l1,l′1,j1,j2,k1,k2

and

1

n
E


 n∑

i=1

p∑
j=1

θi,l1jθi,l′1j

( n∑
i′=1

p∑
k=1

θi′,l2kθi′,l′2k

) = I(l1 = l2)I(l
′
1 = l′2)

p∑
j=1

p∑
k=1

κ l1,l′1,j,j,k,k
,

1

n
E


 n∑

i=1

p∑
j=1

θi,l1jθi,l′1j

( n∑
i′=1

θi′,l2j2θi′,l′2k2

) = I(l1 = l2)I(l
′
1 = l′2)

p∑
j=1

κ l1,l′1,j,j2,j,k2
.
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It then follows that

E {Zn(l1, j1, l
′
1, k1)Zn(l2, j2, l

′
2, k2)} = I(l1 = l2)I(l

′
1 = l′2)


p∑

j=1

κ l1,l′1,j,j2,j,k2
ηl1l′1(j1, k1)

+

p∑
j=1

κ l1,l′1,j,j1,j,k1
ηl1l′1(j2, k2) + κ l1,l′1,j1,j2,k1,k2

+

p∑
j=1

p∑
k=1

κ l1,l′1,j,j,k,k
ηl1l′1(j1, k1)ηl1l′1(j2, k2)

 ,

which gives the expression of Θ (l1, j1, l
′
1, k1, l2, j2, l

′
2, k2). Practically, a plug-in estimator

of Θ can be used with σl(j, k) and κ l,l′,j1,j2,k1,k2
being estimated by n−1

∑n
i=1(θi,ljθi,lk)

and n−1
∑n

i=1(θi,lj1θi,l′k1θi,lj2θi,l′k2).

S1.3 Proof of Corollary 1

Recall the definition of Sn and let the spectral decomposition of the matrix Θ be Θ =

UΓUT , where U is orthonormal and Γ is diagonal with diagonal entries γ1, . . . , γq being

the eigenvalues of Θ. Based on the null distribution of Tn in Theorem 1, it then follows

that

Sn = ∥Tn∥2 = ∥UTTn∥2 = Σq
i=1γiZ

2
i ,

where {Zi} are i.i.d standard normal random variables, which indicates that the null

distribution of Sn is a χ2 type mixture distribution.

On the other hand, if X(t) is not partially separable, then by definition the covari-

ance of θi,lj and θi,l′k would not be zero. As a result, the term I1 in the proof of Theorem

1(a) is of order n1/2 for at least one set of (l, l′), which leads to Sn → ∞ in probability

under alternative hypothesis.
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S2 Analysis for Spatial Correlated Functional Data

S2.1 Motivation

Let X(s, t) be a mean-zero spatio-temporal process on S×T , where S ⊂ R2 is the spatial

domain and T is the time domain. Following Liang et al. (2022), a weakly separable

spatial functional field is represented by

X (s, t) =

∞∑
l=1

ξl (s)φl(t), (S2.9)

where {φl(·)} is an orthonormal basis in L2(T ) and {ξl(·)} are uncorrelated spatial

random fields. Consequently, the cross covariance of X(s, t) yields

C(s1, t1; s2, t2) =

∞∑
r=1

cl(s1, s2)φl(t1)φl(t2),

where cl(·, ·) is the spatial covariance function of ξl(·). As a common practice, the

temporal component φl(·) can be modelled using nonparametric methods in FDA, while

the spatial covariance cl(·, ·) is often restricted to some parametric class such as the

well-known Matérn family. This semiparametric modeling approach is widely employed

in pieces of literatures on spatiotemporal data or spatial functional data (e.g. Liu et al.,

2017; ?; Zhang and Li, 2021).

