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Supplementary Material

We propose the combo-type two-sample mean test and regression coefficient test, and present

the simulation results in comparison with some of its competitors. We also provide the techni-

cal proofs of the theoretical results in Sections 2, 3 of the main text and Section S1-S2 of the

Supplementary Material.

S1 Two-sample Mean Test

S1.1 Testing Procedure

Here, we consider the two-sample mean testing problem in the high-dimensional

setting. Assume that tXi1, ¨ ¨ ¨ ,Xini
u for i “ 1, 2 are two independent ran-
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dom samples with sizes n1 and n2, and from p-variate normal distributions

Npµ1,Σq and Npµ2,Σq, respectively. Consider

H0 : µ1 “ µ2 versus H1 : µ1 ‰ µ2. (S1)

For the case where dimension p is fixed, the classic Hotelling’s T 2 test

statistic is

n1n2

n1 ` n2

pX̄1 ´ X̄2q
T Ŝ´1

pX̄1 ´ X̄2q, (S2)

where X̄i is the sample mean vector of the ith sample and Ŝ is the pooled

sample covariance matrix defined by

Ŝ “
1

n1 ` n2

”

n1
ÿ

j“1

pX1j ´ X̄1qpX1j ´ X̄1q
T
`

n2
ÿ

j“1

pX2j ´ X̄2qpX2j ´ X̄2q
T
ı

.

(S3)

Let n “ n1 ` n2. In the high-dimensional case with p ą n, Ŝ is not

guaranteed to be invertible. Under the assumption that p{n Ñ c P p0,8q,

Bai and Saranadasa (1996) proposed a test statistic pX̄1´ X̄2q
T pX̄1´ X̄2q

by replacing Ŝ in (S2) with the identity matrix. Without the restriction

on n and p, Chen and Qin (2010) constructed a different test statistic by

excluding the term
řni

j“1X
T
ijXij for i “ 1 and 2 from pX̄1 ´ X̄2q

T pX̄1 ´

X̄2q. However, the above two tests are not scale-invariant. A statistic

T pX11, ¨ ¨ ¨ ,X1n1 ,X21, ¨ ¨ ¨ ,X2n2q is said to be location-scale invariant if

the corresponding value of T is not changed provided “Xij” is replaced
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by “aXij ` b” for all i, j, where a and b are arbitrary constants free of i

and j. We say T is scale-invariant if the above holds with b “ 0. For this

reason, many efforts have been devoted to construct location-scale invariant

test procedures, including Srivastava and Du (2008); Gregory et al. (2015);

Feng et al. (2015), to name a few. In particular, Srivastava and Du (2008)

considered the following sum-type test statistic

T p2qsum “

n1n2

n1`n2
pX̄1 ´ X̄2q

T D̂´1pX̄1 ´ X̄2q ´
pn1`n2´2qp
pn1`n2´4q

b

2
“

trpR̂2q ´
p2

pn1`n2´2q

‰

cp,n
, (S4)

where D̂ is the diagonal matrix of Ŝ in (S3) and R̂ “ D̂´1{2ŜD̂´1{2 is the

pooled sample correlation matrix, and cp,n “ 1` trpR̂2q

p3{2
. The statistic T

p2q
sum

is location-scale invariant. Similar to the discussion in the paragraph above

(3.5), the above sum-type tests usually do not perform well for sparse data.

For the sparse alternative, Chen et al. (2019) extended the work of Zhong

et al. (2013) by studying the statistic

MLn “ max
sPSn

Lnpsq ´ µ̂Lnpsq,0

σ̂Lnpsq,0

. (S5)

Note that this formula follows (4.3) from Chen et al. (2019), where the

notations “Lnpsq, Sn, µ̂Lnpsq,0, σ̂Lnpsq,0” are quite involved; interested readers

are referred to their paper for more details. Later on, we will compare our

proposed test with MLn in (S5). Again, for sparse data, Cai et al. (2014)
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proposed the following max-type test statistic

T p2qmax “
n1n2

n1 ` n2

max
1ďiďp

pX̄1i ´ X̄2iq
2

σ̂2
ii

,

where X̄ji is the ith coordinate of X̄j P Rp for j “ 1, 2 and 1 ď i ď p and σ̂2
ii

is the ith diagonal element of Ŝ in (S3). Similar to the one-sample test case,

this test statistic is particularly powerful against sparse alternatives with

certain optimality. We will study the asymptotic behavior of the sum-type

and max-type tests, and design a new test that takes advantage of both

worlds.

Recall that Σ is the covariance matrix shared by two populations, and

let D be the diagonal matrix of Σ such that R :“ D´1{2ΣD´1{2 is the

population correlation matrix. For soundness, assume that the sample sizes

n1 and n2 both depend on p. Now we apply the theoretical results in Section

2 to the two-sample mean test as follows.

THEOREM S1. Assume the null hypothesis in (S1) holds and limpÑ8 n1{n2 Ñ

κ P p0,8q. The following are true as pÑ 8:

(i) If (3.6) holds, then T
p2q
sum Ñ Np0, 1q in distribution;

(ii) If (2.2) holds with “Σ” being replaced by “R” and log p “ opn1{3q, then

T
p2q
max´2 log p` log log p converges weakly to a Gumbel distribution with

cdf F pxq “ expt´ 1?
π

expp´x{2qu;
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(iii) Assume (3.6) holds. If (2.3) is true with “Σ” replaced by “R”, then

T
p2q
sum and T

p2q
max ´ 2 log p` log log p are asymptotically independent.

Part (i) of Theorem S1 is from Srivastava and Du (2008). Recently

Jiang and Li (2021) obtained a general theory, which also leads to the same

conclusion. Same as in the one-sample test, for test T
p2q
sum, a level-α test

rejects H0 when T
p2q
sum ą zα “ Φ´1p1´αq of Np0, 1q. For the max-type test,

a level-α test will then be carried out through rejecting the null hypothesis

when T
p2q
max ´ 2 log p ` log log p ą qα “ ´ log π ´ 2 log logp1 ´ αq´1 of the

distribution function in Theorem S1(ii).

Relying on Theorem S1, we propose the following test statistic which

utilizes the max-type and sum-type tests. Define

T p2qcom “ mintP
p2q
M , P

p2q
S u, (S6)

where P
p2q
M “ 1´ F pT

p2q
max ´ 2 log p` log log pq with F pyq “ e´π

´1{2e´y{2
and

P
p2q
S “ 1´ΦpT

p2q
sumq. are the p-values of the two tests, respectively. Similar to

Corollary 1, we immediately obtain the following result by the asymptotic

independence.

COROLLARY S1. Assume the condition in Theorem S1(iii) holds. Then

T
p2q
com in (S6) converges weakly to a distribution with density Gpwq “ 2p1 ´

wqIp0 ď w ď 1q as pÑ 8.
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According to Corollary S1, the proposed combo-type test leads us to

perform a level-α test by rejecting the null hypothesis when T
p2q
com ă 1 ´

?
1´ α « α

2
when α is small. Now we analyze the power of the test T

p2q
com.

Write µ “ pµ1,µ2q
T . Similar to (3.8), the power function of our combo-

type test β
p2q
C pµ, αq is larger than maxtβ

p2q
M pµ, α{2q, β

p2q
S pµ, α{2qu, where

β
p2q
M pµ, αq and β

p2q
S pµ, αq are the power functions of T

p2q
max and T

p2q
sum with

significant level α, respectively. Following Srivastava and Du (2008), the

power function of T
p2q
sum is given by

β
p2q
S pµ, αq “ lim

pÑ8
Φ

˜

´zα `
n1n2

n1`n2
pµ1 ´ µ2q

TD´1pµ1 ´ µ2q
a

2trpR2q

¸

.

Thus, we have

β
p2q
C pµ, αq ě lim

pÑ8
Φ

˜

´zα{2 `
n1n2

n1`n2
pµ1 ´ µ2q

TD´1pµ1 ´ µ2q
a

2trpR2q

¸

.

Further write µ1 “ pµ11, ¨ ¨ ¨ , µ1pq
T and µ2 “ pµ21, ¨ ¨ ¨ , µ2pq

T , and define

δi “ µ1i ´ µ2i for i “ 1, ¨ ¨ ¨ , p. We have an analogous set of analysis and

claims as for the one-sample test. Firstly, by Theorem 2 from Cai et al.

(2014), the asymptotic power of T
p2q
max converges to one if max1ďiďp |δi{σii| ě

c
a

log p{n for a certain constant c and if the sparsity level γ ă 1{4 and the

locations of the non-zero variables are randomly and uniformly selected

from t1, ¨ ¨ ¨ , pu, meaning that the power function of our proposed test T
p2q
com

also converges to one under this situation. Secondly, according to Theo-
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rem 3 from Cai et al. (2014), the condition max1ďiďp |δi{σii| ě c
a

log p{n

is minimax rate-optimal for testing against sparse alternatives, and such

optimality also holds for our test T
p2q
max.

Similar to the one-sample test problem, we consider a special case with

Σ “ Ip. There are m nonzeros δi and they are all equal to δ “ 0. Thus,

β
p2q
S “ lim

pÑ8
Φ

ˆ

´zα `
n1n2mδ

2

n
?

2p

˙

.

Take ξ ą 0 such that p1{2n2ξ´1 Ñ 8. For the non-sparse case: δ “ Opn´ξq

and m “ opp1{2n2ξ´1q, we have β
p2q
M pµ, αq « α and β

p2q
C pµ, αq « β

p2q
S pµ, α{2q.

For the sparse case: δ “ c
a

log p{n with sufficient large c and m “

opplog pq´1p1{2q, we have β
p2q
S pµ, αq « α and β

p2q
C pµ, αq « β

p2q
M pµ, α{2q Ñ 1.

S1.2 Simulation Results

Then, we present the simulation results for the two-sample test problem,

where our test T
p2q
com (abbreviated as COM) from (S6) will be compared with

the sum-type test T
p2q
sum from (S4) proposed by Srivastava and Du (2008)

(abbreviated as SUM), the max-type test T
p2q
max proposed by Cai et al. (2014)

(abbreviated as MAX) and the Higher Criticism test proposed by Chen et al.

(2019) (abbreviated as HC2).

Recall the three scenarios of covariance matrices appeared in (I), (II)

and (III) after Example 1. Since the conclusions from all three scenarios
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are similar, here we only present the results when the covariance matrix

follows Scenario (I), i.e., Σ “ p0.5|i´j|q1ďi,jďp.

Example 3. We consider Xki “ µk`Σ1{2zki for k “ 1, 2 and i “ 1 ¨ ¨ ¨ , n,

and each component of zki is independently generated from three distribu-

tions: (1) Np0, 1q; (2) t-distribution, tp5q{
a

5{3; (3) the mixture normal

random variable V {
?

1.8, where V is as in Example 1.

We consider two different sample sizes n “ 100, 200 and three different

dimensions p “ 200, 400, 600. Under the null hypothesis, we set µ1 “

µ2 “ 0. The significance level is chosen such that α “ 0.05. Again,

for the alternative hypothesis, we only present on n “ 100, p “ 200 and

µ2 “ 0 since the observations from different combinations of n and p are

similar. Define µ1 “ pµ11, ¨ ¨ ¨ , µ1pq
T . For different number of nonzero-mean

variables m “ 1, ¨ ¨ ¨ , 20, we consider µj1 “ δ for 0 ă j ď m and µ1j “ 0 for

j ą m. The parameter δ is chosen such that ||µ1||
2 “ mδ2 “ 1.

Table S1 reports the empirical sizes of the compared tests. We see that

all the tests control the empirical sizes in most cases except that the sizes

of HC2 are a little smaller than the nominal level when n “ 200.

Figure S1 shows the power of each test, where we observe a similar

pattern as in Example 1. The power of MAX declines as the number of

variables with nonzero means is increasing. The power of SUM and COM
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Table S1: Sizes of tests for Example 3, α “ 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n “ 100 MAX 0.057 0.063 0.058 0.062 0.061 0.060 0.060 0.066 0.064

SUM 0.055 0.058 0.057 0.060 0.064 0.065 0.055 0.061 0.061

COM 0.057 0.074 0.060 0.064 0.065 0.068 0.061 0.061 0.062

HC2 0.043 0.035 0.044 0.047 0.037 0.052 0.042 0.043 0.053

n “ 200 MAX 0.053 0.053 0.051 0.049 0.062 0.061 0.044 0.065 0.055

SUM 0.052 0.065 0.059 0.065 0.061 0.064 0.052 0.056 0.053

COM 0.044 0.049 0.056 0.061 0.063 0.058 0.046 0.061 0.053

HC2 0.030 0.025 0.025 0.030 0.035 0.036 0.025 0.020 0.033

Figure S1: Power versus number of variables with non-zero means for Example 3. The

x-axis m denotes the number of variables with non-zero means; the y-axis is the empirical

power.
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are always larger than that of HC2 in all cases. The proposed COM matches

the power of MAX when the number of variables with nonzero means is

small, and almost has same power as SUM when m is large. This justifies

the superiority of the proposed combo-type test in the two-sample testing

problem, regardless of the sparsity of the data.

S2 Test for Regression Coefficients

S2.1 Testing Procedure

Then, we apply our theory to the testing problem in high-dimensional re-

gression. Let X “ pX1, ¨ ¨ ¨ ,Xnq
T be independent and identically dis-

tributed p-dimensional covariates, and Y “ pY1, ¨ ¨ ¨ , Ynq
T be the corre-

sponding independent responses. For simplicity, we assume EXi “ 0, @i.

We introduce a decomposition of sample point Xi as Xi “ pXT
ia,X

T
ibq

T

with Xia “ pXi1, ¨ ¨ ¨ , Xiqq
T P Rq and Xib “ pXipq`1q, ¨ ¨ ¨ , Xipq

T P Rp´q,

where q is smaller than the sample size n, and n is much smaller than p.

We consider the following standard linear regression model:

Yi “X
T
i β ` εi “X

T
iaβa `X

T
ibβb ` εi, (S7)

where β “ pβTa ,β
T
b q

T P Rp, βa P Rq and βb P Rp´q are the regression

coefficient vectors. The random noises tεi; 1 ď i ď nu are independent
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with Eεi “ 0 and Varpεiq “ σ2 for each i, and are also independent of the

data X. In this section, we consider the following testing problem:

H0 : βb “ 0 vs. H1 : βb “ 0 (S8)

under the situation that p is much larger than q and the sample size n is

small. When pXT
1a, ¨ ¨ ¨ ,X

T
naq

T is a null vector, (S8) is equivalent to test

H0 : β “ 0 vs. H1 : β “ 0.

For this problem, Goeman et al. (2006) and Goeman et al. (2011) pro-

posed an empirical Bayes test. It is formulated via a score test on the hyper

parameter of a prior distribution on the regression coefficients. By exclud-

ing the inverse term in the classical F -statistic, Zhong and Chen (2011)

proposed a U -statistic to extend their results in factorial designs.

Denote β “ pβ1, ¨ ¨ ¨ , βpq
T . To motivate our test procedure, let us con-

sider a set of related but not exactly the same test as follows:

H0j : βj “ 0 vs. H1j : βj “ 0 (S9)

for each j “ q ` 1, ¨ ¨ ¨ , p. Some notations are needed before we pro-

ceed. For the set of features included in the index set of “a”, let Xa “

pX1a, ¨ ¨ ¨ ,Xnaq
T , Ha “ XapX

T
aXaq

´1XT
a and X̃j “ pIn´HaqpX1j, ¨ ¨ ¨ , Xnjq

T ,

for each j. Notice Xa is nˆ q, Ha is nˆ n and X̃j P Rn. For the “b” part,
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we define

Xb “ pX1b, ¨ ¨ ¨ ,Xnbq
T and X̃b “ pX̃q`1, ¨ ¨ ¨ , X̃pq “ pIn ´HaqXb; Σ̂b|a “ n´1X̃T

b X̃b,

(S10)

where both Xb and X̃b are n ˆ pp ´ qq and Σ̂b|a is pp ´ qq ˆ pp ´ qq. Re-

garding the response vector, the residual vector and the sample variance,

we denote ε̂ “ pIn ´ HaqY and σ̂2 “ pn ´ qq´1ε̂T ε̂. For each test in

(S9), the classical partial F-test is given by Fj “
Y T X̃jpX̃

T
j X̃jq

´1X̃T
j Y

Y T rIn´XpXT Xq´1XT sY {pn´pq
.

However, as p ą n, the statistic Fj becomes problematic since XTX is

not invertible. To overcome this issue, we replace the denominator of Fj

by Y T pIn ´ HaqY {pn ´ qq. Under the null hypothesis, σ̂2 is an unbi-

ased estimator of σ2; see (S163) in the supplementary material. Thus,

the test statistic for (S9) becomes F̃j “
Y T X̃jpX̃

T
j X̃jq

´1X̃T
j Y

Y T pIn´HaqY {pn´qq
. Back to the

testing problem (S8) of interest, we will handle it by combining F̃j to-

gether. There are two classical ways to synthesize them. The first one is

the sum-type test statistic: SF “
řp
j“q`1 F̃j. Obviously, we have SF “

T1{σ̂
2 with T1 “

řp
j“q`1 Y

T X̃jpX̃
T
j X̃jq

´1X̃T
j Y . By normalization, with-

out loss of generality, assume X̃T
j X̃j “ n for each j “ q ` 1, ¨ ¨ ¨ , p. Then

T1 “
1
n

řp
j“q`1 Y

T X̃jX̃
T
j Y “ 1

n
ε̂TXbX

T
b ε̂. By standardizing T1 with esti-

mators of the mean and standard deviation of T1, we propose the sum-type
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statistic

T p3qsum “
n´1ε̂TXbX

T
b ε̂´ n

´1pn´ qqpp´ qqσ̂2

b

2σ̂4 {tr
`

Σ2
b|a

˘

, (S11)

where the denominator is {trpΣ2
b|aq “

n2

pn`1´qqpn´qq

!

tr
`

Σ̂2
b|a

˘

´ 1
n´q

tr2pΣ̂b|aq

)

.

The second statistic we are interested in is of the max-type, defined by

T p3qmax “ max
q`1ďjďp

F̃j. (S12)

Then, we will study the asymptotic distributions of T
p3q
sum and T

p3q
max, as well

as their asymptotic independence, based on which a combo-type test will be

proposed. To begin with, we introduce some additional assumptions that

will be used.

Define Σb|a “ ErCovpXib|Xiaqs “ pσ
˚
jkq as a pp ´ qq ˆ pp ´ qq matrix.

Without loss of generality, we assume that Σb|a is normalized such that its

diagonal entries are equal to one, i.e., σ˚jj “ 1 for each j. Next, we introduce

moment conditions on a conditional predictor. For each i “ 1, ¨ ¨ ¨ , n, by

regressing Xib on Xia, the residual vector is given by X˚
ib “Xib ´BXia P

Rp´q, where B :“ CovpXib,Xiaq ¨ rCovpXiaqs
´1 is a pp´ qq ˆ q matrix. By

the previous assumption EXi “ 0, we immediately have that EpX˚
ibq “ 0

and CovpX˚
ibq “ Σb|a “ pσ˚ijq. Define X˚

b “ pX˚
1b, ¨ ¨ ¨ ,X

˚
nbq

T , which is a
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nˆ pp´ qq matrix. The conditions we will use later on are stated below.

X˚
ib „ Np0,Σb|aq and the diagonal entries of Σb|a are all equal to 1;

(S13)

There exists a constant τ ą 1 such that τ´1
ă λminpΣb|aq ď λmaxpΣb|aq ă τ.

(S14)

Assumption (S14) is the same as condition (C1) from Lan et al. (2014),

which is also a common assumption in literature for research on high-

dimensional data; see, for example, Fan et al. (2008), Rothman et al. (2008),

Zhang and Huang (2008) and Wang (2009). We assume that both n and

q depend on p and limits will be taken as p Ñ 8. The random errors

ε1, ¨ ¨ ¨ , εn are assumed to be i.i.d. with Eεi “ 0 and Varpεiq “ σ2 for

each i, and no Gaussian assumption is needed for εi. Our main result for

high-dimensional regression coefficient test is as follows.

THEOREM S2. Assume (S13) and (S14) hold and (2.3) also holds with

“Σ” replaced by “Σb|a”. Suppose p “ opn3q, q “ oppq, q ď nδ for some

δ P p0, 1q and Ep|ε1|
`q ă 8 with ` “ 14p1 ´ δq´1. Under H0 from (S8), as

pÑ 8 we have:

(i) T
p3q
sum Ñ Np0, 1q in distribution;

(ii) T
p3q
max ´ 2 logpp ´ qq ` log logpp ´ qq converges weakly to a distribution
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with cdf F pxq “ expt´ 1?
π

expp´x
2
qu, x P R;

(iii) T
p3q
sum and T

p3q
max ´ 2 logpp ´ qq ` log logpp ´ qq are asymptotically inde-

pendent.

It is known from Lan et al. (2014) that
n´1ε̂TXbX

T
b ε̂´σ̂

2n´1pp´qqtrpMpIn´Haqq
c

2σ4 tr
`

Σ2
b|a

˘

converges to Np0, 1q in distribution, with M :“ pp ´ qq´1
řp
j“q`1 X̃jX̃

T
j .

Although this is not a statistic (since unknown parameters appear in the

denominator), it describes the asymptotic behavior of ε̂TXbX
T
b ε̂. The

numerator of our statistic T
p3q
sum in (S11) is simpler, because no computation

of trpMpIn ´Haqq is needed.

We now study the implications of Theorem S2 and discuss the rejection

rules. For the sum-type test, a level-α test will be performed through

rejecting H0 when T
p3q
sum is larger than the p1´αq-quantile zα “ Φ´1p1´αq

of Np0, 1q. For the max-type test, a level-α test will then be performed

through rejecting H0 when T
p3q
max´ 2 logpp´ qq` log logpp´ qq is larger than

the p1´ αq-quantile qα “ ´ log π ´ 2 log logp1´ αq´1 of F pxq.