Suppose we observe spatially correlated functional data Xi(sj , t) over spatial loca-

tions {sj}pj=1 for each subject i = 1, . . . , n. Following the definition of partial separabil-

ity, one can assume that

Xi (sj , t) =

∞∑
l=1

θil(sj)φl(t), (S2.10)
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with p-variate random vector θil = (θl(s1), . . . , θl(sp))
T

and cov{θil(sj), θl′(sk)} = 0

for any l ̸= l′. This actually coincides with the definition of weak separability (S2.9)

or a similar notion called coregionalization (e.g. Zhang and Li, 2021). Typically the

spatial correlation appears to be smaller as the distance between two locations decreases,

which is different from the typical multivariate functional data (e.g. the multichannel

profile data) whose multivariate dependence is in general free of correlation structure.

As a result, the performance of the proposed test for such type of spatially correlated

functional data should be specially studied.

Note that for classic spatiotemporal data, it is often the case that only one realization

of X(s, t) is available, which gives rise to challenges for the estimation of C (s1, t1; s2, t2).

As a result, the spatial covariance is often assumed to be stationary, isotropic or separable

(e.g. Liu et al., 2017; ?; Li and Guan, 2014). This also distinguishes the proposed test

that is suitable to spatially correlated functional data with replicates, from the test in

Liang et al. (2022) which aims at non-replicated spatial functional field and requires the

assumption of spatial stationarity.

S2.2 A simulation study

To generate spatially correlated functional data, we modify the model (4.17) as

Xi(sj ; t) =

L=10∑
l=1

θil(sj)φl(t),
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where the spatial locations {sj}pj=1 consist of regular grids { 2√
p , . . . , 2}⊗{ 2√

p , . . . , 2} on

S = [0, 2] × [0, 2], and φl(t) =
√
2cos(lπt) when l is odd and φl(t) =

√
2sin{(l − 1)πt}

when l is even, under the same setup as Liang et al. (2022). To reflect the spatial

correlation, the covariance matrix in Section 4.1 is modified by

(i*) Σps = diag(Σ1, . . . ,ΣL) with σl(j, k) = ωl M(|sj − sk|; νl, ϕl), where M(d; ν, ϕ)

denotes the isotropic Matérn covariance function;

(ii*) Σnps with the diagonal block Σl in (i*) and the off-diagonal blocks Σ1,2 = Σ2,1 =

{σ12(j, k)}, where σ12(j, k) = ρ12
√
ω1ω2M(|sj − sk|; ν12, ϕ12).

To ensure the validity of bivariate Matérn cross-covariance σ12(j, k), the values of (ν1, ν12, ν2)

are determined following the condition in Theorem 3 of ?. The specific values of param-

eters {ωl, ϕl, νl}Ll=1 are set the same as that in Liang et al. (2022). Similarly to the setup

in Section 4.1, the parameter ρ12 controls the departure from partial separability, and

Σnps degenerates to Σps when ρ12 = 0. In this scenario, we adopt a spatially stationary

covariance structure for X(sj , t), but our tests are in general free of structural covariance

assumptions.

We evaluate the size or power of the proposed testing procedures through 1000 or

200 runs. From the rejection rate results in Table 1, we can see both χ2 type mixture and

high-dimensional tests control the type I error well, except that the high-dimensional test

is slightly undersized when p = 25. As ρ increases, both tests become more powerful, and

it is clear that χ2 test behaves uniformly more powerful than high-dimensional test. This
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Table 1: Empirical rejection rates(%) of χ2 type mixture test (χ2) and high-dimensional

test (HD) for spatially correlated functional data.

ρ=0 (H0) ρ=0.2 ρ=0.4 ρ=0.6

p FVE χ2 HD χ2 HD χ2 HD χ2 HD

25 80% 4.3 3.1 30.0 9.5 99.5 44.0 100 95.0

90% 4.8 3.0 28.0 9.5 92.5 44.0 100 95.0

64 80% 4.4 3.8 87.5 17.5 100 94.5 100 100

90% 5.2 3.8 79.5 17.5 100 94.5 100 100

100 80% 3.6 4.2 96.5 14.5 100 97.0 100 100

90% 4.4 4.2 92.5 14.5 100 97.0 100 100

indicates that for spatially correlated multivariate functional data, the quadratic form of

statistics may be more efficient to detect the violation of partial separability compared

with the l∞-norm statistic. It can also be observed that the powers appear to be larger as

p increases, since a larger size of spatial samples that are more correlated can be included

and it is common in spatial statistics that the departure from the null hypothesis is

usually stronger when the test statistic is constructed based on more adjacent spatial

points (Liang et al., 2022). In summary, we conclude that the χ2 type mixture test is

preferable for spatially correlated functional data especially when p is not large.
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S2.3 Real data example