Analogously, a combined test is defined through

T p3qcom “ min
 

P
p3q
S , P

p3q
M

(

, (S15)

where P
p3q
S “ 1´ΦpT

p3q
sumq and P

p3q
M “ 1´F pT

p3q
max´2 logpp´qq`log logpp´qqq

with F pxq “ expt´ 1?
π

exp
`

´x
2

˘

u. Similar to Corollary 1, the proposed
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combo-type test allows us to perform a level-α test by rejecting the null

hypothesis when T
p3q
com ă 1´

?
1´ α « α

2
.

Again, using the same argument as (3.8), the power function of our

combo-type test β
p3q
C pµ, αq is larger than maxtβ

p3q
M pµ, α{2q, β

p3q
S pµ, α{2qu,

where β
p3q
M pµ, αq and β

p3q
S pµ, αq are the power functions of T

p3q
max and T

p3q
sum

at significant level α, respectively. To demonstrate the power of the tests,

assume the simple case where Xa is null vector and CovpXbq “ Ip. From

Zhong and Chen (2011), the power function of T
p3q
sum is β

p3q
S pβ, αq “ limpÑ8 Φ

´

´zα `
nβTβ
?

2pσ2

¯

.

In addition, assuming β only contains m non-zeros all equal to δ “ 0,

leading to β
p3q
S pβ, αq “ limpÑ8 Φ

´

´zα `
nmδ2?

2pσ2

¯

. For the non-sparse case

with δ “ Opn´ξq and m “ Opp1{2n2ξ´1q, we have β
p3q
M pµ, αq « α and

β
p3q
C pµ, αq « β

p3q
S pµ, α{2q. For the sparse case where δ “ c

a

log p{n with

sufficient large c and m “ opplog pq´1p1{2q, we have β
p3q
S pµ, αq « α and

β
p3q
C pµ, αq « β

p3q
M pµ, α{2q Ñ 1. Again, in this testing problem for high-

dimensional regression, the combined test statistics also exhibits good per-

formance under both sparse and dense alternative hypotheses.

S2.2 Simulation Results

Then, we present our simulation results on the regression coefficient testing

problem. We will compare our combo-type test T
p3q
com (abbreviated as COM)
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from (S15) against the test T
p3q
sum (abbreviated as SUM) from (S11), the

test T
p3q
max (abbreviated as MAX) from (S12) and the empirical Bayes test

proposed by Goeman et al. (2006) (abbreviated as EB).

EXAMPLE 2. We generate data from (S7), where the regression coeffi-

cients βj for j P t1, 2, ¨ ¨ ¨ , qu are simulated from a standard normal distri-

bution, and then we set βj “ 0 for j ą q. In addition, the predictor vector

is given by Xi “ Σ1{2zi for i “ 1 ¨ ¨ ¨ , n, and each component of zi is inde-

pendently generated from three distributions: (1) the normal distribution

Np0, 1q; (2) the exponential distribution expp1q´1; (3) the mixture normal

distribution V {
?

1.8, where V is as in Example 1.

Moreover, the random error εi is independently generated from a stan-

dard normal distribution. We report the Scenarios (I) result where CovpXiq “

Σ “ pσjkq P Rpˆp with σjk “ 0.5|j´k|, while the results in the other two cases

are similar. We consider two different sample sizes n “ 100, 200, three dif-

ferent dimensions p “ 200, 400, 600 and two dimension of predictors in the

reduced model q “ 0 or 5.

We report the empirical sizes of the tests in Table S2. We observe that

the empirical size of MAX tends to be smaller than the nominal level. EB

and SUM, as well as the proposed COM, control the empirical sizes well for

most of the times.



18 LONG FENG, TIEFENG JIANG, XIAOYUN LI AND BINGHUI LIU

Table S2: Sizes of tests for Example 2, α “ 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

q “ 0

n “ 100 MAX 0.032 0.024 0.027 0.026 0.032 0.026 0.027 0.036 0.036

EB 0.047 0.047 0.047 0.049 0.052 0.050 0.059 0.044 0.044

SUM 0.061 0.064 0.065 0.060 0.072 0.062 0.079 0.058 0.060

COM 0.044 0.043 0.047 0.046 0.05 0.043 0.055 0.047 0.044

n “ 200 MAX 0.032 0.042 0.038 0.030 0.032 0.033 0.045 0.035 0.041

EB 0.063 0.052 0.049 0.038 0.042 0.036 0.053 0.041 0.055

SUM 0.069 0.06 0.057 0.054 0.052 0.045 0.063 0.049 0.064

COM 0.053 0.051 0.048 0.036 0.039 0.044 0.058 0.042 0.050

q “ 5

n “ 100 MAX 0.032 0.029 0.024 0.024 0.030 0.020 0.031 0.037 0.029

EB 0.048 0.050 0.055 0.056 0.058 0.061 0.061 0.054 0.045

SUM 0.046 0.049 0.048 0.063 0.059 0.064 0.063 0.052 0.045

COM 0.038 0.037 0.031 0.043 0.047 0.041 0.048 0.048 0.026

n “ 200 MAX 0.030 0.031 0.030 0.037 0.033 0.033 0.034 0.032 0.030

EB 0.068 0.051 0.047 0.045 0.052 0.046 0.058 0.066 0.057

SUM 0.067 0.051 0.049 0.049 0.054 0.045 0.070 0.068 0.061

COM 0.048 0.045 0.036 0.040 0.040 0.037 0.051 0.049 0.049

We compare the power of the tests with n “ 100, p “ 200. Each entry

of zi P Rp is generated from the standard normal distribution (i.e. case (1)

in Example 2). Define βb “ κ ¨ pβq`1, ¨ ¨ ¨ , βpq
T . Let m denote the number

of nonzero coefficients. For m “ 1, ¨ ¨ ¨ , 50, we consider βj „ Np0, 1q, q ă

j ď q ` m and βj “ 0, j ą q ` m. The parameter κ is chosen so that
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||βb||
2 “ 0.5. As we see from the plots, EB performs similarly to SUM.

When the number of nonzero coefficients is small, MAX is more powerful

than EB and SUM. In contrast, when the number of nonzero coefficients is

large, EB and SUM outperform MAX. Once again, the proposed COM has

same power as MAX in the sparse case, and has similar performance to EB

and SUM in the non-sparse case. As we mentioned earlier, the results show

the benefits of COM, as the true model is usually unknown in practical

applications. The proposed COM provides good testing power in all cases.

Figure S2: Power versus the number of nonzero coefficients for Example 2. The x-axis

m denotes the number of non-zero coefficients; the y-axis is the empirical power.
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S2.3 Search Engine Data

We now use the data from Lan et al. (2014) to make a case study on the

regression coefficient test. The data set is obtained from an online mobile

phone retailer. It contains a total of n “ 98 daily records. The response Y

is the revenue from the retailer’s online sales. The explanatory variable V

stands for the advertising spending on each of p “ 164 different keywords

that were bid for Baidu, the leading search engine in China. We sort these

explanatory variables by the correlation with the response, from high to

low, and denote V1, V2, ¨ ¨ ¨ , etc. Since the sales vary with each day of the

week, we introduce a 6-dimension indictor variables W to represent Sunday

to Friday. So there are 170 explanatory variables X “ pW,V q in our model.

We will analyze it via the theory established in Section S2.

For different values of k, set X
pkq
a “ pW,V1, ¨ ¨ ¨ , Vkq

T and the rest

variables X
pkq
b “ pVk`1, ¨ ¨ ¨ , Vpq

T . We consider the linear model Y “

pX
pkq
a q

Tβ
pkq
a ` pX

pkq
b q

Tβ
pkq
b ` ε, to test whether advertising spending on

the rest of keywords X
pkq
b could provide a significant contribution to online

sales, conditional on the effect of Xak, i.e. we test H0 : β
pkq
b “ 0. We adopt

the tests introduced in Example 2 in Section S2.2, i.e. MAX, SUM, EB and

COM.

Table S3 reports the p-values of each tests with different k, which con-
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Table S3: p-values of each test in Search Engine Data.

MAX SUM EB COM

k “ 0 0.0056 0.1432 0.1100 0.0112

k “ 1 0.0025 0.2295 0.1776 0.0050

k “ 2 0.2083 0.1319 0.2464 0.2465

k “ 3 0.1508 0.1387 0.2877 0.2583

trols the sparsity of the true model. The significant level is set to be

α “ 0.05. From the results, we see that there are two keywords that are sig-

nificant to the response (revenue) because both MAX and COM reject the

null hypothesis as long as k ă 2 (note that these are two powerful methods

for sparse model). When k ě 2, all these four tests do not reject the null

hypothesis, suggesting that the rest of keywords are not significant to the

response. Notice that when k ă 2, SUM and EB fail to reject the null hy-

pothesis at the significant level 0.05, which shows their poor performance

with sparse model, consistent with our theoretical claims and simulation

results. On the contrary, COM succeeds in identifying the significant key-

words in this problem, illustrating its edge over SUM and EB.
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S3 Technical Proofs

S3.1 Proof of Theorem 1

Proof of Theorem 1. Let ξ1, ξ2, ¨ ¨ ¨ be i.i.d. Np0, 1q-distributed random

variables. Let Σ1{2 be a non-negative definite matrix such that Σ1{2 ¨Σ1{2 “

Σ. Then pZ1, ¨ ¨ ¨ , Zpq
T and Σ1{2pξ1, ¨ ¨ ¨ , ξpq

T have the same distribution. As

a consequence, Z2
1 ` ¨ ¨ ¨ ` Z

2
p has the same distribution as that of

pξ1, ¨ ¨ ¨ , ξpqΣ
1{2
¨Σ1{2

pξ1, ¨ ¨ ¨ , ξpq
T
“ pξ1, ¨ ¨ ¨ , ξpqΣpξ1, ¨ ¨ ¨ , ξpq

T . (S16)

Let λp,1, λp,2, ¨ ¨ ¨ , λp,p be the eigenvalues of Σ “ Σp and O be a p ˆ p

orthogonal matrix such that Σp “ OT diagpλp1, ¨ ¨ ¨ , λppqO. In particular,

since all of the diagonal entries of Σ are 1, we have λp,1 ` ¨ ¨ ¨ ` λp,p “ p.

By the orthogonal invariance of normal distributions, Opξ1, ¨ ¨ ¨ , ξpq
T and

pξ1, ¨ ¨ ¨ , ξpq
T have the same distribution. By (S16), Z2

1 ` ¨ ¨ ¨ ` Z2
p is equal

to

“

Opξ1, ¨ ¨ ¨ , ξpq
T
‰T

diagpλp,1, ¨ ¨ ¨ , λp,pq
“

Opξ1, ¨ ¨ ¨ , ξpq
T
‰

,

and hence has the same distribution as that of λp,1ξ
2
1 ` ¨ ¨ ¨ ` λp,pξ

2
p . It is

easy to see EpZ2
1 ` ¨ ¨ ¨ ` Z

2
pq “ p and

VarpZ2
1 ` ¨ ¨ ¨ ` Z

2
pq “ λ2

p,1Varpξ2
1q ` ¨ ¨ ¨ ` λ

2
p,pVarpξ2

pq

“ 2λ2
p,1 ` ¨ ¨ ¨ ` 2λ2

p,p
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“ 2 ¨ trpΣ2
q.

Easily, mk :“ Ep|ξ2
1´1|kq ă 8 for any k ě 1. Note that λp,1ξ

2
1`¨ ¨ ¨`λp,pξ

2
p

is a sum of independent random variables. Then,

1

r2 ¨ trpΣ2qsp2`δq{2

p
ÿ

i“1

E
ˇ

ˇλp,iξ
2
i ´ Epλp,iξ

2
i q
ˇ

ˇ

2`δ
ď

m2`δ

rtrpΣ2qsp2`δq{2
¨

p
ÿ

i“1

λ2`δ
p,i

“ m2`δ ¨
trpΣ2`δq

rtrpΣ2qsp2`δq{2
,

which goes to zero by Assumption (2.1). Therefore, by the Lyapunov central

limit theorem, pλp,1ξ
2
1 ` ¨ ¨ ¨ ` λp,pξ

2
p ´ pq{

a

2trpΣ2q converges weakly to

Np0, 1q as pÑ 8. This implies that pZ2
1`¨ ¨ ¨`Z

2
p´pq{

a

2trpΣ2q converges

weakly to Np0, 1q as pÑ 8. ˝

S3.2 Proof of Theorem 2

For a graph G, we say vertices i and j are neighbors if there is an edge

between them. For a set A, we write |A| for its cardinality. We first prove

some lemmas.

LEMMA S1. Let G “ pV,Eq be an undirected graph with n “ |V | ě 4

vertices. Write V “ tv1, ¨ ¨ ¨ , vnu. Assume each vertex in V has at most q

neighbors. Let Gt be the set of subgraphs of G such that each subgraph has

t vertices and at least one edge. The following are true.

(i) |Gt| ď qnt´1 for any 2 ď t ď n.
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(ii) Fix integer t with 2 ď t ď n. Let G1t Ă Gt such that each member of

G1t is a clique, that is, any two vertices are neighbors. Then |G1t| ď nqt´1.

The following conclusions are true for integer t with 3 ď t ď n.

(iii) For j “ 2, ¨ ¨ ¨ , t ´ 1, let Hj be the subset of pi1, ¨ ¨ ¨ , itq from Gt

satisfying the following: there exists a subgraph S of ti1, ¨ ¨ ¨ , itu with |S| “ j

and without any edge such that any vertex from ti1, ¨ ¨ ¨ , ituzS has at least

two neighbors in S. Then |Hj| ď pqtq
t´j`1nj´1.

(iv) For j “ 2, ¨ ¨ ¨ , t ´ 1, let H 1
j be the subset of pi1, ¨ ¨ ¨ , itq from Gt

satisfying the following: for any subgraph S of ti1, ¨ ¨ ¨ , itu with |S| “ j and

without any edge, we know any vertex from ti1, ¨ ¨ ¨ , ituzS has at least one

neighbor in S. Then |H 1
j| ď pqtq

t´jnj.

Proof of Lemma S1. (i). Choose one vertex from V and choose one of its

neighbors. The total number of ways to do this is nq. The total number of

ways to fill the rest of t´2 vertices arbitrarily is no more than nt´2. Hence,

|Gt| ď nq ¨ nt´2 “ qnt´1.

(ii). To form a clique from Gt, we first choose a vertex with n ways.

The next vertex has to be one of its q neighbors, the third vertex has to be

one of the neighbors of the first two vertices at the same time. Thus the

number of choices for the third vertex is no more than q. This has to be true

for the picks of the remaining vertices to form a clique. So |G1t| ď nqt´1.
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(iii). Now we figure out the ways to get pi1, ¨ ¨ ¨ , itq P Ht. The number

of ways to get i1 is at most n. Once i1 is chosen, another vertex b1 from

its neighbors has to be picked to be an element in ti1, ¨ ¨ ¨ , ituzS. Once b1

is taken, since at leat two members from pi1, ¨ ¨ ¨ , itq are neighbors of b1, a

third vertex i2 has to be in S. Keep in mind that i2 has to be a neighbor of

b1. Thus, the total number of ways to pick these three vertices is at most

n ¨ q ¨ q. The rest of j ´ 2 vertices in S have at most nj´2 choices to satisfy

the requirement; the rest t ´ j ´ 1 vertices from ti1, ¨ ¨ ¨ , ituzS have to be

the neighbors of the vertices in S, which amounts to at most pqtqt´j´1 ways

to fill the t´ j vertices. So |Ht| ď nq2 ¨ nj´2 ¨ pqtqt´j´1 “ pqtqt´j`1nj´1.

(iv). The choices of S with |S| “ j is no more than nj. Any of the rest

t´j vertices from pi1, ¨ ¨ ¨ , itq must be the neighbor of a vertex from the cho-

sen j vertices. The total number of neighbors is at most qt. This amounts

to no more than pqtqt´j ways to achieve this. Hence |H 1
j| ď pqtq

t´jnj. ˝

LEMMA S2. For p ě 1, let $ “ $p be positive integers with limpÑ8$p{p “

1. Let Zp1, ¨ ¨ ¨ , Zp$ be Np0, 1q-distributed random variables with covariance

matrix Σ “ Σp “ pσijqpˆp. Assume |σij| ď δp for all 1 ď i ă j ď $ and

p ě 1, where tδp; p ě 1u are constants satisfying 0 ă δp “ op1{ log pq. Given

x P R, set z “
`

2 log p ´ log log p ` x
˘1{2

. Then, for any fixed m ě 1, we
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have

´

?
πp

e´x{2

¯m

¨ P p|Zpi1 | ą z, ¨ ¨ ¨ , |Zpim | ą zq Ñ 1

as pÑ 8 uniformly for all 1 ď i1 ă ¨ ¨ ¨ ă im ď $.

Proof of Lemma S2. To ease notation, we write “Z1, ¨ ¨ ¨ , Z$” for “Zp1, ¨ ¨ ¨ , Zp$”

if there is no danger of confusion. First, z is well-defined as p is large. Note

that pZ1, ¨ ¨ ¨ , Zmq
T „ Np0,Σmq, where Σm “ pσijq1ďi,jďm. Recall the den-

sity function of Np0,Σmq is given by 1

p2πqm{2detpΣmq1{2
exp

`

´ 1
2
xTΣ´1

m x
˘

for

all x :“ px1, ¨ ¨ ¨ , xmq
T P Rm. It follows that

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq

“
1

p2πqm{2detpΣmq
1{2

ż 8

z

¨ ¨ ¨

ż 8

z

exp
´

´
1

2
xTΣ´1

m x
¯

dx1 ¨ ¨ ¨ dxm. (S17)

For two non-negative definite matrices A and B, we write A ď B if B´A

is also non-negative definite. We need to understand Σ´1
m and detpΣmq on

the right hand side of (S17). First we claim that

p1´ 2mδpqIm ď Σ´1
m ď p1` 2mδpqIm (S18)

and that

1´m!δp ď detpΣmq
´1{2

ď 1`m!δp (S19)

as p is sufficiently large.
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In fact, by the Gershgorin disc theorem (see, e.g., Horn and Johnson

(2012)), all eigenvalues of Σm have to be in the set

ď

1ďiďm

´

σii ´
ÿ

j‰i

σij, σii `
ÿ

j‰i

σij

¯

.

By assumption, σii “ 1 and |σij| ď δp for all 1 ď i ă j ď $. Thus, all of the

eigenvalues of Σm are between 1 ´mδp and 1 `mδp. The two bounds are

positive as p is sufficiently large. On the other hand, p1´mδpq
´1 ď 1`2mδp

and p1 `mδpq
´1 ě 1 ´ 2mδp as p is sufficiently large. The assertion (S18)

is obtained.

Second, detpΣmq is the sum of m! terms. The term as the product of the

diagonal entries of Σm is 1; each of the remaining m!´1 terms is the product

of m entries from which at least one is an off-diagonal entry. Therefore,

|detpΣmq ´ 1| ď m!δp. This implies 1 ´ m!δp ď detpΣmq ď 1 ` m!δp.

Trivially, p1 ` uq´1{2 “ 1 ´ u
2
p1 ` Opuqq as u Ñ 0. The statement (S19) is

confirmed.

The claim (S18) implies that p1´2mδpq|x|
2 ď xTΣ´1

m x ď p1`2mδpq|x|
2

for each x P Rm. The tail bound of Gaussian variable gives P pNp0, 1q ě

tq „ 1?
2π t
e´t

2{2 as t Ñ 8. Since P pNp0, σ2q ě tq “ P pNp0, 1q ě t{σq for

any σ ą 0, for any ε P p0, 1{2q, there exists t0 ą 0 such that

p1´ εq
σ

?
2π t

e´t
2{p2σ2q

ď P pNp0, σ2
q ě tq ď p1` εq

σ
?

2π t
e´t

2{p2σ2q (S20)
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for all t ě σt0. Thus, from (S17)-(S20), we upper bound the probability of

interest by

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq

ď
1`m!δp
p2πqm{2

ż 8

z

¨ ¨ ¨

ż 8

z

exp
”

´
p1´ 2mδpq

2
px2

1 ` ¨ ¨ ¨ ` x
2
mq

ı

dx1 ¨ ¨ ¨ dxm

“ p1`m!δpqσ
m
¨ P

`

Np0, σ2
q ě z

˘m

ď p1`m!δpqσ
2m
p1` εqm ¨

” 1
?

2π z
e´p1´2mδpqz2{2

ım

as z ě σt0, where σ :“ p1´ 2mδpq
´1{2. Now

1

z
e´p1´2mδpqz2{2 “ emδpz

2

¨
1

z
e´z

2{2

“ eop1q ¨
1` op1q
?

2 log p
¨ exp

”

´
1

2
p2 log p´ log log p` xq

ı

“ r1` op1qs ¨
e´x{2
?

2p

as p Ñ 8 since δp “ op1{ log pq, where the last op1q depends on m and p.

Consequently,

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ď
´ e´x{2

2
?
πp

¯m

Cm

where

Cm :“ p1`m!δpqσ
2m
p1` εqmr1` op1qsm ď p1` 2εqm

as p is sufficiently large because δp Ñ 0. In summary, for fixed m ě 1,

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ď p1` 2εqm
´ e´x{2

2
?
πp

¯m

(S21)
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as p is sufficiently large. Similarly, from (S17)-(S20), a lower bound can be

established as

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq

ě
1´m!δp
p2πqm{2

ż 8

z

¨ ¨ ¨

ż 8

z

exp
´

´
p1` 2mδpq

2
px2

1 ` ¨ ¨ ¨ ` x
2
mq

¯

dx1 ¨ ¨ ¨ dxm

“ p1´m!δpqσ
m
1 ¨ P

`

Np0, σ2
1q ě z

˘m

ě p1´m!δpqσ
2m
1 p1´ εqm ¨

” 1
?