Since January 2013, a large monitoring network for air quality assessment has been

established in China. We consider the hourly recordings of PM2.5, the fine particulate

matter with aerodynamic diameters less than 2.5µm, from 11 Guokong (state controlled)

monitoring stations in Beijing (?). The hourly PM2.5 concentration observed at each

station is regarded as a realization of a random function with T = 24, and the multiple

curves across p = 11 stations constitute the spatially correlated functional data for use.

Liang et al. (2022) studied the weak separability of a non-replicated spatio-temporal

PM2.5 field in North China Plain, a broader topographical region including Beijing,

within a time interval from December 1 to 30, 2016. By contrast, we work with PM2.5

recordings from March 1, 2015 to February 29, 2016, consisting of spatially correlated

functional data with n = 366 replicates. Provided with multiple realizations across

different days, the partial separability test we considered is free of stationary or isotropic

assumption.

We apply the χ2 type mixture test due to its superior performance in Section S2.2.

As shown by Table 2, for the PM2.5 data in the whole year, the p-value is larger than

0.05 if FVE< 95% or Ln < 7, indicating the rationality of a partial separability model.

To give a more rounded analysis, we then divide the data into four seasons, i.e., spring

(March to May), summer (June to August), autumn (September to November) and

winter (December to February), and conduct the tests separately. As presented by
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Table 2: The p-values of χ2 type mixture (χ2) and high-dimensional (HD) test for

Beijing’s PM2.5 data.

Whole Year Spring Summer Autumn Winter

FVE=80% Ln=2 Ln=2 Ln=2 Ln=2 Ln=2

χ2 0.434 0.425 0.141 0.534 0.642

HD 0.531 0.800 0.671 0.307 0.363

FVE=90% Ln=4 Ln=5 Ln=5 Ln=3 Ln=3

χ2 0.064 0.010 0.003 0.435 0.602

HD 0.112 0.497 0.293 0.336 0.399

FVE=95% Ln=7 Ln=9 Ln=10 Ln=5 Ln=7

χ2 0.047 0.003 < 0.001 0.360 0.600

HD 0.129 0.441 0.293 0.353 0.353

the remaining four columns of Table 2, both tests do not reject partial separability in

autumn or winter, while the χ2 type mixture test yields p-values less than 0.01 in spring

and summer when FVE≥ 90%. This indicates that the violation of partial separability

for Beijing’s PM2.5 data may arise in spring and summer, and a partially separable

model with more than three components is more appropriate to be assumed in autumn

and winter. In addition, the high-dimensional test tends to have a larger p-value than χ2

test in spring and summer, which is possibly due to its low power for spatially correlated

functional data as suggested in Section S2.2.
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S3 Additional Simulation Results

S3.1 A more complex case for high-dimensional functional data

We consider a more realistic simulation setting of graphical functional data to resemble

real-world data. We modify setting (ii†) in Section 4.2 and generate the covariance Σnps

of θl’s as follows.

• First, generate {Ωl}l=1,...,L=11 following the same procedure in Section 4.2.

• Second, generate the off-block precision matrices Ωl,l′ = 0.5{Ωl − diag(Ωl) + Ωl′ −

diag(Ωl′)} for 1 ≤ l ̸= l′ ≤ L.

• Next, for each l ̸= l′, randomly set a proportion of (1 − 1/|l − l′|) elements in

Ωl,l′ ∈ Rp×p as zero.