2π z
e´p1`2mδpqz2{2

ım

where σ1 :“ p1 ` 2mδpq
´1{2. By taking care of each term above as in the

previous arguments, we can get a reverse inequality of (S21) with “1` 2ε”

replaced by “1´ 2ε”. Consequently, we know that

´ e´x{2

2
?
πp

¯m

¨ p1´ 2εqm ď P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ď
´ e´x{2

2
?
πp

¯m

¨ p1` 2εqm

(S22)

as p ě ppm, εq, where ppm, εq ě 1 is a constant that depends on m and ε

only. Now we consider the decomposition

P p|Z1| ą z, ¨ ¨ ¨ , |Zm| ą zq “
ÿ

P pη1Z1 ą z, ¨ ¨ ¨ , ηmZm ą zq, (S23)

where the summation is over all the 2m possible cases with η1 “ ˘1, ¨ ¨ ¨ , ηm “

˘1. Notice that |CovpηiZi, ηjZjq| “ |CovpZi, Zjq| ď δp, and the derivation

of (S22) depends on δp rather than the exact values of σij’s. By (S23), we
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have

´e´x{2
?
πp

¯m

¨ p1´ 2εqm ď P p|Z1| ą z, ¨ ¨ ¨ , |Zm| ą zq ď
´e´x{2
?
πp

¯m

¨ p1` 2εqm

as p ě ppm, εq. Based on the same reasoning, for any ε P p0, 1{2q, we have

´e´x{2
?
πp

¯m

¨ p1´ 2εqm ď P p|Zi1 | ą z, ¨ ¨ ¨ , |Zim | ą zq ď
´e´x{2
?
πp

¯m

¨ p1` 2εqm

as p ě ppm, εq uniformly for all 1 ď i1 ă ¨ ¨ ¨ ă im ď R. Because the

probability above does is independent of ε, by letting pÑ 8 and ε Ó 0, we

have that

´

?
πp

e´x{2

¯m

¨ P p|Zi1 | ą z, ¨ ¨ ¨ , |Zim | ą zq Ñ 1

as p Ñ 8 uniformly for all 1 ď i1 ă ¨ ¨ ¨ ă im ď $, which completes the

proof. ˝

For any mˆm symmetric matrix M, we use the notation }M} to denote

its spectral norm, that is, }M} “ maxtλmaxpMq,´λminpMqu. Evidently,

}M}2 ď trpMTMq. Also, }M} “ λmaxpMq if M is non-negative defi-

nite. Obviously, for any symmetric matrix M, if }M} ď a then xTMx ď

λmaxpMqxTx ď axTx for any x P Rm. The same argument applies to ´M.

Thus, by symmetry we know that

´ axTx ď xTMx ď axTx (S24)

for any x P Rm. The following lemma would be further needed.



S3. TECHNICAL PROOFS 31

LEMMA S3. Let m ě 2 and Z1, ¨ ¨ ¨ , Zm be Np0, 1q-distributed random

variables with positive definite covariance matrix Σ “ pσijqmˆm. For some

1 ą % ą δ ą 0, assume |σ12| ď %, and |σij| ď δ for all 1 ď i ă j ď m but

pi, jq ‰ p1, 2q. Then, if δ ď 1
8m2 p1´ %q

3, we have

P p|Z1| ą z, ¨ ¨ ¨ , |Zm| ą zq ď
2m

z
¨ e´αz

2{2 (S25)

for all z ą 0, where α “ m´ 1
4
p%` 3q.

Proof of Lemma S3. Let 1 “ p1, ¨ ¨ ¨ , 1qT P Rm and

a “ pa1, ¨ ¨ ¨ , amq
T
“

Σ´11

1TΣ´11
. (S26)

Then 1Ta “ 1. We claim that (which will be prove later)

ai ě 0 (S27)

for all i “ 1, 2, ¨ ¨ ¨ ,m. Assuming this is true, then obviously,

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ď P ppZ1, ¨ ¨ ¨ , Zmqa ě zq.

Let Y “ pZ1, ¨ ¨ ¨ , Zmqa. Then Y „ Np0, aTΣaq. By (S26), aTΣa “

p1TΣ´11q´1. Therefore,

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ďP
`

Np0, 1q ě p1TΣ´11q1{2z
˘

ď
1
?

2π
¨

1

p1TΣ´11q1{2z
¨ e´p1

T Σ´11qz2{2 (S28)
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for any z ą 0, where in the last step we use a well-known inequality of

the Gaussian tail: P pNp0, 1q ě yq ď 1?
2π y

e´y
2{2 for any y ą 0. Firstly, if

m “ 2, then

Σ´1
“

1

1´ σ2
12

¨

˚

˚

˝

1 ´σ12

´σ12 1

˛

‹

‹

‚

.

It is easy to check that 1TΣ´11 “ 2
1`σ12

ě 2
1`%

ě 2 ´ 1
4
p% ` 3q “ α. Notice

α ą 1. We have from (S28) that

P pZ1 ą z, Z2 ą zq ď
1

z
¨ e´αz

2{2. (S29)

So the conclusion holds for m “ 2. From now on, we assume m ě 3.

Step 1: the proof of (S27). Define

Σ2 “

¨

˚

˚

˝

1 σ12

σ12 1

˛

‹

‹

‚

and A “

¨

˚

˚

˝

Σ2 0

0T Im´2

˛

‹

‹

‚

where 0 is a 2ˆpm´2q matrix whose entries are all equal to zero. Trivially,

the eigenvalues of Σ2 are 1 ` σ12 and 1 ´ σ12, respectively. Basic algebra

gives

Σ´1
2 “

1

1´ σ2
12

¨

˚

˚

˝

1 ´σ12

´σ12 1

˛

‹

‹

‚

and A´1
“

¨

˚

˚

˝

Σ´1
2 0

0 Im´2

˛

‹

‹

‚

, (S30)

and the eigenvalues of A´1 are 1 with m´ 2 folds, 1
1`σ12

and 1
1´σ12

, respec-

tively, which by assumption bounds the spectral norm as }A´1} ď 1
1´%

. Also,
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}A´Σ}2 ď trrpA´ΣqT pA´Σqs ď m2δ2 since |σij| ď δ for all 1 ď i ă j ď m

but pi, jq ‰ p1, 2q. By the fact that Σ´1´A´1 “ A´1pA´ΣqΣ´1, we obtain

}Σ´1
´A´1

} ď}A´1
} ¨ }A´Σ} ¨ }Σ´1

} ď
mδ

1´ %
¨ }Σ´1

}. (S31)

In particular, this implies from the triangle inequality that

}Σ´1
} ď

1

1´ %
`

mδ

1´ %
¨ }Σ´1

}.

By assumption δ ď 1
8m2 p1 ´ %q3, we know mδ ` % ă p1 ´ %q ` % “ 1. By

solving the inequality we obtain }Σ´1} ď p1´%´mδq´1 ď 2
1´%

. Substituting

this to (S31) we get

}Σ´1
´A´1

} ď
2mδ

p1´ %q2
. (S32)

From (S26), we know ai “ eTi Σ´11{1TΣ´11 for 1 ď i ď m, where ei “

p0, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , 0qT and the only “1” appears in the ith position. As Σ is

positive definite, 1TΣ´11 ą 0. To show (S27), it is enough to show ãi :“

eTi Σ´11 ą 0 for each i. Define hi “ eTi A´11, which equals the ith row sum

of A´1. We have

|ãi ´ hi| “ |e
T
i pΣ

´1
´A´1

q1| ď}ei} ¨ }pΣ
´1
´A´1

q1}

ď}ei} ¨ }Σ
´1
´A´1

} ¨ }1}

ď
2m2δ

p1´ %q2
(S33)
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induced by (S32). Therefore, ãi ě hi´
2m2δ
p1´%q2

. Now observe from (S30) that

h1 “ h2 “
1´ σ12

1´ σ2
12

“
1

1` σ12

ě
1

1` %
,

and hi “ 1 for i “ 3, ¨ ¨ ¨ ,m. Thus, (S33) and condition δ ď 1
8m2 p1 ´ %q3 ď

1
2m2

p1´%q3

1`%
conclude that ãi ą 0 for each i, which implies (S27).

Step 2: the proof of (S25). From (S24) and (S32),

1T pΣ´1
´A´1

q1 ě ´
p2mδq1T1

p1´ %q2
“ ´

2m2δ

p1´ %q2
.

As a result, we have

1TΣ´11 ě 1TA´11´
2m2δ

p1´ %2q2

“
2´ 2σ12

1´ σ2
12

`m´ 2´
2m2δ

p1´ %q2

ě m´ 1`
1´ %

1` %
´

2m2δ

p1´ %q2

by using the assumption |σ12| ď %. By assumption δ ď 1
8m2 p1 ´ %q3, we

further obtain

1TΣ´11 ě m´ 1`
1´ %

2p1` %q
.

In particular, 1TΣ´11 ě m ´ 1 ě 1
4
m for m ě 3. Then, we can establish

from (S28) that

P pZ1 ą z, ¨ ¨ ¨ , Zm ą zq ď
1

z
?
m

exp
!

´
z2

2

´

m´ 1`
1´ %

2p1` %q

¯)

, (S34)

under the assumption δ ď 1
8m2 p1 ´ %q3. In the above derivation, the true

values of σij’s are not used, instead their bounds % and δ are relevant.
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Therefore, (S29) and (S34) still hold if each “Zi” is replaced by “ηiZi” with

ηi “ ˘1. Trivially, ´1 ` 1´%
2p1`%q

ě ´1
4
p% ` 3q for each % P p0, 1q. This

combining with (S34) and (S23) yields (S25). ˝

To prove Theorem 2, we need a notation. Let p ě 2 and pσijqpˆp be a

non-negative definite matrix. For δ ą 0 and a set A Ă t1, 2, ¨ ¨ ¨ ,mu with

2 ď m ď p, define

℘pAq “ max
!

|S|; S Ă A and max
iPS,jPS,i‰j

|σij| ď δ
)

. (S35)

Specifically, ℘pAq takes possible values 0, 2 ¨ ¨ ¨ , |A|, where we regard |∅| “

0. If ℘pAq “ 0, then |σij| ą δ for all i P A and j P A.

Proof of Theorem 2. For any x P R, write

z “
`

2 log p´ log log p` x
˘1{2

, (S36)

which is well defined as p is sufficiently large. We will not mention this

matter again since the conclusion is valid as pÑ 8. It suffices to show

lim
pÑ8

P
´

max
1ďiďp

|Zi| ą z
¯

“ 1´ exp
´

´
1
?
π
e´x{2

¯

(S37)

as pÑ 8. The proof will be divided into a few steps.

Step 1: reducing “t1 ď i ď pu” in (S37) to a set of friendly indices.

First,

P
`

|Np0, 1q| ě z
˘

„
2

?
2πz

e´z
2{2
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„
1
?
π
¨

1
?

log p
exp

!

´
1

2

`

2 log p´ log log p` x
˘

)

„
1
?
π
¨
e´x{2

p
(S38)

as pÑ 8, where for two sequences of real numbers Ap and Hp, the notion

Ap „ Hp means that Ap{Hp Ñ 1 as p Ñ 8. Immediately, a union bound

implies

P
´

max
iPCp

|Zi| ą z
¯

ď |Cp| ¨ P
`

|Np0, 1q| ě z
˘

Ñ 0,

as pÑ 8, where we recall the definition Cp :“ t1 ď i ď p; |Bp,i| ě pκu with

Bp,i “
 

1 ď j ď p; |σij| ě δp
(

. Further denote Dp :“ t1 ď i ď p; |Bp,i| ă

pκu. By assumption, |Dp|{pÑ 1 as pÑ 8. It follows that

P
´

max
iPDp

|Zi| ą z
¯

ď P
´

max
1ďiďp

|Zi| ą z
¯

ď P
´

max
iPDp

|Zi| ą z
¯

` P
´

max
iPCp

|Zi| ą z
¯

.

Therefore, to prove (S37), it is enough to show

lim
pÑ8

P
´

max
iPDp

|Zi| ą z
¯

“ 1´ exp
´

´
1
?
π
e´x{2

¯

, (S39)

as pÑ 8 asymptotically.

Step 2: estimation of P pmaxiPDp |Zi| ą zq via the inclusion-exclusion

formula. Set

αt “
ÿ

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq (S40)
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for 1 ď t ď p, where the sum runs over all i1 P Dp, ¨ ¨ ¨ , it P Dp such that

i1 ă ¨ ¨ ¨ ă it. Then,

2k
ÿ

t“1

p´1qt´1αt ď P
´

max
iPDp

|Zi| ą z
¯

ď

2k`1
ÿ

t“1

p´1qt´1αt (S41)

for any k ě 1. We will prove next that

lim
pÑ8

αt “
1

t!
π´t{2e´tx{2 (S42)

for each t ě 1. Assuming this is true, let pÑ 8 in (S41), we have

2k
ÿ

t“1

p´1qt´1 1

t!

´ 1
?
π
e´x{2

¯t

ď lim inf
pÑ8

P
´

max
iPDp

|Zi| ą z
¯

ď lim sup
pÑ8

P
´

max
iPDp

|Zi| ą z
¯

ď

2k`1
ÿ

t“1

p´1qt´1 1

t!

´ 1
?
π
e´x{2

¯t

for each k ě 1. By letting k Ñ 8 and using the Taylor expansion of

the function fpxq “ 1 ´ e´x, we obtain (S39). It remains to verify (S42).

Evidently, by (S38) and the assumption |Dp|{p Ñ 1, we immediately see

(S42) holds as t “ 1. Now we prove (S42) for any t ě 2.

Recalling Dp :“ t1 ď i ď p; |Bp,i| ă pκu, we write

 

pi1, ¨ ¨ ¨ , itq P pDpq
t; i1 ă ¨ ¨ ¨ ă it

(

“ Ft YGt,

where

Ft :“
 

pi1, ¨ ¨ ¨ , itq P pDpq
t; i1 ă ¨ ¨ ¨ ă it and |σiris | ď δp for all 1 ď r ă s ď tu;

Gt :“
 

pi1, ¨ ¨ ¨ , itq P pDpq
t; i1 ă ¨ ¨ ¨ ă it and |σiris | ą δp for a pair pr, sq with 1 ď r ă s ď t

(

.

(S43)
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Now, think Dp as graph with |Dp| vertices, with |Dp| ď p and |Dp|{pÑ 1 by

assumption. Any two different vertices from Dp, say, i and j are connected

if |σij| ą δp. In this case we also say there is an edge between them. By the

definition Dp, each vertex in the graph has at most pκ neighbors. Replacing

“n”, “q” and “t” in Lemma S1(i) with “|Dp|”, “pκ” and “t”, respectively,

we have that |Gt| ď pt`κ´1 for each 2 ď t ď p. Therefore,
`

|Dp|

t

˘

ě |Ft| ě

`

|Dp|

t

˘

´ pt`κ´1. Since Dp{pÑ 1 and κ “ κp Ñ 0 as pÑ 8, we know

lim
pÑ8

|Ft|

pt
“

1

t!
. (S44)

Decomposing (S40), we see that

αt “
ÿ

pi1,¨¨¨ ,itqPFt

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq `
ÿ

pi1,¨¨¨ ,itqPGt

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq.

From Lemma S2 and (S44) we have

ÿ

pi1,¨¨¨ ,itqPFt

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq Ñ
1

t!

´e´x{2
?
π

¯t

“
1

t!
π´t{2e´tx{2,

as pÑ 8. As a consequence, to derive (S42), we only need to show that

ÿ

pi1,¨¨¨ ,itqPGt

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq Ñ 0 (S45)

as pÑ 8 asymptotically for each t ě 2.

Step 3: the proof of (S45). If t “ 2, the sum of probabilities in (S45)

is bounded by |G2| ¨ max1ďiăjďp P p|Zi| ą z, |Zj| ą zq. By Lemma S1(i),
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|G2| ď pκ`1. Since |σij| ď %, by Lemma S3,

P p|Zi| ą z, |Zj| ą zq ď exp
“

´ p5´ %qz2
{8
‰

ď
plog pqC

pp5´%q{4
(S46)

uniformly for all 1 ď i ă j ď p as p is sufficiently large, where C ą 0 is a

constant not depending on p. We then know (S45) holds. The remaining

job is to prove (S45) for t ě 3.

Take δ “ δp in (S35) for the definition of ℘pAq and compare it with Gt

from (S43). To proceed, we further classify Gt into the following subsets

Gt,j “
 

pi1, ¨ ¨ ¨ , itq P Gt; ℘pti1, ¨ ¨ ¨ , ituq “ j
(

,

for j “ 0, 2, ¨ ¨ ¨ , t´1. By the definition ofGt, we know thatGt “ Yj“0,2,¨¨¨ ,t´1Gt,j.

Since t ě 3 is fixed, to show (S45), it suffices to prove

ÿ

pi1,¨¨¨ ,itqPGt,j

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq Ñ 0 (S47)

for all j P t0, 2, ¨ ¨ ¨ , t´ 1u.

Assume pi1, ¨ ¨ ¨ , itq P Gt,0, which implies |σiris | ą δp for all 1 ď r ă

s ď t by (S35). Hence, the subgraph ti1, ¨ ¨ ¨ , itu Ă Gt is a clique. Taking

n “ |Dp| ď p, t “ t and q “ pκ into Lemma S(1)(ii), we get |Gt,0| ď

p1`κpt´1q ď p1`tκ. Thus, we obtain

(S47) ď p1`tκ
¨ max

1ďiăjďp
P p|Zi| ą z, |Zj| ą zq ď p1`tκ

¨
plog pqC

pp5´%q{4
Ñ 0 (S48)

as pÑ 8 by using (S46). So, (S47) holds with t “ 0.
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Now we assume pi1, ¨ ¨ ¨ , itq P Gt,j with j P t2, ¨ ¨ ¨ , t´1u. By definition,

there exits S Ă ti1, ¨ ¨ ¨ , itu such that maxiPS,jPS,i‰j |σij| ď δp and for each

k P ti1, ¨ ¨ ¨ , ituzS, there exists i P S satisfying |σik| ą δp. Looking at the

last statement we see two possibilities: (i) for each k P ti1, ¨ ¨ ¨ , ituzS, there

exist at leat two indices, say, i P S, j P S with i ‰ j satisfying |σik| ą δp

and |σjk| ą δp; (ii) there exists k P ti1, ¨ ¨ ¨ , ituzS for which |σik| ą δp for

an unique i P S. However, for pi1, ¨ ¨ ¨ , itq P Gt,j, (i) and (ii) could happen

at the same time for different S, say, (i) holds for S1 and (ii) holds for

S2 simultaneously. Thus, to differentiate the two cases, we consider the

following two types of sets. Denote

Ht,j “
 

pi1, ¨ ¨ ¨ , itq P Gt,j; there exist S Ă ti1, ¨ ¨ ¨ , itu with |S| “ j and

max
iPS,jPS,i‰j

|σij| ď δp such that for any k P ti1, ¨ ¨ ¨ , ituzS there exist r P S,

s P S, r ‰ s satisfying mint|σkr|, |σks|u ą δp
(

. (S49)

Replacing “n”, “q” and “t” in Lemma S1(iii) with “|Dp|”, “pκ” and “t”,

respectively, we have that |Ht,j| ď tt ¨ pj´1`pt´j`1qκ for each t ě 3. Analo-

gously, set

H 1
t,j “

 

pi1, ¨ ¨ ¨ , itq P Gt,j; for any S Ă ti1, ¨ ¨ ¨ , itu with |S| “ j and

max
iPS,jPS,i‰j

|σij| ď δp there exists k P ti1, ¨ ¨ ¨ , ituzS such that |σkr| ą δp

for a unique r P Su. (S50)
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From Lemma S1(iv) we see |H 1
t,j| ď tt ¨ pj`pt´jqκ. It is easy to see Gt,j “

Ht,j YH
1
t,j. Therefore, to show (S47), we only need to prove both

ÿ

pi1,¨¨¨ ,itqPHt,j

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq Ñ 0 (S51)

and

ÿ

pi1,¨¨¨ ,itqPH 1t,j

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq Ñ 0 (S52)

as p Ñ 8 for j “ 2, ¨ ¨ ¨ , t ´ 1. In fact, let S be as in (S49), then using

Lemma S2, the probability in (S51) is bounded by P p
Ş

lPSt|Zl| ą zuq ď

C ¨ p´j uniformly for all S as p is sufficiently large, where C is a constant

independent of p. This leads to

ÿ

pi1,¨¨¨ ,itqPHt,j

P p|Zi1 | ą z, ¨ ¨ ¨ , |Zit | ą zq ďtt ¨ pj´1`pt´j`1qκ
¨
`

C ¨ p´j
˘

ď pCttq ¨ p´1`tκ,

as p is sufficiently large. By the assumption that κ “ κp Ñ 0, we arrive at

(S51).

Finally we validate (S52). Recall the definition of H 1
t,j. For pi1, ¨ ¨ ¨ , itq P

H 1
t,j, pick S Ă ti1, ¨ ¨ ¨ , itu with |S| “ j, maxiPS,jPS,i‰j |σij| ď δp and k P

ti1, ¨ ¨ ¨ , ituzS such that δp ă |σkr| ď % for a unique r P S. Then each

probability in (S52) is bounded by

P
´

|Zk| ą z,
č

lPS

t|Zl| ą zu
¯

,
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for 2 ď j ď t´1. Taking m “ j`1 and applying Lemma S3, the probability

above is dominated by

2j`1

z
¨ exp

!

´
z2

2

´

j `
1´ %

4

¯)

“ O
´

plog pqc

pj`p1´%q{4

¯

,

for some constant c. As stated earlier, |H 1
t,j| ď tt ¨pj`pt´jqκ. by union bound,

since κ “ κp Ñ 0, we see the sum from (S52) is of order Opp´p1´%q{8q.

Hence, (S52) holds. We have proved (S47) for any j P t0, 2, ¨ ¨ ¨ , t ´ 1u,

which concludes the proof. ˝

S3.3 Proof of Theorem 3

The proof of Theorem 3 is involved. A preparation with a few of lemmas

is given below.

LEMMA S4. Let A and B be nonnegative definite matrices. Then

tr pABq ď λmaxpAq trpBq.

Proof of Lemma S4. Assume A and B are n ˆ n matrices. There is an

orthogonal matrix O such that A “ OTΛO, where Λ “ diagpλ1, ¨ ¨ ¨ , λnq

and λ1 ě ¨ ¨ ¨ ě λn ě 0. Observe tr pABq “ tr rΛpOBOT qs, tr pOBOT q “

trpBq and λmaxpAq “ λmaxpΛq. Thus, without loss of generality, we assume

A “ Λ. Write B “ pbijq. Then, bii ě 0 for each i and

tr pABq “
n
ÿ

i“1

λibii ď λ1 ¨

n
ÿ

i“1

bii “ λmaxpAq trpBq.



S3. TECHNICAL PROOFS 43

The proof is completed. ˝.

The following is a well-known formula for the conditional distributions

of multivariate normal distributions; see, for example, p. 12 from Muirhead

(1982).

LEMMA S5. Let X „ Npµ,Σq with Σ being invertible. Partition X,µ and

Σ as

X “

¨

˚

˚

˝

X1

X2

˛

‹

‹

‚

, µ “

¨

˚

˚

˝

µ1

µ2

˛

‹

‹

‚

, Σ “

¨

˚

˚

˝

Σ11 Σ12

Σ21 Σ22

˛

‹

‹

‚

(S53)

where X2 „ Npµ2,Σ22q. Set Σ22¨1 “ Σ22 ´ Σ21Σ
´1
11 Σ12. Then X2 ´

Σ21Σ
´1
11 X1 „ Npµ2 ´Σ21Σ

´1
11 µ1,Σ22¨1q and is independent of X1.

LEMMA S6. Let pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Σq. Under the notion of Lemma

S5, for 1 ď d ă p, write X1 “ pZ1, ¨ ¨ ¨ , Zdq
T and X2 “ pZd`1, ¨ ¨ ¨ , Zpq

T .

Define Up “X2´Σ21Σ
´1
11X1 and Vp “ Σ21Σ

´1
11X1. Assume Σ “ pσijqpˆp

with
řp
j“1 σ

2
ij ď Kp for each 1 ď i ď p, where Kp is a constant depending

on p only. Then there exists a constant C ą 0 free of d, p, Σ and Kp, such

that the following holds:

(i) EeθU
T
p Vp ď exppdKpJpθ

2q for all |θ| ď C{λmaxpΣq where Jp “ λmaxpΣq{λminpΣq.

(ii) Eeθ}Vp}
2
ď expr2dKpθ{λminpΣqs for all 0 ď θ ď C{λmaxpΣq.

(iii) E exp
“

θpZ2
1 ` ¨ ¨ ¨ ` Z

2
dq
‰

ď e2dθ for 0 ď θ ď C{d.

Proof of Lemma S6. Set k “ p´ d, so Σ11 is dˆ d, Σ12 is dˆ k and Σ22
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is kˆ k. Let ξ “ pξ1, ¨ ¨ ¨ , ξkq
T and η “ pη1, ¨ ¨ ¨ , ηkq

T , where the 2k random

variables ξi’s and ηi’s are i.i.d. Np0, 1q-distributed. According to Lemma

S5,

Up
d
“ pΣ22¨1q

1{2ξ and Vp
d
“ pΣ21Σ

´1
11 Σ12q

1{2η, (S54)

and they are independent. From (S54) we see that UT
p Vp

d
“ ξT Σ̂pη, where

Σ̂p “ pΣ22¨1q
1{2
¨ pΣ21Σ

´1
11 Σ12q

1{2.

By the singular value decomposition theorem, we write Σ̂p “ O1 diagpλ1, ¨ ¨ ¨ , λkqO2

where λ1, ¨ ¨ ¨ , λk are the singular values of Σ̂p, and O1 and O2 are orthog-

onal matrices. Review the well-known facts that

tr pABq “ tr pBAq and trpCDq ď trpCq ¨ trpDq (S55)

for any matrices A and B and any non-negative definite matrices C and D

(the second fact from (S55) can also be thought as a consequence of Lemma

S4). Note that

Σ22 “ Σ22¨1 `Σ21Σ
´1
11 Σ12 (S56)

and all three matrices are non-negative definite. This together with the

Weyl interlacing inequality implies λmaxpΣ22¨1q ď λmaxpΣ22q ď λmaxpΣq.

Consequently, we have from Lemma S4 that

λ2
1 ` ¨ ¨ ¨ ` λ

2
k “ tr pΣ̂pΣ̂

T
p q “tr

“

Σ22¨1 ¨ pΣ21Σ
´1
11 Σ12q

‰
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ďλmaxpΣ22¨1q ¨ tr pΣ21Σ
´1
11 Σ12q

ďλmaxpΣq ¨ tr pΣ21Σ
´1
11 Σ12q.

Furthermore, by Lemma S4 again,

tr pΣ21Σ
´1
11 Σ12q “ tr pΣ´1

11 Σ12Σ21q ďλmaxpΣ
´1
11 q ¨ trpΣ12Σ21q

“
1

λminpΣ11q
¨ trpΣ12Σ21q ď

dKp

λminpΣq
.

(S57)

In fact in the above we use the assertion λminpΣq ď λminpΣ11q by the Weyl

interlacing inequality and the fact that

trpΣ12Σ21q “

d
ÿ

i“1

p
ÿ

j“d`1

σ2
ij ď dKp

by assumption. Combing the above, we arrive at

λ2
1 ` ¨ ¨ ¨ ` λ

2
k ď pdKpq ¨

λmaxpΣq

λminpΣq
. (S58)

Another fact we will use later on is that

Λ1 :“ maxtλ1, ¨ ¨ ¨ , λku ď λmaxpΣq. (S59)

In fact, recall that } ¨} denotes the spectral norm of a matrix. By definition,

Λ1 “}pΣ22¨1q
1{2
¨ pΣ21Σ

´1
11 Σ12q

1{2
}

ď}Σ22¨1}
1{2
¨ }Σ21Σ

´1
11 Σ12}

1{2. (S60)
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From (S56) we know that both norms in (S60) are bounded by λmaxpΣ22q
1{2 ď

λmaxpΣq
1{2. So (S59) is obtained. With these preparation, we are ready to

prove (i), (ii) and (iii).

(i) Since UT
p Vp “ ξT Σ̂pη and Σ̂p “ O1 diagpλ1, ¨ ¨ ¨ , λkqO2, by the

orthogonal invariant property of Np0, Ikq, we have that

UT
p Vp

d
“

k
ÿ

i“1

λiξiηi. (S61)

Review the moment generating functions of Gaussian variables,

Eeθξ1 “ eθ
2{2 and Eeθξ

2
1 “ p1´ 2θq´1{2, θ ă

1

2
. (S62)

We can write

E exp
`

θUT
p Vp

˘

“

k
ź

i“1

Eeθλiξiηi “
k
ź

i“1

Eepθλiq
2ξ2i {2 “ exp

!

´
1

2

k
ÿ

i“1

logr1´ pθλiq
2
s

)

,

for all |θλi| ă 1 with i “ 1, ¨ ¨ ¨ , k, that is, |θ| ď 1
Λ1

. Notice ´1
2

logp1´ xq „

1
2
x as xÑ 0, Thus, there exists x0 P p0,

1
2
q such that ´1

2
logp1´ xq ď x for

all x P p0, x2
0q. Then

E exp
`

θUT
p Vp

˘

ď exp
´

θ2
k
ÿ

i“1

λ2
i

¯

ď edKpJpθ2 (S63)

for all θ with |θ| ď 1
Λ1
^ x0

Λ1
“ x0

Λ1
by (S58), with Jp “ λmaxpΣq{λminpΣq.

The inequality (S63) is particularly true if |θ| ď x0
λmaxpΣq

by (S59).

(ii) Let ρ1, ¨ ¨ ¨ , ρk be the eigenvalues of Σ21Σ
´1
11 Σ12. From (S56) we have

Λ2 :“ maxtρ1, ¨ ¨ ¨ , ρku ď λmaxpΣ22q ď λmaxpΣq. (S64)
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By (S54) and the orthogonal invariant property of normal distributions

similar to (S61),

}Vp}
2 d
“ ηT

`

Σ21Σ
´1
11 Σ12

˘

η
d
“ ρ1η

2
1 ` ¨ ¨ ¨ ` ρkη

2
k. (S65)

As shown in (S57),

ρ1 ` ¨ ¨ ¨ ` ρk ď
dKp

λminpΣq
. (S66)

By (S62) and (S65), we have

Eeθ}Vp}
2

“ exp
”

´
1

2

d
ÿ

i“1

logp1´ 2θρiq
ı

for all θ ă 1
2Λ2

. Recalling x0 defined earlier, we conclude

Eeθ}Vp}
2

ď e2θpρ1`¨¨¨`ρkq ď exp
´ 2dKpθ

λminpΣq

¯

for all 0 ď θ ă 1
2Λ2

^
x20

2Λ2
“

x20
2Λ2

. By (S64), the above is particularly true

provided 0 ď θ ă
x20

2λmaxpΣq
, which proves the claim.

(iii) By the Hölder inequality and the fact that Zi „ Np0, 1q for each i,

E exp
“

θpZ2
1 ` ¨ ¨ ¨ ` Z

2
dq
‰

ď

”

`

EedθZ
2
1
˘1{d

ıd

“ p1´ 2dθq´1{2

for all θ ă 1{p2dq. For x0 defined earlier, we obtain

E exp
“

θpZ2
1 ` ¨ ¨ ¨ ` Z

2
dq
‰

ď e2dθ

for 0 ď θ ď
x20
2d

as desired. ˝
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LEMMA S7. Assume the same notations and conditions as in Lemma S6.

Denote Θp “ }Vp}
2 ` 2UT

p Vp `
řd
i“1 Z

2
i and υp “ r2trpΣ2qs1{2. Suppose

Assumption (2.3) holds and C is the constant appearing in (2.3). Let d ě 1

and ε ą 0 be given. Then

εp :“
plog pqC

vpλminpΣq
Ñ 0 and t “ tp :“

Cε

8
¨

υp
λmaxpΣq log p

Ñ 8. (S67)

Furthermore,

P p|Θp| ě ευpq ď
3

pt
` exp

´

´
Cε

8d

?
p
¯

for every p satisfying p ě 256d2

ε2
and εp ă

ε
8pC`2qd

.

Proof of Lemma S7. First we give an estimate for υp. Set Kp “ plog pqC ,

where C ą 0 is the constant as given in Assumption (2.3). Evidently,

trpΣ2q “
ř

1ďi,jďp σ
2
ij. Also σii “ 1 and

řp
j“1 σ

2
ij ď Kp for each 1 ď i ď p

by Assumption (2.3). It follows that

a

2p “
´

2
p
ÿ

i“1

σ2
ii

¯1{2

ď υp ď
a

2p ¨ plog pqC (S68)

for p ě 3. Now, for any ε ą 0, union bound gives

P p|Θp| ě ευpq

ďP
´

}Vp}
2
ě

1

4
ευp

¯

` P
´

|UT
p Vp| ě

1

4
ευp

¯

` P
´

n
ÿ

i“1

Z2
i ě

1

4
ευp

¯

. (S69)

Let us bound them one by one. First, by the Markov inequality and Lemma



S3. TECHNICAL PROOFS 49

S6(ii),

P
´

}Vp}
2
ě

1

4
ευp

¯

ď exp
´

´
θε

4
υp

¯

¨ Eeθ}Vp}
2

ď exp
”

´ θ
´ ε

4
υp ´

2dKp

λminpΣq

¯ı

(S70)

for any 0 ď θ ď C{λmaxpΣq where C ą 0 is a constant free of p. By

assumption, Kp ď plog pqC and p´1{2plog pqC ! λminpΣq ď λmaxpΣq !

?
p{ log p. Then,

Kp

λminpΣq
“ opυpq and

υp
λmaxpΣq

" log p, (S71)

due to (S68). Thus, (S67) holds. Choosing θ “ C
λmaxpΣq

, we see from (S70)

that

P
´

}Vp}
2
ě

1

4
ευp

¯

ď exp
”

´
Cε

8λmaxpΣq
υp

ı

“ e´t log p
“

1

pt
(S72)

for all p satisfying ε
8
υp ą

2dKp

λminpΣq
, which is particularly true if

Kp

vpλminpΣq
ď εp ă

ε

8pC ` 2qd
. (S73)

Second,

P
´

|UT
p Vp| ě

1

4
ευp

¯

ď P
´

UT
p Vp ě

1

4
ευp

¯

` P
´

´UT
p Vp ě

1

4
ευp

¯

.

By Lemma S6(i) and a similar argument as (S70), we have

P
´

|UT
p Vp| ě

1

4
ευp

¯

ď 2 ¨ exp
”

θ
´

´
1

4
ευp ` dKpJpθ

¯ı

,
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for all |θ| ď C{λmaxpΣq, where Jp “ λmaxpΣq{λminpΣq. It is trivial to

see from the notation Σ “ pσijqpˆp that λmaxpΣq ě σ11 “ 1. Take θ “

C{λmaxpΣq to obtain

P
´

|UT
p Vp| ě

1

4
ευp

¯

ď2 ¨ exp
” C

λmaxpΣq

´

´
1

4
ευp `

CdKp

λminpΣq

¯ı

ď2 ¨ exp
´

´
Cε

8λmaxpΣq
υp

¯

“
2

pt
(S74)

for all p satisfying (S73). Finally, by the Markov inequality and by taking

θ “ C{d from Lemma S6(iii) we obtain

P
´

d
ÿ

i“1

Z2
i ě

1

4
ευp

¯

ď exp
´

´
Cε

4d
υp ` 2C

¯

ď exp
´

´
Cε

8d

?
p
¯

for every p satisfying 2 ă ε
8d

?
p, or equivalently, p ě 256d2

ε2
. In the last step

above we use the inequality υp ě
?
p from (S68). Combining this with

(S69), (S72) and (S74), we conclude that

P p|Θp| ě ευpq ď
3

pt
` exp

´

´
Cε

8d

?
p
¯

for every p satisfying εp ă
ε

8pC`2qd
from (S73) and p ě 256d2

ε2
. ˝

We now introduce more general indexing. Let pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Σq.

Assume d is an integer with 1 ď d ă p. For any set Λ “ ti1, ¨ ¨ ¨ , idu

with 1 ď i1 ă ¨ ¨ ¨ ă id ď p, write X1,Λ “ pZi1 , ¨ ¨ ¨ , Zidq
T . Let X2,Λ

be the vector obtained with deleting Zi1 , ¨ ¨ ¨ , Zid from pZ1, ¨ ¨ ¨ , Zpq
T , that

is, XΛ,2 “ pZj1 , ¨ ¨ ¨ , Zjp´d
qT where j1 ă ¨ ¨ ¨ ă jp´d and tj1, ¨ ¨ ¨ , jp´du “
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t1, 2, ¨ ¨ ¨ , nuzΛ. Let ΣΛ be the covariance matrix of

XΛ :“

¨

˚

˚

˝

X1,Λ

X2,Λ

˛

‹

‹

‚

.

Partition ΣΛ similar to (S53) such that

ΣΛ “

¨

˚

˚

˝

Σ11,Λ Σ12,Λ

Σ21,Λ Σ22,Λ

˛

‹

‹

‚

.

In particular, X1,Λ „ Np0,Σ11,Λq and X2,Λ „ Np0,Σ22,Λq. We have the

following result.

LEMMA S8. Let X “ pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Σq. Assume d is an integer

with 1 ď d ă p. For any set Λ “ ti1, ¨ ¨ ¨ , idu with 1 ď i1 ă ¨ ¨ ¨ ă id ď p,

we define Up,Λ “ X2,Λ ´Σ21,ΛΣ´1
11,ΛX1,Λ and Vp,Λ “ Σ21,ΛΣ´1

11,ΛX1,Λ. Set

Θp,Λ “ }Vp,Λ}
2` 2UT

p,ΛVp,Λ`
řd
k“1 Z

2
ik

and υp “ r2trpΣ2qs1{2. Then, under

Assumption (2.3), for any ε ą 0 there exists t “ tp Ñ 8 such that

max
Λ

P p|Θp,Λ| ě ευpq ď
1

pt

as p is sufficiently large, where the maximum Λ “ ti1, ¨ ¨ ¨ , idu runs over all

possible indices i1, ¨ ¨ ¨ , id with 1 ď i1 ă ¨ ¨ ¨ ă id ď p.

Proof of Lemma S8. View XΛ as the vector after exchanging some

rows of X. Then there is a permutation matrix O such that XΛ “ OX.

Therefore the covariance matrix of XΛ is ΣΛ “ EpOXpOXqT q “ OΣOT .
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Set υp,Λ “ r2trpΣΛ
2
qs1{2. Then

λmaxpΣΛq “ λmaxpΣq, λminpΣΛq “ λminpΣq and υp,Λ “ υp. (S75)

Second, OΣOT is the matrix by exchanging some rows and then exchanging

the corresponding columns. So the entries of ΣΛ are the same as those of Σ;

the sum of squares of the entries of a row from OΣOT is the same as that

of a row from Σ, and vice versa. Write ΣΛ “ pσij,Λqpˆp. As a consequence,

max
1ďiăjďp

|σij,Λ| “ max
1ďiăjďp

|σij|, and max
1ďiďp

p
ÿ

j“1

σ2
ij,Λ “ max

1ďiďp

p
ÿ

j“1

σ2
ij. (S76)

Notice that in Assumption (2.3), all conditions are imposed on the four

quantities: λmaxpΣq, λminpΣq, max1ďiăjďp |σij| and max1ďiďp

řp
j“1 σ

2
ij. As

a result, by (S75) and (S76), we see that (2.3) still holds if “Σ” is replaced

with “ΣΛ”. Review Lemma S7. Let C be as in (2.3). Let t “ tp be as in

(S67). By this display,

t1 “ t1p :“
Cε

8d
¨min

! υp
λmaxpΣq log p

,

?
p

log p

)

Ñ 8

as pÑ 8. Evidently, t ě t1 and Cε
8d

?
p

log p
ě t1. Thus

3

pt
` exp

´

´
Cε

8d

?
p
¯

ď
4

pt1
ď

1

pt1{2

if pt
1{2 ą 4. Taking p0 ě 3 such that pt

1{2 ą 4, p ě 256d2

ε2
and εp ă

ε
8pC`2qd

for all p ě p0 and applying Lemma S7, we know that

P p|Θp| ě ευpq ď
1

pt1{2
, (S77)
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as p ě p0. Note that in the proof of (S77), although the conclusion is on Σ,

only five quantities of Σ in (S75) and (S76) are required, and they are the

same if “Σ” is replaced by “ΣΛ” for different Λ. Consequently, we induce

from (S77) that

P p|Θp,Λ| ě ευpq ď
1

pt1{2
.

for any p ě p0 and any Λ “ ti1, ¨ ¨ ¨ , idu with 1 ď i1 ă ¨ ¨ ¨ ă id ď p. The

desired conclusion then follows by writing t1{2 back to t. ˝

LEMMA S9. Assume pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Σq with Σ satisfying (2.3). Set

Sp “ Z2
1 ` ¨ ¨ ¨ `Z

2
p and υp “ r2trpΣ2qs1{2. For any x P R and y P R, define

Ap “ t
Sp´p

υp
ď xu and lp “ p2 log p ´ log log p ` yq1{2 and Bi “ t|Zi| ą lpu.

Then, for each d ě 1,

ÿ

1ďi1ă¨¨¨ăidďp

ˇ

ˇP pApBi1 ¨ ¨ ¨Bidq ´ P pApq ¨ P pBi1 ¨ ¨ ¨Bidq
ˇ

ˇÑ 0

as pÑ 8.

Proof of Lemma S9. We prove the lemma in two steps.

Step 1: appealing independence from normal distributions. Note that

pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Σq. Take X1 “ pZ1, ¨ ¨ ¨ , Zdq

T and X2 “ pZd`1, ¨ ¨ ¨ , Zpq
T .

Recall the notation in Lemma S5, which allows us to write

X2 “ Up `Vp,
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where Up “ X2 ´ Σ21Σ
´1
11 X1 „ Np0,Σ22¨1q and Vp “ Σ21Σ

´1
11 X1 „

Np0,Σ21Σ
´1
11 Σ12q. Lemma S5 says that

Up and tZ1, ¨ ¨ ¨ , Zdu are independent. (S78)

Further denote

Sp “ }X1}
2
` }X2}

2
“ }Up}

2
` }Vp}

2
` 2UT

p Vp `

d
ÿ

i“1

Z2
i .

We will show the last three terms on the right hand side are negligible.

Recall

Θp “ }Vp}
2
` 2UT

p Vp `

d
ÿ

i“1

Z2
i

as defined in Lemma S7. By Lemma S8 with XΛ “ X, for any d ě 1 and

ε ą 0, there exists t “ tp ą 0 with limpÑ8 tp “ 8 and integer p0 ě 1, such

that

P p|Θp| ě ευpq ď
1

pt
(S79)

as p ě p0. Now for clarity we re-write the definition of Ap as

Appxq “
! 1

υp
pSp ´ pq ď x

)

, x P R,

for p ě 1. Since Sp “ }Up}
2 `Θp, we see that

P pAppxqB1 ¨ ¨ ¨Bdq ďP
´

AppxqB1 ¨ ¨ ¨Bd,
|Θp|

υp
ă ε

¯

`
1

pt

ďP
´ 1

υp
p}Up}

2
´ pq ď x` ε, B1 ¨ ¨ ¨Bd

¯

`
1

pt
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“P
´ 1

υp
p}Up}

2
´ pq ď x` ε

¯

¨ P
`

B1 ¨ ¨ ¨Bd

˘

`
1

pt
,

by the independence stated in (S78). Regarding the first probability, we

have

P
´ 1

υp
p}Up}

2
´ pq ď x` ε

¯

ďP
´ 1

υp
p}Up}

2
´ pq ď x` ε,

|Θp|

υp
ă ε

¯

`
1

pt

ďP
´ 1

υp
p}Up}

2
`Θp ´ pq ď x` 2ε

¯

`
1

pt

ďP
`

Appx` 2εq
˘

`
1

pt
.