• Finally, compute Σnps by Σnps = diag(Σps)
1/2Ω−1

npsdiag(Σps)
1/2, where Ωnps ∈

RLp×Lp is formed by stacking the block matrices {Ωl,l′}l,l′=1,...,L, andΣps is defined

in setting (i†) of Section 4.2.

The third step of the above approach is utilized to avoid the singularity of Ωnps and

attenuate the signals when the indices l and l’ become larger. Additionally, by gener-

ating the covariance structure using precision matrices, this approach ensures that each

Ωl,l′ ’s contains nonzero elements, reflecting a more complex graphical structure for θl’s.

Therefore we refer to it as the “dense setting”, which differs from the “sparse setting” de-

scribed in setting (ii†) of Section 4.2. To illustrate the difference between them, Figure 1
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Figure 1: Precision matricesΩnps of the first three principal scores (θT
1 ,θ

T
2 ,θ

T
3 ) ∈ R3p for

the dense setting and sparse setting in one simulation. Each matrix is divided into blocks

by the black lines, with the (l, l′)th block representing Ωl,l′ . The matrix elements are

visualized using colors, with the color bar on the right side indicating the corresponding

values.

visualizes the covariance structure of the leading three random coefficients (θT
1 ,θ

T
2 ,θ

T
3 )

T

in one simulation with p = 10 and π = 0.3. It can be observed that the covariance struc-

ture for the “dense setting” exhibits nonzero elements in all off-diagonal blocks, while

the covariance for the “sparse setting” only has nonzero elements in Σ1,3 and Σ3,1.

We evaluate the test performance for both “dense” and “sparse” settings with p =

64, which is identical to that for the EEG data in Section 5.2. The corresponding

empirical rejection rates with various sparsity parameters π are collected in Table 3.
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Table 3: Empirical rejection rates(%) of χ2 type mixture test (χ2) and high-dimensional

test (HD) for dense setting and sparse setting of graphical functional data.

π=0.05 π=0.1 π=0.2 π=0.3

FVE χ2 HD χ2 HD χ2 HD χ2 HD

Dense setting

80% 56.0 97.0 77.5 99.5 97.5 100 100 100

90% 65.0 97.0 89.0 99.5 100 100 100 100

Sparse setting

80% 18.5 79.0 23.5 76.5 33.5 74.5 46.0 75.5

90% 20.5 94.5 30.0 99.5 44.5 99.5 56.5 99.5

Similar to the results in Table 2 of our manuscript, it can be observed that the high-

dimensional test behaves uniformly more powerful than the χ2 type mixture test, and

both tests become more powerful when π increases. In particular, both tests exhibit

higher power under the “dense setting“ compared to the “sparse” setting, which aligns

with our expectation as the “dense” setting has a larger number of nonzero elements

in the off-diagonal blocks of Ωnps, indicating more deviation from partial separability.

These findings are consistent with those presented in Section 4.2.

S3.2 Decay Rate of the Eigenvalues

To investigate the effect of FVE under different decay rates, we extend the settings in

case (i) of Section 4.1 by

σl(j, k) = cov{θi,lj , θi,lk} = l−a r|j−k| (S3.11)
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Table 4: Empirical rejection rates(%) of χ2 type mixture test (χ2) and high-dimensional

test (HD) under different decay rates of eigenvalues.

ρ = 0 (H0) ρ=0.3 ρ=0.5 ρ=0.7

r FVE χ2 HD χ2 HD χ2 HD χ2 HD

a = 1.5

0.2 80% 5.4 3.4 15.0 11.0 41.5 34.0 77.5 66.0

90% 4.9 3.4 13.5 11.0 39.0 34.0 72.0 65.5

0.4 80% 4.9 3.8 52.0 44.0 98.5 92.0 100 100

90% 4.9 3.7 49.0 44.0 98.5 92 100 100

a = 2

0.2 80% 4.5 3.8 15.0 10.5 51.0 38.5 85.5 78.0

90% 5.2 3.8 14.5 10.5 48.5 37.5 82.5 78.0

0.4 80% 4.8 3.7 70.0 52.5 100 99.0 100 100

90% 4.6 3.7 67.5 52.5 100 99.0 100 100

a = 2.5

0.2 80% 5.2 3.8 18.0 12.0 58.0 43.0 94.0 82.5

90% 5.2 3.8 18.0 12.0 58.0 43.0 94.0 82.5

0.4 80% 5.2 2.8 81.0 70.5 100 99.5 100 100

90% 5.2 2.8 81.0 70.5 100 99.5 100 100

where a = 1.5, 2 or 2.5 reflects different decay rates of the eigenvalue, and a larger

value of a yields a faster decay rate. We then conduct the simulation following the same

procedure under the multivariate normal case in Section 4.1, and display the results in

Table 4. Note that the result for a = 2 is actually the same as that in Table 1 of our
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manuscript.

Table 4 shows that the proposed tests using FVE perform well in controlling the

type I errors across various decay rates. Furthermore, the test power generally increases

as the decay rate becomes faster. This is consistent with the expectation that the tests

tend to be more powerful when a smaller value of Ln is chosen, as the signal of deviation

from partial separability is concentrated in the off-diagonal block Σ1,2. Specifically, we

observe that as the decay rate becomes faster, the selected Ln at an identical FVE level

becomes relatively smaller; e.g. as a increases from 1.5 to 2.5, the averaged value of Ln

decreases from 2.2 to 2 when FVE= 80% , and from 3 to 2 when FVE= 90%. These

numerical results indicate that the FVE criterion is adaptive to different decay rates and

effectively determines the value of Ln.

S4 More Numerical Results on the Relationship between Partial
Separability and Separability

To further investigate the connection between partial separability and separability, we

compare the proposed tests for partial separability with those for separability through

empirical studies. To test the assumption of separability, we employ the testing proce-

dure proposed by Aston et al. (2017), of which the main idea is introduced as follows.

Consider a random element X ∈ H1 ⊗ H2, where H1, H2 are two separable Hilbert

spaces. Let ĈN be the sample covariance operator of X1, . . . , XN
i.i.d.∼ X and Ĉ1,N or

Ĉ2,N be the marginal covariance estimator on H1 or H2. The separability test is based
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on the projection from ĈN − Ĉ1,N ⊗̃ Ĉ2,N onto the tensor product of the first several

eigenfunctions of Ĉ1,N and Ĉ2,N , where Ĉ1,N ⊗̃ Ĉ2,N provides a separable approximation

of ĈN . Refer to Aston et al. (2017) for more technical details. To implement this sep-

arability test for the considered multivariate functional process X ∈ (L2(T ))p, we treat

X as an element in L2({1, . . . , p}) ⊗ L2(T ). We denote Ĉ1,N or Ĉ2,N as the marginal

covariance operators of X on L2(1, . . . , p) or L2(T ) respectively. To preserve the multi-

variate dependence structure we choose p eigenfunctions of Ĉ1,N for the test statistics,

whereas the first Ln eigenfunctions of Ĉ2,N are involved, the latter is consistent with the

truncation number in the proposed partial separability tests.

S4.1 Simulation

We conduct the simulation study by extending the covariance setting in Section 4.1 to

two cases: separable (SEP) and partially separable but not separable (PNS).

a. For the SEP case, we use the same covariance Σps as case (i) of Section 4.1.

According to Proposition 1(b) of our manuscript, Σps is actually separable since

σl(j, k) = ωlσ̃(j, k), where ωl = l−2 and σ̃(j, k) = r|j−k|.

b. For the PNS case, we modify each σl(j, k) in the SEP case as

σ∗
l (j, k) =


l−2 r|j−k| l = 1, 3, 5, . . .

l−2I(j = k) l = 2, 4, 6, . . ..