Combine the two inequalities to get

P pAppxqB1 ¨ ¨ ¨Bdq ď P
`

Appx` 2εq
˘

¨ P
`

B1 ¨ ¨ ¨Bd

˘

`
2

pt
. (S80)

Similarly,

P
´ 1

υp
p}Up}

2
´ pq ď x´ ε, B1 ¨ ¨ ¨Bd

¯

ďP
´ 1

υp
p}Up}

2
´ pq ď x´ ε, B1 ¨ ¨ ¨Bd,

|Θp|

υp
ă ε

¯

`
1

pt

ďP
´ 1

υp
pSp ´ pq ď x, B1 ¨ ¨ ¨Bd

¯

`
1

pt
.

By the independence from (S78),

P pAppxqB1 ¨ ¨ ¨Bdq ě P
´ 1

υp
p}Up}

2
´ pq ď x´ ε

¯

¨ P pB1 ¨ ¨ ¨Bdq ´
1

pt
.

Furthermore,

P
´ 1

υp
pSp ´ pq ď x´ 2ε

¯

ďP
´ 1

υp
pSp ´ pq ď x´ 2ε,

|Θp|

υp
ă ε

¯

`
1

pt



56 LONG FENG, TIEFENG JIANG, XIAOYUN LI AND BINGHUI LIU

ďP
´ 1

υp
p}Up}

2
´ pq ď x´ ε

¯

`
1

pt

where the fact Sp “ }Up}
2 ` Θp is used again. Combining the above two

inequalities we get

P pAppxqB1 ¨ ¨ ¨Bdq ě P pAppx´ 2εqq ¨ P pB1 ¨ ¨ ¨Bdq ´
2

pt
.

This together with (S80) implies that

ˇ

ˇP pAppxqB1 ¨ ¨ ¨Bdq ´ P pAppxqq ¨ P pB1 ¨ ¨ ¨Bdq
ˇ

ˇ

ď∆p,ε ¨ P pB1 ¨ ¨ ¨Bdq `
2

pt
(S81)

as p ě p0, where

∆p,ε :“|P pAppxqq ´ P pAppx` 2εqq| ` |P pAppxqq ´ P pAppx´ 2εqq|

“P pAppx` 2εqq ´ P pAppx´ 2εqq,

since P pAppxqq is increasing in x P R. An important observation is that

the derivation of (S81) is based on three key facts: inequality (S79), the

identity Sp “ }Up}
2`Θp and the fact Up and tZ1, ¨ ¨ ¨ , Zdu are independent

from (S78).

Recall the notations in Lemma S8. For any 1 ď i1 ă i2 ă ¨ ¨ ¨ ă id ď p,

denote Λ “ ti1, ¨ ¨ ¨ , idu. Then, X2,Λ “ Up,Λ `Vp,Λ. By Lemma S5, Up,Λ

and tZi1 , ¨ ¨ ¨ , Zidu are independent. In addition,

Sp “}X1,Λ}
2
` }X2,Λ}

2
“ }Up,Λ}

2
` }Vp,Λ}

2
` 2UT

p,ΛVp,Λ `

d
ÿ

k“1

Z2
ik

;
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Θp,Λ “}Vp,Λ}
2
` 2UT

p,ΛVp,Λ `

d
ÿ

k“1

Z2
ik
.

Hence, we can write Sp “ }Up,Λ}
2 `Θp,Λ. Based on Lemma S8,

max
Λ

P p|Θp,Λ| ě ευpq ď
1

pt

when p ě p0. Consequently, the three key facts aforementioned also hold for

the corresponding quantities related to Λ. Thus, similar to the derivation

of (S81), we have

ˇ

ˇP pAppxqBi1 ¨ ¨ ¨Bidq ´ P pAppxqq ¨ P pBi1 ¨ ¨ ¨Bidq
ˇ

ˇ

ď∆p,ε ¨ P pBi1 ¨ ¨ ¨Bidq `
2

pt
,

as p ě p0. Taking the summation we get

ζpp, dq :“
ÿ

1ďi1ă¨¨¨ăidďp

ˇ

ˇP pAppxqBi1 ¨ ¨ ¨Bidq ´ P pAppxqq ¨ P pBi1 ¨ ¨ ¨Bidq
ˇ

ˇ

ď
ÿ

1ďi1ă¨¨¨ăidďp

”

∆p,ε ¨ P pBi1 ¨ ¨ ¨Bidq `
2

pt

ı

ď∆p,ε ¨Hpd, pq `

ˆ

p

d

˙

¨
2

pt
, (S82)

where we denote

Hpd, pq :“
ÿ

1ďi1ă¨¨¨ăidďp

P pBi1 ¨ ¨ ¨Bidq.

In the following we will show limεÓ0 lim suppÑ8 ∆p,ε “ 0 and lim suppÑ8Hpd, pq ă

8 for each d ě 1. Assuming these are true, by using
`

p
d

˘

ď pd and (S82),
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for fixed d ě 1, by sending p Ñ 8 first and then sending ε Ó 0, we obtain

limpÑ8 ζpp, dq “ 0 for each d ě 1. The proof is then completed.

Step 2: the proofs of “ limεÓ0 lim suppÑ8 ∆p,ε “ 0” and “ lim suppÑ8Hpd, pq ă

8 for each d ě 1”. First, as discussed below (2.3), Assumption (2.3) implies

Assumption (2.1). Thus, Theorem 1 holds and we have as pÑ 8,

Sp ´ p

υp
Ñ Np0, 1q weakly, (S83)

and hence

∆p,ε Ñ Φpx` 2εq ´ Φpx´ 2εq, (S84)

as pÑ 8, where Φpxq “ 1?
2π

şx

´8
e´t

2{2 dt. This implies that limεÓ0 lim suppÑ8 ∆p,ε “

0.

Second, take δp “ 1{plog pq2. Recall Bp,i “ t1 ď j ď p; |σij| ě δpu

for 1 ď i ď p defined in Theorem 2. By Assumption (2.3), we know

max1ďiďp

řp
j“1 σ

2
ij ď plog pqC for all p ě 1. Then

|Bp,i| ¨
1

plog pq2
ď

p
ÿ

j“1

σ2
ij ď plog pqC

for each i “ 1, ¨ ¨ ¨ , p. This implies that max1ďiďp |Bp,i| ď plog pqC`2. Take

κ “ κp “ pC`3qplog log pq{ log p for p ě ee. Then, κp Ñ 0 and plog pqC`2 ă

pκ, which gives

Cp :“ t1 ď i ď p; |Bp,i| ě pκu “ H. (S85)
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Hence, Dp :“ t1 ď i ď p; |Bp,i| ă pκu “ t1, 2, ¨ ¨ ¨ , pu. Recall (S36), (S40)

and (S42). By noting that “Hpt, pq” here is exactly “αt” there for each

t ě 1, we know

lim
pÑ8

Hpd, pq “
1

d!
π´d{2e´dx{2, (S86)

for each d ě 1. The proof is finished. ˝

We are now in the position to prove Theorem 3.

Proof of Theorem 3. Again, since Assumption (2.3) implies Assumption

(2.1) and Assumption (2.2), we know that Theorem 1 and Theorem 2 hold.

Set υp “ r2trpΣ2qs1{2. By Theorem 1,

P
´Sp ´ p

υp
ď x

¯

“ Φpxq (S87)

as pÑ 8 for any x P R, where Φpxq “ 1?
2π

şx

´8
e´t

2{2 dt. From Theorem 2,

we have

P
`

max
1ďiďp

 

Z2
i

(

´ 2 log p` log log p ď y
˘

Ñ F pyq “ exp
!

´
1
?
π
e´y{2

)

(S88)

as pÑ 8 for any y P R. To show asymptotic independence, it is enough to

prove

lim
pÑ8

P
´Sp ´ p

υp
ď x, max

1ďiďp
Z2
i ´ 2 log p` log log p ď y

¯

“ Φpxq ¨ F pyq

for any x P R and y P R. Define

Lp “ max
1ďiďp

|Zi| and lp “ p2 log p´ log log p` yq1{2, (S89)
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where the latter one makes sense for sufficiently large p. Due to (S87), the

above condition we want to prove is equivalent to

lim
pÑ8

P
´Sp ´ p

υp
ď x, Lp ą lp

¯

“ Φpxq ¨ r1´ F pyqs, (S90)

for any x P R and y P R. Recalling the notation in Lemma S9, we have

Ap “
!Sp ´ p

υp
ď x

)

and Bi “
 

|Zi| ą lp
(

(S91)

for 1 ď i ď p. We can then write

P
´ 1

υp
pSp ´ pq ď x, Lp ą lp

¯

“ P
´

p
ď

i“1

ApBi

¯

. (S92)

Here the notation ApBi stands for Ap X Bi. From the inclusion-exclusion

principle,

P
´

p
ď

i“1

ApBi

¯

ď
ÿ

1ďi1ďp

P pApBi1q ´
ÿ

1ďi1ăi2ďp

P pApBi1Bi2q

` ¨ ¨ ¨ `
ÿ

1ďi1ă¨¨¨ăi2k`1ďp

P pApBi1 ¨ ¨ ¨Bi2k`1
q, (S93)

and

P
´

p
ď

i“1

ApBi

¯

ě
ÿ

1ďi1ďp

P pApBi1q ´
ÿ

1ďi1ăi2ďp

P pApBi1Bi2q

` ¨ ¨ ¨ ´
ÿ

1ďi1ă¨¨¨ăi2kďp

P pApBi1 ¨ ¨ ¨Bi2kq (S94)

for any integer k ě 1. As in the proof of Lemma S9, define

Hpp, dq “
ÿ

1ďi1ă¨¨¨ăidďp

P pBi1 ¨ ¨ ¨Bidq
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for d ě 1. From (S86) we know

lim
dÑ8

lim sup
pÑ8

Hpp, dq “ 0. (S95)

Denote

ζpp, dq “
ÿ

1ďi1ă¨¨¨ăidďp

“

P pApBi1 ¨ ¨ ¨Bidq ´ P pApq ¨ P pBi1 ¨ ¨ ¨Bidq
‰

By Lemma S9, we have

lim
pÑ8

ζpp, dq “ 0 (S96)

for each d ě 1. The assertion (S93) implies that

P
´

p
ď

i“1

ApBi

¯

ďP pApq
”

ÿ

1ďi1ďp

P pBi1q ´
ÿ

1ďi1ăi2ďp

P pBi1Bi2q ` ¨ ¨ ¨ ´

ÿ

1ďi1ă¨¨¨ăi2kďp

P pBi1 ¨ ¨ ¨Bi2kq

ı

`

”

2k
ÿ

d“1

ζpp, dq
ı

`Hpp, 2k ` 1q

ďP pApq ¨ P
´

p
ď

i“1

Bi

¯

`

”

2k
ÿ

d“1

ζpp, dq
ı

`Hpp, 2k ` 1q, (S97)

where the inclusion-exclusion formula is used again in the last inequality,

that is,

P
´

p
ď

i“1

Bi

¯

ě
ÿ

1ďi1ďp

P pBi1q ´
ÿ

1ďi1ăi2ďp

P pBi1Bi2q ` ¨ ¨ ¨ ´
ÿ

1ďi1ă¨¨¨ăi2kďp

P pBi1 ¨ ¨ ¨Bi2kq,

for all k ě 1. By the definition of lp and (S88),

P
´

p
ď

i“1

Bi

¯

“ P
`

Lp ą lp
˘

“ P
`

L2
p ´ 2 log p` log log p ą y

˘

Ñ 1´ F pyq
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as p Ñ 8. By (S87), P pApq Ñ Φpxq as p Ñ 8. From (S92), (S96) and

(S97), by fixing k first and sending pÑ 8 we obtain that

lim sup
pÑ8

P
´ 1

υp
pSp ´ pq ď x, Lp ą lp

¯

ď Φpxq ¨ r1´ F pyqs ` lim
pÑ8

Hpp, 2k ` 1q.

Now, by letting k Ñ 8 and using (S95), we have

lim sup
pÑ8

P
´ 1

υp
pSp ´ pq ď x, Lp ą lp

¯

ď Φpxq ¨ r1´ F pyqs. (S98)

We next prove the lower bound in a similar way. By applying the same

argument to (S94), we see that the counterpart of (S97) becomes

P
´

p
ď

i“1

ApBi

¯

ěP pApq
”

ÿ

1ďi1ďp

P pBi1q ´
ÿ

1ďi1ăi2ďp

P pBi1Bi2q ` ¨ ¨ ¨ `

ÿ

1ďi1ă¨¨¨ăi2k´1ďp

P pBi1 ¨ ¨ ¨Bi2k´1
q

ı

`

”

2k´1
ÿ

d“1

ζpp, dq
ı

´Hpp, 2kq

ěP pApq ¨ P
´

p
ď

i“1

Bi

¯

`

”

2k´1
ÿ

d“1

ζpp, dq
ı

´Hpp, 2kq,

where in the last step we use the inclusion-exclusion principle such that

P
´

p
ď

i“1

Bi

¯

ď
ÿ

1ďi1ďp

P pBi1q ´
ÿ

1ďi1ăi2ďp

P pBi1Bi2q ` ¨ ¨ ¨ `
ÿ

1ďi1ă¨¨¨ăi2k´1ďp

P pBi1 ¨ ¨ ¨Bi2k´1
q

for all k ě 1. Review (S92) and repeat the earlier procedure to see

lim inf
pÑ8

P
´ 1

υp
pSp ´ pq ď x, Lp ą lp

¯

ě Φpxq ¨ r1´ F pyqs

with p Ñ 8 and k Ñ 8, which, together with (S98), yields (S90). The

proof is now complete. l
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S3.4 Proof of Theorem 4 and Theorem S1

LEMMA S10. Let tpU,Up, Ũpq P R3; p ě 1u and tpV, Vp, Ṽpq P R3; p ě 1u be

two sequences of random variables with Up Ñ U and Vp Ñ V in distribution

as pÑ 8. Assume U and V are continuous random variables and

Ũp “ Up ` opp1q and Ṽp “ Vp ` opp1q. (S99)

If Up and Vp are asymptotically independent, then Ũp and Ṽp are also asymp-

totically independent.

Proof of Lemma S10. Define

Ωp,ε “

!
ˇ

ˇ

ˇ
Up ´ Ũp

ˇ

ˇ

ˇ
ď ε,

ˇ

ˇ

ˇ
Vp ´ Ṽp

ˇ

ˇ

ˇ
ď ε

)

for any p ě 1 and ε ą 0. By (S99),

lim
pÑ8

P pΩp,εq “ 1 (S100)

for any ε ą 0. Fix x P R and y P R. We note that

P
´

Ũp ď x, Ṽp ď y
¯

ďP
´

Ũp ď x, Ṽp ď y, Ωp,ε

¯

` P pΩc
p,εq

ďP
´

Up ď x` ε, Vp ď y ` ε
¯

` P pΩc
p,εq. (S101)

By the assumption on the asymptotic independence,

lim
pÑ8

P pUp ď s, Vp ď tq “ P pU ď sq ¨ P pV ď tq (S102)
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for any s P R and t P R. By letting p Ñ 8 and then ε Ó 0 in (S101), since

U and V are continuous, we deduce from (S100) and (S102) that

lim sup
pÑ8

P
´

Ũp ď x, Ṽp ď y
¯

ď P pU ď xq ¨ P pV ď yq. (S103)

By switching the roles of “Up Ñ U and Vp Ñ V ” and “Ũp and Ṽp”in (S101),

we have

P
´

Up ď x, Vp ď y
¯

ďP
´

Ũp ď x` ε, Ṽp ď y ` ε
¯

` P pΩc
p,εq

for any x P R, y P R and ε ą 0. Or, equivalently,

P
´

Ũp ď x, Ṽp ď y
¯

ě P
´

Up ď x´ ε, Vp ď y ´ ε
¯

´ P pΩc
p,εq.

Similar to the derivation of (S103), we get

lim inf
pÑ8

P
´

Ũp ď x, Ṽp ď y
¯

ě P pU ď xq ¨ P pV ď yq.

This and (S103) lead to

lim
pÑ8

P pŨp ď x, Ṽp ď yq “ P pU ď xq ¨ P pV ď yq,

which shows the asymptotic independence between Ũp and Ṽp as claimed.

˝

Proof of Theorem 4. By Theorem 3.1 in Srivastava (2009), we get claim

(i). We next prove claim (ii).

Recall X1, ¨ ¨ ¨ ,Xn are i.i.d. Npµ,Σq-distributed random vectors and

X̄ “ 1
n

řn
i“1 Xi “ pX̄1, ¨ ¨ ¨ , X̄pq

T . Note that
?
nX̄ „ Np0,Σq under the
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null hypothesis in (3.1). Write Σ “ pσijqpˆp, and let R “ D´1{2ΣD´1{2 “

pρijq1ďi,jďp denote the population correlation matrix, where D is the di-

agonal matrix of Σ. Then Zi :“
?
nX̄i{

?
σii „ Np0, 1q for each 1 ď

i ď p and CovpZi, Zjq “ σij{
?
σiiσjj “ ρij for i ‰ j. In other words,

pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Rq. By assumption, (2.2) holds with “Σ” replaced

by “R”. Set T̃
p1q
max “ max1ďiďp Z

2
i . Since Assumption (2.3) is stronger than

Assumption (2.2), by Theorem 2 and Assumption (2.2), it holds that

T̃ p1qmax ´ 2 log p` log log p “ max
1ďiďp

Z2
i ´ 2 log p` log log p converges

weakly to a distribution with cdf F pxq “ exp
 

´ e´x{2{
?
π
(

, x P R.

(S104)

Observe that the distribution of pZ1, ¨ ¨ ¨ , Zpq
T „ Np0,Rq is free of n, hence

the above limit holds for any n “ np. Now, to prove (ii), we only need to

show that T
p1q
max ´ T̃

p1q
max “ opp1q. Indeed, we have

|T p1qmax ´ T̃
p1q
max| “

ˇ

ˇ

ˇ
n max

1ďiďp
σ̂´2
ii X̄

2
i ´ n max

1ďiďp
σ´1
ii X̄

2
i

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
n max

1ďiďp
σ´1
ii X̄

2
i

ˇ

ˇ

ˇ
¨ max

1ďiďp
|σiiσ̂

´2
ii ´ 1|

“

´

max
1ďiďp

|Zi|
¯2

¨ max
1ďiďp

|σiiσ̂
´2
ii ´ 1|. (S105)

First, use the inequality P pNp0, 1q ě xq ď e´x
2{2 for x ą 0 to see

P
`

max
1ďiďp

|Zi| ě 2
a

log p
˘

ď p ¨ P p|Np0, 1q| ě 2
a

log pq ď
2

p
.
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Thus,

pmax
1ďiďp

|Zi|q
2
“ Opplog pq. (S106)

Based on the explanation below (3.5), we have

σ´1
ii σ̂

2
ii „

1

n
χ2
pn´ 1q (S107)

for each i. Set ap “ α
a

n´1 log p with the constant α to be determined.

Then

P
`

max
1ďiďp

|σiiσ̂
´2
ii ´ 1| ě ap

˘

ďp ¨ P
´
ˇ

ˇ

ˇ

n

χ2pn´ 1q
´ 1

ˇ

ˇ

ˇ
ě ap

¯

ďp ¨ P
´

|χ2
pn´ 1q ´ n| ě

nap
2

¯

` p ¨ P
´

χ2
pn´ 1q ă

1

2
n
¯

by considering χ2pn ´ 1q ă 1
2
n or not. Recall the Chernoff bound and the

moderate deviation for sum of i.i.d. random variables (see, for example,

p.31 and p.109 from Dembo and Zeitouni (1998)). There exists a constant

C ą 0 such that P pχ2pn´ 1q ă 1
2
nq ď e´Cn for all n ě 1 and

P
´

|χ2
pn´ 1q ´ n| ě

nap
2

¯

ď P
´
ˇ

ˇ

ˇ

χ2pmq ´m
?
m log p

ˇ

ˇ

ˇ
ě
α

3

¯

ď exp
´

´
1

3
¨
α2

9
log p

¯

(S108)

as p is sufficiently large, where m :“ n´ 1 and the fact log p “ opnq is used

in the last step. Choose α “ 8 to bound the above probability by Opp´2q.

It follows that

P
`

max
1ďiďp

|σiiσ̂
´2
ii ´ 1| ě ap

˘

“ p ¨Opp´2
q ` elog p´Cn

Ñ 0,
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as pÑ 8. This says

max
1ďiďp

|σiiσ̂
´2
ii ´ 1| “ opp

a

n´1 log pq. (S109)

This together with (S105) and (S106) implies T
p1q
max´T̃

p1q
max “ opppn

´1 log3 pq1{2q Ñ

0 as long as log p “ opn1{3q. This confirms T
p1q
max ´ T̃

p1q
max “ opp1q, and the

proof of part (ii) is completed by using (S104).

Finally we prove part (iii). According to the proof of Theorem 3.1 in

Srivastava (2009) or the proof of Theorem 1 in Jiang and Li (2021), we have

T p1qsum “ T̃ p1qsum ` opp1q “
nX̄TD´1X̄ ´ p

a

2trpR2q
` opp1q. (S110)

Also, using an conclusion from the proof of (ii) above,

T p1qmax “ T̃ p1qmax ` opp1q “ max
1ďiďp

?
nX̄i
?
σii

` opp1q. (S111)

Since
?
npX̄1, ¨ ¨ ¨ , X̄pq

T “
?
nX̄T „ Np0,Σq, then

?
nD´1{2X̄ „ Np0,Rq

by using the notation R “ D´1{2ΣD´1{2. Recall an earlier notation Zi “

?
nX̄i{

?
σii „ Np0, 1q for each 1 ď i ď p. Obviously, pZ1, ¨ ¨ ¨ , Zpq

T “

?
nD´1{2X̄ „ Np0,Rq. We are able to rewrite (S110) and (S111) in terms

of Z’s as

T p1qsum “
Z2

1 ` ¨ ¨ ¨ ` Z
2
p ´ p

a

2trpR2q
` opp1q and T p1qmax “ max

1ďiďp
Z2
i ` opp1q.