It can be seen from Proposition 1(b) that such a setup of σ∗
l (j, k) yields a covariance
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Table 5: Empirical rejection rates(%) of the partial separability test (PS-T) and the

separability test (Sep-T) under SEP and PNS cases.

r = 0.2 r=0.3 r=0.4

Ln PS-T Sep-T PS-T Sep-T PS-T Sep-T

SEP

2 5.4 3.8 4.7 5.1 5.5 4.7

3 5.8 3.8 5.1 6.1 5.7 4.8

PNS

2 5.8 22.5 5.5 78.6 4.4 98.2

3 5.3 33.2 5.9 92.0 4.2 99.0

structure that is partially separable but not separable. Besides, the deviation from

separability becomes larger as r increases. Table 5 displays the empirical rejection rates

of the separability test in Aston et al. (2017) and proposed partial separability test for the

SEP and PNS cases. We utilize the χ2 type mixture test for the partial separability test

due to its proven effectiveness in typical multivariate functional data, as demonstrated

in Section 4.1. It can be observed that both tests control type I errors well under

different truncation levels for the SEP case, considering the covariance is also partially

separable. On the other hand, for the PNS case, the partial separability test maintains

good control of type I error, whereas the separability test exhibits the ability in rejecting

the null hypothesis. Besides, the power of the separability test increases significantly

with higher values of r. These findings align with our expectations and clearly illustrate
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Table 6: The p-values of partial separability tests (PS-T) and separability tests (Sep-T)

by Aston et al. (2017) with different Ln for multichannel tonnage data.

Ln 2 5 8 11 14

PS-T < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Sep-T 0.004 0.004 0.008 0.003 0.007

the effectiveness of the separability and partial separability tests.

S4.2 Real data application

We apply the separability test to the real data examples in Section 5. For the multi-

channel tonnage data, Table 6 presents the test results of the separability test proposed

by Aston et al. (2017) as well as the partial separability test based on χ2 type mixture.

The truncation levels Ln are selected in alignment with those in Section 5.1. It can

be observed that the separability test also rejects the null hypothesis under different

truncation levels. This outcome is in line with expectations as partial separability is a

weaker concept than separability.

For the EEG data, Table 7 displays the p-values of the separability tests under dif-

ferent Ln, all of which are below 0.001. In contrast, the partial separability is not rejected

by the proposed tests. These findings provide support for justifying the assumption of

partial separability for the EEG data instead of separability. Moreover, they demonstrate

the flexibility of partial separability in accommodating the cross-covariance structure of

the data.
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Table 7: The p-values of partial separability tests (PS-T) and separability tests (Sep-T)

by Aston et al. (2017) with different Ln for EEG data.

Ln 3 6 9

PS-T 0.135 0.121 0.110

Sep-T < 0.001 < 0.001 < 0.001

S5 Subsequent analysis of patial separability tests on real data
application

We study the eventual effect of the proposed tests on the multichannel change-point

problem and the functional graphs for EEG data in Section 5. For the multichannel

tonnage data, our analysis shows that the null hypothesis is rejected for the entire dataset

comprising all four channels. However, the results also indicate that the assumption of

partial separability can be justified for a specific subgroup of channels 3 and 4. To

further explore the relationship between partial separability and change-point detection,

we evaluate the Wald statistic Qτ (defined in Section 2.3) from τ = 1 to 200 across

different subgroups, as displayed in Figure 2. It can be observed that the peak point for

channels (3, 4) occurs at τ̂ = 151, while for channels (1, 2) the maximum value is found at

τ̂ = 80. This finding demonstrates that misusing the partial separability assumption can

potentially result in incorrect change-point detection. It is interesting to note that the

estimated change point τ̂ = 151 for channel (3, 4) aligns with the findings of Paynabar

et al. (2016), who assumed partial separability for the entire four-variate process and
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Figure 2: The value of the change-detection statistic Qτ across different channels.

drew this conclusion for the entire dataset. This suggests a certain level of robustness

of the change-point method to the partial separability assumption, provided that the

deviation from partial separability in subgroups is not substantial.

For the EEG data in Section 5.2, our test of partial separability does not reject

the null hypothesis, which provides justification for assuming partial separability in the

subsequent application of the functional graphical model discussed in Section 2.3. It

is also noteworthy that the separability assumption is demonstrated to be violated, as

stated in Section S4.2.
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