As aforementioned, Assumption (2.3) is stronger than Assumption (2.2).

We then conclude (iii) by Theorem 3, Lemma S10 and the fact pZ1, ¨ ¨ ¨ , Zpq
T „

Np0,Rq. ˝
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Verification of β
p1q
M pµ, αq « α. Recall the simplified assumption that Σ “

pσijqpˆp “ Ip, ξ P p1{2, 5{6s and δ “ Opn´ξq. In this case, n1´2ξ Ñ 0. We

also assume that log p “ opnξ´
1
2 q. Because of the condition ξ P p1{2, 5{6s,

we know log p “ opn1{3q. As a consequence, the requirement on p vs n

imposed in Theorem 4(ii) is satisfied. Notice β
p1q
M pµ, αq is equal to

P
`

T p1qmax ´ 2 log p` 2 log log p ą qα
˘

“P

ˆ

n max
1ďiďp

X̄2
i

σ̂2
ii

´ 2 log p` 2 log log p ą qα

˙

“P

ˆ

n max
1ďiďp

pX̄i ´ δq
2 ` δ2 ` 2δpX̄i ´ δq

σ̂2
ii

´ 2 log p` 2 log log p ą qα

˙

ďP

ˆ

n max
1ďiďp

pX̄i ´ δq
2

σ̂2
ii

` n max
1ďiďp

δ2

σ̂2
ii

` n max
1ďiďp

2δ|X̄i ´ δ|

σ̂2
ii

´ 2 log p` 2 log log p ą qα

˙

.

Since σii “ 1 by assumption, we have from (S109) that max1ďiďp |σ̂
´2
ii ´

σ´1
ii | “ Opp

a

n´1 log pq. In particular, we have from the triangle inequality

that

max
1ďiďp

σ̂´1
ii ď 1` max

1ďiďp

|σ̂´2
ii ´ 1|

σ̂´1
ii ` 1

ď 1` max
1ďiďp

|σ̂´2
ii ´ 1| “ 1`Opp

a

n´1 log pq.

(S112)

From the fact max1ďiďp |σ̂
´2
ii ´ σ

´1
ii | “ Opp

a

n´1 log pq, we see

n max
1ďiďp

δ2

σ̂2
ii

ď n max
1ďiďp

δ2

σii
` n max

1ďiďp
δ2
ˇ

ˇσ̂´2
ii ´ σ

´1
ii

ˇ

ˇ

“ Oppn
1´2ξ

q `Oppn
1´2ξ

a

n´1 log pq “ Oppn
1´2ξ

q.

According to Theorem 4(ii), we have max1ďiďp
|X̄i´δ|
σ̂ii

“ Opp
a

plog pq{nq.
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This and (S112) conclude that

n max
1ďiďp

2δ|X̄i ´ δ|

σ̂2
ii

“ Op

`

n
1
2
´ξ
a

log p
˘

.

Thus,

β
p1q
M pµ, αq

ďP

ˆ

n max
1ďiďp

pX̄i ´ δq
2

σ̂2
ii

`Oppn
1´2ξ

q `Oppn
1
2
´ξ log pq ´ 2 log p` 2 log logppq ą qα

˙

ďP

ˆ

n max
1ďiďp

pX̄i ´ δq
2

σ̂2
ii

` opp1q ´ 2 log p` 2 log logppq ą qα

˙

which goes to α. The verification is completed. ˝

Proof of Theorem S1. The proof shares same spirit as Theorem 4.

Denote n “ n1 ` n2. According to Section 5 in Srivastava and Du (2008)

or Theorem 2 in Jiang and Li (2021), (i) holds. We prove (ii) next.

Under the normality assumption and the null hypothesis in (S1), we

have X̄1´X̄2 „ Np0, n1`n2

n1n2
Σq. Let D “ diagpσ11, ¨ ¨ ¨ , σppq be the diagonal

matrix of Σ. Recall R “ D´1{2ΣD´1{2. Then

pZ1, ¨ ¨ ¨ , Zpq
T :“

´ n1n2

n1 ` n2

¯1{2

D´1{2
pX̄1 ´ X̄2q „ Np0,Rq. (S113)

According to Section 5 and the proof of Theorem 2.1 in Srivastava and Du

(2008) or the proof of Theorem 2 in Jiang and Li (2021), we have

T p2qsum “

n1n2

n1`n2
pX̄1 ´ X̄2q

TD´1pX̄1 ´ X̄2q ´ p
a

2trpR2q
` opp1q

“
Z2

1 ` ¨ ¨ ¨ ` Z
2
p

a

2trpR2q
` opp1q. (S114)
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Let X̄ji be the ith coordinate of X̄j P Rp for j “ 1, 2 and 1 ď i ď p. Then

´ n1n2

n1 ` n2

¯1{2´X̄11 ´ X̄21
?
σ11

, ¨ ¨ ¨ ,
X̄1p ´ X̄2p
?
σpp

¯T

“ pZ1, ¨ ¨ ¨ , Zpq
T .

Recall

T p2qmax “
n1n2

n1 ` n2

max
1ďiďp

pX̄1i ´ X̄2iq
2

σ̂2
ii

,

where σ̂2
ii is the ith diagonal element of Ŝ in (S3). Set

T̃ p2qmax “
n1n2

n1 ` n2

max
1ďiďp

pX̄1i ´ X̄2iq
2

σii
.

Then T̃
p2q
max “ max1ďiďp Z

2
i . Recalling the discussion below (2.3), Assump-

tion (2.3) is stronger than Assumption (2.2). By Theorem 2 and Assump-

tion (2.2), we obtain

T̃ p2qmax ´ 2 log p` log log p “ max
1ďiďp

Z2
i ´ 2 log p` log log p converges

weakly to a distribution with cdf F pxq “ exp
 

´ e´x{2{
?
π
(

, x P R.

(S115)

Thus, to prove (ii), it suffices to show that T
p2q
max ´ T̃

p2q
max “ opp1q. By (S3),

pn1 ` n2qŜ follows a Wishart distribution with parameter n1 ` n2 ´ 2 and

covariance matrix Σ. Since σ̂2
ii is the ith diagonal element of Ŝ, we know

pn1 ` n2qσ̂
2
ii „ σiiχ

2pn1 ` n2 ´ 2q, or equivalently,

σ̂2
iiσ

´1
ii „

χ2pn1 ` n2 ´ 2q

n1 ` n2



S3. TECHNICAL PROOFS 71

for each 1 ď i ď p. By the same argument as between (S107) and (S109), we

have from the above assertion that max1ďiďp |σ̂
´2
ii σii´1| “ Opp

a

n´1 log pq.

Notice (S115) implies T̃
p2q
max “ Oplog pq. By the triangle inequality of

the maximum and the trivial inequality max1ďiďp |aibi| ď max1ďiďp |ai| ¨

max1ďiďp |bi| for any taiu and tbiu, we get

|T p2qmax ´ T̃
p2q
max| “

ˇ

ˇ

ˇ

ˇ

n1n2

n1 ` n2

max
1ďiďp

σ̂´2
ii pX̄1i ´ X̄2iq

2
´

n1n2

n1 ` n2

max
1ďiďp

σ´1
ii pX̄1i ´ X̄2iq

2

ˇ

ˇ

ˇ

ˇ

ď|T̃ p2qmax| ¨ max
1ďiďp

|σ̂´2
ii σii ´ 1|

“O
`

n´1{2
plog pq3{2

˘

Ñ 0. (S116)

Consequently, (ii) follows from (S115) under the assumption log p “ opn1{3q.

Now we prove (iii). Recall (S114). By (S116), we see

T̃ p2qmax ´ 2 log p` log log p “ max
1ďiďp

Z2
i ´ 2 log p` log log p` opp1q.

As discussed earlier, Assumption (2.3) is stronger than Assumption (2.2).

Then, under Assumption (2.3) with “Σ” replaced by “R”, we conclude (iii)

from Theorem 3, (S113) and Lemma S10. l

S3.5 Proof of Theorem S2

To prove Theorem S2, we need a preparation. In fact, an asymptotic ratio-

consistent estimator of tr
`

Σ2
b|a

˘

will be derived (the notation of “Σb|a” is

given in (S118)). It is stated in Proposition S1. We will develop a series of
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auxiliary results for this purpose.

Review the setting in Section S2. In what follows, we assume the inte-

gers n, p and q satisfy 1 ď q ă p and q ă n.

LEMMA S11. Let X1, ¨ ¨ ¨ ,Xn be i.i.d. from the p-dimensional distribution

Np0,Σq. Write

Xi “

¨

˚

˚

˝

Xia

Xib

˛

‹

‹

‚

and Σ “

¨

˚

˚

˝

Σaa Σab

Σba Σbb

˛

‹

‹

‚

for each i “ 1, ¨ ¨ ¨ , n, where Xia is a q-dimensional vector with distribution

Np0,Σaaq. Then Σbb¨a :“ Σbb ´ΣbaΣ
´1
aa Σab is a pp ´ qq ˆ pp ´ qq matrix.

Recall Σ̂b|a in (S10). We then have

Σ̂b|a
d
“

1

n
Σ

1{2
bb¨a ¨WWTΣ

1{2
bb¨a

where W is a pp´ qq ˆ pn´ qq matrix and the entries are i.i.d. Np0, 1q.

Proof of Lemma S11. Recall the notation between (S9) and (S10),

Xa “ pX1a, ¨ ¨ ¨ ,Xnaq
T , Ha “ XapX

T
aXaq

´1XT
a , Xb “ pX1b, ¨ ¨ ¨ ,Xnbq

T ,

X̃b “ pIn ´HaqXb, Σ̂b|a “ n´1X̃T
b X̃b,

where Xa is n ˆ q, Ha is n ˆ n, both Xb and X̃b are n ˆ pp ´ qq and Σ̂b|a

is pp´ qq ˆ pp´ qq. Σ̂b|a is defined as

Σ̂b|a “
1

n
X̃T
b X̃b “

1

n
XT

b pIn ´HaqXb. (S117)
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Then, by Lemma S5, the pp´qq-dimensional random vector Xib´ΣbaΣ
´1
aa Xia „

Np0,Σbb¨aq and is independent of Xia.

It follows that the conditional distribution of Xib given Xia is charac-

terized by

LpXib|Xiaq “ NpΣbaΣ
´1
aa Xia,Σbb¨aq.

Therefore, we have from the definition Σb|a “ ECovpX1b|X1aq that

Σb|a “ Σbb¨a. (S118)

Write

XT
b “

`

X1b ´ΣbaΣ
´1
aa X1a, ¨ ¨ ¨ ,Xnb ´ΣbaΣ

´1
aa Xna

˘

`
`

ΣbaΣ
´1
aa X1a, ¨ ¨ ¨ ,ΣbaΣ

´1
aa Xna

˘

.

Notice the last two vectors are both normal and they are independent since

that X1, ¨ ¨ ¨ ,Xn are i.i.d. from the p-dimensional population Np0,Σq.

Moreover, we can also write

XT
b “ pV1, ¨ ¨ ¨ ,Vnq `ΣbaΣ

´1
aa XT

a (S119)

where V1, ¨ ¨ ¨ ,Vn are i.i.d. pp ´ qq-dimensional random vectors with dis-

tribution Np0,Σbb¨aq also independent of Xa. By definition (S117),

Σ̂b|a “
1

n
XT

b pIn ´HaqXb

“
1

n

“

pV1, ¨ ¨ ¨ ,Vnq `ΣbaΣ
´1
aa XT

a

‰

pIn ´Haq
“

pV1, ¨ ¨ ¨ ,Vnq `ΣbaΣ
´1
aa XT

a

‰T
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“
1

n
pV1, ¨ ¨ ¨ ,VnqpIn ´HaqpV1, ¨ ¨ ¨ ,Vnq

T , (S120)

since XT
a pIn ´ Haq “ 0. Let tξij; 1 ď i ď p ´ q, 1 ď j ď nu be i.i.d.

Np0, 1q-distributed random variables independent of Xa. Without loss of

generality, assume Vj “ Σ
1{2
bb¨a ¨ pξijqpp´qqˆ1 for each j. Therefore,

pV1, ¨ ¨ ¨ ,Vnq “ Σ
1{2
bb¨a ¨ pξijqpp´qqˆn. (S121)

Since the n ˆ n idempotent matrix Ha has rank q, we know In ´Ha has

rank n ´ q. As a function of Xa, In ´Ha is independent of pV1, ¨ ¨ ¨ ,Vnq.

As a result, there exists an nˆn random orthogonal matrix Γ independent

of tξij; 1 ď i ď p´ q, 1 ď j ď nu such that

In ´Ha “ Γ

¨

˚

˚

˝

Ipn´qqˆpn´qq 0

0 0qˆq

˛

‹

‹

‚

ΓT ,

where the three 0 above are matrices of entries 0 with proper size. By the

orthogonal invariance of i.i.d. standard normals, pξijqpp´qqˆnΓ has the same

distribution as that of pξijqpp´qqˆn. From (S120) and (S121), we have

Σ̂b|a
d
“

1

n
Σ

1{2
bb¨a ¨ pξijqpp´qqˆn

¨

˚

˚

˝

Ipn´qqˆpn´qq 0

00qˆq

˛

‹

‹

‚

pξijq
T
pp´qqˆnΣ

1{2
bb¨a

“
1

n
Σ

1{2
bb¨a ¨WWTΣ

1{2
bb¨a

where W “ pξijqpp´qqˆpn´qq. ˝
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LEMMA S12. Recall the notations in Lemma S11 and (S118). Let λ1, ¨ ¨ ¨λp´q

be the eigenvalues of Σb|a “ Σbb¨a. Let twi; 1 ď i ď p ´ qu be i.i.d.

pn´qq-dimensional vectors whose entries are i.i.d. Np0, 1q. Then tr
`

Σ̂b|a

˘ d
“

1
n

řp´q
i“1 λi}wi}

2 and

tr
`

Σ̂2
b|a

˘ d
“

1

n2

p´q
ÿ

i“1

λ2
i pw

T
i wiq

2
`

2

n2

ÿ

1ďiăjďp´q

λiλjpw
T
i wjq

2.

In particular,

Etr
`

Σ̂2
b|a

˘

“
n´ q

n2
¨
“

trpΣb|aq
‰2
`
pn´ qqpn´ q ` 1q

n2
tr
`

Σ2
b|a

˘

. (S122)

Proof of Lemma S12. Let W be a pp´qqˆpn´qqmatrix whose entries are

i.i.d. Np0, 1q. Immediately, EΣ̂b|a “
1
n
Σ

1{2
bb¨a ¨ EpWWT qΣ

1{2
bb¨a “

n´q
n
¨ Σbb¨a.

Using the identity trpABq “ trpBAq for any matrices A and B, we know

that

tr
`

Σ̂b|a

˘ d
“

1

n
tr
`

Σ
1{2
bb¨a ¨WWTΣ

1{2
bb¨a

˘

“
1

n
tr
`

WTΣbb¨aW
˘

(S123)

and

tr
`

Σ̂2
b|a

˘ d
“

1

n2
tr
“

Σ
1{2
bb¨a ¨WWTΣbb¨aWWTΣ

1{2
bb¨a

‰

“
1

n2
tr
“

pWTΣbb¨aWq
2
‰

. (S124)

Since λ1, ¨ ¨ ¨ , λp´q are the eigenvalues of Σbb¨a, we are able to decompose

Σbb¨a “ ΓT
1 ΛΓ1, where Γ1 is an orthogonal matrix and Λ “ diagpλ1, ¨ ¨ ¨ , λp´qq.
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By the orthogonal invariance of i.i.d. Np0, 1q-entries, we get

tr
`

Σ̂b|a

˘ d
“

1

n
tr
“

pWTΛWq
‰

and tr
`

Σ̂2
b|a

˘ d
“

1

n2
tr
“

pWTΛWq
2
‰

.

Furthermore write WT “ pw1, ¨ ¨ ¨ ,wp´qq. Then w1, ¨ ¨ ¨ ,wp´q are i.i.d.

pn´ qq-dimensional vectors of distribution Np0, In´qq. Hence,

WTΛW “

p´q
ÿ

i“1

λiwiw
T
i ,

which gives

tr
`

Σ̂b|a

˘ d
“

1

n

p´q
ÿ

i“1

λi}wi}
2. (S125)

Additionally, we have

pWTΛWq
2
“

p´q
ÿ

i“1

λ2
i pwiw

T
i q

2
` 2

ÿ

1ďiăjďp´q

λiλjpwiw
T
i qpwjw

T
j q.

Observe

trrpwiw
T
i q

2
s “ trrpwiw

T
i qwiw

T
i s “ trrpwT

i wiw
T
i wis “ pw

T
i wiq

2.

Similarly, trrpwiw
T
i qpwjw

T
j qs “ pw

T
i wjq

2. Then we end up with

tr
“

pWTΛWq
2
‰

“

p´q
ÿ

i“1

λ2
i pw

T
i wiq

2
` 2

ÿ

1ďiăjďp´q

λiλjpw
T
i wjq

2.

It follows from (S124) that

tr
`

Σ̂2
b|a

˘ d
“

1

n2

p´q
ÿ

i“1

λ2
i pw

T
i wiq

2
`

2

n2

ÿ

1ďiăjďp´q

λiλjpw
T
i wjq

2. (S126)
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Since w1, ¨ ¨ ¨ ,wp´q are i.i.d. Np0, In´qq, we know wT
i wi „ χ2pn ´ qq and

wT
i wj

d
“ }wi} ¨ η, where η „ Np0, 1q and is independent of }wi}. Recall

Eχ2pmq “ m and Varpχ2pmqq “ 2m for any integer m ě 1. Thus, by

independence we have Ep}wi}
2 ¨ η2q “ n´ q. From (S126), we obtain

Etr
`

Σ̂2
b|a

˘

“
1

n2
¨
“

2pn´ qq ` pn´ qq2
‰

p´q
ÿ

i“1

λ2
i `

2

n2
¨ pn´ qq

ÿ

1ďiăjďp´q

λiλj.

Using the identity

2
ÿ

1ďiăjďp´q

λiλj “
´

p´q
ÿ

i“1

λi

¯2

´

p´q
ÿ

i“1

λ2
i ,

we arrive at

Etr
`

Σ̂2
b|a

˘

“
n´ q

n2
¨
“

trpΣb|aq
‰2
`
pn´ qqpn´ q ` 1q

n2
tr
`

Σ2
b|a

˘

by using (S118). This completes the proof of the lemma. ˝

LEMMA S13. Let r ě 1 and w1 and w2 be i.i.d. r-dimensional random

vectors with distribution Np0, Irq. Then the following are true.

(i) VarppwT
1 w1q

2q “ 8rpr ` 2qpr ` 3q.

(ii) VarppwT
1 w2q

2q “ 2rpr ` 3q.

(iii) CovppwT
1 w2q

2, pwT
1 w3q

2q “ 2r.

(iv) CovppwT
1 w1q

2, pwT
1 w2q

2q “ 4rpr ` 2q.

Proof of Lemma S13. It is well-known that

Erχ2
prqms “ rpr ` 2q ¨ ¨ ¨ pr ` 2m´ 2q (S127)
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for all integers m ě 1. We will use this formula to prove the results.

(i) Since wT
1 w1 „ χ2prq, we have

Ep}w1}
4
q “ EpwT

1 w1q
2
“ rpr ` 2q (S128)

and EpwT
1 w1q

4 “ rpr ` 2qpr ` 4qpr ` 6q. This leads to

VarppwT
1 w1q

2
q “rpr ` 2qpr ` 4qpr ` 6q ´ rrpr ` 2qs2

“8rpr ` 2qpr ` 3q.

(ii) By Proposition 7.3 from Eaton (1983) or Theorem 1.5.6 from Muir-

head (1982), it holds that

}wi} and ei :“
wi

}wi}
are independent (S129)

for i “ 1, 2. Therefore, pwT
1 w2q

2 “ }w1}
2 ¨ peT1 w2q

2 d
“ }w1}

2 ¨ η2, where

η „ Np0, 1q and η is independent of }w1}. Consequently, by (S128),

VarppwT
1 w2q

2
q “Ep}w1}

4
¨ η4
q ´

“

Ep}w1}
2
¨ η2
q
‰2

“rpr ` 2q ¨ 3´ r2

“2rpr ` 3q.

(iii) By (S129), we have

pwT
1 w2q

2
pwT

1 w3q
2
“ }w1}

4
¨ peT1 w2q

2
¨ peT1 w3q

2.

Easily, be checking their covariance, we know eT1 w2 and eT1 w3 are i.i.d.

Np0, 1q. This implies that }w1}
4, peT1 w2q

2 and peT1 w3q
2 are independent.
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Thus, from (S128) we obtain

CovppwT
1 w2q

2, pwT
1 w3q

2
q “E}w1}

4
¨ 1 ¨ 1´ EpwT

1 w2q
2
¨ EpwT

1 w3q
2

“rpr ` 2q ´ r2

“2r.

(iv) Write pwT
1 w1q

2pwT
1 w2q

2 “ }w1}
6 ¨ peT1 w2q

2. From the independence

between }w1} and eT1 w2, we conclude that

CovppwT
1 w1q

2, pwT
1 w2q

2
q

“E}w1}
6
¨ EpeT1 w2q

2
´ EpwT

1 w1q
2
¨ EpwT

1 w2q
2

“rpr ` 2qpr ` 4q ´ rpr ` 2q ¨ r

“4rpr ` 2q.

Thus, the verification is completed. ˝

LEMMA S14. Let Σ̂b|a and Σb|a be as in (S10) and (S118), respectively.

Then

Var
`

tr
`

Σ̂2
b|a

˘˘

ď
1024pn´ qqpn` p´ 2qq2

n4
¨ trpΣ4

b|aq.

Proof of Lemma S14. Set r “ n´ q and s “ p´ q. Let λ1, ¨ ¨ ¨λs be the

eigenvalues of Σb|a “ Σbb¨a. Standard computation gives

Varpγ1 ` ¨ ¨ ¨ ` γsq “
s
ÿ

i“1

Varpγiq ` 2
ÿ

1ďiăjďs

Covpγi, γjq, (S130)
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for any random variables γ1, ¨ ¨ ¨ , γs. Then, from Lemma S12 we see

n4
¨ Var

`

tr
`

Σ̂2
b|a

˘˘

“

s
ÿ

i“1

λ4
i Var

`

pwT
i wiq

2
˘

` 4
ÿ

1ďiăjďs

λ2
iλ

2
j Var

`

pwT
i wjq

2
˘

` 8
ÿ

1ďiăjďs

ÿ

pk,lqPAi,j

λiλjλkλl Cov
`

pwT
i wjq

2, pwT
k wlq

2
˘

` 4
ÿ

1ďiăjďs

ÿ

kPti,ju

λiλjλ
2
k Cov

`

pwT
i wjq

2, pwT
k wkq

2
˘

:“C1 ` C2 ` C3 ` C4, (S131)

where Ai,j “ tpk, lq ‰ pi, jq; 1 ď k ă l ď s, tk, luXti, ju ‰ Hu. By Lemma

S13(i),

C1 “ 8rpr ` 2qpr ` 3q
s
ÿ

i“1

λ4
i ď 8pr ` 3q3 ¨ trpΣ4

b|aq. (S132)

By Lemma S13(ii),

C2 “4rpr ` 3q ¨ 2
ÿ

1ďiăjďs

λ2
iλ

2
j

ď4pr ` 3q2
´

ÿ

1ďiďs

λ2
i

¯2

“4pr ` 3q2
“

trpΣ2
b|aq

‰2
. (S133)

By Lemma S13(iii),

C3 “2r ¨ 8
ÿ

1ďiăjďs

ÿ

pk,lqPAi,j

λiλjλkλl

ď16r
ÿ

1ďi,j,kďs

λiλjλ
2
k
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“16r ¨
“

trpΣb|aq
‰2
¨ trpΣ2

b|aq. (S134)

By Lemma S13(iv),

C4 ď4rpr ` 2q ¨ 4
ÿ

1ďiăjďs

ÿ

kPti,ju

λiλjλ
2
k

ď16pr ` 2q2
ÿ

1ďi,jďs

λiλ
3
j

“16pr ` 2q2
“

trpΣb|aq
‰

¨ trpΣ3
b|aq. (S135)

Let I be uniformly distributed over t1, ¨ ¨ ¨ , su. By Hölder’s inequality,

pEλαI q
1{α ď pEλβI q

1{β for any 0 ă α ă β. This says that

´λα1 ` ¨ ¨ ¨ ` λ
α
s

s

¯1{α

ď

´λβ1 ` ¨ ¨ ¨ ` λ
β
s

s

¯1{β

.

By taking α “ 1, 2, 3, respectively, and β “ 4, we have

trpΣi
b|aq ď s1´pi{4q

¨ rtrpΣ4
b|aqs

i{4 (S136)

for i “ 1, 2, 3. Consequently,

C2 ď 4pr ` 3q2s ¨ trpΣ4
b|aq, C3 ď 16rs2

¨ trpΣ4
b|aq,

C4 ď 16pr ` 2q2s ¨ trpΣ4
b|aq.

Combing the above with (S131), we get

Var
`

tr
`

Σ̂2
b|a

˘˘

ď
8pr ` 3q3 ` 4pr ` 3q2s` 16rs2 ` 16pr ` 2q2s

n4
¨ trpΣ4

b|aq

ď
16pr ` 3qpr ` s` 3q2

n4
¨ trpΣ4

b|aq.
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Using the fact 3 ď 3r to see 16pr`3qpr`s`3q2 ď 45rpr`sq2 and plugging

in r “ n´ q and s “ p´ q, we obtain

Var
`

tr
`

Σ̂2
b|a

˘˘

ď
45pn´ qqpn` p´ 2qq2

n4
¨ trpΣ4

b|aq,

which concludes the proof. ˝

LEMMA S15. Let Σ̂b|a and Σb|a be as in (S10) and (S118), respectively.

Then, there exists a constant K ą 0 not depending on p, q, n or Σb|a such

that

Var
´

`

tr
`

Σ̂b|a

˘˘2
¯

ď
Kpn´ qq2pp´ qq2

n4
tr
`

Σ4
b|a

˘

.

Proof of Lemma S15. Set r “ n ´ q and s “ p ´ q. Let λ1, ¨ ¨ ¨λs be

the eigenvalues of the s ˆ s matrix Σb|a. Let ξ1, ¨ ¨ ¨ , ξs be i.i.d. random

variables with distribution χ2prq, with Eξ1 “ r and Varpξ1q “ 2r. From

(S125),

n4
¨ Var

``

tr
`

Σ̂b|a

˘˘2˘
“ Var

´´

s
ÿ

i“1

λiξi

¯2¯

. (S137)

Let U be a random variable with mean µ. Write U2 “ pU ´µq2`2µU ´µ2.

Trivially, VarpW1`W2q ď 2 VarpW1q` 2 VarpW2q for any random variables

W1 and W2. Then

VarpU2
q ď2 VarppU ´ µq2q ` 8µ2 VarpUq

ď2EpU ´ µq4 ` 8µ2 VarpUq.
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Now consider U to be U “
řs
i“1 λiξi, with µ “ EU “ r trpΣb|aq. Use (S136)

to see

µ2
¨ VarpUq “ 2µ2

s
ÿ

i“1

λ2
i “ 2r2

rtrpΣb|aqs
2
¨ tr

`

Σ2
b|a

˘

ď 2r2s2
¨ trpΣ4

b|aq.

(S138)

By the Marcinkiewtz-Zygmund inequality [see, e.g., Theorem 2 on p. 386

from Chow and Teicher (1997)] and the Cauchy-Schwartz inequality, we

obtain

EpU ´ µq4 “E
”

s
ÿ

i“1

λipξi ´ rq
ı4

ďK1 ¨ E
”

s
ÿ

i“1

λ2
i pξi ´ rq

2
ı2

ďK1 ¨

´

s
ÿ

i“1

λ4
i

¯

¨ E
s
ÿ

i“1

pξi ´ rq
4,

where K1 is a numerical constant. Write ξ1 “
řr
j“1 ηi, where η1, ¨ ¨ ¨ , ηr

are i.i.d. χ2p1q-distributed random variables. By Corollary 2 on p. 387

from Chow and Teicher (1997), Er
řr
j“1pηi ´ 1qs4 ď K2r

2, where K2 is also

a numerical constant. That is, Epξ1 ´ rq4 ď K2r
2. In summary, we get

EpU ´ µq4 ď pK1K2qr
2s ¨ tr

`

Σ4
b|a

˘

and hence

n4
¨ Var

``

tr
`

Σ̂b|a

˘˘2˘
“ VarpU2

q ď p2K1K2qr
2s ¨ tr

`

Σ4
b|a

˘

` 16r2s2
¨ trpΣ4

b|aq

from (S137) and (S138). The conclusion then follows by using the fact

r2s ď r2s2. ˝
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PROPOSITION S 1. Let Σ̂b|a and Σb|a be as in (S10) and (S118). Set

r “ n´ q and

{tr
`

Σ2
b|a

˘

“
n2

rpr ` 1q
¨

”

tr
`

Σ̂2
b|a

˘

´
1

r

`

tr
`

Σ̂b|a

˘˘2
ı

.

Assume (S14) holds. If q “ opnq, q “ oppq and p “ opn3q then {tr
`

Σ2
b|a

˘

{tr
`

Σ2
b|a

˘

Ñ

1 in

probability as p Ñ 8. Hence, {tr
`

Σ2
b|a

˘

is an asymptotic ratio-consistent

estimator of tr
`

Σ2
b|a

˘

.

Proof of Proposition S1. Since VarpW1 `W2q ď 2 VarpW1q ` 2 VarpW2q

for any random variables W1 and W2, by Lemma S14 and Lemma S15, there

exists a constant K ą 0 independent of n, p, q or Σb|a such that

Var
´

tr
`

Σ̂2
b|a

˘

´
1

r

`

tr
`

Σ̂b|a

˘˘2
¯

ďK ¨

”

pn´ qqpn` p´ 2qq2

n4
`
pn´ qq2pp´ qq2

n4r2

ı

¨ tr
`

Σ4
b|a

˘

ďK ¨

”

pn` pq2

n3
`
p2

n4

ı

¨ trpΣ4
b|aq. (S139)

On the other hand, by (S122),

E
”

tr
`

Σ̂2
b|a

˘

´
1

r

`

tr
`

Σ̂b|a

˘˘2
ı

“
r

n2
¨
“

trpΣb|aq
‰2
`
rpr ` 1q

n2
tr
`

Σ2
b|a

˘

´
1

r
E
“`

tr
`

Σ̂b|a

˘˘2‰
. (S140)

Define s “ p´ q. Let λ1, ¨ ¨ ¨λs be the eigenvalues of the sˆ s matrix Σb|a.
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By (S125),

n2
¨ E

“`

tr
`

Σ̂b|a

˘˘2‰
“E

´

s
ÿ

i“1

λi}wi}
2
¯2

“

s
ÿ

i“1

λ2
iE

`

}wi}
4
q ` 2

ÿ

1ďiăjďs

λiλjE
`

}wi}
2
}wj}

2
˘

,

where }w1}
2, ¨ ¨ ¨ , }ws}

2 are i.i.d. χ2prq-distributed random variables. From

(S128), Ep}w1}
4q “ rpr ` 2q. Thus, we have from independence that

n2
¨ E

“`

tr
`

Σ̂b|a

˘˘2‰
“rpr ` 2q ¨ tr

`

Σ2
b|a

˘

` r2
¨ 2

ÿ

1ďiăjďs

λiλj

“rpr ` 2q ¨ tr
`

Σ2
b|a

˘

` r2
 “

tr
`

Σb|a

˘‰2
´ tr

`

Σ2
b|a

˘(

“2r ¨ tr
`

Σ2
b|a

˘

` r2
¨
“

tr
`

Σb|a

˘‰2
,

or equivalently,

1

r
E
“`

tr
`

Σ̂b|a

˘˘2‰
“

2

n2
¨ tr

`

Σ2
b|a

˘

`
r

n2
¨
“

tr
`

Σb|a

˘‰2
.

Combine this with (S140) to get

EFp “ E
”

tr
`

Σ̂2
b|a

˘

´
1

r

`

tr
`

Σ̂b|a

˘˘2
ı

“
r2 ` r ´ 2

n2
¨ tr

`

Σ2
b|a

˘

, (S141)

where Fp “ tr
`

Σ̂2
b|a

˘

´ 1
r

“

tr
`

Σ̂b|a

˘‰2
. Under Assumption (S14), τ´1 ă

λminpΣb|aq ď λmaxpΣb|aq ă τ for some constant τ ą 1. This then im-

plies

trpΣ4
b|aq “ λ4

1 ` ¨ ¨ ¨ ` λ
4
s ď sτ 4 and

“

tr
`

Σ2
b|a

˘‰2
“ pλ2

1 ` ¨ ¨ ¨ ` λ
2
sq

2
ě s2τ´4.
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We deduce from (S139) and (S141) that

Var
´ Fp
EFp

¯

ďK ¨
npn` pq2 ` p2

pr2 ` r ´ 2q2
¨

trpΣ4
b|aq

“

tr
`

Σ2
b|a

˘‰2

ďp3Kqτ 8
¨

n3 ` np2

pr2 ` r ´ 2q2
¨

1

s
,

where the fact npn`pq2`p2 ď 3pn3`np2q is used in the second inequality.

Under the conditions q{n Ñ 0, q{p Ñ 0 and p “ opn3q, we know r{n Ñ 1

and s{p Ñ 1, hence the last term is of order 1
np
`

p
n3 Ñ 0. This leads to

Fp

EFp
Ñ 1 in probability and we conclude from (S141) that

”

tr
`

Σ̂2
b|a

˘

´
1

r

`

tr
`

Σ̂b|a

˘˘2
ı

¨

”rpr ` 1q

n2
¨ tr

`

Σ2
b|a

˘

ı´1

Ñ 1

in probability. The proof is complete. ˝

LEMMA S 16. Let y1, ¨ ¨ ¨ ,ym be i.i.d. p-dimensional random vectors

with distribution Np0,Bq, where B is a p ˆ p non-negative definite ma-

trix. Let x P Rm be a non-zero random vector independent of y1, ¨ ¨ ¨ ,ym.

Write x1 “ x{}x} and the m ˆ p matrix py1 ¨ ¨ ¨ymq
T “ pz1 ¨ ¨ ¨ zpq. Then

pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T „ Np0,Bq and is independent of }x}.

Proof of Lemma S16. Write B “ pbijqpˆp and py1 ¨ ¨ ¨ymq
T “ pyijqmˆp.

Use the fact that the rows of the matrix are i.i.d. to see Epykiyljq “ 0 if

k ‰ l and Epykiyljq “ bij if k “ l. Thus,

Epziz
T
j q “

`

Epykiyljq
˘

1ďk,lďp
“ bijIp. (S142)
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Obviously, zi „ Np0, biiImq for each i. Since x1 is a unit random vector,

then conditional on x, we know xT1 z1, ¨ ¨ ¨ ,x
T
1 zp are jointly Gaussian random

variables with xT1 zi „ Np0, biiq for each 1 ď i ď p. Let us check their

covariance matrix. In fact, conditional on x,

E
“

pxT1 ziqpx
T
1 zjq

‰

“ E
`

xT1 ziz
T
j x1

˘

“ xT1E
`

ziz
T
j

˘

x1 “ bij,

by (S142) and the fact xT1 x1 “ 1. In summary, conditional on x, the random

vector pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T „ Np0,Bq. Since Np0,Bq is free of x1, this implies,

unconditionally, it is also true that pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T „ Np0,Bq. Finally, for

any set F Ă Rp and G Ă r0,8q,

P
`

pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T
P F, }x} P G

˘

“E
“

P
`

pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T
P F

ˇ

ˇx
˘

¨ Ip}x} P Gq
‰

“E
“

P
`

Np0,Bq P F
˘

¨ Ip}x} P Gq
‰

“P
`

Np0,Bq P F
˘

¨ P p}x} P Gq.

This shows that pxT1 z1 ¨ ¨ ¨x
T
1 zpq

T and }x} are independent. ˝

LEMMA S17 (Bai and Silverstein (2010)). Let A “ paijq be an nˆ n non-

random matrix and X “ px1, ¨ ¨ ¨ , xnq
T be a random vector of independent

entries. Assume that Exi “ 0, E |xi|
2
“ 1 and E |xj|

`
ď ν`. Then, for any

p ě 1,

E
ˇ

ˇXTAX´ tr A
ˇ

ˇ

p
ď Cp

´

`

ν4 tr
`

AAT
˘˘p{2

` ν2p tr
`

AAT
˘p{2

¯

,
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where Cp is a constant depending on p only.

LEMMA S18. Assume ε “ pε1, ¨ ¨ ¨ , εnq
T P Rn satisfies that ε1, ¨ ¨ ¨ , εn are

i.i.d. with Eε1 “ 0, Eε21 “ σ2 and E|ε1|
2k ă 8 for an integer k ě 2. Let H

be an nˆn symmetric, random matrix satisfying H2 “ H and rank pHq “ q.

Assume u „ Np0, Inq and that u,H and ε are independent. Then

(i) εT pIn ´Hqε “ pn´ qqσ2 `Opp
?
nq;

(ii) EpuTHεq2k ď Cpk, σq ¨ qk, where Cpk, σq is a constant depending

on k, σ only.

Proof of Lemma S18. It is easy to see EpεTAεq “ σ2 trpAq for any

matrix A.

(i) Obviously, the conditional mean ErεT pIn ´ Hqε|Hs “ pn ´ qqσ2.

Take another expectation to see ErεT pIn ´Hqεqs “ pn´ qqσ2. By Lemma

S17,

E
“`

εT pIn ´Hqε´ pn´ qqσ2
˘2ˇ
ˇH

‰

ďC ¨ Eε41 ¨ trpIn ´Hq

“C ¨ Eε41 ¨ pn´ qq,

where C ą 0 is a constant free of n, q, k, σ. By taking another expectation,

we get VarpεT pIn ´Hqεq ď Cn. Thus, by the Chebyshev inequality,

P
`

|εT pIn ´Hqε´ pn´ qqσ2
| ě A

?
n
˘

ď
VarpεT pIn ´Hqεq

A2
ď

C

A2
.

This implies εT pIn ´Hqε “ pn´ qqσ2 `Opp
?
nq.
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(ii) First, EpεTHεq “ σ2 ¨ trpHq “ σ2q. Trivially,

E
`

εTHε
˘k
ď2k ¨

“

E
ˇ

ˇεTHε´ σ2q
ˇ

ˇ

k
` pσ2qqk

‰

.

From Lemma S17 and the fact Hl “ H for any l “ 1, 2, ¨ ¨ ¨ , we see

E
ˇ

ˇεTHε´ σ2q
ˇ

ˇ

k
ďCk ¨

“

pEε41q
k{2
` Eε2k1

‰

¨
“

ptrpHqqk{2 ` trpHq
‰

ďCkq
k{2,

where Ck is a constant depending on k only. Therefore,

E
`

εTHε
˘k
ď Cpk, σq ¨ qk, (S143)

where Cpk, σq is a constant depending on k, σ only. On the other hand,

noting that the n entries of u are i.i.d. Np0, 1q, by conditioning on H

and ε, the random variable uTHε has the distribution of G ¨ }Hε}, where

G „ Np0, 1q. Or, equivalently,

given tH, εu, random variable uTHε has distribution G ¨
`

εTHε
˘1{2

.

In particular, this implies that

EpuTHεq2k “ E
`

G2k
˘

¨ E
`

εTHε
˘k
.

By combining this, (S143) and the fact EpG2kq “ p2k ´ 1q!!, we obtain

EpuTHεq2k ď p2k ´ 1!! ¨ Cpk, σq ¨ qk.
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The proof is completed. ˝

Recall random error vector ε “ pε1, ¨ ¨ ¨ , εnq
T P Rn in the linear regres-

sion model from Section S2. The components tεi; 1 ď i ď nu are assumed

to be i.i.d. random variables.

PROPOSITION S2. Let T
p3q
max be defined as in (S12). Assume (S13) and

(S14) are true and (2.3) holds with “Σ” replaced by “Σb|a”. Suppose p “

opn3q, q “ oppq, q ď nδ for some δ P p0, 1q and Ep|ε1|
`q ă 8 with ` “

14p1´ δq´1. Then, under H0 from (S8), T
p3q
max´ 2 logpp´ qq` log logpp´ qq

converges weakly to a distribution with cdf F pxq “ expt´ 1?
π

expp´x
2
qu.

Proof of Proposition S2. Recall the notation between (S9) and (S10).

In particular, Ha “ XapX
T
aXaq

´1XT
a . Under the null hypothesis in (S8),

Y “ Xaβa ` ε, where ε “ pε1, ¨ ¨ ¨ , εnq
T P Rn and the random errors

tεi; 1 ď i ď nu are i.i.d. with Eεi “ 0 and Varpεiq “ σ2 for each i. Also, ε

is assumed to be independent of tXi; 1 ď i ď nu. Use XT
a pIn ´Haq “ 0

and pIn ´HaqXa “ 0 to see

Y T
pIn ´HaqY “pXaβa ` εq

T
pIn ´HaqpXaβa ` εq

“εT pIn ´Haqε. (S144)
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Recalling (S10), we denote

Xb “ pX1b, ¨ ¨ ¨ ,Xnbq
T and X̃b “ pX̃q`1, ¨ ¨ ¨ , X̃pq “ pIn ´HaqXb,

(S145)

where Xb and X̃b are n ˆ pp ´ qq matrices. Write Xb “ pwq`1, ¨ ¨ ¨ ,wpq.

Then the last assertion from (S145) says that X̃j “ pIn ´Haqwj for each

q ` 1 ď j ď p. This leads to

Y T X̃jX̃
T
j Y “pXaβa ` εq

T
pIn ´Haqwjw

T
j pIn ´HaqpXaβa ` εq

“εT pIn ´Haqwjw
T
j pIn ´Haqε

“εT X̃jX̃
T
j ε

via the facts XT
a pIn ´ Haq “ 0 and pIn ´ HaqXa “ 0 again. Note that

pX̃T
j X̃jq

´1 is a scalar. By the definition of T
p3q
max in (S12), we derive

T p3qmax “ max
q`1ďjďp

Y T X̃jpX̃
T
j X̃jq

´1X̃T
j Y

Y T pIn ´HaqY {pn´ qq

“
pn´ qqσ2

εT pIn ´Haqε
¨ max
q`1ďjďp

 

n´1σ´2εT X̃jpn
´1X̃T

j X̃jq
´1X̃T

j ε
(

.

Set

Wp “
pn´ qqσ2

εT pIn ´Haqε
.

By the triangle inequality,

ˇ

ˇT p3qmax ´Wp ¨ max
q`1ďjďp

 

n´1σ´2εT X̃jX̃
T
j ε

(
ˇ

ˇ
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ďWp ¨ max
q`1ďjďp

 

n´1σ´2εT X̃jX̃
T
j ε ¨

ˇ

ˇ1´ pn´1X̃T
j X̃jq

´1
ˇ

ˇ

(

. (S146)

Define

H31 “ max
q`1ďjďp

 

n´1σ´2εT X̃jX̃
T
j ε

(

;

H32 “ max
q`1ďjďp

 

n´1σ´2εT X̃jX̃
T
j ε ¨

ˇ

ˇ1´ pn´1X̃T
j X̃jq

´1
ˇ

ˇ

(

.

By Lemma S18(i), we know 1{Wp “ 1`Oppn
´1{2q, which implies

Wp “ 1`Op

´ 1
?
n

¯

. (S147)

We will show that, as pÑ 8,

H 1
31 :“ H31 ´ 2 logpp´ qq ` log logpp´ qq Ñ a distribution with cdf e´e

´x{2{
?
π;

(S148)

H32 Ñ 0 in probability. (S149)

Assuming they are true, using assumption p “ opn3q and (S146) we have

T p3qmax “

”

1`Op

´ 1
?
n

¯ı

¨
“

H 1
31 ` 2 logpp´ qq ´ log logpp´ qq ` opp1q

‰

“H 1
31 ` 2 logpp´ qq ´ log logpp´ qq ` opp1q. (S150)

This and (S148) show that T
p3q
max ´ 2 logpp ´ qq ` log logpp ´ qq converges

weakly to a distribution with cdf F pxq “ expt´ 1?
π

expp´x
2
qu, x P R. It

remains to prove (S148) and (S149), which will be done in two steps as

follows.
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Step 1: the proof of (S148). By (S119) and (S145),XT
b “ pV1, ¨ ¨ ¨ ,Vnq`

ΣbaΣ
´1
aa XT

a , where V1, ¨ ¨ ¨ ,Vn are i.i.d. pp ´ qq-dimensional random vec-

tors with distribution Np0,Σbb¨aq and they are also independent of Xa.

In particular, V1, ¨ ¨ ¨ ,Vn are independent of Ha, a function of Xa. As

pIn ´HaqXa “ 0, we see that

pX̃q`1, ¨ ¨ ¨ , X̃pq “pIn ´HaqXb

“pIn ´Haq
“

XaΣ
´1
aa ΣT

ba ` pV1, ¨ ¨ ¨ ,Vnq
T
‰

“pIn ´HaqpV1, ¨ ¨ ¨ ,Vnq
T .

Write pV1, ¨ ¨ ¨ ,Vnq
T “ puq`1, ¨ ¨ ¨ ,upq. In other words, each uq`1, ¨ ¨ ¨ ,up P

Rn is a column of pV1, ¨ ¨ ¨ ,Vnq
T . Immediately we have

X̃j “ pIn ´Haquj and uj „ Np0, Inq (S151)

for each j “ q ` 1, ¨ ¨ ¨ , p. This means X̃T
j ε “ uTj ε ´ uTj Haε, which then

leads to

pX̃T
j εq

2
“
`

uTj ε
˘2
` puTj Haεq

2
´ 2pεTujqu

T
j Haε (S152)

by using the fact uTj ε “ ε
Tuj P R. Obviously, it holds that

ˇ

ˇ max
q`1ďjďp

 

n´1
pX̃T

j εq
2
(

´ max
q`1ďjďp

 

n´1
`

uTj ε
˘2(ˇ

ˇ

ď max
q`1ďjďp

 

n´1
puTj Haεq

2
(

` 2 ¨ max
q`1ďjďp

 

n´1
ˇ

ˇpεTujqu
T
j Haε

ˇ

ˇ

(

. (S153)
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A key observation is that the three random quantities uj, Ha and ε are

independent. By the last assertion from (S151) and Lemma S18(ii), we

have

EpuTj Haεq
2k
ď Cpk, σq ¨ qk (S154)

for any q ` 1 ď j ď n, where k “ r 6
1´δ
s ` 1 and Cpk, σq is a constant

depending on k, σ only. We next show

1

n
¨ max
q`1ďjďp

puTj Haεq
2
Ñ 0 and

1

n
¨ max
q`1ďjďp

ˇ

ˇpεTujqu
T
j Haε

ˇ

ˇÑ 0 (S155)

in probability as pÑ 8. In fact, for any β ą 0,

P
´ 1

n
¨ max
q`1ďjďp

puTj Haεq
2
ě β

¯

ďp ¨ max
q`1ďjďp

P
´

puTj Haεq
2
ě nβ

¯

ďp ¨ max
q`1ďjďp

EpuTj Haεq
2k

pnβqk
.

Therefore, from assumption q ď nδ for some δ P p0, 1q, we have

P
´ 1

n
¨ max
q`1ďjďp

puTj Haεq
2
ě β

¯

ď Cpβ, k, σq ¨
pqk

nk
ď Cpβ, k, σq ¨

p

nkp1´δq
,

where Cpβ, k, σq is a constant depending on β, k and σ. Since kp1´ δq ą 6,

we get the first limit of (S155) by using the assumption p “ opn3q. For the

second limit, by setting ε1 “ ε{}ε} we have

1

n
¨ max
q`1ďjďp

ˇ

ˇpεTujqu
T
j Haε

ˇ

ˇ “
}ε}
?
n
¨

1
?
n
¨ max
q`1ďjďp

ˇ

ˇpεT1 ujqu
T
j Haε

ˇ

ˇ.
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By the law of large numbers, }ε}{
?
n Ñ σ in probability. Thus, to get the

second limit of (S155), it suffices to prove

1
?
n
¨ max
q`1ďjďp

ˇ

ˇpεT1 ujqu
T
j Haε

ˇ

ˇÑ 0 (S156)

in probability. Similar to an earlier argument, we have from the fact εT1 uj „

Np0, 1q that

P
´ 1
?
n
¨ max
q`1ďjďp

ˇ

ˇpεT1 ujqu
T
j Haε

ˇ

ˇ ě β
¯

ďp ¨ max
q`1ďjďp

P
´

|εT1 uj| ¨ |u
T
j Haε| ě

?
nβ

¯

ď
p

p
?
nβqk

¨ max
q`1ďjďp

E
“

|εT1 uj|
k
¨ |uTj Haε|

k
‰

ďCpk, βq ¨
p

nk{2
¨
“

EpuT1 Haεq
2k
‰1{2

by the Cauchy-Schwartz inequality and EpuTj Haεq
2k “ EpuT1 Haεq

2k, where

Cpk, βq is a constant depending on k and β only. Use (S154) to see

P
´ 1
?
n
¨ max
q`1ďjďp

ˇ

ˇpεT1 ujqu
T
j Haε

ˇ

ˇ ě β
¯

ď Cpk, β, σq ¨
pqk{2

nk{2
“ O

´ p

nkp1´δq{2

¯

,

by the assumption q ď nδ again. Since p “ opn3q and kp1´ δq ą 6, we get

(S156) and then the second limit of (S155).

Now we study maxq`1ďjďp

 

n´1
`

uTj ε
˘2(

in (S153). Since ε1, ¨ ¨ ¨ , εn are

i.i.d. with mean zero and variance σ2. By assumption, Ep|ε1|
`q ă 8 with

` “ 14p1´ δq´1. This concludes Epε14
1 q ă 8. Write }ε}2 “ ε21` ¨ ¨ ¨` ε

2
n. By

the central limit theorem, n´1σ´2}ε}2 “ 1 ` Oppn
´1{2q. Use ε1 “ ε{}ε} to
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see

max
q`1ďjďp

 

n´1σ´2
`

uTj ε
˘2(

“
`

n´1σ´2
}ε}2

˘

¨ max
q`1ďjďp

`

uTj ε1

˘2

“
“

1`Oppn
´1{2

q
‰

¨ max
q`1ďjďp

`

uTj ε1

˘2
. (S157)

Review V1, ¨ ¨ ¨ ,Vn are i.i.d. pp´ qq-dimensional random vectors with dis-

tribution Np0,Σbb¨aq and pV1, ¨ ¨ ¨ ,Vnq
T “ puq`1, ¨ ¨ ¨ ,upq. By Lemma S16,

puTq`1ε1, ¨ ¨ ¨ ,u
T
p ε1q

T
„ Np0,Σbb¨aq. (S158)

Based on assumption, (2.3) holds with “Σ” replaced by “Σb|a”, we know

Assumption (2.2) also holds by the discussion below (2.3). We then have

from Theorem 2 that

P
`

max
q`1ďjďp

puTj ε1q
2
´ 2 logpp´ qq ` log logpp´ qq ď x

˘

Ñ exp
!

´
1
?
π
e´x{2

)

as pÑ 8. Denote Up “ maxq`1ďjďppu
T
j ε1q

2 ´ 2 logpp´ qq ` log logpp´ qq.

Then the above says Up converges weakly to the Gumbel distribution with

cdf F pxq “ expt´ 1?
π
e´x{2u. It then follows from (S157) that

max
q`1ďjďp

 

n´1σ´2
`

uTj ε
˘2(

“
“

1`Oppn
´1{2

q
‰

¨
“

Up ` 2 logpp´ qq ´ log logpp´ qq
‰

“Up ` 2 logpp´ qq ´ log logpp´ qq `Oppn
´1{2 log pq.

Obviously, the last term goes to zero since p “ opn3q by assumption. Use

the Slutsky lemma to see that

max
q`1ďjďp

 

n´1
`

uTj ε
˘2(

´ 2 logpp´ qq ` log logpp´ qq
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converges weakly to the Gumbel distribution with cdf F pxq “ expt´ 1?
π
e´x{2u.

We then obtain (S148) by (S153) and (S155).

Step 2: the proof of (S149). Easily, by definition,

|H32| ď |H31| ¨ max
q`1ďjďp

ˇ

ˇ1´ pn´1X̃T
j X̃jq

´1
ˇ

ˇ.

By (S148), H31 “ Oplog pq. Thus, to prove (S149), it suffices to show

H 1
32 :“ max

q`1ďjďp

ˇ

ˇ1´ pn´1X̃T
j X̃jq

´1
ˇ

ˇ “ op

´ 1

log p

¯

. (S159)

Now we prove this assertion. From assumption q ď nδ for some δ P p0, 1q,

we choose δ1 P p0,mint1{2, 1´ δuq. This indicates that

max
!1

2
, δ
)

ă 1´ δ1 ă 1. (S160)

Note that, for x ą 0 and s P p0, 1q satisfying |1 ´ x´1| ě s, one of the two

inequalities x´1 ě 1` s and x´1 ď 1´ s must hold. Equivalently, x ď 1
1`s

or x ě 1
1´s

. Both of them imply that |x´ 1| ě s
1`s

ě 1
2
s. Consequently,

P
´

H 1
32 ě n´δ

1
¯

ďp ¨ max
q`1ďjďp

P
´

ˇ

ˇ1´ pn´1X̃T
j X̃jq

´1
ˇ

ˇ ě n´δ
1
¯

ďp ¨ max
q`1ďjďp

P
´
ˇ

ˇ

ˇ

1

n
X̃T
j X̃j ´ 1

ˇ

ˇ

ˇ
ě

1

2
n´δ

1
¯

.

Recalling (S151) and that the matrix pIn´Haq
2 “ In´Ha has rank n´q, we

know X̃T
j X̃j „ χ2pn´qq. Denote n1 “ n´q. Observe that | y

n
´1| ě p1{2qn´δ

1

implies |y ´ n| ě p1{2qn1´δ1 , which implies |y ´ n1| ě p1{2qn1´δ1 ´ q. Use

(S160) and the assumption q ď nδ to see |y ´ n1|{
?
n1 ě rp1{2qn1´δ1 ´
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qs{
?
n1 „ p1{2qnp1{2q´δ

1

. By definition, 0 ă p1{2q ´ δ1 ă 1{2. Similar to

(S108), we have

P
`

H 1
32 ě n´δ

1˘

ďp ¨ P
´
ˇ

ˇ

ˇ

1
?
n1
pχ2
pn1q ´ n1q

ˇ

ˇ

ˇ
ě

1

3
np1{2q´δ

1
¯

ďp ¨ exp
`

C ¨ n1´2δ1
˘

,

which is equal to op1q by assumption p “ opn3q. This says H 1
32 “ oppn

´δ1q,

which implies (S159), and hence (S149) holds as aforementioned. ˝

Recall the error vector ε “ pε1, ¨ ¨ ¨ , εnq
T P Rn in the linear regression

from Section S2. We assume tεi; 1 ď i ď nu are i.i.d. random variables.

PROPOSITION S3. Let T
p3q
sum be defined as in (S11). Assume (S13) and

(S14) hold and (2.3) also holds with “Σ” replaced by “Σb|a”. Suppose p “

opn3q, q “ oppq, q ď nδ for some δ P p0, 1q and Ep|ε1|
`q ă 8 with ` “

14p1 ´ δq´1. Under H0 from (S8) we have T
p3q
sum converges to Np0, 1q in

distribution as pÑ 8.

Proof of Proposition S3. Recall the notation from Section S2. In par-

ticular,

Σ̂b|a “ n´1X̃T
b X̃b, σ̂2

“ pn´ qq´1ε̂T ε̂,

{trpΣ2
b|aq “

n2

pn` 1´ qqpn´ qq

!

tr
`

Σ̂2
b|a

˘

´
1

n´ q
tr2
pΣ̂b|aq

)
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and

T p3qsum “
n´1ε̂TXbX

T
b ε̂´ n

´1pn´ qqpp´ qqσ̂2

b

2σ̂4 {tr
`

Σ2
b|a

˘

. (S161)

Next we will first derive a workable form for the main ingredient ε̂TXbX
T
b ε̂

above.

Recall ε̂ “ pIn´HaqY . Under the null hypothesis in (S8), Y “Xaβa`

ε, where ε “ pε1, ¨ ¨ ¨ , εnq
T P Rn, and tεi; 1 ď i ď nu are i.i.d. random

variables with Eε1 “ 0 and Varpε1q “ σ2. By assumption, tεi; 1 ď i ď nu

are also independent of tXi; 1 ď i ď nu. Recalling (S145), we denote

Xb “ pX1b, ¨ ¨ ¨ ,Xnbq
T and X̃b “ pX̃q`1, ¨ ¨ ¨ , X̃pq “ pIn ´HaqXb.

Since Ha “ XapX
T
aXaq

´1XT
a , both XT

a pIn´Haq “ 0 and pIn´HaqXa “ 0.

Thus, ε̂ “ pIn ´Haqε. By definition,

σ̂2
“

1

n´ q
ε̂T ε̂ “

1

n´ q
εT pIn ´Haqε (S162)

and

ε̂TXbX
T
b ε̂ “ε

T
pIn ´HaqXbX

T
b pIn ´Haqε

“}pX̃q`1, ¨ ¨ ¨ , X̃pq
Tε}2

“

p
ÿ

j“q`1

pX̃T
j εq

2.

It is easy to verify that EpεT pIn ´ Haqεq “ σ2trpIn ´ Haq “ pn ´ qqσ2.
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Consequently,

Eσ̂2
“ σ2. (S163)

According to (S151), X̃j “ pIn ´Haquj and uj „ Np0, Inq. Hence,

pX̃T
j εq

2
“ ruTj pIn ´Haqεs

2
“ }pIn ´Haqε}

2
¨ puTj e2q

2, (S164)

where e2 :“ pIn ´ Haqε{}pIn ´ Haqε}. Eventually, we arrive at an ideal

form to work with, that is,

1

n
ε̂TXbX

T
b ε̂ “

1

n
εT pIn ´Haqε ¨

p
ÿ

j“q`1

puTj e2q
2. (S165)

Now we start to prove the central limit theorem. The assumption

Ep|ε1|
`q ă 8 with ` “ 14p1 ´ δq´1 implies that Ep|ε1|

2kq ă 8 with

k “ r 6
1´δ
s ` 1. It follows from Lemma S18(i) that

εT pIn ´Haqε “ pn´ qqσ
2
`Opp

?
nq. (S166)

This and (S162) imply that

σ̂2
“ σ2

`Oppn
´1{2

q. (S167)

By assumption q ď nδ for some δ P p0, 1q, we see

1

n
εT pIn ´Haqε “ σ2

`Op

`

n´δ
1˘

, (S168)

with δ1 “ mint1´ δ, 1{2u.
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In lieu of the explanation before (S151), tuj; q ` 1 ď j ď pu are inde-

pendent of Xa and ε, and hence are independent of the unit random vector

e2. We then have from Lemma S16 that puTq`1e2, ¨ ¨ ¨ ,u
T
p e2q

T has distribu-

tion Np0,Σbb¨aq and is also independent of }pIn ´Haqε}. By assumption,

(2.3) holds with “Σ” replaced by “Σb|a”. From Theorem 1 and (S118) we

have

řp
j“q`1pu

T
j e2q

2 ´ pp´ qq
b

2 trpΣ2
b|aq

Ñ Np0, 1q (S169)

in distribution as p Ñ 8. From (S162), we know 1
n
εT pIn ´Haqε “

n´q
n
σ̂2.

By (S165) and (S169) we have

nσ̂´2

n´q
¨
`

n´1ε̂TXbX
T
b ε̂

˘

´ pp´ qq
b

2 trpΣ2
b|aq

Ñ Np0, 1q.

Use the fact n{pn´ qq Ñ 1 to see

n´1ε̂TXbX
T
b ε̂´ n

´1pn´ qqpp´ qqσ̂2

b

2σ̂4 trpΣ2
b|aq

Ñ Np0, 1q. (S170)

By Proposition S1, {tr
`

Σ2
b|a

˘

{tr
`

Σ2
b|a

˘

Ñ 1 in probability. We then arrive at

T p3qsum “
n´1ε̂TXbX

T
b ε̂´ n

´1pn´ qqpp´ qqσ̂2

b

2σ̂4 {tr
`

Σ2
b|a

˘

Ñ Np0, 1q

through an application of the Slutsky lemma. The proof is completed. ˝

Proof of Theorem S2. Parts (i) and (ii) follow from Propositions S3 and

S2, respectively. The setting here is the same as those in the two proposi-

tions, so we will continue to use the same notation in the two propositions
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to prove (iii) for the asymptotic independence. Recall the definition

T p3qsum “
n´1ε̂TXbX

T
b ε̂´ n

´1pn´ qqpp´ qqσ̂2

b

2σ̂4 {tr
`

Σ2
b|a

˘

.

By (S162) and (S165), we have

1

n
ε̂TXbX

T
b ε̂ “

n´ q

n
σ̂2

p
ÿ

j“q`1

puTj e2q
2.

Thus,

T p3qsum “
n´ q

n
¨

řp
j“q`1pu

T
j e2q

2 ´ pp´ qq
b

2 {trpΣ2
b|aq

“T̃ p3qsum ` pωp ´ 1q ¨ T̃ p3qsum ´
q

n
¨ ωpT̃

p3q
sum

where

T̃ p3qsum “:

řp
j“q`1pu

T
j e2q

2 ´ pp´ qq
b

2trpΣ2
b|aq

and ωp :“
´trpΣ2

b|aq

{trpΣ2
b|aq

¯1{2

.

By Proposition S1, {tr
`

Σ2
b|a

˘

{tr
`

Σ2
b|a

˘

Ñ 1 in probability. Hence ωp Ñ 1

in probability. Also, T̃
p3q
sum Ñ Np0, 1q by (S169). This together with the

assumption q “ Opnδq for some δ P p0, 1q implies that

T p3qsum “

řp
j“q`1pu

T
j e2q

2 ´ pp´ qq
b

2 trpΣ2
b|aq

` opp1q. (S171)

On the other hand, based on (S148) and (S150),

T p3qmax ´ 2 logpp´ qq ` log logpp´ qq

“H 1
31 ` opp1q



S3. TECHNICAL PROOFS 103

“ max
q`1ďjďp

 

n´1σ´2εT X̃jX̃
T
j ε

(

´ 2 logpp´ qq ` log logpp´ qq ` opp1q

“ max
q`1ďjďp

!

}pIn ´Haqε}
2

nσ2
¨
`

uTj e2

˘2
)

´ 2 logpp´ qq ` log logpp´ qq ` opp1q

(S172)

by(S164). Remember that e2 “ pIn ´Haqε{}pIn ´Haqε} is independent of

uj because uj,Ha, ε are independent. It follows that

ˇ

ˇ

ˇ
max

q`1ďjďp

!

}pIn ´Haqε}
2

nσ2
¨
`

uTj e2

˘2
)

´ max
q`1ďjďp

`

uTj e2

˘2
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

}pIn ´Haqε}
2

nσ2
´ 1

ˇ

ˇ

ˇ
¨ max
q`1ďjďp

`

uTj e2

˘2
. (S173)

According to (S168), we know that

}pIn ´Haqε}
2

nσ2
“

1

nσ2
εT pIn ´Haqε “ 1`Op

`

n´δ
1˘

with δ1 “ mint1´ δ, 1{2u. As a consequence,

ˇ

ˇ

ˇ

}pIn ´Haqε}
2

nσ2
´ 1

ˇ

ˇ

ˇ
“ Op

´ 1

nδ1

¯

. (S174)

From the discussion between (S168) and (S169), it holds that

puTq`1e2, ¨ ¨ ¨ ,u
T
p e2q

T
„ Np0,Σbb¨aq. (S175)

By assumption, (2.3) holds with “Σ” replaced by “Σb|a”, we know Assump-

tion (2.2) also holds by the discussion below (2.3). Due to Theorem 2, we

get

max
q`1ďjďp

puTj e2q
2
´ 2 logpp´ qq ` log logpp´ qq converges weakly to a distribution
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with cdf exp
!

´
1
?
π
e´x{2

)

for any x P R as pÑ 8. By assumption, p “ opn3q, the above particularly

implies maxq`1ďjďppu
T
j e2q

2 “ Oplog nq. This together with (S173) and

(S174) concludes that

max
q`1ďjďp

!

}pIn ´Haqε}
2

nσ2
¨
`

uTj e2

˘2
)

“ max
q`1ďjďp

`

uTj e2

˘2
` opp1q.

According to (S172), we have

T p3qmax ´ 2 logpp´ qq ` log logpp´ qq

“ max
q`1ďjďp

`

uTj e2

˘2
´ 2 logpp´ qq ` log logpp´ qq ` opp1q.

Joining this with (S171) and (S175), by Theorem 3 and Lemma S10, we

obtain T
p3q
sum and T

p3q
max ´ 2 logpp ´ qq ` log logpp ´ qq are asymptotically

independent. ˝
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